
 1

Cosima
A Cosmic Simulator for MEGAlib based on Geant4

Designed and implemented by Andreas Zoglauer (zoglauer@berkeley.edu)

Version of 2021-08-02

mailto:zoglauer@berkeley.edu

 2

1. Content

1. Content .. 2
2. Prelude .. 3

2.1. What is Cosima? .. 3
2.2. Installation .. 3
2.3. Bug reports ... 3

3. Invocation ... 3
3.1. Direct invocation .. 3
3.2. Multiple parallel runs on the local machine - mcosima .. 4
3.3. Multiple parallel runs on distributed machines - dcosima .. 4

3.3.1. Invocation... 4
3.3.2. The configuration file .dcosima.cfg ... 5
3.3.3. Other dcosima tools ... 6
3.3.4. Setup procedure ... 7

4. The sim file format ... 8
5. The Parameter file .. 15

5.1. The seed of the random number generator... 15
5.2. Include other files .. 15
5.3. Geometry .. 16
5.4. Cuts by range.. 16
5.5. Physics lists .. 17
5.6. Storing options ... 19
5.7. Defining a run .. 22

5.7.1. Stop criteria .. 23
5.7.2. Orientations .. 23
5.7.3. Defining a source ... 26

5.8. Activation simulation .. 38
5.9. Special options ... 40

6. Other file formats ... 41
6.1. 1D Functions .. 41
6.2. 2D Functions .. 41
6.3. 3D Functions: Spherical .. 42

7. Visualization ... 43
8. The MCGeometryConverter class .. 44
9. Tips and Tricks ... 45

9.1. How to speed up the simulations .. 45
10. Known limitations .. 45
11. Examples .. 46

11.1. Simulating an all-sky map .. 46
11.2. Other ... 47

 3

2. Prelude

2.1. What is Cosima?

Cosima is intended as a universal simulator for low-to-medium-energy gamma-ray telescopes, detecting

gamma-rays via photo-effect, Compton scattering, and pair creation. This goal requires accurate simulation

from a few keV up to hundreds of GeV, including particles ranging from gamma-ray to cascades triggered

by cosmic high-energy particles. It has also been used for simulations for medical imaging and nuclear

surveillance applications.

Cosima is full integrated into MEGAlib. For the simulations, one can use the same geometry file used with

MEGAlib. The output of Cosima, the sim-file, can be used by MEGAlib’s Revan and Sivan programs.

2.2. Installation

Since Cosima is part of MEGAlib, please see the MEGAlib installation instructions for a complete step by

step guide.

2.3. Bug reports

If you find a bug or other problem, please email it to me: Andreas Zoglauer, zoglauer@berkeley.edu

3. Invocation

3.1. Direct invocation

cosima <options> <parameter file>

Cosima can be started with a variety of command line options. The last option has to be the parameter file

which contains the geometry, source, etc. descriptions. If this option is not given, a default parameter file

will be loaded.

The other options are:

-s <integer> The seed for the random number generator, which must be an integer larger than

zero. By default – i.e. if the -s option is not given – the random number is

initialized via the current time. In that case make sure to start multiple instances

of cosima at least 1 second apart.

-v <integer> Verbosity: The higher the number the more debugging output is printed to the

command line:

0: Just Geant4 output is printed (Cosima itself should be silent)

1: 0 plus Cosima warnings and errors (default)

 4

2: 1 plus Cosima debug info

3: 2 plus some Geant4 output

4: 3 plus more Geant4 output

5: 4 plus even more Geant4 output

-m <file name> Load and execute a Geant4 macro

-i Enter Geant4 interactive mode --- beware that Cosima doesn’t support the full

interactive mode you might know from some of the Geant4 examples

-z Gzip’ output files after simulation

-c <file name> Diagnostics: During reading the Geomega geometry it is converted to the

Geant4 format. This option converts it back to the Geomega format and stores it

in the given file name.

An alternate option to launch cosima is mcosima, which will start multiple parallel instances of cosima with

the same parameter file (but different random seeds). By default as many parallel instances are started as the

computer has CPU cores.

3.2. Multiple parallel runs on the local machine - mcosima

mcosima <options> <parameter file>

The most important options are (for a full list do mcosima --help):

-t <integer> The number of instances to start. The default is as many instances as the CPU

has cores.

-n <integer> The nice level. Default is 0.

-z zlib compress the output sim file.

-w Wait until all runs have finished.

The individual simulation files get an additional tag, “p”, to differentiate between different runs with

cosima. For example, you will get Run1.p1.inc1.id1.sim, Run1.p1.inc2.id1.sim, and Run1.p1.sim. The first

two contain the actual simulation data of the two instances, and the later one is a combination file, which can

be used with other MEGAlib programs and will automatically load and concatenate the former two files.

3.3. Multiple parallel runs on distributed machines - dcosima

Cosima has a few scripts to set up multiple parallel runs on several distributed machines via one simple run

invocation via dcosima (d stands for distributed). However, this requires a specific setup of the remote

machines, especially all machines must be accessible via password-less ssh login (i.e. using a public key),

and run the same MEGAlib version

3.3.1. Invocation

dcosima <options> <parameter file>

The key options are (attention: the format is a bit different from most of the other MEGAlib formats):

--instance=<integer> The number of instances to start.

 5

--source=<file name> The source file.

--name=<run name> A unique name of the run. This is actually a prefix, as the full name will

be postfixed with a random number, i.e. –name=MyRun will result in a

name such as MyRun_ID657258263936.

-z Compress the output file name.

--delay=<seconds> There is a small waiting time between searches for free simulation slots

(10 seconds by default). If multiple users are running dcosima, giving it

a number smaller than the default will automatically give this run a

higher priority.

The options can be reduced to the minimum which is unique, e.g. instead of --instance=10 you can write –

i=10. For a full list of all options, see dcosima --help.

3.3.2. The configuration file .dcosima.cfg

In order for dcosima to run you need a local and remote configuration files, which tell dcosima which

machines to use, how many threads to use, where to store the temporary data, and when not to start a run.

A typical dcosima configuration file looks like this:

List the allowed instances if run locally

instances 4

List the local simulation directory

Attention, this must be a full path you have write access to.

directory /home/user/dcosima

Start and stop times (only enforced Monday to Friday)

Omit if you want to have it run around the clock

time 17:00 6:00

List the nice level with which new cosima instances are launched

nice 15

List the user names which are not allowed to be logged in for the

simulation to start

Use all when nobody but the simulator is allowed to be logged in

inhibitors cozy omny distry anny

List the remote machines

Format:

machine user@IP:port priority

machine simy@128.32.13.12:21022 2

machine simy@128.32.13.12:21122 2

machine simy@128.32.13.12:21222 3

machine simy@128.32.13.12:21322 3

machine simy@128.32.13.12:21422 3

machine simy@128.32.13.12:21522 3

It contains 6 important sections: instances, directory, time, nice, inhibitors, and machines:

instances This keyword is important on remote machines, since it contains the

maximum number of instances of cosima which are allowed to run in

mailto:simy@128.32.13.12:21022
mailto:simy@128.32.13.12:21122
mailto:simy@128.32.13.12:21222
mailto:simy@128.32.13.12:21322
mailto:simy@128.32.13.12:21422
mailto:simy@128.32.13.12:21522

 6

parallel on this machine.

directory This keyword gives the name of the remote directory where to store and

afterwards delete the data. It must be a full path.

nice The nice level with which new cosima instances are started (default: 0)

time Give the start and stop time in format HH:MM. Only during these times

jobs are started – they are not stopped if the time runs out. Omit if you

want to start jobs around the clock.

The time restrictions are only enforced from Monday to Friday.

inhibitors A list of user names on the remote machine. When those users are

logged in no new runs are started.

machine A list of the remote machines to be used for simulations. Format:

machine username@IP:port priority

Machines with lower priority number get filled first

3.3.3. Other dcosima tools

There is a set of other dcosima tools which help you to manage your run. For each of them do --help for a

full list of command line options.

dcosima-updatemegalib:

Installs or updates MEGAlib on the machines. Do not try to install it be yourself. Do not run this command

while dcosima simulations are running!

dcosima-checkmegalib:

Gives you an overview which megalib versions are installed where.

dcosima-listallinstances:

Gives you an overview how many instances can be run on a machine, how many are available, and how

many are running where.

dcosima-listrunning:

This command lists the running instances by run name.

dcosima-showdiskspace:

This shows how much disk space is available on the remote machines to temporarily store simulation data,

and which run directory consumes how much disk space.

dcosima-clean:

It sometime can happen that a run ends prematurely and its temporary data gets not deleted from the remote

machines. You can remove individual run directories from all machines with this command – just don’t do it

for an actually running dcosima run. To figure out the run directories check with dcosima-showdiskspace.

 7

dcosima-kill:

Sometimes it is necessary to kill a dcosima run. For this you first kill the dcosima instance on your

computer, the use this command to your kill the running simulations with this command, and finally clean

up the temporary disk space on the remote machines with dcosima-clean.

dcosima-rsync:

This command is used internally to rsync the data from the remote machines to your local machines. If

something went wrong you can use this command to sync it back by hand.

dcosima-assemblefiles:

This command is used internally to collect all files necessary to run the simulation (source file, data, files,

geometry files), and modifies them so they run locally.

dcosima-allowedinstances:

This command is used internally to check how many instances can be run on a given machine. It consults the

.dcosima.cfg file on instances, time and inhibitors, and only allows new jobs if the load level is not to high.

3.3.4. Setup procedure

Setting up the remote nodes:

Please follow this sequence to set up the remote machines:

1. Set up a user dedicated to run dcosima instances – in this example the user name is “simy”

2. Install MEGAlib in the home directory of simy

3. Create a file ~/.bash_local which initialized the MEGAlib environment when sources

4. Make sure the sshd is installed and running in order to accept ssh connections

5. Create a .dcosima.cfg file in the home directory

The next step is to enable password-less ssh login by using a private-public keypair. On the computer and

with the user with whom you want to start dcosima do the following:

1. Check if you already have a key-pair ready which you can use: Check if a file .ssh/id_rsa.pub exists.

Only if it does not exist, create one:

• ssh-keygen -t rsa (Hit return for all questions!)

2. Copy the file .ssh/id_rsa.pub to ALL the remote machines (ATTENTION: Large -P), e.g. for user

simy on the machine with IP 128.32.13.12 using ssh-port 21322 do:

• scp -P 21322 .ssh/id_rsa.pub simy@128.32.13.12:

3. Login to ALL the remote machine and do

• Make sure .ssh exists, if not create it

• cat id_rsa.pub >> .ssh/authorized_keys

• chmod 700 .ssh

• chmod 640 .ssh/authorized_keys

4. Back on your GSE machine, test if you now can login password free:

• ssh -p 21322 simy@128.32.13.12

Set up the .dcosima.cfg

This has to be done on your local machine (there the machine keyword is the most important) as well as on

the remote machine (there instances, directory, and nice level are important).

mailto:simy@128.32.13.12

 8

Install MEGAlib on the remote machines:

This should be done exclusively with the script dcosima-updatemegalib, since it will setup the correct

environment script and installs MEGAlib in the expected path.

Run dcosima

The just run dcosima:

• It is preferable to have smaller runs (1-2 hours) but many of same, instead of just having a few long

runs.

• Make sure you always use the option to gzip your output files (option -z in dcosima)

• If you use the dcosima-clean or dcosima-kill scripts make sure you only use them on your own files.

Currently there are no protections that you do not kill anybody else runs.

4. The sim file format
The simulation format of Cosima is basically identical with the sim format of the two other simulation

interfaces of MEGAlib, GMega and ConvertMGGPOD. It consists of a header section and an event section.

In the header section you find the keywords type, version, geometry, date, and MEGAlib, which are

common for most other MEGAlib event files.

Key: Type

Parameters: 1: File type

Description: The unique type of this file. In case of a sim file SIM.

Key: Version

Parameters: 1: integer

Description: The version of the sim file format

Key: Geometry

Parameters: 1: File name

Description: Full path of the geometry file used for the simulations

Key: Date

Parameters: 1: Date & time

Description: Time and date when the file was created in the format: 2008-11-17 21:16:44

Key: MEGAlib

Parameters: 1: ID

Description: MEGAlib version as string, such as 2.19-alpha7 or 2.19.

 9

The event section starts with the keyword TB and ends with the keyword TE, representing the start and the

end of the observation time, thus TE-TB is the total observation time.

Key: TB

Parameters: 1: Time in seconds

Description: Start of the observation time

Key: TE

Parameters: 1: Time in seconds

Description: End of the observation time

Each event description consists of two main parts, the IA-section and the HT-section plus some additional

information.

The IA-section contains all information about the initial parameters of the particle (INIT), and all main

interactions: Compton scattering (COMP), pair creation (PAIR), photo effect (PHOT), Rayleigh scattering

(RAYL), Bremsstrahlung emission (BREM), ionization (IONI), inelastic scattering (INEL), hadron capture

(CAPT), decay (DECA), and finally escapes form the world volume (ESCP) as well as immediate

absorption in a black absorber (BLAK). However, the IONI entry is only generated when the flag

StoreSimulationInfoIonization is set to avoid “gigantic” file sizes. For some interactions such as PAIR

creation two IA entries are generated, representing the electron and the positron. The information appearing

in the fields of individual IA entries depends on the interaction type. In particular, there are many

interactions which do not fill all possible fields. For example Rayleigh scattering doesn't generate a

secondary particle so the fields for the new particle are empty and only the new parameters of the original

particle, the photon, are filled out. In addition, for, e.g., pair creation and photo effect the mother particle

direction, polarization, and energy fields are empty since the photon no longer exists, etc.

Moreover, there is a special mode StoreSimulationInfoWatchedVolumes, which allows keeping track

when particles enter and exit selected volumes via the keywords ENTR and EXIT.

In general, IA entries are generated, when particles undergo a major change and/or new particles are

generated. By default, IA entries are not generated when charged particles loose energy via ionization,

irrespective of the generation of secondaries – IA entries for particles generated via ionization are only

stored if the flag StoreSimulationInfoIonization is set to true.

Furthermore, IA entries are generated irrespective if they occurred in active or passive material, but only if

the events has raised a trigger or veto signal.

Finally, the IA-section contains the “Monte-Carlo-truth”. Positions, directions, and energies are the exact

positions at which the interaction happened, i.e. the information is not voxelized into the voxels of the

detectors, not noised, etc. All positions can be exact, since only discrete processes, which happen at a

discrete position, are stored in the IA section. As consequence, from this information the path of the initial

photon can be reconstructed as required for the generation of response matrices.

The HT-section contains all energy deposits as the detector would detect them, but without applying detector

noise to energy and depth measurements. The positions used for the energy deposits correspond either to the

location of a discrete energy deposit, or, if the energy deposit happened continuously in form of ionization

along the path of the particle, half-way between the start and the stop of the simulation step. If the option

DiscretizeHits is turned on (default), then those deposits are centered in the individual voxels of the

detector. This process is also called voxelization of the energy deposits. An exception are the depth in depth-

resolving strip detectors (Strip3D) and calorimeters, where the value of the z-axis in the HT-section

corresponds to the energy weighted average z-position.

Even if the discretization is turned off there is not necessarily an energy deposit at the exact same position as

given in the corresponding IA entry, since charged particles deposit their energy along their path, and the

location in the HT-section is half-way between start and stop position of the corresponding simulation step.

 10

In order to connect the HT’s with IA’s, the HT’s contain a section of all interactions which contributed to

the energy deposit. Since deposits are usually generated by charged particles, the interaction during which

they are generated is given. For example, if an electron is generated during Compton scattering, the IA-ID of

this Compton scattering is given.

The various elements in the sim file are:

Key: SE

Parameters: -

Description: “Start Event”: Marks the beginning of a new event

Key: ID

Parameters: 1: ID triggered event

 2: ID of simulated event causing the triggered event

Description: Represents a unique ID of the event

Key: TI

Parameters: 1: Time in seconds

Description: Observation time of the event

Key: ED

Parameters: 1: Energy in keV

Description: Total deposited energy in sensitive material including guard rings

Key: EC

Parameters: 1: Energy in keV

Description: Total energy of particles escaped from the world volume

Key: NS

Parameters: 1: Energy in keV

Description: Energy deposited in not sensitive material

Key: PM

Parameters: 1: Material name

1: Energy in keV

Description: Energy deposited in this specific passive material

Key: GR

Parameters: 1: x position of detector center in cm

 2: y position of detector center in cm

 3: z position of detector center in cm

 4: Energy in keV

 11

Description: Energy deposited in the guard ring of strip detectors

Key: XE

Parameters: 1: x position of detector center in cm

 2: y position of detector center in cm

 3: z position of detector center in cm

 4: Energy in keV

Description Total energy deposit per drift chamber

Key: DR

Parameters: 1: x position of interaction in cm

 2: y position of interaction in cm

 3: z position of interaction in cm

 4: x direction

 5: y direction

 6: z direction

 7: Energy in keV

Description: Electron direction information for Strip3DDirectional detectors

Key: IA

Parameters: 1: Type

One if the following interaction/process types:

INIT: The initial parameters of the particle

PAIR: Pair creation

COMP: Compton scattering

PHOT: Photo effect

BREM: Bremsstrahlung

RAYL: Rayleigh scattering

IONI: Ionization (activated via StoreSimulationInfoIonization)

INEL: Inelastic scattering

CAPT: Some capture process (e.g. neutron capture)

DECA: Decay

ESCP: Particle escapes the world volume

ENTR: A particle enters a watched volume (see StoreSimulationInfoWatchedVolume)

EXIT: A particle exits a watched volume (see StoreSimulationInfoWatchedVolume)

BLAK: A particle is “killed” after entering a black absorber (see BlackAbsorber)

 2: ID of this interaction

 3: ID of interaction this particle originated from

 4: Detector ID (see table of detector IDs)

 5: Time since start of event in seconds

 6: x position of interaction in cm

 7: y position of interaction in cm

 8: z position of interaction in cm

 12

 9: ID of original particle (see table of particle IDs)

 10: New x direction of original particle

 11: New y direction of original particle

 12: New z direction of original particle

 13: New x polarization of original particle

 14: New y polarization of original particle

 15: New z polarization of original particle

 16: New kinetic energy of original particle in keV

 17: ID of new particle (see table of particle IDs)

 18: x direction of new particle

 19: y direction of new particle

 20: z direction of new particle

 21: x polarization of new particle

 22: y polarization of new particle

 23: z polarization of new particle

 24: Kinetic energy of new particle in keV

Description: Interaction information (version 23)

Key: HT

Parameters: 1. Detector ID (see table of detector IDs)

 2. x position of interaction in cm

 3. y position of interaction in cm

 4: z position of interaction in cm

 5: Energy deposit in keV

 6: Time since start of event in seconds

 7: Vector of IDs of the interactions which contributed to this hit

Description: The hit information in the active detector material.

(A Geant4 simulation detail: for “AlongStep” processes (e.g. ionization) the given position

is the midpoint between start and end of the step, for “PostStep” processes (e.g. Compton

scattering) the given position is the end of the step.)

Key: EN

Parameters: -

Description: “End”: Marks the end of the event block. No events are allowed beyond this keyword.

Several special keywords give summaries about observation time beginning (TB) and end (TE) as well as

the total simulated events.

Key: TB

 13

Parameters: 1: Time in seconds

Description: This keyword tells the time the observation begins.

This keyword appears always before the event block, i.e. before the first SE.

Example TB 0.0

Key: TE

Parameters: 1: Time in seconds

Description: This keyword tells the time the observation ends in seconds.

This keyword appears always after the event block, i.e. after the EN keyword.

Example NS 100.0

Key: TS

Parameters: 1: Total started events

Description: This keyword represents the total number of simulated (=started) events.

This keyword appears always after the event block, i.e. after the EN keyword.

Example TB 0.0

During later analysis, TE-TB gives to total observation time. In case of a premature interruption of Geant4

(e.g. crash) the TE is recovered from the time of the last event in the file. The same happens with TS.

In the case the sim file reaches 95% of the maximum allowed file size on the given operating system, all

following events are written to a new sim file. In the name of the new sim file the id-tag in the filename is

increased by one. In addition, the last keyword in the old sim file is NF followed by the new file name.

Therefore all successive files can be read if only the first file is given for analysis.

Attention: Do not use this keyword to concatenate sim files by your own! If you want to concatenate

sim files use the keyword IN instead – see next section

Key: NF

Parameters: 1: File name (in this case sim file)

Description: When an IN keyword is found the given sim file is opened and read. This allows for easy

concatenation of sim files. Attention: A sim file is allowed to have either an event section

or an include section

Example NF MyRun.inc1.id2.sim

A special version of simulation file allows easily concatenating sim files. There, the event section is replaced

by an include section. It contains only the keyword IN followed by the filename, and directs the analysis

program to read the given sim files.

Attention:

• A sim file is allowed to have either an event section or an include section, not both!

• The keywords BE, TE, TS are not allowed to appear in a sim file with contains an include

section!

Key: IN

Parameters: 1: File name (in this case sim file)

 14

Description: When an IN keyword is found the given sim file is opened and read. This allows for easy

concatenation of sim files. Attention: A sim file is allowed to have either an event section

or an include section

Example Type SIM

Version 25

Geometry Sphere.geo.setup

Date 2008-11-17 21:16:44

MEGAlib 2.18

IN FirstSimFile.sim

IN SecondSimFile.sim

ID Name ID Name ID Name

1 γ 18 deuteron 35 anti Λ

2 e+ 19 triton 36 Σ+

3 e- 20 3He 37 anti Σ+

4 p 21 α 38 Σ0

5 anti p 22 generic ion 39 anti Σ0

6 n 23 π+ 40 Σ-

7 anti n 24 π0 41 anti Σ-

8 μ+ 25 π- 42 Ξ0

9 μ- 26 η 43 anti Ξ0

10 τ+ 27 η’ 44 Ξ-

11 τ- 28 Κ+ 45 anti Ξ-

12 νe 29 Κ0 46 Ω-

13 anti νe 30 anti Κ0 47 anti Ω-

14 νμ 31 Κ0
S 48 ς-

15 anti νμ 32 Κ0
L 49 ς0

16 ντ 33 Κ- 50 ς+

17 anti ντ 34 Λ

Table: List of all particle IDs

 15

5. The Parameter file

The simulation is steered by a parameter file *.source (also known as source file). It contains a description of

the sources (geometry, energy, intensity, etc.) as well as general information about the simulation, how to

store the data, which physics lists to use, geometry, etc.

One extremely important element for the simulation, which is not part of the parameter file, but part of

geometry, is the surrounding sphere from which particles in far-field simulations are started (see Figure 1).

All options of the parameter file a described in the following sections. You can find several examples in the

directory: $MEGALIB/resource/examples/cosima/sources

5.1. The seed of the random number generator

The seed for the random number generators is not given in the parameter file but as a command line option

for cosima, because one should be to launch multiple instances of cosima with the some parameter file. If no

seed is given at the command line, then the current time in seconds is used as seed. In this case, make sure

that you launch multiple instances of cosima with at least 1 second time difference.

Internally cosima uses two random number generators, the default one of Geant4 (CLHEP) and indirectly

the default random number generator of ROOT in classes which are not directly part of cosima but part of

MEGAlib.

5.2. Include other files

Keyword Include

Parameters 1: File name

Description This option allows to include another parameter files

Example Include SubFile.source

ID Description

1 2D Strip detector (no depth resolution)

2 MEGA style calorimeter – many scintillator bars in one enclosing volume

3 3D Strip detector with depth resolution

4 Universal detector without any position resolution (e.g. calorimeter)

5 Not fully implemented: Drift chamber

6 Not fully implemented: 3D Strip detector with depth resolution and limited

directional resolution

7 Anger camera

8 3D Voxel detector

Table: List of detector ID’s – the definition is identical to the definition throughoput

MEGAlib

 16

5.3. Geometry

Cosima uses MEGAlib’s Geomega library to generate a Geant4 geometry. The geometry file contains the

complete geometry, detector and trigger information. Concerning the detector effects engine, in Cosima only

the voxelization of the hits into the voxels of the detector, an energy-loss map as a function of energy

deposit, as well as a pre-trigger condition is applied to the hits. Here, pre-triggering means that vetoes and

trigger thresholds are ignored. The full detector effects engine is only applied when the simulation file is

read in by revan.

Keyword Geometry

Parameters 1: File name

Description This mandatory keyword contains the name of the Geomega geometry file

Example Geometry $(MEGALIB)/MyGeometry.geo.setup

Keyword CheckForOverlaps

Parameters 1: Number of random test points on each volumes surface (e.g. 1000)

2: Tolerance of overlaps in cm (e.g. 0.0001)

Description This option searches for overlaps in the volume tree and dumps them to the

screen. No special action is taken if overlaps are found.

Example CheckForOverlaps 1000 0.0001

Keyword DetectorTimeConstant

Parameters 1: Time in seconds

Description For activation simulations only!

This keyword represents the time within which two decays or de-excitations

are considered coincident.

This keyword does NOT do normal coincidences. The reason is that a usual

space background simulation contains many background types which are

simulated after each other. Therefore normal coincidence cannot be simulated

within the simulations but has to be performed after wards.

Activation simulations are an exception since they separate prompt from

delayed components. This procedure doesn’t allow performing latter

coincidences in some special cases. For example inelastic proton scattering

has generated an isotope with a short meta-stable state (e.g. 1 ns). Without

coincidence simulation in the prompt file the decay until the decay would

appear, and in the delayed file, with a random, i.e. unrelated time stamp.

Those two hits can not be joined through coincidences and an otherwise non-

existent nuclear line is visible in the simulations.

Example DetectorTimeConstant 0.000005

5.4. Cuts by range

Two sets of global range cuts can be set via the parameter file, a default cut for all particles and the whole

geometry as well as a cut for all particles by region. As usual in Geant4, the cut is a production threshold in

particle range. The advantage of this approach is to be able set a higher threshold for the total geometry, but

a low threshold for region surrounding the sensitive detector.

 17

The default cut is set via the keyword DefaultRangeCut and corresponds to the “defaultCutValue'” in the

user physics list.

Keyword DefaultRangeCut

Parameters 1: Particle range in cm

Description Global range cut for all particles

Example DefaultRangeCut 0.0005

The second way is to set range cuts in specific regions in the detector. This corresponds to the “Cut by

Region” mechanism of Geant4: For a certain logical volume and all its daughter volumes you define a

specialized range cut (for details see Geant4 manual).

Keyword Region

Parameters 1: Name of the region

Description Define a region object, used to define a detector volume in which special

range cuts exist

Subkeyword to Region Region.Volume

Parameters 1: Name of logical volume

Description Names the logical volume, which defines the region. Please make sure that the

volume is not a virtual volume. In addition if the geometry contains virtual

volumes, the names of the volume might have changed in geomega. In this

case use geomega to determine its new name.

Subkeyword to Region Region.RangeCut

Parameters 1: Particle range in cm

Description Range cut for all particles in this region

Example Region Tracker

Tracker.Volume TrackerVolume

Tracker.RangeCut 0.0005

What are good cuts?

For example for silicon a cut of 0.000002 cm corresponds to a Compton electron production threshold of 0.8

keV, 0.000001 cm to 0.4 keV, and 0.0000005 cm to 0.15 keV.

If you do not give any of these options, a default cut of 0.0005 cm is used.

Attention:

It is very important to set those cuts wisely: Too low values increase your simulation time significantly, and

too high values will give you wrong results, since your production thresholds are wrong!

Thus make sure that the range is lower or equal to 10% of the smallest dimension of your (sensitive)

volumes (including all sub-divisioning of the actual volume, if you use e.g. strip or voxel detectors!), and

that the range is small enough to produce all secondaries!!

In any case, make sure to read the Geant4 manuals to understand how range cuts work!

5.5. Physics lists

The possible physics lists for electro-magnetic processes are:

 18

➢ None: Do not use an EM-physics list. Definitely not recommended for any normal simulations

➢ Livermore: The Livermore low-energy EM-processes (includes Doppler-broadening)

➢ Livermore-Pol: The Livermore low-energy EM-processes (includes Doppler-broadening and

polarization)

➢ Penelope: The Penelope low-energy EM-processes

➢ Standard: The standard EM-processes, which are only suited for high gamma-ray energies

The Livermore-G4LECS package is not longer supported and superseded by the default Livermore

package.

Keyword PhysicsListEM

Parameters ID of the physics lists (not case sensitive)

Description Set the physics used for simulating electromagnetic processes

Default Livermore

Example PhysicsListEM Livermore

The possible physics lists hadronic processes are:

➢ None
➢ QGSP-BIC-HP: This is one of the standard Geant4 physics lists (for details see Geant4

documentation), covering the energy range of particles interacting in a low- to medium-energy

gamma-ray telescopes under space conditions

➢ QGSP-BERT-HP: This is one of the standard Geant4 physics lists suitable for space simulations.

➢ FTFP-BERT-HP: This is one of the standard Geant4 physics lists suitable for space simulations.

As long as you only simulate gamma-ray interaction, you do not need to give and hadron physics list!

Description PhysicsListHD

Parameters ID of the physics lists (not case sensitive). The possibilities are “none”, “qgsp-bic-hp”,

“qgsp-bert-hp”.

Description Set the physics used for simulating hadronic processes

Default None

Example PhysicsListHD qgsp-bic-hp

By default the radioactive decay physics list is always used. But you can choose how they are handled.

Currently four modes exist:

➢ Normal: This is the standard Geant4 way to do, which is not very useful: The decays are added to

the current event, even is they appear eons later…

➢ Ignore: Radioactive decays are completely ignored, i.e. not happening.

➢ Buildup: The decay is delayed into a new event, which is happening at the correct moment in time,

if the simulation has not yet ended of course, i.e. you generate an instable isotope at time t0, which

will decay at t1. At time t0 the isotope is stored and the simulation continues. If time t1 is reached,

then we return to the radioactive isotope and let it decay. In this mode a list of future events is kept,

which can grow indefinitely (and significantly slow down the simulation) unless a maximum time is

known. Thus please use “Time” as stop criterion, so that only those events are kept which are within

the given time window. In addition, if the amount of stored events exceeds 10.000.000, the events

furthest in the future are deleted.

 19

➢ ActivationBuildup: This mode is used for space activation simulations. The decays are NOT

happening during the run, but the generated isotopes are stored in a list (see the chapter Activation

simulations for more details). This keyword requires that you add the keyword

IsotopeProductionFile to all runs in the source file! Do not use it for anything else but step 1 of

the activation calculations!

➢ ActivationDelayedDecay: This mode simulates the delayed decays during step three of the

activation simulations. Do not use it for anything else but step 3 of the activation calculations!

Description DecayMode

Parameters ID of the decay mode (not case sensitive). For details see text above.

Description Sets how radioactive decays are handled

Default Normal

Example DecayMode buildup

Keyword BlackAbsorber

Parameters 1-N: list of volume names

Description If any particle enters a black absorber volume its track is immediately killed, and a

“BLAK” IA information is generated with the particles last parameters.

Default not used

Example BlackAbsorber Collimator

5.6. Storing options

Keyword FileFormat

Parameters 1: mode

“text” or “plaintext” or “t”

“binary” or “b”

Description This flag controls if the data is stored in text format or binary format. Default is text

since it contains the most complete simulation information, but also leads to larger

files. The binary format is similar to the text format, but it excludes data, which is not

necessary for the later standard analysis, thus as where in passive material data is lost,

etc. It also stores the information in the IA section regarding polarization and direction

with 2-bytes, everything else with 4-bytes (floats). If more precision is needed please

use the text format, and control the precision via the StoreTextScientific keyword.

Please use the “-z” option at the command line to compress both text and binary files

to get the smallest file sizes.

Default “text”

Example FileFormat text

Keyword StoreTextScientific or StoreScientific

Parameters 1: true/false

2: Precision in scientific case (decimal places)

 20

Description If this value is set to true, the IA- and HT-sections of the output data is stored in

scientific format, i.e. “a.cdefgE-xy”, and not in fixed format “a.bcdef'”. The scientific

format is more accurate, but the fixed format is more easily readable. The precision

only applies to the scientific format, not to the fixed format.

Default False

Example StoreScientific true 5

Keyword StoreSimulationInfo

Parameters 1: mode

The modes include:

“all” or “true” – store all IA information

“init-only” – only store the initial interactions (plus ENTR & EXIT if

StoreSimulationInfoWatchedVolume is set)

“none” or “false” – do not store any IA information

“ia-only” – only store the IA information, not the HT section

Description This value controls how much simulation information like deposits in passive material,

escaped particles, real interaction positions (IA-section of the sim file), etc., is stored.

Default “all”

Example StoreSimulationInfo all

Keyword StoreCalibrated

Parameters 1: true/false

Description Set this value to true, if the content of the HT-section should be in positions and

energies instead of strips/bars and ADC counts

Default true

Example StoreCalibrated true

Attention: Setting this option to false is experimental and not fully supported throughout MEGAlib!

Keyword StoreSimulationInfoIonization

Parameters 1: true/false

Description If this value is set to true, in the IA-section of the sim file also contains information

about ionization – this information is also written if NO secondary has been produced.

Since this increases the sim file by up to a factor 10, this option is set to false by

default. This flag has only an effect if StoreSimulationInfo is set to “all”.

Remark: Due to some strange Geant4 “feature”, some ionizations are Geant4-

internally called “Transportation”. In Cosima they are still called ionization.

Default False

Example StoreSimulationInfoIonization false

Keyword StoreOnlyTriggeredEvents (aka StoreOnlyEventsWithEnergyLoss)

Parameters 1: true/false

 21

Description If this value is set to true (default), then only events which raise a pre-trigger are

stored, otherwise all events are stored (although you will only see content in the IA

section of the output file).

Default True

Example StoreOnlyTriggeredEvents false

Keyword StoreOneHitPerEvent

Parameters 1: true/false

Description In the case there is no coincidence hardware, each hit is stored in its own event. I.e.

even if two hits (= hits in different detector voxels) are generated by the same particle

they are stored in individual events.

Default False

Example StoreOnlyEventsWithEnergyLoss false

Keyword StoreMinimumEnergy

Parameters 1: Energy [keV]

Description Only store events which deposit at least this amount of energy (ideal) in active

detectors. It does not matter if the detectors are veto detectors or not.

Attention:

This option just cuts events out. It does not change the number of events which pre-

trigger. As consequence, the stored event ID’s will have gaps, and when you specify a

stop criteria by trigger, it still will stop when the real number of triggered events is

reached and thus you will have less than the specified number of events in the file.

Default -1E+40 keV (i.e. not used)

Example StoreMinimumEnergy 450.0

Keyword StoreMaximumEnergyLoss

Parameters 1: Energy [keV]

Description Only store events which have an ideal energy (ideal) in passive material and veto

detectors less than this amount. As soon as an energy loss above this amount is

detected the event is aborted. Therefore, a speed up of the simulations is expected

depending on the amount of passive material you have, along with smaller simulation

files.

Attention:

This option cuts events out and is only intended for (nuclear) line simulations where

any continuum is ignored.

Default 1+40 keV (i.e. not used)

Example StoreMaximumEnergyLoss 20.0

Keyword StoreSimulationInfoWatchedVolumes

Parameters 1-N: list of volume names

Description If any particle enters or exits a watched volume, an additional IA key is written to file

 22

indicating that the particle entered (ENTR) or left (EXIT) the volume. Obviously,

neither if the particle is stopped in the volume, nor when it is created in the volume

such an entry is created.

In general, this information is for example helpful to calculate radiation damage.

Default not used

Example StoreSimulationInfoWatchedVolumes Tracker Calorimeter

Keyword PreTriggerMode

Parameters 1: Everything or EveryEventWithHits or Full

Description This keyword describes how the pre-triggering is performed:

• “Everything” stores all events, irrelevant if any energy was deposited in any active

detector. Thus you will have empty events with just the IA information block.

• “EveryEventWithHits” stores all events which have any energy deposit in any

detector, positive triggering detectors or veto detectors.

• “Full” applies the full pre-triggering. Only events which fulfill the trigger criteria

are stored, but thresholds are assumed to be zero. Events which fulfill the trigger

criteria, but have any energy deposit in a veto detector are also stored. Events

which have only energy deposits in veto detectors are not stored.

Default Full

Example PreTriggerMode EveryEventWithHits

Keyword DiscretizeHits

Parameters 1: true/false

Description Do the discretization of the energy deposits during Geant4 “steps” into the voxel/strip

size of the detector. Otherwise the energy deposit of each “step” in the Geant4

simulation is stored in the HT-section of the sim file.

Default True

Example DiscretizeHits false

5.7. Defining a run

The actual simulation within Cosima is split into individual runs. A run defines a file to which the data is

stored, a stop criterion, a trigger criterion, and one or more sources.

Keyword Run

Parameters 1: Unique name of the run (no spaces allowed)

Description Definition of a run

Example Run FirstRun

Subkeyword FileName

Parameters 1: Unique file name (no spaces allowed)

Description Sets the name of the file the data will be stored to. The suffix will be added

 23

automatically.

Example FirstRun.FileName TestRun

5.7.1. Stop criteria

The following three keywords Events, Triggers and Time define stop criteria. Please use only one of

them!

subkeyword Events

Parameters 1: Number of events

Description Defines a stop criterion, fulfilled when the given number of events was simulated. In

the case you generate radioactive particles (e.g. through proton irradiation) and use

e.g. the build-up mode, not only the primary particles are counted, but also the

secondary radioactive decays.

Remark: In most cases the number of simulated events is (much) larger than the

number of triggered events, since not all events will generate a trigger.

Example FirstRun.Events 10000

Subkeyword Triggers

Parameters 1: Number of triggers

Description Defines a stop criterion, fulfilled when the given number of triggers was achieved.

Attention: Cosima only pre-triggers i.e. ignore thresholds etc. The real triggering is

done in MEGAlib’s Revan, after applying measurement uncertainties and

thresholds.

Remark: The number of triggered events should be the number of events written to

the file; in many cases this number is smaller than the number of stimulated events,

since usually not all events will result in a trigger.

Example FirstRun.Triggers 10000

Keyword Time

Parameters 1: Time in seconds

Description Defines a stop criterion, fulfilled when the given simulation (not CPU) time has

passed. In case you perform simulations which include the build-up of radioactive

elements please use this stop criterion.

Example FirstRun.Time 1000

5.7.2. Orientations

Orientations are used to simulate movements of sources or the detector in Cosima. An orientation in cosima

consists of a coordinate system and one (or more) times, translations, and rotations. The coordinate is always

either local Cartesian, or, for astrophysical simulations, Galactic. Orientations are defined in a way that

everything rotates in the local fixed Cartesian coordinate system.

In general, 3 components in cosima can have orientations: the sky, the detector, or the sources.

 24

The sky should either be fixed to the local coordinate system, or have an orientation in Galactic coordinates,

where the orientation represents the pointing of the local x and z-axis in Galactic coordinates.

The detector, can only have an orientation in the local Cartesian coordinate system.

The source, can have an orientation either in the local coordinate system (then the given orientation is the

translation/rotation of the beam in the given source coordinates to the local coordinate system), or in

Galactic coordinates.

The options for the run are:

Sub-Keyword OrientationDetector

Parameters 1: Local (always)

2: Fixed

Or

2: File

3: Loop or NoLoop

4: file name (no spaces allowed)

Description Orientation of the detector in the local coordinate system

Example FirstRun.OrientationDetector Local Fixed

SecondRun.OrientationDetector Local File Loop MyFile.txt

Sub-Keyword OrientationSky

Parameters 1: Local

2: Fixed (no other options allowed!)

Or

1: Galactic

2: File

3: Loop or NoLoop

4: file name (no spaces allowed)

Or:

1: Galactic

2: Pointing

3: Pointing of the x-axis of the local coordinate system in Galactic coordinates

Latitude

4: Pointing of the x-axis of the local coordinate system in Galactic coordinates

Longitude

5: Pointing of the z-axis of the local coordinate system in Galactic coordinates

Latitude

6: Pointing of the z-axis of the local coordinate system in Galactic coordinates

Longitude

Description Orientation of the sky in the local or Galactic coordinate system

Example FirstRun.OrientationSky Local Fixed

SecondRun.OrientationSky Galactic File Loop MyFile.txt

ThirdRun.OrientationSky Galactic Pointing -90 0 0 180

 25

Orientation file

Files containing orientations have the default suffix “ori” and are therefore called ori-files. There are two

types of orientations files, those in the local coordinate system, and those in the Galactic coordinate system.

Both have the Type keyword first followed by a (long) section of orientations, either OL for the local or OG

for the Galactic coordinate system.

Local orientation file:

Sub-Keyword Type

Parameters 1: OrientationsLocal

Description Defines the type of the orientation file

Sub-Keyword OL

Parameters 1: Time

2: x translation of the new coordinate system relative to the default one in cm

3: y translation of the new coordinate system relative to the default one in cm

4: z translation of the new coordinate system relative to the default one in cm

5: theta angle of the new x-axis in the default coordinate system in degrees

6: phi angle of the new x-axis in the default coordinate system in degrees

7: theta angle of the new z-axis in the default coordinate system in degrees

8: phi angle of the new z-axis in the default coordinate system in degrees

Description Orientation of the detector in the local coordinate system (as defines in Geomega)

Example Type OrientationsLocal

OL 0 10 0 15 90 -180 0 0

OL 0.00277778 9.99848 0.174524 15 90 -179 0 0

OL 0.00555556 9.99391 0.348995 15 90 -178 0 0

OL 0.00833333 9.9863 0.52336 15 90 -177 0 0

OL 0.0111111 9.97564 0.697565 15 90 -176 0 0

OL 0.0138889 9.96195 0.871557 15 90 -175 0 0

Galactic orientation file:

Sub-Keyword Type

Parameters 1: OrientationsGalactic

Description Defines the type of the orientation file

Sub-Keyword OG

Parameters 1: Time

2: Latitude angle of the new x-axis in the default coordinate system in degrees

3: Longitude angle of the new x-axis in the default coordinate system in degrees

4: Latitude angle of the new z-axis in the default coordinate system in degrees

5: Longitude angle of the new z-axis in the default coordinate system in degrees

Description Orientation of the detector in the Galactic coordinate system. The default coordinate

system has the z-axis pointing at the Galactic north pole and the x-axis pointing at

the Galactic center.

Example Type OrientationsGalactic

OG 1465689986.739684600 -2.870270 175.252000 38.906700 -

97.067000

OG 1465689989.531588600 -2.986970 175.354000 38.938800 -

97.062000

 26

OG 1465689990.545334200 -3.202110 175.522000 38.914200 -

97.067000

OG 1465689991.514584200 -3.409290 175.677000 38.950700 -

97.083000

5.7.3. Defining a source

Sub-Keyword Source

Parameters 1: Name of the source

Description Defines a source

Example FirstRun.Source FirstSource

Sub-Sub-Keyword ParticleType

Parameters 1: Particle type (see table particle IDs)

Description Give the type of particle which should be used during the simulation

Example FirstSource.ParticleType 1

Sub-Sub-Keyword Spectrum

Parameters 1: Spectral type (see description)

2+: Parameters

Description Give the spectral type of your source. The differential

energy spectrum (like the beam profile) has no specific

normalization – it only gives the shape of the spectrum.

How many photons per cm2, second, keV, steradian, etc.

have to be started in the simulation is calculated internally.

The absolute flux is determined via the value given in the

keyword.

As consequence, all spectra can be combined with all beam

options.

The following spectra are currently implemented:

Flux. The possibilities for the spectrum are:

Mono: Mono energetic (line source)

Linear: Linear distribution between two energies

PowerLaw: Power law distribution

BrokenPowerLaw: Broken power law distribution

Gaussian: Gaussian around a given energy

BlackBody: Black body spectrum

File: A spectrum given in a file

Mono 2: Energy in keV

Linear

2: Minimum energy in keV

3: Maximum energy in keV

()  32 , . ppEconstEI 

 27

PowerLaw

2: Minimum energy in keV

3: Maximum energy in keV

4: Photon index

BrokenPowerLaw

2: Minimum energy in keV

3: Maximum energy in keV

4: Break energy in keV

5: Photon index min

6: Photon index max

Attention: The break energy must be within the minimum

and maximum energy

Gaussian

2: Mean in keV

3: One sigma in keV

4: Cut-off in number of sigma

BlackBody

2: Minimum energy in keV

3: Maximum energy in keV

4: Temperature in keV

BandFunction
𝐼(𝐸) ∝ { 𝐸𝑝4 ∙ 𝑒

−
𝐸
𝑝6 ∀𝐸 ∈ [𝑝2 , (𝑝4 − 𝑝5)𝑝6]

[(𝑝4 − 𝑝5) ∙ 𝑝6]𝑝4−𝑝5 ∙ 𝐸𝑝5 ∙ 𝑒(𝑝5−𝑝4) ∀𝐸 ∈ [(𝑝4 − 𝑝5)𝑝6 , 𝑝3]

2: Minimum energy in keV

3: Maximum energy in keV

4: Lower photon index

5: Upper photon index

6: Break energy (E0 in Band+ 1993) in keV

NormalizedEnergy-

BeamFluxFunction

(one word without

hyphens)

This spectrum has no options, since all input is given in a

file. The spectrum requires the beam keyword

FarFieldNormalizedEnergyPositionFluxFunction and not

giving a flux!

File 2: File name

The file format is described in the section “Other file

formats – 1D Function”, an example (Crab.source) can be

found in the Cosima example directory. The first value in

the DP-section describes the energy in keV, the second

value the shape (arbitrary normalization) at this point as a

differential energy spectrum, i.e. the normalization must

be per keV, e.g. something like p/keV, p/s/keV,

p/cm2/s/keV, p/cm2/s/sr/keV. The absolute normalization

does not matter, since it is determined via the Flux

keyword.

Example FirstSource.Spectrum Mono 1809

()  32 , 4 ppEEEI
p


−

()
 

 








−+−

−

343

42

,

,

665

5

ppEEp

ppEE
EI

ppp

p

()  342342

2

p
5.0

, 3

2

ppppppEeEI

pE

+−









 −
−

()  32

2

,
14

ppE
e

E
EI

pE


−


 28

Sub-Sub-Keyword Beam

Parameters 1: Beam type

2+: Parameters

Description Give the beam type and all relevant parameters (see below). The beam (like

the spectrum) has no specific normalization – it only gives the shape of the

spectrum. The absolute flux is determined via the value given in the

keyword Flux.

There exist two different beam categories: Far field and near field. Far-field

sources are so far away that they arrive as a plane wave. To achieve this, for

all far-field sources the photons are started on a disk whose center sits on the

surrounding sphere, and whose normal vector points towards the center of

the surrounding sphere (see Figure 1 for details). The names of all far-field

sources start with “FarField”. All other sources are near-field sources.

Please pay attention that for far-field sources you have to give a flux in

particles/cm2/s, for all other sources the flux is in particles/s!

ATTENTION: Make your mother/world volume large enough so that all

particles are always started from within. Neither Geant4 nor Cosima is

capable to detect the cases where the particle is started from outside the

world/mother volume, and Geant4 behaves weirdly (sometimes right

and sometime wrong) if this happens. Those errors are very hard to

detect! The suggestion is to make a large world volume consisting of

vacuum – then the performance penalty is minimal. However, if the

material is not vacuum, then you might get a large performance penalty

if the world volume is too large.

The possibilities for the beam are:

FarFieldPointSource Point source on sphere. The particles are

emitted from the disk defined by the

surrounding sphere defined in the geometry

file (see Figure 1). The direction of

emission is given by theta on phi pointing

inwards.

This far-field beam requires a flux in

particles/cm2/s!

2: Theta (polar angle) in

degrees

3: Phi (azimuth angle) in

degrees

The definition of theta and

phi follows the standard

mathematical definition of

spherical coordinate systems,

i.e. theta starts from the

positive z-axis, phi from the

positive x-axis rotating in

direction of the positive y-

axis. The same is true for all

other angles (see below).

FarFieldIsotropic,

Isotropic

The particles are emitted isotropically from

4pi. The emission scenario is the same as

for FarFieldPointSource, i.e. the particles

are emitted from the disk defined by the

surrounding sphere (see Figure 1).

This far-field beam requires a flux in

none

 29

particles/cm2/s!

FarFieldAreaSource Spherical area source, describing a segment

of a sphere. Within this segment you have a

homogeneous, “isotropic” emission. The

emission scenario is the same as for

FarFieldPointSource, i.e. the particles are

emitted from the disk defined by the

surrounding sphere (see Figure 1).

This far-field beam requires a flux in

particles/cm2/s!

2: Minimum theta in degrees

3: Maximum theta in degrees

4: Minimum phi in degrees

5: Maximum phi in degrees

FarFieldFile-

ZenithDependent

This beam covers all or parts of a sphere in

the far-field. The parameters are given in a

file, which describes a zenith angle

dependent distribution – the values are not

integrated over the azimuthal angle. The

particles are emitted from the disk defined

by the surrounding sphere (see Figure 1).

This far-field beam requires a flux in

particles/cm2/s!

2: file name

The file format is described

in the section “Other file

formats – 1D Function”, an

example (Crab.source) can be

found in the Cosima example

directory.

The first value in the DP-

section describes the zenith

angle in degrees, the second

value the shape (arbitrary

normalization).

FarFieldGaussian This beam represents a 2D Gaussian-shaped

source

This far-field beam requires a flux in

particles/cm2/s!

2: theta position in degrees

3: phi position in degrees

4: sigma in degrees

FarFieldAssymetricGa

ussian

This beam represents a 2D Gaussian-shaped

source with two different sigma widths in

longitude and in latitude direction, plus a

rotation of the shape. Longitude and

Latitude are defined assuming the center is

at the equator of the sphere (phi=0,

theta=90) and no rotation is applied, then

you have one width in longitude direction

along the equator, and the theta direction in

latitude direction.

Attention:

The definition was chosen for simulations

of the Galactic disk. However, this

definition results in ambiguities, if the

sigma in latitude direction towards the poles

is larger than 20-30 degrees. The ambiguity

arises since the poles can be reached

through multiple longitude values, resulting

in strongly varying Gaussian values near

the poles. As long as the one-sigma-value in

latitude direction is smaller than ~20-30

degrees, the approximation is acceptable.

2: theta position in degrees

3: phi position in degrees

4: sigma in degrees along

longitude (i.e. equator

direction) when source is at

equator and not rotated

5: sigma in degrees along

latitude (towards the poles)

when source is at the equator

6: rotation in degrees

 30

This far-field beam requires a flux in

particles/cm2/s!

FarFieldNormalized-

EnergyBeamFlux-

Function

(one word without

hyphens)

This beam represents a 3D function

spanning the energy-theta-phi space. Its

content is a function representing flux in

ph/cm2/s/keV/sr

As consequence you do not need to give a

flux here!

This beam requires the spectral option

NormalizedEnergyBeamFluxFunction and

no flux option!

See section 6.3 for the file format.

2: file name

PointSource

Synonym: “Point”

Point source in Cartesian coordinates. The

particle is started with a random direction

(isotropic emission).

This beam requires a flux in particles/s!

2: x in cm

3: y in cm

4: z in cm

RestrictedPointSource

Synonym:

“RestrictedPoint”

Point source in Cartesian coordinates.

However, only those particles are generated

which hit the surrounding sphere. The

position has to be outside the surrounding

sphere.

Consider this beam as an improved

implementation of the standard PointSource

beam, which only simulates the particles,

which can hit the detector.

The flux you give is the same as for

PointSource, i.e. an isotropic emission is

assumed! If you want a real cone beam use

ConeBeam.

This beam requires a flux in particles/s!

2: Start position x in cm

3: Start position y in cm

4: Start position z in cm

DiffractionPointSource

The emission starts at a point and its

direction is defined by a file (x-axis: theta in

degree, y-axis: phi in degree) and emitted in

4pi (or any part of it as defined in the file).

Attention: The definition of theta and phi is

along the standard coordinate system. The

rotation is first around the z-axis (“counter-

clockwise rotation around z”) and then

towards the new normal vector: first the

inclination angle rotation, and then the

azimuth angle rotation.

2: Start position x in cm

3: Start position y in cm

4: Start position z in cm

5: Counter-clockwise rotation

around z-direction in deg

6: New normal vector of

emission map x

7: New normal vector of

emission y

8: New normal vector of

emission z

9: file name (the file format is

described in the section

“Other file formats – 2D

Function”)

LineSource

Synonym: “Line”

Line source in Cartesian coordinates. The

particle is started with a random direction

from a random point on the line.

2: x for minimum point in cm

3: y for minimum point in cm

4: z for minimum point in cm

 31

This beam requires a flux in particles/s! 5: x for maximum point in

cm

6: y for maximum point in

cm

7: z for maximum point in cm

RestrictedLineSource

Synonym:

“RestrictedLine”

Line source in Cartesian coordinates.

However, only those particles are generated

which hit the surrounding sphere. The

(infinitely extension of the) line has to be

completely outside the surrounding sphere.

Consider this beam as an improved

implementation of the standard LineSource

beam, which only simulates the particles,

which can hit the detector.

The flux you give is the same as for the

LineSource, i.e. an isotropic emission is

assumed!

This beam requires a flux in particles/s!

2: x for minimum point in cm

3: y for minimum point in cm

4: z for minimum point in cm

5: x for maximum point in

cm

6: y for maximum point in

cm

7: z for maximum point in cm

BoxSource

Synonym: “Box”

Box-shaped source in Cartesian

coordinates. The particle is started with a

random direction from a random position

within the box.

This beam requires a flux in particles/s!

2: x for minimum point in cm

3: y for minimum point in cm

4: z for minimum point in cm

5: x for maximum point in

cm

6: y for maximum point in

cm

7: z for maximum point in cm

SphereSource

Synonym: “Sphere”

Sphere-shaped source in Cartesian

coordinates. The particle is started with a

random direction from a random position

within the sphere.

This beam requires a flux in particles/s!

2: Center x in cm

3: Center y in cm

4: Center z in cm

5: Radius x in cm

6: Radius y in cm

7: Radius z in cm

DiskSource

Synonym: “Disk”

Disk-shaped source in Cartesian coordinates

– which can be a ring or a segment of the

disk or ring. The disk is defined by an inner

and outer radius as well as a height.

Assuming a normal vector pointing along

the z-axis, the opening angle count starts at

the x-axis and goes counter clock wise!

The particle is started with a random

direction from a random position within the

disk/ring (segment).

This beam requires a flux in particles/s!

Example: Disk.source

2: Center x in cm

3: Center y in cm

4: Center z in cm

5: Normal vector of disk x

6: Normal vector of disk y

7: Normal vector of disk z

5: Inner radius x in cm

6: Outer radius y in cm

7: FULL height z in cm

8: Start opening angle in deg

9: End opening angle in deg

No normalization is needed

for the normal vector

direction. The same is true

for all other directions (see
below).

HomogeneousBeam Homogeneous beam with circular cross

section in Cartesian coordinates. The

particle is started with the given direction

2: Center of cylinder x in cm

3: Center of cylinder y in cm

4: Center of cylinder z in cm

 32

from a random position within a disk with

the given radius and position of center (the

normal vector of the disk is pointing

towards the emission direction).

This beam requires a flux in particles/s!

5: Normal vector of disk x

6: Normal vector of disk y

7: Normal vector of disk z

8: Radius in cm

No normalization is needed

for the normal vector

direction. The same is true

for all other directions (see

below).

RadialProfileBeam Linear beam, whose beam profile (a 1D

radial profile) is given by a file. The particle

is started with the given direction (normal

vector on the start “disk”) from a random

position within the extent of the profile.

This beam requires a flux in particles/s!

Example: Beam.source

2: Center of cylinder x in cm

3: Center of cylinder y in cm

4: Center of cylinder z in cm

5: Normal vector of disk x

6: Normal vector of disk y

7: Normal vector of disk z

8: file name (the file format is

described in the section

“Other file formats – 1D

Function”)

MapProfileBeam

(former ProfiledBeam)

Linear beam, whose beam pattern (a 2D

map) is given by a file. The particle is

started with the given direction (normal

vector on the disk) from a random position

within the extent of the profile.

Attention: The orientation of the

distribution in the map is in the x-y-plane

with a default emission in the positive z-

direction. The rotation is first around the z-

axis and then towards the new normal

vector: first the inclination angle rotation,

and then the azimuth angle rotation.

This beam requires a flux in particles/s!

Example: Beam.source

2: Center of map x in cm

3: Center of map y in cm

4: Center of map z in cm

5: Counter-clockwise rotation

around z-direction in deg

6: New normal vector of map

x

7: New normal vector of map

y

8: New normal vector of map

z

9: file name (the file format is

described in the section

“Other file formats – 2D

Function”)

ConeBeam Point source in Cartesian coordinates,

emitting a divergent beam in a given

direction with a given half opening angle

(“cone beam”). Within the beam, directions

are homogeneously ("isotropically")

distributed, i.e. the beam intensity is the

same for all directions.

This beam requires a flux in particles/s!

2: Start position x in cm

3: Start position y in cm

4: Start position z in cm

5: Direction x

6: Direction y

7: Direction z

8: Cone angle (half opening

angle) in degrees

GaussianConeBeam Point source in Cartesian coordinates,

emitting a divergent beam in a given

direction with a given half opening angle

(“cone beam”). Within the beam, directions

follow a Gaussian distribution of given

width (standard deviation) about the beam

2: Start position x in cm

3: Start position y in cm

4: Start position z in cm

5: Direction x

6: Direction y

7: Direction z

 33

direction, i.e. the beam intensity is brightest

along the beam direction and decreases with

increasing angular distance according to a

Gaussian distribution.

This beam requires a flux in particles/s!

8: Cone angle (half opening

angle) in degrees

9: 1-sigma value of Gaussian

in degree

FlatMap A 2D distribution read in by a file. The

particle is started with random direction.

Attention: The orientation of the

distribution in the map is in the x-y-plane

with a default emission in the positive z-

direction. The rotation is first around the z-

axis and then towards the new normal

vector: first the inclination angle rotation,

and then the azimuth angle rotation.

This beam requires a flux in particles/s!

Example: FlatMap.source

2: Center of map x in cm

3: Center of map y in cm

4: Center of map z in cm

5: Counter-clockwise rotation

around z-direction in deg

6: New normal vector of map

x

7: New normal vector of map

y

8: New normal vector of map

z

9: file name (the file format is

described in the section

“Other file formats – 2D

Function”)

IlluminatedDisk Illuminated disk in spherical coordinates.

The disk has a given center, radius, and

orientation. The particles are started from

the surrounding sphere (not a disk on the

sphere) in the beam direction, so that they

pass through the disk. Since the intersection

points are randomly chosen on the disk and

not on a projection of the disk in particle

flight direction, the particle line density is

not always equal in all directions. If the

orientation of disk and beam are identical,

then this mode is identical with the beam

mode in Cartesian coordinates.

This beam requires a flux in particles/s!

2: Center of disk x in cm

3: Center of disk y in cm

4: Center of disk z in cm

5: Radius of disk in cm

6: Orientation of disk theta in

deg

7: Orientation of disk phi in

deg

8: Orientation of beam theta

in deg

9: Orientation of beam phi in

deg

IlluminatedBox Illuminated box in spherical coordinates.

The box has a given center, dimension, and

orientation. The particles are started from

the surrounding sphere (not a disk on the

sphere) in the beam direction, so that they

pass through the box.

This beam requires a flux in particles/s!

2: Center of box x in cm

3: Center of box y in cm

4: Center of box z in cm

5: Half length of square side

in cm

6: Orientation of box theta in

deg

7: Orientation of box phi in

deg

8: Orientation of beam theta

in deg

9: Orientation of beam phi in

deg

Volume All particles are started from a random

position within this volume (excluding its

daughter volumes) und random direction

2: Volume name (must match

geomega name)

Activation Used internally for detector activation

 34

Example Isotropic emission from 4π:
FirstSource.Beam FarFieldAreaSource 0.0 180.0 0.0

360.0

Sub-Sub-Keyword Flux

Parameters 1: Flux in particles/cm2/s for beams starting with FarField in their name thus arriving

as a plane wave OR Intensity in particles/s for all other sources

Description In order to enable the combination of every beam with every spectrum (and – not yet

implemented – each light curve), neither the beam nor the spectrum have an absolute

normalization, they only describe their shapes! The only exception is the beam

FarFieldNormalizedEnergyBeamFluxFunction, where the flux is already contained

in the 3D function.

The total flux is given by this keyword.

If you have a far-field beam, i.e. each beam starting with “FarField-” such as

FarFieldPointSource, or FarFieldAreaSource, then the (average total) flux is given in

particles/cm2/s. All other beams require particles/s!

A special case is the beam RestrictedPointSource: You give the flux as if the source

would emit in 4π. But actually simulated are only those events hitting the

surrounding sphere.

Examples on how to determine the correct flux:

In order to get the correct flux value if you have a spectrum given in ph/cm2/s/sr/keV

and the FarFieldAreaSource beam type, you have to integrate over keV (in the

Figure 1: The concept of the surrounding sphere:

In order to simulate plane waves from distant

(astrophysical) sources, the surrounding sphere has

been introduced. The particles are started from a disk

on the surrounding sphere. The disk always points

towards the centre of the sphere, i.e. it is tangential

on the disk. The direction, from which the particles

originate, is defined by the theta and phi values

defined in the beam parameters. The direction is

given in spherical coordinates (theta: polar angle, phi:

azimuth angle), where the origin is the center of the

sphere. This therefore defines the start direction of

the particles. The start position is a random position

on the disk. All parameters (centre and radius of the

sphere, radius of the disk) are defined in

GEOMEGA. All parameters have to be chosen in a

way that from all possible directions the detector is

always completely illuminated!

For all sources in Cartesian coordinates, the start

point of the particles is given in the beam description

as a given point, line box, sphere, disk, etc. Those

beams are not started from a disk on the surrounding

sphere.

 35

selected energy band!) and the solid angle in steradian covered by the

FarFieldAreaSource. Please take a look at the example “Crab.source”.

If you have a FarFieldPointSource and a spectrum given in ph/cm2/s/keV, then you

of course only have to integrate over the energy.

For example, if you have a flat homogeneous beam with a flux given in ph/cm2/s,

then you still have to integrate over (in this case simply multiply with) the chosen

area of the beam to get to the requested flux of ph/s in the near field.

Sanity checks:

If you want to do a sanity check on the number of simulated events (not the number

of triggers!) after a certain observation time for a far-field source, then you have to

multiply the flux with the observation time t and the start area A, which is  r2 with r

the radius of the surrounding sphere, i.e. N = t * A * F, where t is the observation

time and F is the flux (which is always in ph/cm2/s in the far field).

For all near-field sources (all sources without a “Far Field” in the name) the

simulated number of particles N should be simply N = t * F, where t is the

observation time and F is the flux (which is always in ph/s in the near field).

Default 1.0

Example FirstSource.Flux 1.0

Sub-Sub-Keyword Polarization

Parameters 1: Spectral type (see description)

2+: Parameters

Description Give a polarization to the gamma-ray. Make sure you use a physics-list capable of

handling polarization. The following types are available:

None

Random

Absolute

RelativeX, RelativeY, RelativeZ

None The polarization vector is set to zero and ignored during the simulation.

Random A random polarization vector orthogonal to the direction of the photon is used

Absolute Use a polarization vector in global coordinates.

Attention: The vector MUST be orthogonal to the direction of the photon. If this is

not the case a random vector is used!

Parameters:

2: Degree of polarization from 0 to 1 where 1 means 100% linearly polarized, 0.5

means 50% are linearly polarized, and 50% have a random polarization vector

3: x-direction of polarization vector

4: y-direction of polarization vector

5: z-direction of polarization vector

RelativeX,

RelativeY,

RelativeZ

Use a polarization vector which is created the following way: Create an initial

polarization vector which is orthogonal on the initial flight direction vector of the

particle and the given axis vector (e.g. x-axis for RelativeX). This is a simple cross-

product. Then rotate the polarization vector (right-hand-way) around the initial flight

direction vector of the particle by the given rotation angle.

Parameters:

2: Degree of polarization from 0 to 1 where 1 means 100% linearly polarized, 0.5

means 50% are linearly polarized, and 50% have a random polarization vector

 36

3: Rotation around initial flight direction vector of the particle in degree.

Default None – no polarization, not even random

Example FirstSource.Polarization RelativeX 1.0 45

Sub-Sub-Keyword LightCurve

Parameters 1: File or Flat/None: Either load the light curve from a file or assume a flat light

curve, i.e. no flux variation with time

Additional option for “File”:

2: true/false: Indicate if the given light curve is repeating

3: Light curve file name

The file format is described in section 6.1, where the first column is the time, and the

second column is the shape of the light curve. The absolute normalization is done

via the flux.

Description Allows the flux of the source be time dependent.

Default Flat, i.e. no flux variation with time

Example FirstSource.LightCurve File true LightCurve.dat

A detailed example can be found in resource/examples/advances/Lightcurves.

Sub-Sub-Keyword FarFieldTransmissionProbability

Parameters 1: File: A file containing the transmission probabilities as a function of zenith angle

(degree) and energy (keV).

The file format is described in section 6.2, where the first column is the zenith angle,

the second column the energy, and the third column is the transmission probability

(0 to 1).

Description For far field sources, the transmission in the local coordinate system can be modified

as a function of zenith angle and energy. This allows, for example, to eliminate

particles which would have been blocked by Earth, or to simulate atmospheric

absorption. It is only valid for far field sources.

Default 100% transmission

Example FirstSource.FarFieldTransmissionProbability TP.dat

A detailed example can be found in resource/examples/advances/AllSky.

Sub-Sub-Keyword Orientation

Parameters 1: Local or Galactic (Coordinate system, Galactic can only be used far-field

sources!)

One of the following:

No orientation change (default)

2: Local

3: Fixed

 37

2: Local

3: File

4: Loop or NoLoop

5: Filename

2: Galactic

3: Pointing

4: Galactic Latitude in degree

5: Galactic Longitude in degree

Description The Orientation given here results in a time dependent translation & rotation relative

to the emission position and direction given in the beam parameters. For example, if

you have a point source in the near field and with the positions 10/0/10, then a local

orientation would contain rotations and translations of this start position in the local

coordinate system.

Default Local Fixed

Example FirstSource.Orientation Local File Loop Movement.txt

An alternative to all the options above is to read in an event list from a file. This would then be the only

option set for the source

Sub-Sub-Keyword EventList

Parameters 1: File name

Description Format of the event list file:

Each event is one line of text with the following elements per line (space seperated):

• Event ID

• 1 of event is concurrent with previous one

• Cosima particle type ID

• Particle excitation

• Time

• Start position X in cm

• Start position Y in cm

• Start position Z in cm

• S tart direction in X

• Start direction in Y

• Start direction in Z

• Polarization direction in X

• Polarization direction in Y

• Polarization direction in Z

• Energy in keV

Example: resource/examples/advanced/EventList

Default N/A

Example FirstSource.EventList MyList.txt

 38

5.8. Activation simulation

ATTENTION: ACTIVATION SIMULATIONS ARE A VERY INVOLVED PROCESS REQUIRING DETAILED

KNOWLEDGE OF THE PRODUCTION CROSS-SECTIONS OF NEW ELEMENTS OVER A WIDE ENERGY RANGE, FROM

EV TO PEV FOR ALL ELEMENTS DUE TO NEUTRON, PROTON, AND AT LEAST ALPHA PARTICLE INCIDENT. THE

EXISTING DATA BASES IN GEANT4 ARE NOT AS ACCURATE AS ONE WOULD WISH. THEREFORE, SOMETIMES

THERE ARE VERY LARGE, SOMETIMES THERE ARE SMALLER DIFFERENCES BETWEEN OBSERVATIONS AND

SIMULATIONS. KEEP THIS IN MIND WHEN DOING ACTIVATION SIMULATIONS.

Activation simulation is a three step process: First the initial particles are simulated, and all generated nuclei

– if their decay/de-excitation is not coincident with the initial particle – are stored in a list. The second step

calculates the activation after a certain time of irradiation in orbit. The final step simulates the decays of the

radioactive particles.

Each of these steps requires an individual source file with individual keywords. The three

ActivationStepX.source files in the cosima example directory serve as a template.

A common keyword is the detector time constant.

Keyword DetectorTimeConstant

Parameters 1: Time in seconds

Description For activation simulations only!

This keyword represents the time within which two decays or de-excitations

are considered coincident.

Example DetectorTimeConstant 0.000005

This keyword does NOT do normal coincidences just coincidences for decays and de-excitations. The reason

is that a usual space background simulation contains many different background types which are simulated

after each other. Therefore normal coincidence cannot be handled within the simulations, but has to be

performed afterwards.

Activation simulations are an exception since they separate prompt from delayed components. This doesn’t

allow performing latter coincidences in some special cases. For example inelastic proton scattering has

generated an isotope with a short meta-stable state (e.g. 1 ns). Ignoring coincidences, the de-excitation down

to the meta-stable state would appear in the prompt data set. The de-excitation down into the ground state

would be stored in the delayed data set, however with a random, i.e. unrelated time stamp. As consequence

those two hits cannot be joined through coincidences and an otherwise non-existent nuclear line is visible in

the simulations.

Step one of the simulation is a standard hadron simulation. Make sure to use the physics list qgsp-bic-hp. In

addition, set the keyword DecayMode to ActivationBuildup. This ensures that delayed decays whose

decay/de-excitation is later than the DetectorTimeConstant, are not simulated during this first step, but

those generated nuclei (isotope, excitation state, volume) are stored in an isotope list.

A special keyword of the run gives the file name of the current IsotopeProductionFile:

Subkeyword to Run IsotopeProductionFile

Parameters 1: File Name

Description This keyword represents the file name into which all generated isotopes are

stored. It also contains the observation time.

Example MyRun.IsotopeProductionFile MyIsotopes.dat

This file is the input for step 2 of the activation simulation, the calculation of the activation after a certain

time of irradiation. You again have to give the DetectorTimeConstant with the same value as above and

you are required to define the qgsp-bic-hp physics list. But instead of a run, you define an Activator, with

 39

the keywords IsotopeProductionFile (input file – same as above), the ActivationMode, and the

ActivationFile (output file with activation data).

Keyword Activator

Parameters 1: Unique name of the activator (no spaces allowed)

Description Definition of a activator

Example Activator SpaceActivation

The IsotopeProductionFile keyword represents the output of the previous simulation step.

Subkeyword to Activator IsotopeProductionFile

Parameters 1: File Name

Description This keyword represents the file name from which the generated isotopes are

read, including the observation time.

Example SpaceActivation.IsotopeProductionFile MyIsotopes.dat

The ActivationMode keyword describes the length and type of the irradiation.

The mode ConstantIrradiation assumes that the irradiation simulated in step 1 was constant during the

irradiation time. This of course also assumes that the spectrum of the irradiated particles was constant – or

the variations were small enough to be approximated as constant. This is for example the case for cosmic

protons irradiation in interplanetary space or in low-earth equatorial orbit.

The mode ConstantIrradiationWithCoolDown assumes a constant irradiation for a specific period of

time. Then the irradiation stops and is followed by a certain time of cool down. The remaining activation

after this cool down is calculated.

The mode TimeProfile requires a file with a time profile of the irradiation. This is not yet implemented and

the details have yet to be worked out. The goal is to be able to simulate e.g. the effect of multiple SAA

passages in detail.

Subkeyword to Activator ActivationMode

Parameters 1: Mode

2+: Mode parameters

Mode: ConstantIrradiation 2: Length of constant irradiation in seconds

Mode: ConstantIrradiationWithCoolDown 2: Length of constant irradiation in seconds

3: Length of cool down in seconds

Mode: TimeProfile NOT YET IMPLEMENTED

2: File name

3: Length of irradiation (the time profile can be repeated)

Description See above text

Example SpaceActivation.ActivationMode

ConstantIrradiation 31556736

This will calculate the activation after 1 year of constant

irradiation.

The ActivationFile keyword represents the name of the output file, the activation per isotope, excitation

state, and volume, which is of course the input file for the next step.

Subkeyword to Activator ActivationFile

 40

Parameters 1: File Name

Description This keyword represents the file name into which all generated isotopes are

stored. It also contains the observation time.

Example SpaceActivation.ActivationFile Activation.dat

The final step is the simulation of the delayed decays. You again have to give the DetectorTimeConstant

with the same value as above and you are required to define the qgsp-bic-hp physics list. Instead of

defining a Source for run, you define an ActivationSource. This is the only data about the source you need

to define. It reads the activation data from the file created in the previous step:

Subkeyword to Run ActivationSource

Parameters 1: File Name

Description This keyword represents the file which contains all the activation data

generated in the last step

Example MyRun.ActivationSource Activation.dat

As an example – or as a template – look at the source files ActivationStep1.source, ActivationStep2.source,

ActivationStep3.source in the Cosima example directory, which simulates the irradiation of a Germanium

sphere with protons (spectrum and intensity as expected in interplanetary space close to Earth), calculates

the activation after one year in orbit, and then simulated the delayed decays.

For a paper on this topic with more details and a real world example see: Zoglauer et al., “Status of

Instrumental Background Simulations for Gamma-ray Telescopes with Geant4”, 2008 IEEE NSS

Conference Record, 2008.

5.9. Special options

The following contains a list of special options.

Keyword CreateCrossSectionFiles

Parameters 1: Name of the directory in which the files are stored

Description This is a special option to create the (macroscopic) cross section files required

by revan and mimrec. It is usually only used my geomega to automatically

create the cross section files, if the materials have changed. Calling this option

ignores all other commands.

Example CreateCrossSectionFiles auxiliary

 41

6. Other file formats

6.1. 1D Functions

For 1D functions a very simple file format is used utilizing only 3 keywords. Here is an example:

IP LINLIN

DP 100 1.0

DP 200 1.3

DP 500 1.5

EN

IP stands for interpolation. You give the type of interpolation on the x- and y axis which you want, either

LINLIN, LINLOG, LOGLIN, or LOGLOG. Please use one reasonable for your data. If you use a

logarithmic option, make sure all data is positive!

DP stands for data point. You give the x and y value of your distribution.

EN stands for end of data.

6.2. 2D Functions

For 2D functions a more sophisticated file format is used, containing 5 keywords

IP LIN

XA -1.0 -0.5 0.0 0.5 1.0 (or: XB -1.0 1.0 5)

YA -1.0 -0.5 0.0 0.5 1.0 (or: YB -1.0 1.0 5)

AP 0 0 0.1

AP 1 0 0.5

AP 0 1 0.4

AP 1 1 1.0

AP 1 2 0.3

AP 2 1 0.2

EN

IP stands for interpolation. You give the type of interpolation you wish, currently only “NONE” – no

interpolation – and LIN” – linear interpolation – is implemented.

XA stands for x-axis. You give the axis points of the x-axis in cm – only equidistant bins are allowed. As an

alternative to XA you can use XB, where the first value corresponds to the first bin center, the second

value corresponds to the last bin center, and the last parameter gives the number of bins.

YA stands for y-axis. You give the axis points of the y-axis in cm – only equidistant bins are allowed.

AP stands for axis point. First value is the x-axis grid ID (counting starts at 0, the ones you have given in XA

and YA), the second value is the y-axis grid ID, and the last entry is the function value at this point. The

AP’s are allowed to be in random order. If they have a content of zero you can skip them. Attention: The

values which you are giving are not bin values! They are the values of the given function at this position

on the grid! See also Figure 2.

EN stands for end of data.

 42

6.3. 3D Functions: Spherical

The format represents a 3D data space spanned by phi, theta, and energy. Its content is flux at the axis

position in ph/cm2/s/keV/sr.

The file looks like this:

IP LIN

Phi axis in deg:

PA 35.1 35.2 35.3 35.4 35.5

Theta axis in deg:

TA 5.05 5.10 5.15 5.20 5.25

Energy axis in keV:

EA 10 15 20 25 30 35 40

AP 0 0 0 0.50

AP 0 0 1 0.25

AP 0 0 2 0.12

AP 0 0 3 0.07

Skip the rest

EN

The IP line gives the interpolation type. Currently only LIN, linear interpolation, is supported.

The next three lines represent the data points on the axes at which the flux is given. PA represents the right

phi-axis in degree, TA represents the theta-axis in degree, EA represents the energy-axis in keV.

The following section gives the value at the axis points for the given ID (number starting with zero!) of the

data point on the three axis.

For example "AP 3 1 5 1.6" represents a flux of 1.6 ph/cm2/s/keV/sr for the 4th axis point in the RA-axis

(35.4 deg), the 2nd axis point in the DEC-axis (5.10 deg), and the 6th axis point of the energy axis (35 keV).

Make sure the last line in your file is "EN" for "The End".

Lines starting with "\#" are interpreted as comments

 43

7. Visualization
Visualizing the geometry and individual events is possible via the standard Geant4 mechanisms (for all the

details please consult the Geant4 manual and examples).

If the default setup script is used to compile Geant4, then the OpenGL and Dawn visualization options are

included by default – assuming OpenGL drivers are installed on your system, otherwise you have to install

them and recompile Geant4.

The visualization can then be achieved by calling a Geant4 macro file. An example can be found in:
$MEGALIB/resource/examples/cosima/macro

Running
cosima –m Visualize.mac Visualize.source

should give an output like this:

Figure 2

Principle of linear and “no” interpolation of the 2D functions: If you want the no

interpolation mode to behave similar to a binned map (i.e. avoid the half binned at

the edges), then set the outer bins to zero and just use the inner “bins”.

 44

Geant4 contains many options to customize the generated visualization. Please consult the Geant4 manual

for all the details.

8. The MCGeometryConverter class
Cosima contains a special class called MCGeometryConvert. Its purpose is to convert a Geant4 geometry

into MEGAlib’s Geomega format. However, only in the simplest cases this will work 100%. In the other

cases you will have to make modifications by yourself.

In order to use it, you require a program capable of loading your geometry to which you can add the

MCGeometryConverter.cc and MCGeometryConverter.hh files. At a point in your program when your

geometry is completely initialized, add the following lines of code:

MCGeometryConverter* C = new MCGeometryConverter();

C->Convert(“MyNewGeomegaGeometry.geo.setup”);

After running your program, the file MyNewGeomegaGeometry.geo.setup then contains the geomega

geometry.

However, many restrictions apply. The most critical one is that you can only convert volume shapes, which

Geomega can understand. So it is mandatory that you investigate the output file and fix all problems,

especially you have to define a trigger criteria and your detector descriptions in the geomega file.

Figure 3: Vis

Visualization of simulated particles using a Geant4 macro

 45

9. Tips and Tricks

9.1. How to speed up the simulations

• Make sure you have a hierarchical and not a flat geometry: In a flat geometry all (or most of the)

volumes are in the mother volume. In a hierarchical geometry, the volumes are organized in mother

volumes with daughter volumes, which have daughter volumes by themselves, and so on. This

hierarchical geometry reduces the number of volumes which have to be searched in order to find the

volumes which a particle path intersects.

• Define regions (see keywords “DefaultRangeCut” and “Region”): It is a good practice to make high-

resolution regions close to your detector, where the particle range is on the order of ~1/5 of the

smallest dimension (e.g. if your smallest dimension is a voxel size of 0.5 mm then set your range to

around 0.1 mm). Away from the detector (i.e. far away that no low-energy electrons or fluorescence

photons can reach it) you can set the range cut to a much larger value (e.g. a few milimeters).

Whenever you change your cuts you should make a test simulation to make sure your results don’t

change (don’t just look at the file size, since the number of IA’s in the simulation file will be lower).

• Make sure you don’t start too many photons which never reach your setup. For far field simulations

this involves a tight surrounding sphere. For terrestrial simulations you could add a black absorber

behind your source.

• Do not use an unnecessarily large world volume or you particles get tracked too long.

• If you simulate a spectrum ranging over a vast energy range, make sure that the highest energy

particles (which take the longest time to simulate) really contribute to your signal. Otherwise you

might consider not to simulate them at all or separately to assess their impact on your result.

• If this doesn’t help use more CPUs: Use mcosima for parallel simulations one machine, dcosima for

distributed simulations, or your own cluster / supercomputer.

10. Known limitations
The following is an incomplete list of known problems/limitations with Geannt4/Cosima:

• If using WatchedVolumes, for some rare cases (1:20,000,000 for my test case) it is possible that

no ENTR/EXIT entry is generated even if there was a volume change. The reason is that no step

with a volume change is propagated into MCSteppingAction (tested with 9.2.3)

• The strip detectors are currently treated as voxel detectors

• Activation simulations are currently limited by the capabilities of Geant4: some nuclear lines are

missing, some have wrong intensities, etc.

• The seed for the random number generator is based on the time in seconds – make sure to start

identical simulations a few seconds apart to have different seeds, or supply your own seed (-s

command when you start cosima)!

 46

11. Examples

11.1. Simulating an all-sky map

This example follows the code in resources/examples/advanced/AllSky to simulate the Al-26 emission using

the DIRBE 240um emission as template.

The run-section of source file looks as follows:

Run MyRun

MyRun.FileName AllSky.Al26

MyRun.NTriggers 100000

MyRun.OrientationSky Galactic File Loop GalacticScan.ori

MyRun.Source MySource

MySource.ParticleType 1

MySource.Beam FarFieldNormalizedEnergyBeamFluxFunction AllSky_Al26.dat

MySource.Orientation Galactic Fixed 90 180

MySource.Spectrum NormalizedEnergyBeamFluxFunction

MySource.FarFieldTransmissionProbability TransmissionProbabilities_EarthBlockage.dat

The keyword “OrientationSky” tells cosima, that the simulation happens in Galactic coordinate, and the

pointing of the local coordinate system in Galactic coordinates as a function of time is defined in the ori-file.

The keywords “Beam FarFieldNormalizedEnergyBeamFlux” define the all-sky map, where fluxes in

ph/cm2/s/keV/sr are given for each theta-phi grid-point in local spherical coordinates for the sky. Looking

into the file, since we have a line source, we have to use three data points to describe the spectrum, the line

point, and a close-by point below and above, at which the flux is zero: “EA 1808.719 1808.720 1808.721”.

The flux values are calculated for a 1-eV line width around the true line energy.

The keyword “Orientation” tells cosima where in Galactic corrdiantes the above map is. For a point source,

this would be its coordinates in Galactic coordiantes, but since we have an all-sky map, we need to give the

zenith location in Galactic coordinates (90, 180).

The keywords “Spectrum NormalizedEnergyBeamFluxFunction” are telling cosima that the spectral

parameters are defined in the map.

The keyword “FarFieldTransmissionProbability” takes care of the Earth – we assume the Earth is in low-

Earth orbit with limb being at a zenith angle of 120 degrees: the file shows that we assume 100%

transmission up to 120 degrees, 0% transmission at 121 degrees, and a linear interpolation in between.

The example contains four predefined sky maps:

AllSky_Al26_NormInnerGalaxyDiehl_DIRBE240um.dat is a Al-26 all-sky map following the DIRBE 240

um map. The flux is normalized assuming a total flux of 0.00034 ph/cm2/s in the inner Galaxy.

AllSky_Al26_NormInnerGalaxyDiehl_FreeFree.dat is the same as above just using the free-free emission as

template.

AllSky_Fe60_NormInnerGalaxyHarris_DIRBE240um.dat uses the DIRBE 240um map as template for the

Fe-60 emission. The flux is normalized to 0.000037 ph/cm2/s in the inner Galaxy.

AllSky_Fe60_NormInnerGalaxyHarris_FreeFree.dat is the same as above just using the free-free emission

as template.

 47

11.2. Other

This is a brief description of the examples in the resources/examples/cosima/source directory:

• ActivationStep1.source, ActivationStep2.source, ActivationStep3.source show how to simulate

activation. Step 1 simulates the primary protons and collects information about the generated

radioactive isotopes. Step 2 calculates the activation after a certain amount in space, and step 3

simulated the radioactive decays.

• AllBeamsAndSpectra.source performs a combined simulation of all beams and all spectra. This

shows how to use all beams and spectra, and is a cross-check that all normalizations are correct.

• Beam.source is a more detailed example on how to use the different beam types.

• BlackAbsorber.source shows how to use the black absorber feature in Cosima (all particles entering

the black absorber are stopped immediately).

• CrabWithBackground.source, CrabOnly.source,, SuperCrab.source are an example on how to do

astropyhsics simulations.

• Disk.source shows how to use a disk source

• EffectiveArea.source is used as an example in the Mimrec documentation showing how to

determine effective areas of a space telescope.

• EnergyResolutionTester.source is used in conjunction with the EnergyResolutionTester.geo,setup

geometry to test the different energy resolution modes (Gauss, Gauss-Landau, etc.)

• EntrExit.source shows how to use watched volumes resulting in the ENTR and EXIT keywords in

the IA section of the sim file

• RadioactiveDecay.source sets up a volume with radioactive elements and lets them decay

• Run.source is the default example started if you launch cosima without a source file

• StartAreaTube.source shows how to use a tube as start area instead of a surrounding sphere

• Tomography.source simulates 3 point sources which have to be resolved by a simple tomography

detector

• UseCase1.source is part of the tutorial

