
 1

Geomega
Geometry for MEGAlib

Copyright by Andreas Zoglauer

Version of 2020-05-05

 2

Table of Contents

1. Prelude... 3
1.1. What is Geomega? .. 3
1.2. Installation ... 3
1.3. Bug reports .. 3

2. Invocation .. 3
3. The geometry file format... 4

3.1. Writing a good geometry... 5
3.2. Global keywords ... 5
3.3. Materials .. 7
3.4. Shapes ... 8
3.5. Orientation... 9
3.6. Volumes .. 9
3.7. Detectors ... 14

3.7.1. Common keywords ... 16
3.7.2. Keywords specific to calorimeters .. 21
3.7.3. Keywords specific to Anger cameras .. 22
3.7.4. Keywords specific to strip/voxel detectors ... 22
3.7.5. Keywords specific to Scintillator-like detectors ... 24
3.7.6. Multiple detectors .. 25
3.7.7. Named Detectors ... 26

3.8. Triggers ... 28
3.8.1. Basic Triggers ... 28
3.8.2. Trigger map ... 30

3.9. System ... 32
3.10. Additional features .. 33

3.10.1. Constants ... 33
3.10.2. The math environment .. 33
3.10.3. For loops .. 33
3.10.4. If-conditions .. 34
3.10.5. Echo ... 35

3.11. Final words .. 35

 3

1. Prelude

1.1. What is Geomega?

Geomega provides a uniform geometry and detector setup description for MEGAlib. Starting from a geometry

file, which includes the description of all materials, volumes, detectors, trigger criteria, etc., the geometry is

built and can be viewed with Geomega. The underlying geomega library is in turn used by all other programs of

MEGAlib to access this geometry information. For example:

• The simulation tool Cosima is using Geomega to import the geometry into its own Geant4 format.

• When the simulation file is read by e.g. the event reconstruction tool Revan, then the ideal simulation

data is noised according to the detector description of geomega

• Revan & Mimrec uses Geomega to calculate absorption probabilities, check where the hits occurred etc.

1.2. Installation

Since Geomega is part of MEGAlib, please see the MEGAlib installation instructions for a complete step by

step installation guide.

1.3. Bug reports

If you find a bug or other problem, please email it to me: Andreas Zoglauer, zog@ssl.berkeley.edu

2. Invocation
geomega <options> -g <geometry file>

Geomega can be started with a variety of command line options. The geometry file is always given via the “-g”

parameter.

The other options are:

-g/--geometry <file name>

or

-f/--filename <file name>

Give the geometry file name usually ending with *.geo.setup

-d/--debug Activate debug mode for more detailed command line output

-c/--configuration <file

name>

Use this Geomega configuration file containing a previously stored

GUI configuration. Using the option –g (or –f) overwrites the

geometry file name stored in the configuration file.

-s/--startvolume <volume

name>

Use the given volume as world volume. If multiple copies of this

volume exist, use one of the copies (instead of the template used to

generate the copies)

 4

–create-mggpod <filename

suffix>

Create mggpod files with the given file name suffix

–create-mggpod-default Create mggpod files with the default file names (setup.geo, media.

med, materials.mat)

3. The geometry file format
The central input to Geomega is its geometry setup file. Its characteristic suffix is”*.geo.setup”. It has an object

oriented, keyword based style. For example a volume is declared and initialized the following way:

Volume MyVolume

MyVolume.Material Germanium

MyVolume.Shape BRIK 5.0 4.0 0.5

MyVolume.Position 0.0 1.0 2.0

MyVolume.Mother WorldVolume

A complete list of all keywords can be found in the following sections.

To ensure that the sequence of keywords can be arbitrary the setup file is scanned several times:

• Include all ”Include”-files

• Handle “For” loops

• Handle constants

• Handle “If” statements

• Scan for other command keywords and object keywords

• Scan for Clones of the object keywords

• Assign all other parameters

• Validate the input

All units of all values are in cm, keV, g, deg – the same is in the rest of MEGAlib.

There are several important limitations with this geometry and detector description format compared to

Geant3 and Geant4:

• All daughter volumes have to be completely contained in their mother volumes -- No overlapping

volumes are allowed. An exception is virtual volumes which are removed from the later geometry – but

if possible try to avoid virtual volumes.

• There is only a limited number of volume types implemented so far. If you need more, let me know, but

make sure, that they exist in Geant3, Geant4 and Root.

• It is not possible to divide one volume in sub volumes.

• All detector volumes need to be boxes (with exception of the Scintillator- and Anger Camera-type

detectors)

• It is very time-consuming to protect against each possible input error in an open file format like this. So

do not expect to get a warning/error message for each time you make a mistake – in most cases the

program will warn you with an error message, but sometimes it will simply accept the error and produce

false results and sometimes it will simply crash. Whenever you come across such a problem, let me

know and I will implement a protection.

 5

3.1. Writing a good geometry

Let’s start with some practices for writing a good geometry

• Before you start coding a geometry, take a look at the examples in the directory

$(MEGAlib)/resources/examples/geomega. Try to write your code as close as possible to the examples, in

order to avoid any trouble.

• Use meaningful descriptions, e.g. WorldVolume instead of VAC0

• Don’t make your geometry flat! The more daughters a volume has, the more volumes have to be searched

when a particle moves from one volume to the next! It i significantly better to have a good balance between

flatness and steepness geometry: The world volume contains a few daughters, which contain a few daughter

volumes, which contain a few daughter volumes, etc.

• Try to use constants frequently.

• If you have to make multiple copies, try to use the “For” … “Done” loop.

• Use multiple files representing different objects: If you have distinguishable objects such as individual

detectors with all their surround electronics and mounting, describe them in an individual file! Simply

“Include” this file in the file where its mother volume is described. This makes your geometry much more

clearly laid out.

• Geomega comes with a checker for overlaps. Do not use a geometry until you have verified that it does not

contain overlaps!

• Check that your world volume is large enough to be able to contain your geometry and your surrounding

sphere – but don’t make it too large or your simulations will take too long!

3.2. Global keywords

Key: Name

Parameters: 1: Name of the geometry

Description: Gives the setup a distinguishable name

Example Name MegaPrototype

Key: Version

Parameters: 1: Version number

Description: Version of the current setup

Example Version 1.1

Key: Include

Parameters: 1: Name of the file name to be included

Description: Include the given file into the setup-file. This is very useful when splitting a large setup-

file into smaller parts, e.g. defining an own file for each detector or a file containing the

specific materials, etc. The file name is allowed to be a relative path and might contain

wildcards.

Example Include Materials.geo

 6

Key: SurroundingSphere

Parameters: 1: Radius in cm

2: x-Position of the center of the sphere in cm

3: y-Position of the center of the sphere in cm

4: z-Position of the center of the sphere in cm

5: Distance of the disk to the center in cm – should be in all cases the same as radius –

unless you understand the consequences

Description: A surrounding sphere is a mandatory requirement for the simulations with GMega or

Cosima. If you do simulations in the far-field, the photons are simulated from a disk with

radius pointing from a distance towards point. This feigns a real far-field. Therefore, make

sure you define a surrounding sphere which is as small as possible but encloses the

complete detector geometry, without intersecting any volume.

Example SurroundingSphere 25.0 0.0 10.0 15.0 25.0

Key: ShowSurroundingSphere

Parameters: 1: true/false

Description: This option lets you see the surrounding sphere in your geometry

Example SurroundingSphere true

Key: // or #

Parameters: 1: Comment

Description: Allows commenting the code

Example # This is a comment …

Include Materials.geo // … and this too

Key: BeginComment together with EndComment

Parameters: -

Description: Those two keywords allow to comment out a larger block of text

Example BeginComment

Include Materials.geo

// More blabla

EndComment

Key: Echo

Parameters: 1: Text

Description: During the final stage of the parsing of the geometry file print the given text on the screen.

Example Echo Hello World!

 7

Other global keywords are Volume, Material, Detector and Trigger. Since those have sub-keywords they are

described in the following sections in more detail.

3.3. Materials

Keyword: Material

Parameters: 1: Name of the material (no spaces allowed!)

Description: Defines a material. The name must be unique.

Example Material CsI

Sub-Keyword: <Material>.Density

Parameters: 1: Density of the material in g/cm3

Description: Defines the density of the material

Example CsI.Density 4.5

Sub-Keyword: <Material>.ComponentByAtoms

Parameters: Preferred (uses natural isotope composition)

1: Symbol (e.g. H, He, Ge, Si, etc.)

2: Number of these atoms in the material (integer)

Old style (depreciated if doing activation simulations)

1: A – the mass number of the atoms

2: Z – the atomic number – the number of protons

3: Number of these atoms in the material (integer)

Description: Declares a component of a material. For example if the material is a mixture of the two

components Cs and I, they have to be declared as in the example below. The number of

atoms needs to be an integer!

Example CsI.Component Cs 1 // Cs

CsI.Component I 1 // I

Sub-Keyword: <Material>.ComponentByMass

Parameters: Preferred (uses natural isotope composition)

1: Symbol (e.g. H, He, Ge, Si, etc.)

2: Fractional mass of the component in the material

Old style (depreciated if doing activation simulations)

1: A – the mass number of the atoms

2: Z – the atomic number – the number of protons

3: Fractional mass of the component in the material

Description: Description Declares a component of a material. For example if the material is a mixture

of the two components N and O, they have to be declared as in the example below. The

total fractional mass needs to be 1!

 8

Example SomeAir.Component N 0.7 // N

SomeAir.Component O 0.3 // O

The directory $(MEGALIB)/resource/examples/geomega/materials contains a general file “Materials.geo”,

which includes all used materials for the MEGA geometries. Take a look for more examples.

One important feature of Geomega is that it provides absorption probabilities (cross-sections for photo effect,

Rayleigh scattering, Compton scattering, pair creation, and total). Those cross sections are automatically

determined via Geant4 whenever a material is created or changed.

Keyword: AbsorptionFileDirectory

Parameters: 1: Name of the directory

Description: Gives a directory where to store & search the absorption probability files. The default

directory (when this keyword is not given) is “absorptions” in the directory where the

geometry is stored.

Example AbsorptionFileDirectory MyAbsorptions

Obsolete material sub-keywords which are no longer used are: Sensitivity & RadiationLength (automatically

calculated in Geant4).

3.4. Shapes

A shape represents the form of a volume – a volume itself has more parameters such as material, position,

rotation, and a mother volume. In 99% of cases you can define a shape directly in the volume (see next section)

only for the Boolean shapes Union, Intersection, and Subtraction you have to define shapes independently.

Keyword: Shape

Parameters: 1: The type of the shape, such as Box, Sphere, Tube, etc. For a list the the sub-keyword

shape in the section Volume

2: Name of the shape (no spaces allowed!)

Description: Defines the shape and its type. The name must be unique.

Example Shape Box Wafer

Sub-Keyword: <Shape>.Parameters

Parameters: 1-N: Parameters of the shape

Description: For details see the sub-keyword shape in the section Volume

Example Wafer.Parameters 3.0 3.0 0.05

 9

3.5. Orientation

An orientation consists of a translation/positioning and a rotation. It is either applied to a volume or to a shape

when building Boolean shapes. In the former case, it can be directly set in the volume (keyword Position and

Rotation) and does not be defined independently. Only the Boolean shapes require the definition of an

orientation independently.

Keyword: Orientation

Parameters: 1: Name of the orientation (no spaces allowed!)

Description: Defines the orientation of a volume (position, and rotation)

Example Orientation BoxOrientation

Sub-Keyword: <Orientation>.Position

Parameters: 1: x position in the mother volume in cm

2: y position in the mother volume in cm

3: z position in the mother volume in cm

Description: Position of the volume within its mother’s coordinate system. Position is the center of

the volume. Attention the volume has to be fully contained in its mother volume!

Example BoxOrientation.Position 0.0 10.0 30.0

Sub-Keyword: <Orientation>.Rotation (or: Rotate)

Parameters: Type A:

1: Counterclockwise rotation around x-axis in the mother coordinate system

2: Counterclockwise rotation around y-axis in the mother coordinate system

3: Counterclockwise rotation around z-axis in the mother coordinate system

Type B:

1: Theta1 in deg: the polar angle of the x-axis in the mother reference system

2: Phi1 in deg: the azimuthal angle of the x- axis in the mother reference system

3: Theta2 in deg: the polar angle of the y-axis in the mother reference system

4: Phi2 in deg: the azimuthal angle of the y-axis in the mother reference system

5: Theta3 in deg: the polar angle of the z-axis in the mother reference system

6: Phi3 in deg: the azimuthal angle of the z-axis in the mother reference system

Description: Defines the rotation of the volume

Example BoxOrientation.Rotation 90 45 0 45 90 0

3.6. Volumes

Please take notice of all distances except radii being half distances!

Keyword: Volume

Parameters: 1: Name of the volume (no spaces allowed!)

 10

Description: Defines the volume. The name must be unique.

Example Volume Wafer

Sub-Keyword: <Volume>.Density

Parameters: 1: Density of the material in g/cm3

Description: Defines the density of the material

Example CsI.Density 4.5

Sub-Keyword: <Volume>.Shape

Parameters: 1: Keyword describing the shape

2-N: Parameters of the shape

Description: Detailed descriptions of the objects can be found in the Geant3, Geant4 or ROOT

manual (ROOT comes with pictures!). The argument list corresponds to that of

ROOT. If you want new volumes to be added, let me know, but make sure such a

volume exists in Geant3, Geant4 and ROOT, and provide an equation for its volume!

One limitation for the current Geant4 implementation is that TRAP and GTRA are

not allowed to be triangles (i.e. non of the values height, bottom and top length

is allowed to be zero). So if you need triangles make sure, they contain very small

values.

BRIK or BOX

(a box)

2: half-size x in cm

3: half-size y in cm

4: half-size z in cm

SPHE or

SPHERE

(a sphere,

which can be

hollow, or a

segment of it)

2: inner radius in cm

3: outer radius in cm

4: theta min in deg

5: theta max in deg

6: phi min in deg

7: phi max in deg

TUBE or TUBS

(a cylinder,

which can be

hollow, or a

section of it)

2: inner radius in cm

3: outer radius in cm

4: half height in cm

5: phi min in deg

6: phi max in deg

CONE

(a cone)

2: half height in cm

3: inner bottom radius in cm

4: outer bottom radius in cm

5: inner top radius in cm

6: outer top radius in cm

TRD1

(a trapezoid)

2: half distance x1

3: half distance x2

4: half distance y

5: half distance z

 11

TRD2

(a trapezoid)

2: half distance x1

3: half distance x2

4: half distance y1

5: half distance y2

6: half distance z

TRAP

(a general

trapezoid)

Avoid if a

simpler

trapezoid can

be used!

2: half distance in z

3: theta

4: phi

5: half height trapezium bottom

6: half bottom length trapezium bottom

7: half top length trapezium bottom

8: alpha trapezium bottom

9: half height trapezium top

10: half bottom length trapezium top

11: half top length trapezium top

12: alpha trapezium top

GTRA

(a general

trapezoid,

which can be

twisted)

Avoid if a

simpler

trapezoid can

be used!

2: half distance in z

3: theta

4: phi

5: twist

6: half height bottom trapezium bottom

7: half bottom length trapezium bottom

8: half top length trapezium bottom

9: alpha trapezium bottom

10: half height trapezium top

11: half bottom length trapezium top

12: half top length trapezium top

13: alpha trapezium top>

PCON

(a polycone –

round corners)

2: the azimuthal angle phi at which the volume begins (angles are counted

counterclockwise)

3: opening angle of the volume

4: number of sections (number of time the following three arguments are repeated), the

number should be at least 2

The following three arguments are repeated accordingly:

M1: height (full not half)

M2: inner radius

M3: outer radius

PGON

(a polygon)

2: the azimuthal angle phi at which the volume begins (angles are counted

counterclockwise)

3: opening angle of the volume

4: number of sides of the cross section between the given phi limits

5: number of sections (number of time the following three arguments are repeated),

number should be at least 2

The following three arguments are repeated accordingly

M1: height (full not half)

M2: inner radius

M3: outer radius

Union 2: Name of the left shape (previously defined via Shape)

 12

(boolean OR of

two volumes)

3: Name of the right shape (previously defined via Shape)

4: Orientation (=position + rotation) of the RIGHT shape

Intersection

(boolean AND

of two volumes)

2: Name of the left shape (previously defined via Shape)

3: Name of the right shape (previously defined via Shape)

4: Orientation (=position + rotation) of the RIGHT shape

Subtraction

2: Name of the left shape (previously defined via Shape)

3: Name of the right shape (previously defined via Shape)

4: Orientation (=position + rotation) of the RIGHT shape

<Name of a

previously

defined shape>

An alternative to defining a shape here is to use the keyword “Shape” to defined a shape

and all its parameters outside this volume and then just use it here

Example Wafer.Shape BRIK 5.0 10.0 0.01

Wafer.Shape PreviouslyDefinedShape

Sub-Keyword: <Volume>.Material

Parameters: 1: Name of an existing material

Description: Material of the volume. It has to be defined somewhere else in the setup file.

Example Wafer.Material Silicon

Sub-Keyword: <Volume>.Visibility

Parameters: 1: Visibility value (0, 1)

Description: If the value is zero, then the volume is not visible, if it is 1, the volume is visible in the

geomega viewer.

Example Wafer.Visibility 1

Sub-Keyword: <Volume>.Color

Parameters: 1: Color as defined in ROOT

Description: The color of the volume when display in the viewer. The numbers correspond to the

ROOT color IDs.

Example Wafer.Color 5

Sub-Keyword: <Volume>.Mother

Parameters: 1: Name of an existing volume, or 0 in case of the world volume

Description: In this mother volume the volume will be placed. Attention: the volume must be

fully contained in her mother and the mother must be defined somewhere else in the

setup file. For the world volume, use 0.

Example Wafer.Mother Tracker

WorldVolume.Mother 0

Sub-Keyword: <Volume>.Position

 13

Parameters: 1: x position in the mother volume in cm

2: y position in the mother volume in cm

3: z position in the mother volume in cm

Description: Position of the volume within its mother’s coordinate system. Position is the center of

the volume. Attention the volume has to be fully contained in its mother volume!

Example Wafer.Position 0.0 10.0 30.0

Sub-Keyword: <Volume>.Rotation

Parameters: Type A:

1: Counterclockwise rotation around x-axis in the mother coordinate system

2: Counterclockwise rotation around y-axis in the mother coordinate system

3: Counterclockwise rotation around z-axis in the mother coordinate system

Type B:

1: Theta1 in deg: the polar angle of the x-axis in the mother reference system

2: Phi1 in deg: the azimuthal angle of the x- axis in the mother reference system

3: Theta2 in deg: the polar angle of the y-axis in the mother reference system

4: Phi2 in deg: the azimuthal angle of the y-axis in the mother reference system

5: Theta3 in deg: the polar angle of the z-axis in the mother reference system

6: Phi3 in deg: the azimuthal angle of the z-axis in the mother reference system

Description: Defines the rotation of the volume

Example Wafer.Rotation 90 45 0 45 90 0

Sub-Keyword: <Volume>.Orientation

Parameters: 1: Name of a previously defined Orientation

Description: An orientation consists of a position and a rotation and must have been defined

previously. The keyword orientation is identical to suing the position and rotation

keywords

Example Wafer.Orientation WaferOrientation

Sub-Keyword: <Volume>.Scale

Parameters: 1: Scaler

Description: Scale (shrink or enlarge) a volume and all sub volumes. Useful if one has a large volume

tree and wants to modify its size. This keyword can not be applied to Copies/Clones.

Example SpaceCraftBody.Scale 0.5

In usual detector geometry some volumes will appear several times. To avoid any copy and paste, the keyword

Copy has been introduced, which copies the characteristics of one volume to another. Normally the base volume

is defined as template, i.e. it does not have a mother and it is not positioned.

Volume GeWafer

GeWafer.Material Germanium

GeWafer.Visibility 1

GeWafer.Color 6

GeWafer.Shape BRIK 4.0 3.0 1.0

 14

// Arrange the Ge-detectors

GeWafer.Copy GeE1N001

GeE1N001.Position 0.0 10.0 3.75

GeE1N001.Mother WorldVolume

GeWafer.Copy GeE1N002

GeE1N002.Position 0.0 10.0 1.25

GeE1N002.Mother WorldVolume

Up to now, the keyword Copy is only implemented for volumes!

Sub-Keyword: <Volume>.Copy

Parameters: 1: Name of a new volume

Description: Create the new volume and copy all characteristics of <Volume> to the new volume.

Attention:

1. Make sure you do not place the original volume itself, just it copies, i.e. the

original volume should have neither a Position nor a Mother (keyword

defined).

2. The keyword cannot be used for sensitive detector volumes (see keyword

SensitiveDetector)

Example SiLayer.Copy bachus

One major restriction of the geomega format (which is actually a restriction of Geant4) is that no overlapping

volumes are allowed. But sometimes it is useful to have a larger volume, in which several other volumes are

grouped, to use as template. In the case this larger volume has no real meaning other than being a container for

other volumes. In those cases it can be declared as virtual. Those virtual volumes are allowed to overlap with

other volumes – as long as their content does not overlap with any other volume! During the creation of the

geometry, virtual volumes are removed from the volume tree! As consequence, the volumes need to be renamed

(format: “VolumeName_VirtualVolumeName”). Otherwise, since a virtual volume can have copies and its

daughter volumes are placed in its mother volumes, multiple volumes with the same name in the same volume

could exist.

Sub-Keyword: <Volume>.Virtual

Parameters: 1: true or false (default for a volume is always false)

Description: Declare a volume as virtual. Try to avoid!

Attention: Do not use for world, sensitive or detector volumes!

Example TrackerContainer.Virtual true

However, try to avoid virtual volumes! They only make things much more complicated for the simulation,

because they result in more flat volume hierarchies and thus much slower simulations!

3.7. Detectors

There exist 7 different detector types:

 15

• A 2D strip detector like the MEGA Silicon wafers (Strip2D)

• A 3D strip detector (Strip3D) like the NCT Germanium detectors

• A directional 3D strip detector, where some information of the electron direction is retained (*)

• A Drift Chamber detector including capabilities for light sensing – needed for liquid Xe and gas

microwell detectors (*)

• A calorimeter like in MEGA: Many CsI bars separated by passive material are sitting in a housing (*)

• A one-volume-type detector, which can be used as MEGA ACS as well as SPI Germanium detector, or

any other thumb detector, which can only measure energy information

• A 3D voxel detector

• An Anger-camera detector type returning one location in the detector noised either in 2D or 3D

The detectors marked with (*) are rather specialized and most likely not needed in your setup.

Sub-Keyword: Strip2D (old: MDStrip2D)

Parameters: 1: Detector name (must be unique)

Description: Declares a 2d strip detector which can have a guard ring. The strips are always oriented

in x and y direction. If you want another orientation, simple rotate the detector volume.

The shape of this detector needs to be a box in order to defined the parameters of the

detector correctly (e.g. the pitch)! But you can also use the Boolean shapes Intersection

and Subtraction. However, then still the first shape needs to be a box and the calculation

of the secondary parameters such as offset and strip pitch are determined from this box!

Example Strip2D bachus

Sub-Keyword: Strip3D (old: MDStrip3D)

Parameters: 1: Detector name (must be unique)

Description: Declares a 3D strip detector which can have a guard ring. It inherits all capabilities from

Strip2D. In addition it has a depth resolution, which is always the z direction.

Example Strip3D nct

Sub-Keyword: Strip3DDirectional (old: MDStrip3DDirectional)

Parameters: 1: Detector name (must be unique)

Description: Declares a 3D strip detector. It inherits all capabilities from Strip3D. In addition it has a

directional resolution: It can detect all directions of electrons originating from Compton

interaction. Due to limitations in the simulation, it is currently not possible to detect the

direction of electrons simply passing through the silicon layer. If you want to use this

detector, you need full “IA” information from the simulation. Thus if you use mggpod,

make sure to use INIT2 and ACT2 options.

Example Strip3DDirectional SiWafer

Sub-Keyword: DriftChamber (old: MDDriftChamber)

Parameters: 1: Detector name (must be unique)

Description: Declares a drift chamber detector. It inherits all capabilities from Strip3D. In addition,

 16

specific information like the (optical) light speed in this material (”LightSpeed”), the

light sensitive detector side (”LightDetectorPosition”) and its energy resolution

(”LightEnergyResolution”) as well as the electron drift parameters (”DriftConstant”,

”EnergyPerElectron”) can be set.

Example DriftChamber Chamber

Sub-Keyword: Calorimeter (old: MDCalorimeter)

Parameters: 1: Detector name (must be unique)

Description: Declares a MEGA-style calorimeter e.g. consisting of individual CsI bars surrounded by

passive (reflective) material in a common housing.

Example Calorimeter Fortuna

Sub-Keyword: Scintillator or Simple (old: MDACS)

Parameters: 1: Detector name (must be unique)

Description: Declares a large, one channel and non position sensitive detector. Since those are mostly

scintillator it is called that way. But you can of course use it also for non-scintillator

detectors, such as e.g. the SPI Germanium detectors. The special feature of this volume

is that it does not need to be box-like and that it can consist of multiple volumes (see

keyword SensitiveVolume). The latter allows building more complex detector shapes.

Hits in this detector are always centered.

Example Scintillator SPI21

Sub-Keyword: Voxel3D (old: MDVoxel3D)

Parameters: 1: Detector name (must be unique)

Description: Declares a box-shaped volume consisting of voxels in all three dimensions. This detector

has no known real-world counterpart, as it has no passive material (electronics,

connectors, etc.) between the voxels. Its primary function is currently simulation

diagnostics. Hits within the voxels are always centered

Example Voxel3D NuSTAR_CZT_Detector

Sub-Keyword: AngerCamera

Parameters: 1: Detector name (must be unique)

Description: Represents a detector which can have any shape. The positioning is in 2D (i.e.

COMPTEL-like detectors) or 3D given by one Gaussian.

Example AngerCamera ComptelD1

3.7.1. Common keywords

Sub-Keyword: <Detector>.SensitiveVolume

 17

Parameters: 1: Name of an existing volume

Description: Volume, in which positions and energies of interactions are measured. Typical examples

are one CsI-crystal or one single Si-wafer of the MEGA prototype.

Attention: This volume cannot have been generated via the “Copy” keyword – but it is

OK if you use a volume from which you generate copies. The reasoning is that all copies

of a volume must have the same status, either be sensitive or not. It is also OK (actually

normal) when the sensitive volume is part of a super-volume structure which is copied,

or – and this is also a usual case – that many copies of the sensitive volume exist, which

then have the same detector properties.

Multiple sensitive volumes:

The only detector type which supports multiple, different sensitive detectors is the

scintillator detector type. The different sensitive volumes are handled as they were one

volume, i.e. all energy deposits are summed together (Of course this can be avoided by

using the “DiscretizeHits false” keyword in cosima and if you write your own detector

effects engine).

Having multiple different sensitive volumes in one detector comes with the following

restrictions to uniquely identify which volumes belong together:

• The sensitive volume must neither be a “Copy” of a volume, nor be used to

generate Copies, i.e. it must be unique (although a volume up in its tree might be

a Copy, thus indirectly you might have multiple copies)

• The volumes must have a common mother volume, but which must not be the

direct mother

• There are no copies allowed in the common mother volumes and no other

sensitive volumes, i.e. the common volumes contains exactly one of the

sensitive volumes

However, the common volume can be copied.

Some detectors, such as 2DStrip, require the sensitive volume (or the first volume in a

Boolean shape) to be box.

Example MEGACal.SensitiveVolume CsICrystal

Sub-Keyword: <Detector>.DetectorVolume

Parameters: 1: Name of an existing volume

Description: A larger volume which contains several evenly spaced sensitive volume. The position

the sensitive volumes are specified in the “Structural” parameters. They must be

identical with the positions given in the volume description! Typical examples are the

MEGA calorimeter, which consists of 120 CsI crystals or one layer of the MEGA

tracker, which consists of 9 Si-wafers. The sensitive volume is either the same as the

detector volume or entirely and unrotated contained in the detector volume!

Attention: Simular restrictions as for sensitive volumes apply: This volume cannot have

been generated via the “Copy” keyword – but it is OK if you use a volume from which

you generate copies. The reasoning is that all copies of a volume must have the same

status, either be a detector or not. It is also OK (actually normal) when the detector

volume is part of a super-volume structure which is copied, or – and this is also a usual

case – that many copies of the detector volume exist, which then have the same detector

properties.

 18

If the detector volume is not given, and you only have one sensitive volume, then the

detector volume is the sensitive volume.

Some detectors, such as 2DStrip, require the detector volume (or the first volume in a

Boolean shape) to be box.

See Figure 1 for an illustration.

Example MEGACal.DetectorVolume CsIDetector

Sub-Keyword: <Detector>.StructuralPitch

Parameters: 1: x spacing in cm

2: y spacing in cm

3: z spacing in cm

Description: Spacing between the sensitive volumes (distance between the end of last sensitive

volume to the start of the next sensitive volume). The detectors need to be evenly

spaced. This is not the pitch between the individual strips of a strip detector! If you have

a tracker, then also add the distance between the layers as z-component!

This keyword is always required for the Calorimeter detector. For strip/voxel detectors

you can use it, if you want to join several sensitive detectors into one logical detector.

You do not need it, if you just have a simple, one-volume strip or voxel detector. The

scintillator and Anger camera detector types don’t use this keyword.

See Figure 1 for an illustration.

Example MEGACal.StructuralPitch 0.07 0.03 0.0

Sub-Keyword: <Detector>.StructuralOffset

Parameters: 1: x spacing in cm

2: y spacing in cm

3: z spacing in cm

Description: Distance between the edge of the detector volume to the beginning of the first sensitive

volume. Calculated from negative to positive axis!

This keyword is always required for the Calorimeter detector. For strip/voxel detectors

you can use it, if you want to join several sensitive detectors into one logical detector.

You do not need it, if you just have a simple, one-volume strip or voxel detector. The

scintillator and Anger camera detector types don’t use this keyword.

See Figure 1 for an illustration.

Example MEGACal.StructuralOffset 0.235 0.47 0.185

Sub-Keyword: <Detector>.NoiseThreshold

Parameters: 1: Energy in keV

Description: All hits in one voxel of the detector which are below this energy (in keV) are assumed

not to be measured.

Example MEGACal.NoiseThreshold 50

Sub-Keyword: <Detector>.TriggerThreshold

 19

Parameters: 1: Energy in keV

Description: A hit need to deposit at least this energy (in keV) to raise a trigger signal.

The difference between noise and trigger threshold: Each strip has a certain amount of

electronics noise. So when one reads it out, one gets a signal in ADC counts, which only

reflects the noise of the electronics. So normally one only uses hits which are well above

the noise, e.g. 5 sigmas above it. Trigger threshold is something different. A hit needs to

produce a certain voltage (i.e. has to deposit a certain energy) to initiate the read-out of

the detector.

Example MEGACal.TriggerThreshold 100

Sub-Keyword: <Detector>.EnergyResolution

Parameters: Old format:

1: Input energy in keV

2: 1 sigma with of a Gauss distribution at this energy in keV

New format:

1: Resolution type: Ideal, Gauss, Lorentz, GaussLandau

2+: Parameters

For case “Ideal”:

No more parameters necessary

For the case “Gauss”:

2: Input Energy in keV

3: Peak energy of Gauss distribution in keV

4: One sigma width of Gauss distribution in keV

For the case “Lorentz”:

2: Input Energy in keV

3: Peak energy of Lorentz distribution in keV

4: Width of Lorentz distribution in keV as 2/2.35 times the “scale parameter” which

defines the half-width half maximum of the distribution

For the case “GaussLandau”:

2: Input Energy in keV

3: Peak energy of Gauss distribution in keV

4: One sigma width of Gauss distribution in keV

5: Peak energy of Landau distribution in keV

6: Width of the Landau distribution in keV given as its “scale parameter”

7: Contribution (value between]0..1[) of the Gauss part

Description: Energy resolution information at the given energy in keV (one sigma)

See the file EnergyResolutionTester.geo,setup for an example.

Example PerfectDet.EnergyResolution Ideal

MEGACal.EnergyResolution Gauss 662 662 20

Sub-Keyword: <Detector>.EnergyLossMap

Parameters: 1: file name

 20

Description: The file given contains a 3D matrix of detector positions (a detector “map”) and an

associated energy loss, which describes e.g. energy loss through charge trapping.

The file format is identical to the 2D-Function described in the Cosima – just add

another dimension.

Attention: In contrast to all other options, this energy loss is applied during the

simulation in Cosima, since only there the detailed positions of all energy deposits are

known. Thus, if you change the file, you have to redo your simulations.

See the file EnergyResolutionTester.geo,setup for an example.

Example MEGACal.EnergyLossMap EnergyLoss.dat

Sub-Keyword: <Detector>.EnergyCalibration

Parameters: 1: file name

Description: If an energy loss file is used or the peak energy is not the input energy of the energy

resolution, then the “measured” energy is not equal the input energy and an energy

calibration is need. Otherwise this option is NOT required.

The given file describes a simple input-energy-to-detected-energy ratio, which is used to

calibrate the energy.

The file format is identical to the 1D-Function described in the Cosima manual.

See the file EnergyResolutionTester.geo.setup for an example.

Example MEGACal.EnergyCalibration Calibration.dat

Sub-Keyword: <Detector>.TimeResolution

Parameters: 1: Deposited energy in keV

2: 1 sigma with of a time distribution at this energy in seconds

Description: Gaussian (!) time resolution information of the detector at the given energy in seconds

(one sigma).

Example StripDetector.TimeResolution 1.0 1.0E-9

StripDetector.TimeResolution 100.0 0.8E-9

Sub-Keyword: <Detector>.FailureRate

Parameters: 1: failure rate [0..1]

Description: Random failure rate – values are between 0 (no failures) and 1 (complete loss of

detector)

Example MEGACal.FailureRate 0.01

 21

3.7.2. Keywords specific to calorimeters

Sub-Keyword: <Detector>.DepthResolution

Parameters: 1: Energy in keV

2: Depth resolution in cm (one sigma)

Description: Give the depth resolution at the given energy in cm (one sigma). If this keyword is not

given, then no depth resolution is assumed, i.e. it behaves like a Strip2D detector.

Example MEGACal.DepthResolution 500 1.2

Figure 1

Illustration of the StructuralOffset, StructuralPitch, SensitiveVolume, and DetectorVolume keywords:

Complex detectors may consist of many sensitive detectors arranged in a regular way. In the above example we

have one detector volume, the detector mounting, which has several daughter volumes, in this case silicon strip

detectors, which are the actual sensitive (i.e. measure energy) volumes. In order for MEGAlib to find the strips in

the detectors, the first detectors start at distance of structural offset measured from the negative axis, and the

distance between the detectors is the structural pitch.

For all simple detectors the sensitive volume should be the detector volume and structural offsets and pitches

should therefore be zero.

 22

3.7.3. Keywords specific to Anger cameras

Sub-Keyword: <Detector>.Positioning

Parameters: 1: Type, one of: XY, XYZ, XYZIndependent

Description: The type of position resolution of the Anger camera: XY means that the Anger camera

only has a resolution in the X-Y-plane (which is the same), but no depth (Z) resolution;

XYZ means that the Anger camera has a full 3D resolution i.e. in X, Y, Z direction,

however, it has the same value in all directions; XYZIndependent

Example Anger.Positioning XYZ

Sub-Keyword: <Detector>.PositionResolution

Parameters: For Positioning XY and XYZ

1: Energy in keV

2: Position resolution in cm (one sigma)

For Positioning XYZIndependent:

1: Energy in keV

2: Position resolution X in cm (one sigma), Position resolution Y in cm (one sigma),

Position resolution Z in cm (one sigma)

Description: Give the position resolution in cm (one sigma). If the positioning keyword is XY, then

the position resolution is in the X-Y-plane, if it says XYZ then it is a full 3D resolution,

if it is XYZIndependent, then 3 values are required one for x and for y and one for the z

axis (in the detector coordinates, not world coordinates)

Example Anger.Positioning XYZIndependent

Anger.PositionResolution 500 1.2 1.2 0.5

3.7.4. Keywords specific to strip/voxel detectors

This includes Strip2D, Strip3D, Voxel3D, DriftChamber detectors.

Sub-Keyword: <Detector>.Offset

Parameters: 1: x Offset in cm

2: y Offset in cm

3: z Offset in cm (Voxel3D only)

Description: Distance between the edge of the sensitive detector to the beginning of the first strip

Example WaferDetector.Offset 0.142 0.071

Sub-Keyword: For strip detectors: <Detector>.StripNumber
For voxel detectors: <Detector>.VoxelNumber

Parameters: 1: Number of strips/voxels in x direction (strip or voxel detector)

2: Number of strips/voxels in y direction (strip or voxel detector)

3: Number of voxels in z direction (only for voxel detectors!)

 23

Description: Gives the number of strips/voxels in each dimension – use strip for a strip detector (with

a x and y value), voxels for a voxel detector (with a x, y, and z value)!

Example WaferDetector.StripNumber 128 64

VoxelDetector.VoxelNumber 10 10 10

Sub-Keyword: <Detector>.GuardringTriggerThreshold

Parameters: 1: Energy in keV

Description: A hit in the guard ring needs to deposit at least this energy (in keV) to raise a trigger

(veto) signal.

Example WaferDetector.GuardringTriggerThreshold 100

Sub-Keyword: <Detector>.GuardringEnergyResolution

Parameters: 1: Energy in keV

2: Measurement uncertainty at this energy in keV (one sigma)

Description: Energy resolution at the given energy in keV (one sigma) for the guard ring

Example WaferDetector.EnergyResolution 100 10

For 3D strip detectors (with and without electron direction resolution) and DriftChambers there is another

special keyword:

Sub-Keyword: Only for Strip3D: <Detector>.DepthResolution

Parameters: 1: Energy in keV

2: Depth uncertainty at this energy in cm 9one sigma)

Description: Set the one sigma depth resolution for 3D strip detectors. If this keyword is not given,

then no depth resolution is assumed.

Example GeStrip.DepthResolution 200 0.2

Sub-Keyword: Only for Strip3D: <Detector>.DepthResolutionThreshold

Parameters: 1: Energy in keV

Description: Below this threshold no depth resolution can be measured, i.e. the center (z-axis) of the

detector is used as z-position.

Example GeStrip.DepthResolutionThreshold 25

For 3D strip detectors with directional resolution exists another special keyword:

Sub-Keyword: <Detector>.DirectionalResolution

Parameters: 1: Energy in keV

2: Resolution in degree (one sigma)

Description: Set the one sigma directional resolution

Example SiStrip.DirectionalResolution 200 30

 24

DriftChambers have additional keywords

Sub-Keyword: <Detector>.LightSpeed

Parameters: 1: Light speed in cm/s

Description: Light speed of the scintillation light in the drift chamber

Example Chamber.LightSpeed 1.8E+9

Sub-Keyword: <Detector>.LightDetectorPosition

Parameters: 1: 0: none; 1: +x; -1:-x; 2: +y; -2 -y; 3: +z; -3:-z

Description: Represents the side of the detector which is light sensitive (i.e. equipped with PMTs or

diodes). If this value is zero, then no light detector is assumed.

Example Chamber.LightDetectorPosition 3

Sub-Keyword: <Detector>.DriftConstant

Parameters: 1: Drift constant in cm

Description: One sigma of the opening cone of the drift in the E-field. If this is zero, a simple and fast

projection is used.

Example Chamber.DriftConstant 0.01

Sub-Keyword: <Detector>.EnergyPerElectron

Parameters: 1: Energy in keV per electron

Description: Energy of one drifting electron

Example Chamber.DriftConstant 0.01

Sub-Keyword: <Detector>.LightEnergyResolutionAt

Parameters: 1: Energy in keV

2: Energy resolution in keV (one sigma)

Description: One sigma energy resolution of the detected light.

Example Chamber.LightEnergyResolutionAt 1000 5.0

3.7.5. Keywords specific to Scintillator-like detectors

The special feature of this detector type is that it may contain several sensitive volumes of different shapes.

Sub-Keyword: <Detector>.HitPosition

Parameters: 1: Volume name 1

 25

2: Volume name 2

3: x-position in cm

4: y-position in cm

5: z-position in cm

Description: A hit in volume 1 is moved into position (x, y, z) in volume 2. All sensitive volumes of

the detector have to be covered!

Example GeDet.HitPosition GeCentral GeCentral 0 0 0

GeDet.HitPosition GeLeft GeCentral 0 -2.59807621135 0

GeDet.HitPosition GeRight GeCentral 0 -2.59807621135 0

3.7.6. Multiple detectors

Detectors always relate to volumes not created by the Copy-keyword (see keyword SensitiveVolume and

DetectorVolume). The detector parameters are then passed on to all volumes created via the copy keyword (see

example A below). If you want to have detectors which have the same volume (e.g. shape) but different detector

parameters, you also have to create different volumes (see example B below).
Example A: multiple volumes with identical detector parameters

Volume SensV

SensV.Material Germanium

SensV.Shape BOX 1.0 1.0 0.1

SensV.Copy SensV1

SensV1.Position 0.0 0.0 1.0

SensV1.Mother World

SensV.Copy SensV2

SensV2.Position 0.0 0.0 1.0

SensV2.Mother World

Scintillator Det

Det.SensitiveVolume SensV

Det.DetectorVolume SensV

Det.TriggerThreshold 50

Det.EnergyResolution Gauss 50 50 5

Det.EnergyResolution Gauss 500 500 50

Example B: multiple volumes with different detector parameters

Volume SensV1

SensV1.Material Germanium

SensV1.Shape BOX 1.0 1.0 0.1

SensV1.Position 0.0 0.0 1.0

SensV1.Mother World

 26

Volume SensV2

SensV2.Material Germanium

SensV2.Shape BOX 1.0 1.0 0.1

SensV2.Position 0.0 0.0 1.0

SensV2.Mother World

Scintillator Det1

Det1.SensitiveVolume SensV1

Det1.DetectorVolume SensV1

Det1.TriggerThreshold 50

Det1.EnergyResolution Gauss 50 50 5

Det1.EnergyResolution Gauss 500 500 50

Scintillator Det2

Det2.SensitiveVolume SensV2

Det2.DetectorVolume SensV2

Det2.TriggerThreshold 40

Det2.EnergyResolution Gauss 40 40 4

Det2.EnergyResolution Gauss 400 400 40

An alternative are named detectors

3.7.7. Named Detectors

In real world instruments, one usually has many copies of the same detector type. However, not all of these

detectors show the same performance. In order to easily modify the the performance parameters named detcetors

have been introduced. Here is an example:

Volume GeWafer

GeWafer.Material Germanium

GeWafer.Shape BOX 2.0 2.0 0.4

GeWafer.Copy GeWafer1

GeWafer1.Position 0.0 0.0 -1.0

GeWafer1.Mother World

GeWafer.Copy GeWafer2

GeWafer2.Position 0.0 0.0 0.0

GeWafer2.Mother World

GeWafer.Copy GeWafer3

GeWafer3.Position 0.0 0.0 1.0

GeWafer3.Mother World

Strip2D GeDetector

GeDetector.SensitiveVolume GeWafer

GeDetector.Offset 0.2 0.2

GeDetector.Strips 18 18

GeDetector.NoiseThreshold 30

GeDetector.TriggerThreshold 50

 27

GeDetector.EnergyResolution Gauss 10 10 1

GeDetector.EnergyResolution Gauss 100 100 2

GeDetector.EnergyResolution Gauss 1000 1000 3

GeDetector.Named GeDetector1

GeDetector1.Assign World.GeWafer1

GeDetector1.EnergyResolution Gauss 10 10 6.0

GeDetector1.EnergyResolution Gauss 100 100 8.5

GeDetector1.EnergyResolution Gauss 1000 1000 10.0

GeDetector.Named GeDetector2

GeDetector2.Assign World.GeWafer2

GeDetector2.NoiseThreshold 60

GeDetector2.TriggerThreshold 80

GeDetector.Named GeDetector3

GeDetector3.Assign World.GeWafer3

GeDetector3.EnergyResolution None

Trigger GeTrigger

GeTrigger.Veto false

GeTrigger.TriggerByChannel true

GeTrigger.Detector GeDetector 1

In this example one type of volume (GeWafer) exists three times in the world (GeWafer1-3). The detector

GeDetector is associated with the sensitive volume GeWafer. Derived from GeDetector three named detectors

exist: GeDetector1-3. Each named detector is assigned to one of the positioned copies via the “Assign”

keyword. Due to the complex hierarchy possible in Geomega, one has to give the full volume hierarchy of the

volume the named detector is assigned to i.e. World.GeWafer2. The named detectors inherit all the properties of

the mother detector, with exception of those which are overwritten, i.e. GeDetector1 has a new energy

resolution, GeDetector2 new thresholds, and GeDetector3 is dead (no energy resolution). Only performance

parameters can be changed in named detectors, such as energy, depth, and time resolution, but not any

geometric effects, such as strips numbers, energy loss maps, etc. Named detector cannot be used in the trigger

criteria.

Sub-Keyword: <Detector>.Named

Parameters: 1: Name of a new named detector (must be unique)

Description: Declares a named detector

Example GeDetector.Named GeDetector1

Sub-Keyword: <NamedDetector>.Assign

Parameters: 1: Volume hierarchy where the volume names are separated by a dot

Description: Determines to which positioned volume this named detector is assigned. It can only be

assigned to one detector.

Example GeDetector1.Assign World.GeWafer1

 28

3.8. Triggers

Triggers are currently implemented in a staged way:

Cosima does so called pre-triggering, the exact details what it stores in the simulation file are governed by the

cosima keyword “PreTriggerMode”. The default “Full” Pre-trigger-mode stores only events which fulfill the

trigger criteria, but thresholds are assumed to be zero. Events which fulfill the trigger criteria, but have any

energy deposit in a veto detector are also stored. Events which have only energy deposits in veto detectors are

not stored.

The full triggering is then applied during reading the sim file with e.g. Sivan or revan. The triggering is

performed during reading the events from the *.sim file into revan or Sivan. No triggers are

tested for the *.evta files, since those events represent detector data and are assumed to be already fully

triggered. A trigger for a detector is only raised, when the deposited energy in the given channel is above the

trigger threshold of the detector or guard ring.

3.8.1. Basic Triggers

The approach is the following:

First define if this trigger is a veto or not. Then define if the triggering happens by channel or by detector.

“TriggerByChannel” means that the channels are counted for the trigger, “TriggerByDetector” means that the

detectors are counted (irrelevant of how many channels in this detector have trigger - if at least one is above the

trigger threshold). Then define the triggering detectors (by type or name) and the number of hits they must

accumulate. Pay attention, you can only have one type of detector keyword per trigger, i.e. one trigger is

allowed to contain only “DetectorType” keywords or only “Detector” keywords or only

“GuardringDetectorType” keywords or only “GuardringDetector” keywords!

Keyword: Trigger or TriggerBasic

Parameters: 1: Name of a trigger (must be unique)

Description: Declares a trigger (or veto) condition

Example Trigger D1D2

Sub-Keyword: <Trigger>.Veto

Parameters: 1: true/false

Description: Determines if this is a real trigger (acceptance) or a veto trigger (rejection). If this option

is not given then veto is false!

Example ACSVeto.Veto true

Sub-Keyword: <Trigger>.TriggerByChannel

Parameters: 1: true/false

Description: Determines that the hits are accumulated channel wise. This is the default.

Attention: A trigger can be either by channel or by detector, not both!

Example D1D2.TriggerByChannel true

Sub-Keyword: <Trigger>.TriggerByDetector

 29

Parameters: 1: true/false

Description: Determines that the hits are accumulated detector wise. TriggerByChannel is the default!

Attention: A trigger can be either by channel or by detector, not both!

Example D1D2.TriggerByChannel true

Sub-Keyword: <Trigger>.DetectorType

Parameters: 1: Detector type name (e.g. Strip2D, Strip3D, etc.)

2: Number of hits required to raise the trigger or veto

Description: Number of hits are necessary in the given detector type to raise a trigger. If this keyword

occurs multiple times all conditions have to be fulfilled. The “Detector type name”

follows the MEGAlib convention: Strip2D is a 2D strip detector, Calorimeter is a

MEGA calorimeter, Strip3D is a 3D strip detector, Scintillator is a scintillator/ACS type

detector and DriftChamber is of course the drift chamber.

Attention: A trigger can either be defined by DetectorType or by Detector, not

both!

Example D1D2.DetectorType Strip2D 1

D1D2.DetectorType Calorimeter 1

Sub-Keyword: <Trigger>.Detector

Parameters: 1: Detector name (not type)

2: number of hits required in this detector to raise a trigger/veto

Description: Number of hits are necessary in the given detector to raise a trigger/veto. If this keyword

occurs multiple times all conditions have to be fulfilled.

Attention: A trigger can either be defined by DetectorType or by Detector, not

both!

Example D1D2.Detector WaferDetector 4

Sub-Keyword: <Trigger>.GuardringDetectorType

Parameters: 1: Detector type name (e.g. Strip2D, Strip3D, etc.)

2: Number of hits required to raise the trigger or veto

Description: Number of hits are necessary in the given detector type (which is required to have guard

ring) to raise a trigger. If this keyword occurs multiple times all conditions have to be

fulfilled. The “Detector type name” follows the MEGAlib convention: Strip2D is a 2D

strip detector, Strip3D is a 3D strip detector.

Attention: A guard ring trigger can either be defined by GuardringDetectorType

or by GuardringDetector, not both!

Example D3.GuardringDetectorType Strip3D 1

Sub-Keyword: <Trigger>.GuardringDetector

Parameters: 1: Detector name (not type)

2: number of hits required in this detector to raise a trigger/veto

 30

Description: This number of hits (usually only one is reasonable) is necessary in the guard ring of the

given detector to raise a trigger.

If this keyword occurs multiple times all conditions have to be fulfilled.

Attention: A guard ring trigger can either be defined by GuardringDetectorType

or by GuardringDetector, not both!

Example D3.GuardringDetector MyStrip3D 1

Here are more examples:

The MEGA prototype has an electron tracker and a calorimeter. Thus, a reasonable trigger condition would

require at least two layers of the tracker and one calorimeter triggering. In addition any events with hits in

the veto dome should be rejected. Thus we define two trigger conditions:

Trigger Main

Main.Veto false

Main.TriggerByDetector true

Main.Detector MyD1 2

Main.Detector MyD2 1

Trigger AntiCoincidence

AntiCoincidence.Veto true

AntiCoincidence.TriggerByDetector true

AntiCoincidence.Detector MyAnticoidence 1

A thick Germanium detector might require at least three hits for Triple Compton coincidence. Since the

detector is thick, those hits do not need to be in different detectors but only different channels need to

trigger. In addition, events which deposit energy in the guard rings of the detector are going to be rejected:

Trigger Main

Main.Veto false

Main.TriggerByChannel true

Main.DetectorType Strip3D 3

Trigger Guardring

Guardring.Veto true

Guardring.TriggerByDetector true

Guardring.GuardringDetectorType Strip3D 1

3.8.2. Trigger map

The second trigger interface maps detectors to trigger conditions. This allows a much wider variety of trigger

and veto conditions ranging from requiring an electron track to canceling a veto if the event has a certain

pattern, e.g. an electron track of a certain length but has no hit in, e.g., the top anti coincidence system.

Attention: By default the TriggerMap is trigger by channel and not trigger by detector!

Keyword: TriggerMap

Parameters: 1: Name of a trigger (must be unique)

 31

Description: Declares a trigger map

Example TriggerMap LargeTracks

Sub-Keyword: <Trigger>.Map

Parameters: 1: name of the trigger map file

Description: Gives the trigger map file:

Example LargeTracks.Map LargeTracks.trig

The trig file has the following keywords:

Keyword: DT

Parameters: List of detector names

Description: Declares a trigger map

Sub-Keyword: TV

Parameters: List of the number of required hits per detector. If the number is followed by a plus, then

“at least” this number of hits is required, otherwise the exact number is required.

Description: A vetoable trigger

Sub-Keyword: VT

Parameters: List of the number of required hits per detector. If the number is followed by a plus, then

“at least” this number of hits is required, otherwise the exact number is required.

Description: A veto trigger

Sub-Keyword: TN

Parameters: List of the number of required hits per detector. If the number is followed by a plus, then

“at least” this number of hits is required, otherwise the exact number is required.

Description: A non-vetoable trigger

Example:

Detector list
DT Tracker1 Tracker2 Tracker3 Tracker4 Calorimeter TopACS RestACS

Normal triggers requiring some kind of track and a calorimeter hit

Remark: It is completely OK to set 0 instead of 0+ in the anti-

coincidence system to reject events with hits in the anti-coincidence

system. However, doing it this way makes it easier for later diagnostics,

i.e. finding out how many events have been vetoed versus simply didn’t

trigger

TV 1+ 1+ 0+ 0+ 1+ 0+ 0+

TV 0+ 1+ 1+ 0+ 1+ 0+ 0+

TV 0+ 0+ 1+ 1+ 1+ 0+ 0+

 32

Veto

VT 0+ 0+ 0+ 0+ 0+ 1+ 0+

VT 0+ 0+ 0+ 0+ 0+ 0+ 1+

Non-vetoable trigger: full track and several hits in calorimeter, but no

hit in top ACS

TN 1+ 1+ 1+ 1+ 3+ 0 0+

An extensive example can be found in resource/examples/advanced/TriggerMap. The example describes a

simplified electron tracker with a calorimeter below and a segmented anticoincidence system around it. It

described 4 trigger conditions:

1. The default trigger requiring at least two hits in adjacent tracker layers and at least one hit in the

calorimeter

2. A default veto when one or more guard rings are hit

3. A default veto when one or more of the ACS segments are hit

4. A non-vetoable trigger requiring hits in at least 6 adjacent tracker layers, and at least 6 hits in the

calorimeter, but no hits in the top anti-coincidence system and the first tracker layer

For each of the 4 conditions a trigger map is created. While it is completely OK to merge those into one map, for

later diagnostics it is much easier and thus recommended to split them into logical sub-triggers.

The example also contains a little helper program, called CreateTriggerMap.cxx, which shows an easy way to

create such a trigger map – but obviously you can also create them via your favorite text editor, Excel, python,

etc.

3.9. System

You only need to define a system if you want to noise the event time (not the hit time).

The “System” is a special object as it describes overall detector characteristics common to all detectors. For the

time being, the only characteristic is the noising of the event time.

Sub-Keyword: <System>.TimeResolution

Parameters: 1: Resolution type: Ideal, Gauss

2+: Parameters

For case “Ideal”:

No more parameters necessary

For the case “Gauss”:

2: One sigma time resolution in seconds

Description: Time resolution of the event (not the individual hit) given as one sigma in seconds in the

case of Gaussian noising.

Example PerfectSystem.TimeResolution Ideal

MEGA.TimeResolution Gauss 1E-7

 33

3.10. Additional features

3.10.1. Constants

A very important feature is constants. They are useful if you develop your geometry in a way that allows for

easy modification in combination with the math environment and for-loops. Examples are:

Your geometry has a variable number of detector layers. You define the number of layers as a constant, and

generate the layer copies in a for-loop. Then you just have to change the number-of-layers constant to modify

your geometry.

Keyword: Constant

Parameters: 1: String

2: Number

Description: Replace all occurrences of String with number in the whole geometry (even if it is

spanned over different files). Attention: It is not checked if the string is a keyword!

Example Constant Size 2.0

Wafer.Shape BRIK Size Size 0.025

3.10.2. The math environment

Another very important feature is that one can do very basic mathematical calculations in the setup file.

The signs “{“ and “}” start and end the math environment. Everything within those brackets is considered as one

token:

Constant Size 2.0

Wafer.Shape BRIK {1.2*Size} {1.2*Size} {0.5*(log(Size)+1.5)}

The math environment relies on the ROOT interpreter. So whatever manipulation or function ROOT knows can

be used in the math environment. Thus you can use sin, cos, log, exp, etc.

3.10.3. For loops

Another important feature is for-loops. Many geometries use repeating volumes structures. Those can be easily

created with for loops:

Constant NLayers 10

Constant ZMax +4.5

Constant ZDistance +1.0

For Z NLayers ZMax { -ZDistance }

 Layer.Copy Layer_%Z

 Layer_%Z.Position 0.0 1.0 $Z

 Layer_%Z.Mother WorldVolume

 34

Done

The loop expands to:

Layer.Copy Layer_1

Layer_1.Position 0.0 1.0 +4.5

Layer_1.Mother WorldVolume

Layer.Copy Layer_2

Layer_2.Position 0.0 1.0 +3.5

Layer_2.Mother WorldVolume

Layer.Copy Layer_3

Layer_3.Position 0.0 1.0 +2.5

Layer_3.Mother WorldVolume

…

Keyword: For … Done

Parameters: 1: String defining the looping variable

2: Number of repeats

3: Start value of the variable

4: Increment of the variable

Description: This is an implementation of a for-loop.

Within the loop the variable value can be a accessed with the “$” command, the loop

index can be accesses via putting “%” in front of the variable name.

Example see above

3.10.4. If-conditions

Sometimes it is necessary to generate some geometry code only under certain conditions. For this case the if-

condition has been introduced. The segment between the If … EndIf is only generated if the mathematical

expression after “If” is true. “Else” is not yet implemented.

Example:

Constant UseShield 1

If { UseShield == 1 }

 Volume Shield

 Shield.Material BGO

 Shield.Shape Box 10.0 8.0 3.0

 Shield.Position 0.0 10.0 2.0

 Shield.Mother WorldVolume

EndIf

 35

Keyword: If {} … EndIf

Parameters: 1: Mathematical expression evaluating to true or false

Description: This is an implementation of an if-endif-condition.

Example see above

3.10.5. Echo

Finally in many circumstance when you use constants, for loops, or if-loops you might want some debugging

output. For those cases the Echo keyword has been introduced.

Keyword: Echo

Parameters: 1: String (may contain constants, etc)

Description: Dump some text to the console

Example Echo Hello World!

3.11. Final words

DO NOT FORGET TO CHECK YOUR GEOMETRY FOR OVERLAPS BEFORE STARTING ANY SIMULATIONS!

