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2. Prelude 

2.1. What is Cosima? 

Cosima is intended as a universal simulator for low-to-medium-energy gamma-ray telescopes, detecting 

gamma-rays via photo-effect, Compton scattering, and pair creation. This goal requires accurate simulation 

from a few keV up to hundreds of GeV, including particles ranging from gamma-ray to cascades triggered 

by cosmic high-energy particles. It has also been used for simulations for medical imaging and nuclear 

surveillance applications.  

Cosima is full integrated into MEGAlib. For the simulations, one can use the same geometry file used with 

MEGAlib. The output of Cosima, the sim-file, can be used by MEGAlib’s Revan and Sivan programs. 

2.2. Installation 

Since Cosima is part of MEGAlib, please see the MEGAlib installation instructions for a complete step by 

step guide.  

2.3. Bug reports 

If you find a bug or other problem, please email it to me: Andreas Zoglauer, zoglauer@berkeley.edu 

3. Invocation 

3.1. Direct invocation 

cosima <options> <parameter file> 

 

Cosima can be started with a variety of command line options. The last option has to be the parameter file 

which contains the geometry, source, etc. descriptions. If this option is not given, a default parameter file 

will be loaded. 

 

The other options are: 

-s <integer> The seed for the random number generator, which must be an integer larger than 

zero. By default – i.e. if the -s option is not given – the random number is 

initialized via the current time. In that case make sure to start multiple instances 

of cosima at least 1 second apart. 

-v <integer> Verbosity: The higher the number the more debugging output is printed to the 

command line: 

0: Just Geant4 output is printed (Cosima itself should be silent) 

1: 0 plus Cosima warnings and errors (default) 
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2: 1 plus Cosima debug info 

3: 2 plus some Geant4 output 

4: 3 plus more Geant4 output 

5: 4 plus even more Geant4 output 

-m <file name> Load and execute a Geant4 macro 

-i Enter Geant4 interactive mode --- beware that Cosima doesn’t support the full 

interactive mode you might know from some of the Geant4 examples  

-z Gzip’ output files after simulation 

-c <file name> Diagnostics: During reading the Geomega geometry it is converted to the 

Geant4 format. This option converts it back to the Geomega format and stores it 

in the given file name. 

 
 

An alternate option to launch cosima is mcosima, which will start multiple parallel instances of cosima with 

the same parameter file (but different random seeds). By default as many parallel instances are started as the 

computer has CPU cores. 

3.2. Multiple parallel runs on the local machine - mcosima 

mcosima <options> <parameter file> 

 

The most important options are (for a full list do mcosima --help): 

-t <integer> The number of instances to start. The default is as many instances as the CPU 

has cores. 

-n <integer> The nice level. Default is 0. 

-z zlib compress the output sim file. 

-w Wait until all runs have finished. 

 

The individual simulation files get an additional tag, “p”, to differentiate between different runs with 

cosima. For example, you will get Run1.p1.inc1.id1.sim, Run1.p1.inc2.id1.sim, and Run1.p1.sim. The first 

two contain the actual simulation data of the two instances, and the later one is a combination file, which can 

be used with other MEGAlib programs and will automatically load and concatenate the former two files.  

3.3. Multiple parallel runs on distributed machines - dcosima 

Cosima has a few scripts to set up multiple parallel runs on several distributed machines via one simple run 

invocation via dcosima (d stands for distributed). However, this requires a specific setup of the remote 

machines, especially all machines must be accessible via password-less ssh login (i.e. using a public key), 

and run the same MEGAlib version 

3.3.1. Invocation 

dcosima <options> <parameter file> 

 

The key options are (attention: the format is a bit different from most of the other MEGAlib formats): 

 

--instance=<integer> The number of instances to start.  
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--source=<file name> The source file. 

--name=<run name> A unique name of the run. This is actually a  prefix, as the full name will 

be postfixed with a random number, i.e. –name=MyRun will result in a 

name such as MyRun_ID657258263936. 

-z Compress the output file name. 

--delay=<seconds> There is a small waiting time between searches for free simulation slots 

(10 seconds by default). If multiple users are running dcosima, giving it 

a number smaller than the default will automatically give this run a 

higher priority. 

 

The options can be reduced to the minimum which is unique, e.g. instead of --instance=10 you can write –

i=10. For a full list of all options, see dcosima --help. 

3.3.2. The configuration file .dcosima.cfg 

In order for dcosima to run you need a local and remote configuration files, which tell dcosima which 

machines to use, how many threads to use, where to store the temporary data, and when not to start a run. 

A typical dcosima configuration file looks like this: 

 
# List the allowed instances if run locally 

instances 4 

 

# List the local simulation directory 

# Attention, this must be a full path you have write access to. 

directory /home/user/dcosima 

 

# Start and stop times (only enforced Monday to Friday) 

# Omit if you want to have it run around the clock 

time 17:00 6:00 

 

# List the nice level with which new cosima instances are launched 

nice 15 

 

# List the user names which are not allowed to be logged in for the 

simulation to start 

# Use all when nobody but the simulator is allowed to be logged in 

inhibitors cozy omny distry anny 

 

# List the remote machines 

# Format: 

# machine user@IP:port  priority 

machine simy@128.32.13.12:21022   2 

machine simy@128.32.13.12:21122   2 

machine simy@128.32.13.12:21222   3  

machine simy@128.32.13.12:21322   3 

machine simy@128.32.13.12:21422   3 

machine simy@128.32.13.12:21522   3 

 

It contains 6 important sections: instances, directory, time, nice, inhibitors, and machines: 

 

instances This keyword is important on remote machines, since it contains the 

maximum number of instances of cosima which are allowed to run in 

mailto:simy@128.32.13.12:21022
mailto:simy@128.32.13.12:21122
mailto:simy@128.32.13.12:21222
mailto:simy@128.32.13.12:21322
mailto:simy@128.32.13.12:21422
mailto:simy@128.32.13.12:21522
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parallel on this machine. 

directory This keyword gives the name of the remote directory where to store and 

afterwards delete the data. It must be a full path. 

nice The nice level with which new cosima instances are started (default: 0) 

time Give the start and stop time in format HH:MM. Only during these times 

jobs are started – they are not stopped if the time runs out. Omit if you 

want to start jobs around the clock. 

The time restrictions are only enforced from Monday to Friday. 

inhibitors A list of user names on the remote machine. When those users are 

logged in no new runs are started. 

machine A list of the remote machines to be used for simulations. Format: 

machine username@IP:port priority 

Machines with lower priority number get filled first  

 

 

3.3.3. Other dcosima tools 

There is a set of other dcosima tools which help you to manage your run. For each of them do --help for a 

full list of command line options. 

dcosima-updatemegalib:  

Installs or updates MEGAlib on the machines. Do not try to install it be yourself. Do not run this command 

while dcosima simulations are running!  

dcosima-checkmegalib:  

Gives you an overview which megalib versions are installed where. 

dcosima-listallinstances: 

Gives you an overview how many instances can be run on a machine, how many are available, and how 

many are running where. 

dcosima-listrunning: 

This command lists the running instances by run name. 

dcosima-showdiskspace: 

This shows how much disk space is available on the remote machines to temporarily store simulation data, 

and which run directory consumes how much disk space. 

dcosima-clean: 

It sometime can happen that a run ends prematurely and its temporary data gets not deleted from the remote 

machines. You can remove individual run directories from all machines with this command – just don’t do it 

for an actually running dcosima run. To figure out the run directories check with dcosima-showdiskspace. 
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dcosima-kill: 

Sometimes it is necessary to kill a dcosima run. For this you first kill the dcosima instance on your 

computer, the use this command to your kill the running simulations with this command, and finally clean 

up the temporary disk space on the remote machines with dcosima-clean.  

dcosima-rsync: 

This command is used internally to rsync the data from the remote machines to your  local machines. If 

something went wrong you can use this command to sync it back by hand. 

dcosima-assemblefiles: 

This command is used internally to collect all files necessary to run the simulation (source file, data, files, 

geometry files), and modifies them so they run locally. 

dcosima-allowedinstances: 

This command is used internally to check how many instances can be run on a given machine. It consults the 

.dcosima.cfg file on instances, time and inhibitors, and only allows new jobs if the load level is not to high. 

3.3.4. Setup procedure 

Setting up the remote nodes: 

Please follow this sequence to set up the remote machines: 

1. Set up a user dedicated to run dcosima instances – in this example the user name is “simy” 

2. Install MEGAlib in the home directory of simy 

3. Create a file ~/.bash_local which initialized the MEGAlib environment when sources 

4. Make sure the sshd is installed and running in order to accept ssh connections 

5. Create a .dcosima.cfg file in the home directory 

The next step is to enable password-less ssh login by using a private-public keypair. On the computer and 

with the user with whom you want to start dcosima do the following: 

1. Check if you already have a key-pair ready which you can use: Check if a file .ssh/id_rsa.pub exists. 

Only if it does not exist, create one: 

• ssh-keygen -t rsa (Hit return for all questions!) 

2. Copy the file .ssh/id_rsa.pub to ALL the remote machines (ATTENTION: Large -P), e.g. for user 

simy on the machine with IP 128.32.13.12 using ssh-port 21322 do: 

• scp -P 21322 .ssh/id_rsa.pub simy@128.32.13.12: 

3. Login to ALL the remote machine and do 

• Make sure .ssh exists, if not create it 

• cat id_rsa.pub >> .ssh/authorized_keys 

• chmod 700 .ssh 

• chmod 640 .ssh/authorized_keys 

4. Back on your GSE machine, test if you now can login password free: 

• ssh -p 21322 simy@128.32.13.12 

Set up the .dcosima.cfg 

This has to be done on your local machine (there the machine keyword is the most important) as well as on 

the remote machine (there instances, directory, and nice level are important). 

mailto:simy@128.32.13.12
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Install MEGAlib on the remote machines: 

This should be done exclusively with the script dcosima-updatemegalib, since it will setup the correct 

environment script and installs MEGAlib in the expected path. 

Run dcosima 

The just run dcosima: 

• It is preferable to have smaller runs (1-2 hours) but many of same, instead of just having a few long 

runs. 

• Make sure you always use the option to gzip your output files (option -z in dcosima) 

• If you use the dcosima-clean or dcosima-kill scripts make sure you only use them on your own files. 

Currently there are no protections that you do not kill anybody else runs.  

4. The sim file format 
The simulation format of Cosima is basically identical with the sim format of the two other simulation 

interfaces of MEGAlib, GMega and ConvertMGGPOD. It consists of a header section and an event section. 

 

In the header section you find the keywords type, version, geometry, date, and MEGAlib, which are 

common for most other MEGAlib event files. 

 

  

Key: Type 

Parameters: 1: File type 

Description: The unique type of this file. In case of a sim file SIM.  

 

Key: Version 

Parameters: 1: integer 

Description: The version of the sim file format 

 

Key: Geometry 

Parameters: 1: File name 

Description: Full path of the geometry file used for the simulations  

 

Key: Date 

Parameters: 1: Date & time 

Description: Time and date when the file was created in the format: 2008-11-17 21:16:44 

 

Key: MEGAlib 

Parameters: 1: ID 

Description: MEGAlib version as string, such as 2.19-alpha7 or 2.19. 

 



 9 

The event section starts with the keyword TB and ends with the keyword TE, representing the start and the 

end of the observation time, thus TE-TB is the total observation time. 

 

Key: TB 

Parameters: 1: Time in seconds 

Description: Start of the observation time 

 

Key: TE 

Parameters: 1: Time in seconds 

Description: End of the observation time 

 

Each event description consists of two main parts, the IA-section and the HT-section plus some additional 

information. 

 

The IA-section contains all information about the initial parameters of the particle (INIT), and all main 

interactions: Compton scattering (COMP), pair creation (PAIR), photo effect (PHOT), Rayleigh scattering 

(RAYL), Bremsstrahlung emission (BREM), ionization (IONI), inelastic scattering (INEL), hadron capture 

(CAPT), decay (DECA), and finally escapes form the world volume (ESCP) as well as immediate 

absorption in a black absorber (BLAK). However, the IONI entry is only generated when the flag 

StoreSimulationInfoIonization is set to avoid “gigantic” file sizes. For some interactions such as PAIR 

creation two IA entries are generated, representing the electron and the positron. The information appearing 

in the fields of individual IA entries depends on the interaction type. In particular, there are many 

interactions which do not fill all possible fields. For example Rayleigh scattering doesn't generate a 

secondary particle so the fields for the new particle are empty and only the new parameters of the original 

particle, the photon, are filled out. In addition, for, e.g., pair creation and photo effect the mother particle 

direction, polarization, and energy fields are empty since the photon no longer exists, etc. 

Moreover, there is a special mode StoreSimulationInfoWatchedVolumes, which allows keeping track 

when particles enter and exit selected volumes via the keywords ENTR and EXIT. 

In general, IA entries are generated, when particles undergo a major change and/or new particles are 

generated. By default, IA entries are not generated when charged particles loose energy via ionization, 

irrespective of the generation of secondaries – IA entries for particles generated via ionization are only 

stored if the flag StoreSimulationInfoIonization is set to true.  

Furthermore, IA entries are generated irrespective if they occurred in active or passive material, but only if 

the events has raised a trigger or veto signal. 

Finally, the IA-section contains the “Monte-Carlo-truth”. Positions, directions, and energies are the exact 

positions at which the interaction happened, i.e. the information is not voxelized into the voxels of the 

detectors, not noised, etc. All positions can be exact, since only discrete processes, which happen at a 

discrete position, are stored in the IA section. As consequence, from this information the path of the initial 

photon can be reconstructed as required for the generation of response matrices. 

 

The HT-section contains all energy deposits as the detector would detect them, but without applying detector 

noise to energy and depth measurements. The positions used for the energy deposits correspond either to the 

location of a discrete energy deposit, or, if the energy deposit happened continuously in form of ionization 

along the path of the particle, half-way between the start and the stop of the simulation step. If the option 

DiscretizeHits is turned on (default), then those deposits are centered in the individual voxels of the 

detector. This process is also called voxelization of the energy deposits. An exception are the depth in depth-

resolving strip detectors (Strip3D) and calorimeters, where the value of the z-axis in the HT-section 

corresponds to the energy weighted average z-position. 

Even if the discretization is turned off there is not necessarily an energy deposit at the exact same position as 

given in the corresponding IA entry, since charged particles deposit their energy along their path, and the 

location in the HT-section is half-way between start and stop position of the corresponding simulation step.  
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In order to connect the HT’s with IA’s, the HT’s contain a section of all interactions which contributed to 

the energy deposit. Since deposits are usually generated by charged particles, the interaction during which 

they are generated is given. For example, if an electron is generated during Compton scattering, the IA-ID of 

this Compton scattering is given. 

 

The various elements in the sim file are: 

 

Key: SE 

Parameters: - 

Description: “Start Event”: Marks the beginning of a new event 

 

Key: ID 

Parameters: 1: ID triggered event 

 2: ID of simulated event causing the triggered event 

Description: Represents a unique ID of the event  

 

Key: TI 

Parameters: 1: Time in seconds 

Description: Observation time of the event  

 

Key: ED 

Parameters: 1: Energy in keV 

Description: Total deposited energy in sensitive material including guard rings 

 

Key: EC 

Parameters: 1: Energy in keV 

Description: Total energy of particles escaped from the world volume  

 

Key: NS 

Parameters: 1: Energy in keV 

Description: Energy deposited in not sensitive material 

 

Key: PM 

Parameters: 1: Material name 

1: Energy in keV 

Description: Energy deposited in this specific passive material 

 

Key: GR 

Parameters: 1: x position of detector center in cm 

 2: y position of detector center in cm 

 3: z position of detector center in cm 

 4: Energy in keV 
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Description:  Energy deposited in the guard ring of strip detectors 

 

Key: XE 

Parameters: 1: x position of detector center in cm 

 2: y position of detector center in cm 

 3: z position of detector center in cm 

 4: Energy in keV 

Description Total energy deposit per drift chamber 

 

Key: DR 

Parameters: 1: x position of interaction in cm 

 2: y position of interaction in cm 

 3: z position of interaction in cm 

 4: x direction 

 5: y direction 

 6: z direction 

 7: Energy in keV 

Description: Electron direction information for Strip3DDirectional detectors 

 

Key:  IA 

Parameters: 1: Type 

One if the following interaction/process types: 

INIT: The initial parameters of the particle 

PAIR: Pair creation 

COMP: Compton scattering 

PHOT: Photo effect 

BREM: Bremsstrahlung 

RAYL: Rayleigh scattering 

IONI: Ionization (activated via StoreSimulationInfoIonization) 

INEL: Inelastic scattering 

CAPT: Some capture process (e.g. neutron capture) 

DECA: Decay 

ESCP: Particle escapes the world volume 

ENTR: A particle enters a watched volume (see StoreSimulationInfoWatchedVolume) 

EXIT: A particle exits a watched volume (see StoreSimulationInfoWatchedVolume) 

BLAK: A particle is “killed” after entering a black absorber (see BlackAbsorber)  

 2: ID of this interaction 

 3: ID of interaction this particle originated from  

 4: Detector ID (see table of detector IDs) 

 5: Time since start of event in seconds 

 6: x position of interaction in cm 

 7: y position of interaction in cm 

 8: z position of interaction in cm 
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 9: ID of original particle (see table of particle IDs) 

 10: New x direction of original particle 

 11: New y direction of original particle 

 12: New z direction of original particle 

 13: New x polarization of original particle  

 14: New y polarization of original particle 

 15: New z polarization of original particle 

 16: New kinetic energy of original particle in keV 

 17: ID of new particle (see table of particle IDs) 

 18: x direction of new particle 

 19: y direction of new particle 

 20: z direction of new particle 

 21: x polarization of new particle  

 22: y polarization of new particle 

 23: z polarization of new particle 

 24: Kinetic energy of new particle in keV 

Description:  Interaction information (version 23) 

 

Key: HT 

Parameters: 1. Detector ID (see table of detector IDs) 

 2. x position of interaction in cm 

 3. y position of interaction in cm 

 4: z position of interaction in cm 

 5: Energy deposit in keV 

 6: Time since start of event in seconds 

 7: Vector of IDs of the interactions which contributed to this hit 

Description: The hit information in the active detector material. 

(A Geant4 simulation detail: for “AlongStep” processes (e.g. ionization) the given position 

is the midpoint between start and end of the step, for “PostStep” processes (e.g. Compton 

scattering) the given position is the end of the step.)   

 

Key: EN 

Parameters: - 

Description: “End”: Marks the end of the event block. No events are allowed beyond this keyword. 

 

 

Several special keywords give summaries about observation time beginning (TB) and end (TE) as well as 

the total simulated events. 

 

Key: TB 
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Parameters: 1: Time in seconds 

Description: This keyword tells the time the observation begins. 

This keyword appears always before the event block, i.e. before the first SE.  

Example TB 0.0 

 

Key: TE 

Parameters: 1: Time in seconds 

Description: This keyword tells the time the observation ends in seconds. 

This keyword appears always after the event block, i.e. after the EN keyword. 

Example NS 100.0 

 

Key: TS 

Parameters: 1: Total started events 

Description: This keyword represents the total number of simulated (=started) events. 

This keyword appears always after the event block, i.e. after the EN keyword. 

Example TB 0.0 

 

During later analysis, TE-TB gives to total observation time. In case of a premature interruption of  Geant4 

(e.g. crash) the TE is recovered from the time of the last event in the file. The same happens with TS.  

 

 

In the case the sim file reaches 95% of the maximum allowed file size on the given operating system, all 

following events are written to a new sim file. In the name of the new sim file the id-tag in the filename is 

increased by one. In addition, the last keyword in the old sim file is NF followed by the new file name. 

Therefore all successive files can be read if only the first file is given for analysis.   

Attention: Do not use this keyword to concatenate sim files by your own! If you want to concatenate 

sim files use the keyword IN instead – see next section 

 

Key: NF 

Parameters: 1: File name (in this case sim file) 

Description: When an IN keyword is found the given sim file is opened and read. This allows for easy 

concatenation of sim files. Attention: A sim file is allowed to have either an event section 

or an include section 

Example NF MyRun.inc1.id2.sim 

 

 

A special version of simulation file allows easily concatenating sim files. There, the event section is replaced 

by an include section. It contains only the keyword IN followed by the filename, and directs the analysis 

program to read the given sim files.  

Attention:  

• A sim file is allowed to have either an event section or an include section, not both! 

• The keywords BE, TE, TS are not allowed to appear in a sim file with contains an include 

section!  

 

Key: IN 

Parameters: 1: File name (in this case sim file) 
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Description: When an IN keyword is found the given sim file is opened and read. This allows for easy 

concatenation of sim files. Attention: A sim file is allowed to have either an event section 

or an include section 

Example Type       SIM 

Version    25 

Geometry   Sphere.geo.setup 

 

Date       2008-11-17 21:16:44 

MEGAlib    2.18 

 

IN FirstSimFile.sim 

IN SecondSimFile.sim 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ID Name  ID Name  ID Name 

1 γ  18 deuteron  35 anti Λ 

2 e+  19 triton  36 Σ+ 

3 e-  20 3He  37 anti Σ+ 

4 p  21 α  38 Σ0 

5 anti p  22 generic ion  39 anti Σ0 

6 n  23 π+  40 Σ- 

7 anti n  24 π0  41 anti Σ- 

8 μ+  25 π-  42 Ξ0 

9 μ-  26 η  43 anti Ξ0 

10 τ+  27 η’  44 Ξ- 

11 τ-  28 Κ+  45 anti Ξ- 

12 νe  29 Κ0  46 Ω- 

13 anti νe  30 anti Κ0  47 anti Ω- 

14 νμ  31 Κ0
S  48 ς- 

15 anti νμ  32 Κ0
L  49 ς0 

16 ντ  33 Κ-  50 ς+ 

17 anti ντ  34 Λ    

Table: List of all particle IDs 
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5. The Parameter file 
 

The simulation is steered by a parameter file *.source (also known as source file). It contains a description of 

the sources (geometry, energy, intensity, etc.) as well as general information about the simulation, how to 

store the data, which physics lists to use, geometry, etc. 

One extremely important element for the simulation, which is not part of the parameter file, but part of 

geometry, is the surrounding sphere from which particles in far-field simulations are started (see Figure 1). 

 

All options of the parameter file a described in the following sections. You can find several examples in the 

directory: $MEGALIB/resource/examples/cosima/sources 

5.1. The seed of the random number generator 

The seed for the random number generators is not given in the parameter file but as a command line option 

for cosima, because one should be to launch multiple instances of cosima with the some parameter file. If no 

seed is given at the command line, then the current time in seconds is used as seed. In this case, make sure 

that you launch multiple instances of cosima with at least 1 second time difference. 

Internally cosima uses two random number generators, the default one of Geant4 (CLHEP) and indirectly 

the default random number generator of ROOT in classes which are not directly part of cosima but part of 

MEGAlib.  

5.2. Include other files 

Keyword Include 

Parameters 1: File name 

Description This option allows to include another parameter files 

Example Include SubFile.source 

ID Description 

1 2D Strip detector (no depth resolution) 

2 MEGA style calorimeter – many scintillator bars in one enclosing volume 

3 3D Strip detector with depth resolution 

4 Universal detector without any position resolution (e.g. calorimeter) 

5 Not fully implemented: Drift chamber 

6 Not fully implemented: 3D Strip detector with depth resolution and limited 

directional resolution 

7 Anger camera 

8 3D Voxel detector 

Table: List of detector ID’s – the definition is identical to the definition throughoput 

MEGAlib 
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5.3. Geometry 

Cosima uses MEGAlib’s Geomega library to generate a Geant4 geometry. The geometry file contains the 

complete geometry, detector and trigger information. Concerning the detector effects engine, in Cosima only 

the voxelization of the hits into the voxels of the detector, an energy-loss map as a function of energy 

deposit, as well as a pre-trigger condition is applied to the hits. Here, pre-triggering means that vetoes and 

trigger thresholds are ignored. The full detector effects engine is only applied when the simulation file is 

read in by revan.  

 

Keyword Geometry 

Parameters 1: File name 

Description This mandatory keyword contains the name of the Geomega geometry file 

Example Geometry $(MEGALIB)/MyGeometry.geo.setup 

 

Keyword CheckForOverlaps 

Parameters 1: Number of random test points on each volumes surface (e.g. 1000) 

2: Tolerance of overlaps in cm (e.g. 0.0001) 

Description This option searches for overlaps in the volume tree and dumps them to the 

screen. No special action is taken if overlaps are found. 

Example CheckForOverlaps 1000 0.0001 

 

Keyword DetectorTimeConstant 

Parameters 1: Time in seconds 

Description For activation simulations only! 

This keyword represents the time within which two decays or de-excitations 

are considered coincident. 

This keyword does NOT do normal coincidences. The reason is that a usual 

space background simulation contains many background types which are 

simulated after each other. Therefore normal coincidence cannot be simulated 

within the simulations but has to be performed after wards. 

Activation simulations are an exception since they separate prompt from 

delayed components. This procedure doesn’t allow performing latter 

coincidences in some special cases. For example inelastic proton scattering 

has generated an isotope with a short meta-stable state (e.g. 1 ns). Without 

coincidence simulation in the prompt file the decay until the decay would 

appear, and in the delayed file, with a random, i.e. unrelated time stamp. 

Those two hits can not be joined through coincidences and an otherwise non-

existent nuclear line is visible in the simulations.  

Example DetectorTimeConstant 0.000005 

 

5.4. Cuts by range 

Two sets of global range cuts can be set via the parameter file, a default cut for all particles and the whole 

geometry as well as a cut for all particles by region. As usual in Geant4, the cut is a production threshold in 

particle range. The advantage of this approach is to be able set a higher threshold for the total geometry, but 

a low threshold for region surrounding the sensitive detector. 
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The default cut is set via the keyword DefaultRangeCut and corresponds to the “defaultCutValue'” in the 

user physics list. 

 

Keyword DefaultRangeCut 

Parameters 1: Particle range in cm 

Description Global range cut for all particles 

Example DefaultRangeCut 0.0005 

 

The second way is to set range cuts in specific regions in the detector. This corresponds to the “Cut by 

Region” mechanism of Geant4: For a certain logical volume and all its daughter volumes you define a 

specialized range cut (for details see Geant4 manual). 

 

Keyword Region 

Parameters 1: Name of the region 

Description Define a region object, used to define a detector volume in which special 

range cuts exist 

Subkeyword to Region Region.Volume 

Parameters 1: Name of logical volume 

Description Names the logical volume, which defines the region. Please make sure that the 

volume is not a virtual volume. In addition if the geometry contains virtual 

volumes, the names of the volume might have changed in geomega. In this 

case use geomega to determine its new name. 

Subkeyword to Region Region.RangeCut 

Parameters 1: Particle range in cm 

Description Range cut for all particles in this region 

Example Region Tracker 

Tracker.Volume TrackerVolume 

Tracker.RangeCut 0.0005 

 

What are good cuts? 

For example for silicon a cut of 0.000002 cm corresponds to a Compton electron production threshold of 0.8 

keV, 0.000001 cm to 0.4 keV, and 0.0000005 cm to 0.15 keV. 

 

If you do not give any of these options, a default cut of 0.0005 cm is used. 

 

Attention: 

It is very important to set those cuts wisely: Too low values increase your simulation time significantly, and 

too high values will give you wrong results, since your production thresholds are wrong! 

Thus make sure that the range is lower or equal to 10% of the smallest dimension of your (sensitive) 

volumes (including all sub-divisioning of the actual volume, if you use e.g. strip or voxel detectors!), and 

that the range is small enough to produce all secondaries!! 

In any case, make sure to read the Geant4 manuals to understand how range cuts work! 

5.5. Physics lists 

The possible physics lists for electro-magnetic processes are: 
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➢ None: Do not use an EM-physics list. Definitely not recommended for any normal simulations 

➢ Livermore: The Livermore low-energy EM-processes (includes Doppler-broadening) 

➢ Livermore-Pol: The Livermore low-energy EM-processes (includes Doppler-broadening and 

polarization) 

➢ Penelope: The Penelope low-energy EM-processes 

➢ Standard: The standard EM-processes, which are only suited for high gamma-ray energies 

 

 

The Livermore-G4LECS package is not longer supported and superseded by the default Livermore 

package. 

 

Keyword PhysicsListEM 

Parameters ID of the physics lists (not case sensitive) 

Description Set the physics used for simulating electromagnetic processes 

Default Livermore 

Example PhysicsListEM Livermore 

 

 

The possible physics lists hadronic processes are: 

 

➢ None 
➢ QGSP-BIC-HP: This is one of the standard Geant4 physics lists (for details see Geant4 

documentation), covering the energy range of particles interacting in a low- to medium-energy 

gamma-ray telescopes under space conditions 

➢ QGSP-BERT-HP: This is one of the standard Geant4 physics lists suitable for space simulations. 

➢ FTFP-BERT-HP: This is one of the standard Geant4 physics lists suitable for space simulations. 

As long as you only simulate gamma-ray interaction, you do not need to give and hadron physics list!  

 

Description PhysicsListHD 

Parameters ID of the physics lists (not case sensitive). The possibilities are “none”, “qgsp-bic-hp”, 

“qgsp-bert-hp”. 

Description Set the physics used for simulating hadronic processes 

Default None 

Example PhysicsListHD qgsp-bic-hp 

 

By default the radioactive decay physics list is always used. But you can choose how they are handled. 

Currently four modes exist: 

➢ Normal: This is the standard Geant4 way to do, which is not very useful: The decays are added to 

the current event, even is they appear eons later… 

➢ Ignore: Radioactive decays are completely ignored, i.e. not happening. 

➢ Buildup: The decay is delayed into a new event, which is happening at the correct moment in time, 

if the simulation has not yet ended of course, i.e. you generate an instable isotope at time t0, which 

will decay at t1. At time t0 the isotope is stored and the simulation continues. If time t1 is reached, 

then we return to the radioactive isotope and let it decay. In this mode a list of future events is kept, 

which can grow indefinitely (and significantly slow down the simulation) unless a maximum time is 

known. Thus please use “Time” as stop criterion, so that only those events are kept which are within 

the given time window. In addition, if the amount of stored events exceeds 10.000.000, the events 

furthest in the future are deleted.  
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➢ ActivationBuildup: This mode is used for space activation simulations. The decays are NOT 

happening during the run, but the generated isotopes are stored in a list (see the chapter Activation 

simulations for more details). This keyword requires that you add the keyword 

IsotopeProductionFile to all runs in the source file! Do not use it for anything else but step 1 of 

the activation calculations! 

➢ ActivationDelayedDecay: This mode simulates the delayed decays during step three of the 

activation simulations. Do not use it for anything else but step 3 of the activation calculations!  

 

Description DecayMode 

Parameters ID of the decay mode (not case sensitive). For details see text above. 

Description Sets how radioactive decays are handled 

Default Normal 

Example DecayMode buildup 

 

Keyword BlackAbsorber 

Parameters 1-N: list of volume names 

Description If any particle enters a black absorber volume its track is immediately killed, and a 

“BLAK” IA information is generated with the particles last parameters. 

Default not used 

Example BlackAbsorber Collimator 

 

 

 

5.6. Storing options 

Keyword FileFormat 

Parameters 1: mode 

 

“text” or “plaintext” or “t” 

“binary” or “b” 

Description This flag controls if the data is stored in text format or binary format. Default is text 

since it contains the most complete simulation information, but also leads to larger 

files. The binary format is similar to the text format, but it excludes data, which is not 

necessary for the later standard analysis, thus as where in passive material data is lost, 

etc. It also stores the information in the IA section regarding polarization and direction 

with 2-bytes, everything else with 4-bytes (floats). If more precision is needed please 

use the text format, and control the precision via the StoreTextScientific keyword. 

Please use the “-z” option at the command line to compress both text and binary files 

to get the smallest file sizes. 

Default “text” 

Example FileFormat text 

 

Keyword StoreTextScientific or StoreScientific 

Parameters 1: true/false 

2: Precision in scientific case (decimal places) 
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Description If this value is set to true, the IA- and HT-sections of the output data is stored in 

scientific format, i.e. “a.cdefgE-xy”, and not in fixed format “a.bcdef'”. The scientific 

format is more accurate, but the fixed format is more easily readable. The precision 

only applies to the scientific format, not to the fixed format. 

Default False 

Example StoreScientific  true 5 

 

 

Keyword StoreSimulationInfo 

Parameters 1: mode 

 

The modes include: 

“all” or “true” – store all IA information 

“init-only” – only store the initial interactions (plus ENTR & EXIT if 

StoreSimulationInfoWatchedVolume is set) 

“none” or “false” – do not store any IA information 

“ia-only” – only store the IA information, not the HT section 

Description This value controls how much simulation information like deposits in passive material, 

escaped particles, real interaction positions (IA-section of the sim file), etc., is stored. 

Default “all” 

Example StoreSimulationInfo all 

 

 

Keyword StoreCalibrated 

Parameters 1: true/false 

Description Set this value to true, if the content of the HT-section should be in positions and 

energies instead of strips/bars and ADC counts 

Default true 

Example StoreCalibrated true 

Attention: Setting this option to false is experimental and not fully supported throughout MEGAlib! 

 

 

Keyword StoreSimulationInfoIonization 

Parameters 1: true/false 

Description If this value is set to true, in the IA-section of the sim file also contains information 

about ionization – this information is also written if NO secondary has been produced. 

Since this increases the sim file by up to a factor 10, this option is set to false by 

default. This flag has only an effect if StoreSimulationInfo is set to “all”. 

Remark: Due to some strange Geant4 “feature”, some ionizations are Geant4-

internally called “Transportation”. In Cosima they are still called ionization.  

Default False 

Example StoreSimulationInfoIonization  false 

 

Keyword StoreOnlyTriggeredEvents   (aka StoreOnlyEventsWithEnergyLoss) 

Parameters 1: true/false 
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Description If this value is set to true (default), then only events which raise a pre-trigger are 

stored, otherwise all events are stored (although you will only see content in the IA 

section of the output file). 

Default True 

Example StoreOnlyTriggeredEvents false 

 

Keyword StoreOneHitPerEvent 

Parameters 1: true/false 

Description In the case there is no coincidence hardware, each hit is stored in its own event. I.e. 

even if two hits (= hits in different detector voxels) are generated by the same particle 

they are stored in individual events. 

Default False 

Example StoreOnlyEventsWithEnergyLoss false 

 

Keyword StoreMinimumEnergy 

Parameters 1: Energy [keV] 

Description Only store events which deposit at least this amount of energy (ideal) in active 

detectors. It does not matter if the detectors are veto detectors or not. 

 

Attention:  

This option just cuts events out. It does not change the number of events which pre-

trigger. As consequence, the stored event ID’s will have gaps, and when you specify a 

stop criteria by trigger, it still will stop when the real number of triggered events is 

reached and thus you will have less than the specified number of events in the file.  

Default -1E+40 keV (i.e. not used) 

Example StoreMinimumEnergy 450.0 

 

Keyword StoreMaximumEnergyLoss 

Parameters 1: Energy [keV] 

Description Only store events which have an ideal energy (ideal) in passive material and veto 

detectors less than this amount. As soon as an energy loss above this amount is 

detected the event is aborted. Therefore, a speed up of the simulations is expected 

depending on the amount of passive material you have, along with smaller simulation 

files. 

 

Attention:  

This option cuts events out and is only intended for (nuclear) line simulations where 

any continuum is ignored. 

Default 1+40 keV (i.e. not used) 

Example StoreMaximumEnergyLoss 20.0 

 

 

Keyword StoreSimulationInfoWatchedVolumes 

Parameters 1-N: list of volume names 

Description If any particle enters or exits a watched volume, an additional IA key is written to file 
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indicating that the particle entered (ENTR) or left (EXIT) the volume. Obviously, 

neither if the particle is stopped in the volume, nor when it is created in the volume 

such an entry is created.  

In general, this information is for example helpful to calculate radiation damage. 

Default not used 

Example StoreSimulationInfoWatchedVolumes Tracker Calorimeter 

 

Keyword PreTriggerMode 

Parameters 1: Everything or EveryEventWithHits or Full 

Description This keyword describes  how the pre-triggering is performed: 

• “Everything” stores all events, irrelevant if any energy was deposited in any active 

detector. Thus you will have empty events with just the IA information block. 

• “EveryEventWithHits” stores all events which have any energy deposit in any 

detector, positive triggering detectors or veto detectors. 

• “Full” applies the full pre-triggering. Only events which fulfill the trigger criteria 

are stored, but thresholds are assumed to be zero. Events which fulfill the trigger 

criteria, but have any energy deposit in a veto detector are also stored. Events 

which have only energy deposits in veto detectors are not stored. 

Default Full 

Example PreTriggerMode EveryEventWithHits 

 

 

Keyword DiscretizeHits 

Parameters 1: true/false 

Description Do the discretization of the energy deposits during Geant4 “steps” into the voxel/strip 

size of the detector. Otherwise the energy deposit of each “step” in the Geant4 

simulation is stored in the HT-section of the sim file. 

Default True 

Example DiscretizeHits false 

 

5.7. Defining a run 

The actual simulation within Cosima is split into individual runs. A run defines a file to which the data is 

stored, a stop criterion, a trigger criterion, and one or more sources. 

 

Keyword Run 

Parameters 1: Unique name of the run (no spaces allowed) 

Description Definition of a run 

Example Run FirstRun 

 

Subkeyword FileName 

Parameters 1: Unique file name (no spaces allowed) 

Description Sets the name of the file the data will be stored to. The suffix will be added 
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automatically. 

Example FirstRun.FileName TestRun 

 

 

5.7.1. Stop criteria 

The following three keywords Events, Triggers and Time define stop criteria. Please use only one of 

them! 

subkeyword Events 

Parameters 1: Number of events 

Description Defines a stop criterion, fulfilled when the given number of events was simulated. In 

the case you generate radioactive particles (e.g. through proton irradiation) and use 

e.g. the build-up mode, not only the primary particles are counted, but also the 

secondary radioactive decays. 

Remark: In most cases the number of simulated events is (much) larger than the 

number of triggered events, since not all events will generate a trigger. 

Example FirstRun.Events 10000 

 

Subkeyword Triggers 

Parameters 1: Number of triggers 

Description Defines a stop criterion, fulfilled when the given number of triggers was achieved. 

Attention: Cosima only pre-triggers i.e. ignore thresholds etc. The real triggering is 

done in MEGAlib’s Revan, after applying measurement uncertainties and 

thresholds.  

Remark: The number of triggered events should be the number of events written to 

the file; in many cases this number is smaller than the number of stimulated events, 

since usually not all events will result in a trigger. 

Example FirstRun.Triggers 10000 

 

Keyword Time 

Parameters 1: Time in seconds 

Description Defines a stop criterion, fulfilled when the given simulation (not CPU) time has 

passed. In case you perform simulations which include the build-up of radioactive 

elements please use this stop criterion. 

Example FirstRun.Time 1000 

 

5.7.2. Orientations 

Orientations are used to simulate movements of sources or the detector in Cosima. An orientation in cosima 

consists of a coordinate system and one (or more) times, translations, and rotations. The coordinate is always 

either local Cartesian, or, for astrophysical simulations, Galactic.  Orientations are defined in a way that 

everything rotates in the local fixed Cartesian coordinate system. 

In general, 3 components in cosima can have orientations: the sky, the detector, or the sources. 
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The sky should either be fixed to the local coordinate system, or have an orientation in Galactic coordinates, 

where the orientation represents the pointing of the local x and z-axis in Galactic coordinates. 

The detector, can only have an orientation in the local Cartesian coordinate system.  

The source, can have an orientation either in the local coordinate system (then the given orientation is the 

translation/rotation of the beam in the given source coordinates to the local coordinate system), or in 

Galactic coordinates. 

 

The options for the run are: 

Sub-Keyword OrientationDetector 

Parameters 1: Local (always) 

 

2: Fixed 

Or 

2: File 

3: Loop or NoLoop 

4: file name (no spaces allowed) 

Description Orientation of the detector in the local coordinate system 

Example FirstRun.OrientationDetector Local Fixed 

SecondRun.OrientationDetector Local File Loop MyFile.txt 

 

Sub-Keyword OrientationSky 

Parameters 1: Local  

2: Fixed (no other options allowed!) 

 

Or 

 

1: Galactic 

2: File 

3: Loop or NoLoop 

4: file name (no spaces allowed) 

 

Or: 

 

1: Galactic 

2: Pointing 

3: Pointing of the x-axis of the local coordinate system in Galactic coordinates 

Latitude 

4: Pointing of the x-axis of the local coordinate system in Galactic coordinates 

Longitude 

5: Pointing of the z-axis of the local coordinate system in Galactic coordinates 

Latitude 

6: Pointing of the z-axis of the local coordinate system in Galactic coordinates 

Longitude 

Description Orientation of the sky in the local or Galactic coordinate system 

Example FirstRun.OrientationSky Local Fixed 

SecondRun.OrientationSky Galactic File Loop MyFile.txt 

ThirdRun.OrientationSky Galactic Pointing -90 0 0 180 

 



 25 

Orientation file 

Files containing orientations have the default suffix “ori” and are therefore called ori-files. There are two 

types of orientations files, those in the local coordinate system, and those in the Galactic coordinate system. 

Both have the Type keyword first followed by a (long) section of orientations, either OL for the local or OG 

for the Galactic coordinate system. 

 

Local orientation file: 

Sub-Keyword Type 

Parameters 1: OrientationsLocal 

Description Defines the type of the orientation file 

 

Sub-Keyword OL 

Parameters 1: Time  

2: x translation of the new coordinate system relative to the default one in cm 

3: y translation of the new coordinate system relative to the default one in cm 

4: z translation of the new coordinate system relative to the default one in cm 

5: theta angle of the new x-axis in the default coordinate system in degrees  

6: phi angle of the new x-axis in the default coordinate system in degrees  

7: theta angle of the new z-axis in the default coordinate system in degrees  

8: phi angle of the new z-axis in the default coordinate system in degrees  

Description Orientation of the detector in the local coordinate system (as defines in Geomega) 

Example Type OrientationsLocal 

OL 0 10 0 15   90 -180   0 0 

OL 0.00277778 9.99848 0.174524 15   90 -179   0 0 

OL 0.00555556 9.99391 0.348995 15   90 -178   0 0 

OL 0.00833333 9.9863 0.52336 15   90 -177   0 0 

OL 0.0111111 9.97564 0.697565 15   90 -176   0 0 

OL 0.0138889 9.96195 0.871557 15   90 -175   0 0 

 

Galactic orientation file: 

Sub-Keyword Type 

Parameters 1: OrientationsGalactic 

Description Defines the type of the orientation file 

 

Sub-Keyword OG 

Parameters 1: Time  

2: Latitude angle of the new x-axis in the default coordinate system in degrees  

3: Longitude angle of the new x-axis in the default coordinate system in degrees  

4: Latitude angle of the new z-axis in the default coordinate system in degrees  

5: Longitude angle of the new z-axis in the default coordinate system in degrees  

Description Orientation of the detector in the Galactic coordinate system. The default coordinate 

system has the z-axis pointing at the Galactic north pole and the x-axis pointing at 

the Galactic center.  

Example Type OrientationsGalactic 

OG 1465689986.739684600 -2.870270 175.252000 38.906700 -

97.067000 

OG 1465689989.531588600 -2.986970 175.354000 38.938800 -

97.062000 
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OG 1465689990.545334200 -3.202110 175.522000 38.914200 -

97.067000 

OG 1465689991.514584200 -3.409290 175.677000 38.950700 -

97.083000 

 

 

5.7.3. Defining a source 

Sub-Keyword Source 

Parameters 1: Name of the source 

Description Defines a source 

Example FirstRun.Source FirstSource 

 

 

Sub-Sub-Keyword ParticleType 

Parameters 1: Particle type (see table particle IDs) 

Description Give the type of particle which should be used during the simulation 

Example FirstSource.ParticleType 1 

 

 

Sub-Sub-Keyword Spectrum 

Parameters 1: Spectral type (see description) 

2+: Parameters 

Description Give the spectral type of your source. The differential 

energy spectrum (like the beam profile) has no specific 

normalization – it only gives the shape of the spectrum. 

How many photons per cm2, second, keV, steradian, etc. 

have to be started in the simulation is calculated internally. 

The absolute flux is determined via the value given in the 

keyword. 

As consequence, all spectra can be combined with all beam 

options. 

The following spectra are currently implemented: 

Flux. The possibilities for the spectrum are: 

Mono: Mono energetic (line source) 

Linear: Linear distribution between two energies 

PowerLaw: Power law distribution 

BrokenPowerLaw: Broken power law distribution 

Gaussian: Gaussian around a given energy 

BlackBody: Black body spectrum 

File: A spectrum given in a file 

Mono 2: Energy in keV 

Linear  

2: Minimum energy in keV 

3: Maximum energy in keV 

( )  32 ,    . ppEconstEI 
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PowerLaw  

2: Minimum energy in keV 

3: Maximum energy in keV 

4: Photon index 

BrokenPowerLaw 

 

2: Minimum energy in keV 

3: Maximum energy in keV 

4: Break energy in keV 

5: Photon index min 

6: Photon index max 

Attention: The break energy must be within the minimum 

and maximum energy 

Gaussian 

 

2: Mean in keV  

3: One sigma in keV 

4: Cut-off in number of sigma 

BlackBody 

 

2: Minimum energy in keV 

3: Maximum energy in keV 

4: Temperature in keV 

BandFunction 
𝐼(𝐸) ∝ { 𝐸𝑝4 ∙ 𝑒

−
𝐸
𝑝6                ∀𝐸 ∈ [𝑝2 , (𝑝4 − 𝑝5)𝑝6]

[(𝑝4 − 𝑝5) ∙ 𝑝6]𝑝4−𝑝5 ∙ 𝐸𝑝5 ∙ 𝑒(𝑝5−𝑝4)   ∀𝐸 ∈ [(𝑝4 − 𝑝5)𝑝6 , 𝑝3]
 

2: Minimum energy in keV 

3: Maximum energy in keV 

4: Lower photon index 

5: Upper photon index 

6: Break energy (E0 in Band+ 1993) in keV 

NormalizedEnergy-

BeamFluxFunction 

(one word without 

hyphens) 

This spectrum has no options, since all input is given in a 

file. The spectrum requires the beam keyword 

FarFieldNormalizedEnergyPositionFluxFunction and not 

giving a flux!
 

File 2: File name 

The file format is described in the section “Other file 

formats – 1D Function”, an example (Crab.source) can be 

found in the Cosima example directory. The first value in 

the DP-section describes the energy in keV, the second 

value the shape (arbitrary normalization) at this point as a 

differential energy spectrum, i.e. the normalization must 

be per keV, e.g. something like p/keV, p/s/keV, 

p/cm2/s/keV, p/cm2/s/sr/keV. The absolute normalization 

does not matter, since it is determined via the Flux 

keyword. 

Example FirstSource.Spectrum Mono 1809 
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Sub-Sub-Keyword Beam 

Parameters 1: Beam type 

2+: Parameters 

Description Give the beam type and all relevant parameters (see below). The beam (like 

the spectrum) has no specific normalization – it only gives the shape of the 

spectrum.  The absolute flux is determined via the value given in the 

keyword Flux.  

 

There exist two different beam categories: Far field and near field. Far-field 

sources are so far away that they arrive as a plane wave. To achieve this, for 

all far-field sources the photons are started on a disk whose center sits on the 

surrounding sphere, and whose normal vector points towards the center of 

the surrounding sphere (see Figure 1 for details). The names of all far-field 

sources start with “FarField”. All other sources are near-field sources. 

 

Please pay attention that for far-field sources you have to give a flux in 

particles/cm2/s, for all other sources the flux is in particles/s!  

 

ATTENTION: Make your mother/world volume large enough so that all 

particles are always started from within. Neither Geant4 nor Cosima is 

capable to detect the cases where the particle is started from outside the 

world/mother volume, and Geant4 behaves weirdly (sometimes right 

and sometime wrong) if this happens. Those errors are very hard to 

detect! The suggestion is to make a large world volume consisting of 

vacuum – then the performance penalty is minimal. However, if the 

material is not vacuum, then you might get a large performance penalty 

if the world volume is too large. 

 

The possibilities for the beam are: 

FarFieldPointSource Point source on sphere. The particles are 

emitted from the disk defined by the 

surrounding sphere defined in the geometry 

file (see Figure 1). The direction of 

emission is given by theta on phi pointing 

inwards. 

 

This far-field beam requires a flux in 

particles/cm2/s! 

2: Theta (polar angle) in 

degrees 

3: Phi (azimuth angle) in 

degrees 

 

The definition of theta and 

phi follows the standard 

mathematical definition of 

spherical coordinate systems, 

i.e. theta starts from the 

positive z-axis, phi from the 

positive x-axis rotating in 

direction of the positive y-

axis. The same is true for all 

other angles (see below). 

FarFieldIsotropic, 

Isotropic 

The particles are emitted isotropically from 

4pi. The emission scenario is the same as 

for FarFieldPointSource, i.e. the particles 

are emitted from the disk defined by the 

surrounding sphere (see Figure 1). 

 

This far-field beam requires a flux in 

none 



 29 

particles/cm2/s! 

FarFieldAreaSource Spherical area source, describing a segment 

of a sphere. Within this segment you have a 

homogeneous, “isotropic” emission. The 

emission scenario is the same as for 

FarFieldPointSource, i.e. the particles are 

emitted from the disk defined by the 

surrounding sphere (see Figure 1). 

 

This far-field beam requires a flux in 

particles/cm2/s! 

2: Minimum theta in degrees 

3: Maximum theta in degrees 

4: Minimum phi in degrees 

5: Maximum phi in degrees 

FarFieldFile-

ZenithDependent 

This beam covers all or parts of a sphere in 

the far-field. The parameters are given in a 

file, which describes a zenith angle 

dependent distribution – the values are not 

integrated over the azimuthal angle. The 

particles are emitted from the disk defined 

by the surrounding sphere (see Figure 1). 

 

This far-field beam requires a flux in 

particles/cm2/s! 

2: file name  

The file format is described 

in the section “Other file 

formats – 1D Function”, an 

example (Crab.source) can be 

found in the Cosima example 

directory. 

The first value in the DP-

section describes the zenith 

angle in degrees, the second 

value the shape (arbitrary 

normalization). 

FarFieldGaussian This beam represents a 2D Gaussian-shaped 

source 

 

This far-field beam requires a flux in 

particles/cm2/s! 

2: theta position in degrees 

3: phi position in degrees 

4: sigma in degrees 

FarFieldAssymetricGa

ussian 

This beam represents a 2D Gaussian-shaped 

source with two different sigma widths in 

longitude and in latitude direction, plus a 

rotation of the shape. Longitude and 

Latitude are defined assuming the center is 

at the equator of the sphere (phi=0, 

theta=90) and no rotation is applied, then 

you have one width in longitude direction 

along the equator, and the theta direction in 

latitude direction. 

 

Attention:  

The definition was chosen for simulations 

of the Galactic disk. However, this 

definition results in ambiguities, if the 

sigma in latitude direction towards the poles 

is larger than 20-30 degrees. The ambiguity 

arises since the poles can be reached 

through multiple longitude values, resulting 

in strongly varying Gaussian values near 

the poles. As long as the one-sigma-value in 

latitude direction is smaller than ~20-30 

degrees, the approximation is acceptable. 

2: theta position in degrees 

3: phi position in degrees 

4: sigma in degrees along 

longitude (i.e. equator 

direction) when source is at 

equator and not rotated 

5: sigma in degrees along 

latitude (towards the poles) 

when source is at the equator 

6: rotation in degrees 
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This far-field beam requires a flux in 

particles/cm2/s! 

FarFieldNormalized-

EnergyBeamFlux-

Function 

(one word without 

hyphens)
 

This beam represents a 3D function 

spanning the energy-theta-phi space. Its 

content is a function representing flux in 

ph/cm2/s/keV/sr 

 

As consequence you do not need to give a 

flux here! 

This beam requires the spectral option 

NormalizedEnergyBeamFluxFunction and 

no flux option! 

 

See section 6.3 for the file format. 

 

2: file name 

PointSource 

Synonym: “Point” 

Point source in Cartesian coordinates. The 

particle is started with a random direction 

(isotropic emission). 

This beam requires a flux in particles/s!  

2: x in cm 

3: y in cm 

4: z in cm 

RestrictedPointSource 

Synonym: 

“RestrictedPoint” 

Point source in Cartesian coordinates. 

However, only those particles are generated 

which hit the surrounding sphere. The 

position has to be outside the surrounding 

sphere.  

Consider this beam as an improved 

implementation of the standard PointSource 

beam, which only simulates the particles, 

which can hit the detector. 

The flux you give is the same as for 

PointSource, i.e. an isotropic emission is 

assumed! If you want a real cone beam use 

ConeBeam. 

This beam requires a flux in particles/s! 

2: Start position x in cm 

3: Start position y in cm 

4: Start position z in cm  

DiffractionPointSource 

 

The emission starts at a point and its 

direction is defined by a file (x-axis: theta in 

degree, y-axis: phi in degree) and emitted in 

4pi (or any part of it as defined in the file). 

 

Attention: The definition of theta and phi is 

along the standard coordinate system. The 

rotation is first around the z-axis (“counter-

clockwise rotation around z”) and then 

towards the new normal vector: first the 

inclination angle rotation, and then the 

azimuth angle rotation. 

2: Start position x in cm 

3: Start position y in cm 

4: Start position z in cm  

5: Counter-clockwise rotation 

around z-direction in deg 

6: New normal vector of 

emission map x 

7: New normal vector of 

emission y 

8: New normal vector of 

emission z  

9: file name (the file format is 

described in the section 

“Other file formats – 2D 

Function”) 

LineSource 

Synonym: “Line” 

Line source in Cartesian coordinates. The 

particle is started with a random direction 

from a random point on the line. 

2: x for minimum point in cm 

3: y for minimum point in cm 

4: z for minimum point in cm 
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This beam requires a flux in particles/s! 5: x for maximum point in 

cm 

6: y for maximum point in 

cm 

7: z for maximum point in cm 

RestrictedLineSource 

Synonym: 

“RestrictedLine” 

 

Line source in Cartesian coordinates. 

However, only those particles are generated 

which hit the surrounding sphere. The 

(infinitely extension of the) line has to be 

completely outside the surrounding sphere.  

Consider this beam as an improved 

implementation of the standard LineSource 

beam, which only simulates the particles, 

which can hit the detector. 

The flux you give is the same as for the 

LineSource, i.e. an isotropic emission is 

assumed!  

This beam requires a flux in particles/s! 

2: x for minimum point in cm 

3: y for minimum point in cm 

4: z for minimum point in cm 

5: x for maximum point in 

cm 

6: y for maximum point in 

cm 

7: z for maximum point in cm 

BoxSource 

Synonym: “Box” 

Box-shaped source in Cartesian 

coordinates. The particle is started with a 

random direction from a random position 

within the box. 

This beam requires a flux in particles/s! 

2: x for minimum point in cm 

3: y for minimum point in cm 

4: z for minimum point in cm 

5: x for maximum point in 

cm 

6: y for maximum point in 

cm 

7: z for maximum point in cm 

SphereSource 

Synonym: “Sphere” 

Sphere-shaped source in Cartesian 

coordinates. The particle is started with a 

random direction from a random position 

within the sphere. 

This beam requires a flux in particles/s! 

2: Center x in cm 

3: Center y in cm 

4: Center z in cm  

5: Radius x in cm 

6: Radius y in cm 

7: Radius z in cm 

DiskSource 

Synonym: “Disk” 

 

Disk-shaped source in Cartesian coordinates 

– which can be a ring or a segment of the 

disk or ring. The disk is defined by an inner 

and outer radius as well as a height. 

Assuming a normal vector pointing along 

the z-axis, the opening angle count starts at 

the x-axis and goes counter clock wise! 

The particle is started with a random 

direction from a random position within the 

disk/ring (segment). 

This beam requires a flux in particles/s! 

 

Example: Disk.source 

2: Center x in cm 

3: Center y in cm 

4: Center z in cm  

5: Normal vector of disk x 

6: Normal vector of disk y 

7: Normal vector of disk z  

5: Inner radius x in cm 

6: Outer radius y in cm 

7: FULL height z in cm 

8: Start opening angle in deg 

9: End opening angle in deg 

 

No normalization is needed 

for the normal vector 

direction. The same is true 

for all other directions (see 
below). 

HomogeneousBeam Homogeneous beam with circular cross 

section in Cartesian coordinates. The 

particle is started with the given direction 

2: Center of cylinder x in cm 

3: Center of cylinder y in cm 

4: Center of cylinder z in cm  
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from a random position within a disk with 

the given radius and position of center (the 

normal vector of the disk is pointing 

towards the emission direction).  

This beam requires a flux in particles/s! 

5: Normal vector of disk x 

6: Normal vector of disk y 

7: Normal vector of disk z  

8: Radius in cm 

 

No normalization is needed 

for the normal vector 

direction. The same is true 

for all other directions (see 

below). 

RadialProfileBeam Linear beam, whose beam profile (a 1D 

radial profile) is given by a file. The particle 

is started with the given direction (normal 

vector on the start “disk”) from a random 

position within the extent of the profile. 

This beam requires a flux in particles/s! 

 

Example: Beam.source 

2: Center of cylinder x in cm 

3: Center of cylinder y in cm 

4: Center of cylinder z in cm  

5: Normal vector of disk x 

6: Normal vector of disk y 

7: Normal vector of disk z  

8: file name (the file format is 

described in the section 

“Other file formats – 1D 

Function”) 

MapProfileBeam 

(former ProfiledBeam) 

Linear beam, whose beam pattern (a 2D 

map) is given by a file. The particle is 

started with the given direction (normal 

vector on the disk) from a random position 

within the extent of the profile. 

 

Attention: The orientation of the 

distribution in the map is in the x-y-plane 

with a default emission in the positive z-

direction. The rotation is first around the z-

axis and then towards the new normal 

vector: first the inclination angle rotation, 

and then the azimuth angle rotation. 

 

This beam requires a flux in particles/s! 

 

Example: Beam.source 

2: Center of map x in cm 

3: Center of map y in cm 

4: Center of map z in cm  

5: Counter-clockwise rotation 

around z-direction in deg 

6: New normal vector of map 

x 

7: New normal vector of map 

y 

8: New normal vector of map 

z  

9: file name (the file format is 

described in the section 

“Other file formats – 2D 

Function”) 

ConeBeam Point source in Cartesian coordinates, 

emitting a divergent beam in a given 

direction with a given half opening angle 

(“cone beam”). Within the beam, directions 

are homogeneously ("isotropically") 

distributed, i.e. the beam intensity is the 

same for all directions. 

This beam requires a flux in particles/s! 

2: Start position x in cm 

3: Start position y in cm 

4: Start position z in cm  

5: Direction x 

6: Direction y 

7: Direction z  

8: Cone angle (half opening 

angle) in degrees 

GaussianConeBeam Point source in Cartesian coordinates, 

emitting a divergent beam in a given 

direction with a given half opening angle 

(“cone beam”). Within the beam, directions 

follow a Gaussian distribution of given 

width (standard deviation) about the beam 

2: Start position x in cm 

3: Start position y in cm 

4: Start position z in cm  

5: Direction x 

6: Direction y 

7: Direction z  
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direction, i.e. the beam intensity is brightest 

along the beam direction and decreases with 

increasing angular distance according to a 

Gaussian distribution. 

This beam requires a flux in particles/s! 

8: Cone angle (half opening 

angle) in degrees 

9: 1-sigma value of Gaussian 

in degree 

FlatMap A 2D distribution read in by a file. The 

particle is started with random direction. 

 

Attention: The orientation of the 

distribution in the map is in the x-y-plane 

with a default emission in the positive z-

direction. The rotation is first around the z-

axis and then towards the new normal 

vector: first the inclination angle rotation, 

and then the azimuth angle rotation. 

 

This beam requires a flux in particles/s! 

 

Example: FlatMap.source 

2: Center of map x in cm 

3: Center of map y in cm 

4: Center of map z in cm  

5: Counter-clockwise rotation 

around z-direction in deg 

6: New normal vector of map 

x 

7: New normal vector of map 

y 

8: New normal vector of map 

z  

9: file name (the file format is 

described in the section 

“Other file formats – 2D 

Function”) 

IlluminatedDisk Illuminated disk in spherical coordinates. 

The disk has a given center, radius, and 

orientation. The particles are started from 

the surrounding sphere (not a disk on the 

sphere) in the beam direction, so that they 

pass through the disk. Since the intersection 

points are randomly chosen on the disk and 

not on a projection of the disk in particle 

flight direction, the particle line density is 

not always equal in all directions. If the 

orientation of disk and beam are identical, 

then this mode is identical with the beam 

mode in Cartesian coordinates. 

This beam requires a flux in particles/s! 

2: Center of disk x in cm 

3: Center of disk y in cm 

4: Center of disk z in cm  

5: Radius of disk in cm 

6: Orientation of disk theta in 

deg 

7: Orientation of disk phi in 

deg 

8: Orientation of beam theta 

in deg 

9: Orientation of beam phi in 

deg 

IlluminatedBox Illuminated box in spherical coordinates. 

The box has a given center, dimension, and 

orientation. The particles are started from 

the surrounding sphere (not a disk on the 

sphere) in the beam direction, so that they 

pass through the box.  

This beam requires a flux in particles/s! 

2: Center of box x in cm 

3: Center of box y in cm 

4: Center of box z in cm  

5: Half length of square side 

in cm 

6: Orientation of box theta in 

deg 

7: Orientation of box phi in 

deg 

8: Orientation of beam theta 

in deg 

9: Orientation of beam phi in 

deg 

Volume All particles are started from a random 

position within this volume (excluding its 

daughter volumes) und random direction 

2: Volume name (must match 

geomega name) 

Activation Used internally for detector activation  
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Example Isotropic emission from 4π: 
FirstSource.Beam FarFieldAreaSource 0.0 180.0 0.0 

360.0 

 

 

 
 

Sub-Sub-Keyword Flux 

Parameters 1: Flux in particles/cm2/s for beams starting with FarField in their name thus arriving 

as a plane wave OR Intensity in particles/s for all other sources 

Description In order to enable the combination of every beam with every spectrum (and – not yet 

implemented – each light curve), neither the beam nor the spectrum have an absolute 

normalization, they only describe their shapes! The only exception is the beam 

FarFieldNormalizedEnergyBeamFluxFunction, where the flux is already contained 

in the 3D function. 

 

The total flux is given by this keyword. 

 

If you have a far-field beam, i.e. each beam starting with “FarField-” such as 

FarFieldPointSource, or FarFieldAreaSource, then the (average total) flux is given in 

particles/cm2/s. All other beams require particles/s! 

 

A special case is the beam RestrictedPointSource: You give the flux as if the source 

would emit in 4π. But actually simulated are only those events hitting the 

surrounding sphere. 

 

Examples on how to determine the correct flux: 

In order to get the correct flux value if you have a spectrum given in ph/cm2/s/sr/keV 

and the FarFieldAreaSource beam type, you have to integrate over keV (in the 

Figure 1: The concept of the surrounding sphere: 

In order to simulate plane waves from distant 

(astrophysical) sources, the surrounding sphere has 

been introduced. The particles are started from a disk 

on the surrounding sphere. The disk always points 

towards the centre of the sphere, i.e. it is tangential 

on the disk. The direction, from which the particles 

originate, is defined by the theta and phi values 

defined in the beam parameters. The direction is 

given in spherical coordinates (theta: polar angle, phi: 

azimuth angle), where the origin is the center of the 

sphere. This therefore defines the start direction of 

the particles. The start position is a random position 

on the disk. All parameters (centre and radius of the 

sphere, radius of the disk) are defined in 

GEOMEGA. All parameters have to be chosen in a 

way that from all possible directions the detector is 

always completely illuminated! 

For all sources in Cartesian coordinates, the start 

point of the particles is given in the beam description 

as a given point, line box, sphere, disk, etc. Those 

beams are not started from a disk on the surrounding 

sphere. 
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selected energy band!) and the solid angle in steradian covered by the 

FarFieldAreaSource. Please take a look at the example “Crab.source”.  

If you have a FarFieldPointSource and a spectrum given in ph/cm2/s/keV, then you 

of course only have to integrate over the energy. 

For example, if you have a flat homogeneous beam with a flux given in ph/cm2/s, 

then you still have to integrate over (in this case simply multiply with) the chosen 

area of the beam to get to the requested flux of ph/s in the near field. 

 

Sanity checks: 

If you want to do a sanity check on the number of simulated events (not the number 

of triggers!) after a certain observation time for a far-field source, then you have to 

multiply the flux with the observation time t and the start area A, which is  r2 with r 

the radius of the surrounding sphere, i.e. N = t * A * F, where t is the observation 

time and F is the flux (which is always in ph/cm2/s in the far field). 

For all near-field sources (all sources without a “Far Field” in the name) the 

simulated number of particles N should be simply N = t * F, where t is the 

observation time and F is the flux (which is always in ph/s in the near field). 

 

Default 1.0 

Example FirstSource.Flux 1.0 

 

 

Sub-Sub-Keyword Polarization 

Parameters 1: Spectral type (see description) 

2+: Parameters  

Description Give a polarization to the gamma-ray. Make sure you use a physics-list capable of 

handling polarization. The following types are available: 

None 

Random 

Absolute 

RelativeX, RelativeY, RelativeZ 

None The polarization vector is set to zero and ignored during the simulation. 

Random A random polarization vector orthogonal to the direction of the photon is used 

Absolute Use a polarization vector in global coordinates. 

Attention: The vector MUST be orthogonal to the direction of the photon. If this is 

not the case a random vector is used! 

Parameters: 

2: Degree of polarization from 0 to 1 where 1 means 100% linearly polarized, 0.5 

means 50% are linearly polarized, and 50% have a random polarization vector 

3: x-direction of polarization vector 

4: y-direction of polarization vector 

5: z-direction of polarization vector 

RelativeX, 

RelativeY, 

RelativeZ 

Use a polarization vector which is created the following way: Create an initial 

polarization vector which is orthogonal on the initial flight direction vector of the 

particle and the given axis vector (e.g. x-axis for RelativeX). This is a simple cross-

product. Then rotate the polarization vector (right-hand-way) around the initial flight 

direction vector of the particle by the given rotation angle. 

Parameters: 

2: Degree of polarization from 0 to 1 where 1 means 100% linearly polarized, 0.5 

means 50% are linearly polarized, and 50% have a random polarization vector 
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3: Rotation around initial flight direction vector of the particle in degree. 

Default None – no polarization, not even random 

Example FirstSource.Polarization RelativeX 1.0 45 

 

Sub-Sub-Keyword LightCurve 

Parameters 1: File or Flat/None: Either load the light curve from a file or assume a flat light 

curve, i.e. no flux variation with time 

 

Additional option for “File”: 

2: true/false: Indicate if the given light curve is repeating 

3: Light curve file name 

 

The file format is described in section 6.1, where the first column is the time, and the 

second column is the shape of the light curve. The absolute normalization is done 

via the flux.  

Description Allows the flux of the source be time dependent. 

Default Flat, i.e. no flux variation with time 

Example FirstSource.LightCurve File true LightCurve.dat 

 

A detailed example can be found in resource/examples/advances/Lightcurves. 

 

Sub-Sub-Keyword FarFieldTransmissionProbability 

Parameters 1: File: A file containing the transmission probabilities as a function of zenith angle 

(degree) and energy (keV). 

 

The file format is described in section 6.2, where the first column is the zenith angle, 

the second column the energy, and the third column is the transmission probability 

(0 to 1). 

Description For far field sources, the transmission in the local coordinate system can be modified 

as a function of zenith angle and energy. This allows, for example, to eliminate 

particles which would have been blocked by Earth, or to simulate atmospheric 

absorption. It is only valid for far field sources. 

Default 100% transmission 

Example FirstSource.FarFieldTransmissionProbability TP.dat 

 

A detailed example can be found in resource/examples/advances/AllSky. 

 

 

Sub-Sub-Keyword Orientation 

Parameters 1: Local or Galactic (Coordinate system, Galactic can only be used far-field  

sources!) 

 

One of the following: 

 

No orientation change (default) 

2: Local 

3: Fixed 
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2: Local 

3: File 

4: Loop or NoLoop 

5: Filename 

 

2: Galactic 

3: Pointing 

4: Galactic Latitude in degree 

5: Galactic Longitude in degree 

Description The Orientation given here results in a time dependent translation & rotation relative 

to the emission position and direction given in the beam parameters. For example, if 

you have a point source in the near field and with the positions 10/0/10, then a local 

orientation would contain rotations and translations of this start position in the local 

coordinate system.  

Default Local Fixed 

Example FirstSource.Orientation Local File Loop Movement.txt 

 

 

An alternative to all the options above is to read in an event list from a file. This would then be the only 

option set for the source 

 

Sub-Sub-Keyword EventList 

Parameters 1: File name 

 

Description Format of the event list file: 

Each event is one line of text with the following elements per line (space seperated): 

• Event ID 

• 1 of event is concurrent with previous one 

• Cosima particle type ID 

• Particle excitation 

• Time 

• Start position X in cm 

• Start position Y in cm 

• Start position Z in cm 

• S tart direction in X 

• Start direction in Y 

• Start direction in Z 

• Polarization direction in X 

• Polarization direction in Y 

• Polarization direction in Z 

• Energy in keV 

 

Example: resource/examples/advanced/EventList 

Default N/A 

Example FirstSource.EventList MyList.txt 
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5.8. Activation simulation 

ATTENTION: ACTIVATION SIMULATIONS ARE A VERY INVOLVED PROCESS REQUIRING DETAILED 

KNOWLEDGE OF THE PRODUCTION CROSS-SECTIONS OF NEW ELEMENTS OVER A WIDE ENERGY RANGE, FROM 

EV TO PEV FOR ALL ELEMENTS DUE TO NEUTRON, PROTON, AND AT LEAST ALPHA PARTICLE INCIDENT. THE 

EXISTING DATA BASES IN GEANT4 ARE NOT AS ACCURATE AS ONE WOULD WISH. THEREFORE, SOMETIMES 

THERE ARE VERY LARGE, SOMETIMES THERE ARE SMALLER DIFFERENCES BETWEEN OBSERVATIONS AND 

SIMULATIONS. KEEP THIS IN MIND WHEN DOING ACTIVATION SIMULATIONS. 

 

Activation simulation is a three step process: First the initial particles are simulated, and all generated nuclei 

– if their decay/de-excitation is not coincident with the initial particle – are stored in a list. The second step 

calculates the activation after a certain time of irradiation in orbit. The final step simulates the decays of the 

radioactive particles. 

Each of these steps requires an individual source file with individual keywords. The three 

ActivationStepX.source files in the cosima example directory serve as a template. 

 

A common keyword is the detector time constant. 

Keyword DetectorTimeConstant 

Parameters 1: Time in seconds 

Description For activation simulations only! 

This keyword represents the time within which two decays or de-excitations 

are considered coincident.  

Example DetectorTimeConstant 0.000005 

 

This keyword does NOT do normal coincidences just coincidences for decays and de-excitations. The reason 

is that a usual space background simulation contains many different background types which are simulated 

after each other. Therefore normal coincidence cannot be handled within the simulations, but has to be 

performed afterwards. 

Activation simulations are an exception since they separate prompt from delayed components. This doesn’t 

allow performing latter coincidences in some special cases. For example inelastic proton scattering has 

generated an isotope with a short meta-stable state (e.g. 1 ns). Ignoring coincidences, the de-excitation down 

to the meta-stable state would appear in the prompt data set. The de-excitation down into the ground state 

would be stored in the delayed data set, however with a random, i.e. unrelated time stamp. As consequence 

those two hits cannot be joined through coincidences and an otherwise non-existent nuclear line is visible in 

the simulations. 

 

Step one of the simulation is a standard hadron simulation. Make sure to use the physics list qgsp-bic-hp. In 

addition, set the keyword DecayMode to ActivationBuildup. This ensures that delayed decays whose 

decay/de-excitation is later than the DetectorTimeConstant, are not simulated during this first step, but 

those generated nuclei (isotope, excitation state, volume) are stored in an isotope list. 

A special keyword of the run gives the file name of the current IsotopeProductionFile: 

 

Subkeyword to Run IsotopeProductionFile 

Parameters 1: File Name 

Description This keyword represents the file name into which all generated isotopes are 

stored. It also contains the observation time.  

Example MyRun.IsotopeProductionFile MyIsotopes.dat 

 

This file is the input for step 2 of the activation simulation, the calculation of the activation after a certain 

time of irradiation. You again have to give the DetectorTimeConstant with the same value as above and 

you are required to define the qgsp-bic-hp physics list. But instead of a run, you define an Activator, with 
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the keywords IsotopeProductionFile (input file – same as above), the ActivationMode, and the 

ActivationFile (output file with activation data). 

 

Keyword Activator 

Parameters 1: Unique name of the activator (no spaces allowed) 

Description Definition of a activator 

Example Activator SpaceActivation 

 

The IsotopeProductionFile keyword represents the output of the previous simulation step. 

 

Subkeyword to Activator IsotopeProductionFile 

Parameters 1: File Name 

Description This keyword represents the file name from which the generated isotopes are 

read, including the observation time.  

Example SpaceActivation.IsotopeProductionFile MyIsotopes.dat 

 

The ActivationMode keyword describes the length and type of the irradiation.  

The mode ConstantIrradiation assumes that the irradiation simulated in step 1 was constant during the 

irradiation time. This of course also assumes that the spectrum of the irradiated particles was constant  – or 

the variations were small enough to be approximated as constant. This is for example the case for cosmic 

protons irradiation in interplanetary space or in low-earth equatorial orbit.  

The mode ConstantIrradiationWithCoolDown assumes a constant irradiation for a specific period of 

time. Then the irradiation stops and is followed by a certain time of cool down. The remaining activation 

after this cool down is calculated.  

The mode TimeProfile requires a file with a time profile of the irradiation. This is not yet implemented and 

the details have yet to be worked out. The goal is to be able to simulate e.g. the effect  of multiple SAA 

passages in detail. 

 

Subkeyword to Activator ActivationMode 

Parameters 1: Mode 

2+: Mode parameters 

Mode: ConstantIrradiation 2: Length of constant irradiation in seconds 

Mode: ConstantIrradiationWithCoolDown 2: Length of constant irradiation in seconds 

3: Length of cool down in seconds 

Mode: TimeProfile NOT YET IMPLEMENTED 

2: File name 

3: Length of irradiation (the time profile can be repeated) 

Description See above text 

Example SpaceActivation.ActivationMode 

ConstantIrradiation 31556736 

This will calculate the activation after 1 year of constant 

irradiation. 

 

The ActivationFile keyword represents the name of the output file, the activation per isotope, excitation 

state, and volume, which is of course the input file for the next step. 

 

Subkeyword to Activator ActivationFile 
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Parameters 1: File Name 

Description This keyword represents the file name into which all generated isotopes are 

stored. It also contains the observation time.  

Example SpaceActivation.ActivationFile Activation.dat 

 

 

The final step is the simulation of the delayed decays. You again have to give the DetectorTimeConstant 

with the same value as above and you are required to define the qgsp-bic-hp physics list. Instead of 

defining a Source for run, you define an ActivationSource. This is the only data about the source you need 

to define. It reads the activation data from the file created in the previous step:  

 

Subkeyword to Run ActivationSource 

Parameters 1: File Name 

Description This keyword represents the file which contains all the activation data 

generated in the last step  

Example MyRun.ActivationSource Activation.dat 

 

As an example – or as a template – look at the source files ActivationStep1.source, ActivationStep2.source, 

ActivationStep3.source in the Cosima example directory, which simulates the irradiation of a Germanium 

sphere with protons (spectrum and intensity as expected in interplanetary space close to Earth), calculates 

the activation after one year in orbit, and then simulated the delayed decays.  

 

For a paper on this topic with more details and a real world example see: Zoglauer et al., “Status of 

Instrumental Background Simulations for Gamma-ray Telescopes with Geant4”, 2008 IEEE NSS 

Conference Record, 2008. 

5.9. Special options 

The following contains a list of special options. 

 

Keyword CreateCrossSectionFiles 

Parameters 1: Name of the directory in which the files are stored 

Description This is a special option to create the (macroscopic) cross section files required 

by revan and mimrec. It is usually only used my geomega to automatically 

create the cross section files, if the materials have changed. Calling this option 

ignores all other commands. 

Example CreateCrossSectionFiles auxiliary 
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6. Other file formats 

6.1. 1D Functions 

For 1D functions a very simple file format is used utilizing only 3 keywords. Here is an example: 

 
IP LINLIN 

DP 100 1.0 

DP 200 1.3 

DP 500 1.5 

EN 

 

IP stands for interpolation. You give the type of interpolation on the x- and y axis which you want, either 

LINLIN, LINLOG, LOGLIN, or LOGLOG. Please use one reasonable for your data. If you use a 

logarithmic option, make sure all data is positive! 

DP stands for data point. You give the x and y value of your distribution. 

EN stands for end of data. 

6.2. 2D Functions 

For 2D functions a more sophisticated file format is used, containing 5 keywords 

 
IP LIN 

XA -1.0 -0.5 0.0 0.5 1.0 (or: XB -1.0 1.0 5) 

YA -1.0 -0.5 0.0 0.5 1.0 (or: YB -1.0 1.0 5) 

AP 0 0 0.1 

AP 1 0 0.5 

AP 0 1 0.4 

AP 1 1 1.0 

AP 1 2 0.3 

AP 2 1 0.2 

EN 

 

IP stands for interpolation. You give the type of interpolation you wish, currently only “NONE” – no 

interpolation – and LIN” – linear interpolation – is implemented. 

XA stands for x-axis. You give the axis points of the x-axis in cm – only equidistant bins are allowed. As an 

alternative to XA you can use XB, where the first value corresponds to the first bin center, the second 

value corresponds to the last bin center, and the last parameter gives the number of bins.  

YA stands for y-axis. You give the axis points of the y-axis in cm – only equidistant bins are allowed.  

AP stands for axis point. First value is the x-axis grid ID (counting starts at 0, the ones you have given in XA 

and YA), the second value is the y-axis grid ID, and the last entry is the function value at this point. The 

AP’s are allowed to be in random order. If they have a content of zero you can skip them. Attention: The 

values which you are giving are not bin values! They are the values of the given function at this position 

on the grid! See also Figure 2. 

EN stands for end of data. 
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6.3. 3D Functions: Spherical 

The format represents a 3D data space spanned by phi, theta, and energy. Its content is flux at the axis 

position in ph/cm2/s/keV/sr. 

 

The file looks like this: 

 
IP LIN 

 

# Phi axis in deg: 

PA 35.1 35.2 35.3 35.4 35.5 

# Theta axis in deg: 

TA 5.05 5.10 5.15 5.20 5.25 

# Energy axis in keV: 

EA 10 15 20 25 30 35 40 

 

AP 0 0 0  0.50 

AP 0 0 1  0.25 

AP 0 0 2  0.12 

AP 0 0 3  0.07 

 

# Skip the rest 

  

EN 

 

The IP line gives the interpolation type. Currently only LIN, linear interpolation, is supported. 

 

The next three lines represent the data points on the axes at which the flux is given. PA represents the right 

phi-axis in degree, TA represents the theta-axis in degree, EA represents the energy-axis in keV. 

 

The following section gives the value at the axis points for the given ID (number starting with zero!) of the 

data point on the three axis. 

For example "AP 3 1 5 1.6" represents a flux of 1.6 ph/cm2/s/keV/sr for the 4th axis point in the RA-axis 

(35.4 deg), the 2nd axis point in the DEC-axis (5.10 deg), and the 6th axis point of the energy axis (35 keV). 

 

Make sure the last line in your file is "EN" for "The End". 

 

Lines starting with "\#" are interpreted as comments 
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7. Visualization 
Visualizing the geometry and individual events is possible via the standard Geant4 mechanisms ( for all the 

details please consult the Geant4 manual and examples). 

If the default setup script is used to compile Geant4, then the OpenGL and Dawn visualization options are 

included by default – assuming OpenGL drivers are installed on your system, otherwise you have to install 

them and recompile Geant4. 

The visualization can then be achieved by calling a Geant4 macro file. An example can be found in:  
$MEGALIB/resource/examples/cosima/macro 

Running 
cosima –m Visualize.mac Visualize.source 

should give an output like this: 

 

 

 
Figure 2 

Principle of linear and “no” interpolation of the 2D functions: If you want the no 

interpolation mode to behave similar to a binned map (i.e. avoid the half binned at 

the edges), then set the outer bins to zero and just use the inner “bins”. 
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Geant4 contains many options to customize the generated visualization. Please consult the Geant4 manual 

for all the details. 

8. The MCGeometryConverter class 
Cosima contains a special class called MCGeometryConvert. Its purpose is to convert a Geant4 geometry 

into MEGAlib’s Geomega format. However, only in the simplest cases this will work 100%. In the other 

cases you will have to make modifications by yourself. 

 

In order to use it, you require a program capable of loading your geometry to which you can add the 

MCGeometryConverter.cc and MCGeometryConverter.hh files. At a point in your program when your 

geometry is completely initialized, add the following lines of code: 

 
MCGeometryConverter* C = new MCGeometryConverter(); 

C->Convert(“MyNewGeomegaGeometry.geo.setup”); 

 

After running your program, the file MyNewGeomegaGeometry.geo.setup then contains the geomega 

geometry. 

 

However, many restrictions apply. The most critical one is that you can only convert volume shapes, which 

Geomega can understand. So it is mandatory that you investigate the output file and fix all problems, 

especially you have to define a trigger criteria and your detector descriptions in the geomega file. 

 
Figure 3: Vis 

Visualization of simulated particles using a Geant4 macro 
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9. Tips and Tricks 

9.1. How to speed up the simulations 

• Make sure you have a hierarchical and not a flat geometry: In a flat geometry all (or most of the) 

volumes are in the mother volume. In a hierarchical geometry, the volumes are organized in mother 

volumes with daughter volumes, which have daughter volumes by themselves, and so on. This 

hierarchical geometry reduces the number of volumes which have to be searched in order to find the 

volumes which a particle path intersects. 

• Define regions (see keywords “DefaultRangeCut” and “Region”): It is a good practice to make high-

resolution regions close to your detector, where the particle range is on the order of ~1/5 of the 

smallest dimension (e.g. if your smallest dimension is a voxel size of 0.5 mm then set your range to 

around 0.1 mm). Away from the detector (i.e. far away that no low-energy electrons or fluorescence 

photons can reach it) you can set the range cut to a much larger value (e.g. a few milimeters). 

Whenever you change your cuts you should make a test simulation to make sure your results don’t 

change (don’t just look at the file size, since the number of IA’s in the simulation file will be lower).  

• Make sure you don’t start too many photons which never reach your setup. For far field simulations 

this involves a tight surrounding sphere. For terrestrial simulations you could add a black absorber 

behind your source. 

• Do not use an unnecessarily large world volume or you particles get tracked too long. 

• If you simulate a spectrum ranging over a vast energy range, make sure that the highest energy 

particles (which take the longest time to simulate) really contribute to your signal. Otherwise you 

might consider not to simulate them at all or separately to assess their impact on your result. 

• If this doesn’t help use more CPUs: Use mcosima for parallel simulations one machine, dcosima for 

distributed simulations, or your own cluster / supercomputer. 

10. Known limitations  
The following is an incomplete list of known problems/limitations with Geannt4/Cosima: 

• If using WatchedVolumes, for some rare cases (1:20,000,000 for my test case) it is possible that 

no ENTR/EXIT entry is generated even if there was a volume change. The reason is that no step 

with a volume change is propagated into MCSteppingAction (tested with 9.2.3)  

• The strip detectors are currently treated as voxel detectors 

• Activation simulations are currently limited by the capabilities of Geant4: some nuclear lines are 

missing, some have wrong intensities, etc. 

• The seed for the random number generator is based on the time in seconds – make sure to start 

identical simulations a few seconds apart to have different seeds, or supply your own seed ( -s 

command when you start cosima)! 
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11. Examples 

11.1. Simulating an all-sky map 

This example follows the code in resources/examples/advanced/AllSky to simulate the Al-26 emission using 

the DIRBE 240um emission as template. 

 

The run-section of source file looks as follows: 

 
Run MyRun 

MyRun.FileName                  AllSky.Al26 

MyRun.NTriggers                 100000 

MyRun.OrientationSky            Galactic File Loop GalacticScan.ori 

 

MyRun.Source MySource 

MySource.ParticleType                         1 

MySource.Beam FarFieldNormalizedEnergyBeamFluxFunction   AllSky_Al26.dat 

MySource.Orientation Galactic Fixed 90 180 

MySource.Spectrum NormalizedEnergyBeamFluxFunction 

MySource.FarFieldTransmissionProbability TransmissionProbabilities_EarthBlockage.dat 

 

The keyword “OrientationSky” tells cosima, that the simulation happens in Galactic coordinate, and the 

pointing of the local coordinate system in Galactic coordinates as a function of time is defined in the ori-file. 

 

The keywords “Beam FarFieldNormalizedEnergyBeamFlux” define the all-sky map, where fluxes in 

ph/cm2/s/keV/sr are given for each theta-phi grid-point in local spherical coordinates for the sky. Looking 

into the file, since we have a line source, we have to use three data points to describe the spectrum, the line 

point, and a close-by point below and above, at which the flux is zero: “EA 1808.719 1808.720 1808.721”. 

The flux values are calculated for a 1-eV line width around the true line energy. 

 

The keyword “Orientation” tells cosima where in Galactic corrdiantes the above map is. For a point source, 

this would be its coordinates in Galactic coordiantes, but since we have an all-sky map, we need to give the 

zenith location in Galactic coordinates (90, 180).  

 

The keywords “Spectrum NormalizedEnergyBeamFluxFunction” are telling cosima that the spectral 

parameters are defined in the map. 

 

The keyword “FarFieldTransmissionProbability” takes care of the Earth – we assume the Earth is in low-

Earth orbit with limb being at a zenith angle of 120 degrees: the file shows that we assume 100% 

transmission up to 120 degrees, 0% transmission at 121 degrees, and a linear interpolation in between. 

 

The example contains four predefined sky maps: 

AllSky_Al26_NormInnerGalaxyDiehl_DIRBE240um.dat is a Al-26 all-sky map following the DIRBE 240 

um map. The flux is normalized assuming a total flux of 0.00034 ph/cm2/s in the inner Galaxy.  

AllSky_Al26_NormInnerGalaxyDiehl_FreeFree.dat is the same as above just using the free-free emission as 

template. 

AllSky_Fe60_NormInnerGalaxyHarris_DIRBE240um.dat uses the DIRBE 240um map as template for the 

Fe-60 emission. The flux is normalized to 0.000037 ph/cm2/s in the inner Galaxy. 

AllSky_Fe60_NormInnerGalaxyHarris_FreeFree.dat is the same as above just using the free-free emission 

as template. 
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11.2. Other 

This is a brief description of the examples in the resources/examples/cosima/source directory: 

 

• ActivationStep1.source, ActivationStep2.source, ActivationStep3.source show how to simulate 

activation. Step 1 simulates the primary protons and collects information about the generated 

radioactive isotopes. Step 2 calculates the activation after a certain amount in space, and step 3 

simulated the radioactive decays. 

• AllBeamsAndSpectra.source performs a combined simulation of all beams and all spectra. This 

shows how to use all beams and spectra, and is a cross-check that all normalizations are correct. 

• Beam.source is a more detailed example on how to use the different beam types. 

• BlackAbsorber.source shows how to use the black absorber feature in Cosima (all particles entering 

the black absorber are stopped immediately). 

• CrabWithBackground.source, CrabOnly.source,, SuperCrab.source are an example on how to do 

astropyhsics simulations. 

• Disk.source shows how to use a disk source 

• EffectiveArea.source is used as an example in the Mimrec documentation showing how to 

determine effective areas of a space telescope. 

• EnergyResolutionTester.source is used in conjunction with the EnergyResolutionTester.geo,setup 

geometry to test the different energy resolution modes (Gauss, Gauss-Landau, etc.) 

• EntrExit.source shows how to use watched volumes resulting in the ENTR and EXIT keywords in 

the IA section of the sim file 

• RadioactiveDecay.source sets up a volume with radioactive elements and lets them decay 

• Run.source is the default example started if you launch cosima without a source file  

• StartAreaTube.source shows how to use a tube as start area instead of a surrounding sphere 

• Tomography.source simulates 3 point sources which have to be resolved by a simple tomography 

detector 

• UseCase1.source is part of the tutorial 

 

 


