/** * @fileoverview gl-matrix - High performance matrix and vector operations for WebGL * @author Brandon Jones * @author Colin MacKenzie IV * @version 1.3.7 */ /* * Copyright (c) 2012 Brandon Jones, Colin MacKenzie IV * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * * 2. Altered source versions must be plainly marked as such, and must not * be misrepresented as being the original software. * * 3. This notice may not be removed or altered from any source * distribution. */ // Updated to use a modification of the "returnExportsGlobal" pattern from https://github.com/umdjs/umd (function (root, factory) { if (typeof exports === 'object') { // Node. Does not work with strict CommonJS, but // only CommonJS-like enviroments that support module.exports, // like Node. module.exports = factory(global); } else if (typeof define === 'function' && define.amd) { // AMD. Register as an anonymous module. define([], function () { return factory(root); }); } else { // Browser globals factory(root); } }(this, function (root) { "use strict"; // Tweak to your liking var FLOAT_EPSILON = 0.000001; var glMath = {}; (function() { if (typeof(Float32Array) != 'undefined') { var y = new Float32Array(1); var i = new Int32Array(y.buffer); /** * Fast way to calculate the inverse square root, * see http://jsperf.com/inverse-square-root/5 * * If typed arrays are not available, a slower * implementation will be used. * * @param {Number} number the number * @returns {Number} Inverse square root */ glMath.invsqrt = function(number) { var x2 = number * 0.5; y[0] = number; var threehalfs = 1.5; i[0] = 0x5f3759df - (i[0] >> 1); var number2 = y[0]; return number2 * (threehalfs - (x2 * number2 * number2)); }; } else { glMath.invsqrt = function(number) { return 1.0 / Math.sqrt(number); }; } })(); /** * @class System-specific optimal array type * @name MatrixArray */ var MatrixArray = null; // explicitly sets and returns the type of array to use within glMatrix function setMatrixArrayType(type) { MatrixArray = type; return MatrixArray; } // auto-detects and returns the best type of array to use within glMatrix, falling // back to Array if typed arrays are unsupported function determineMatrixArrayType() { MatrixArray = (typeof Float32Array !== 'undefined') ? Float32Array : Array; return MatrixArray; } determineMatrixArrayType(); /** * @class 3 Dimensional Vector * @name vec3 */ var vec3 = {}; /** * Creates a new instance of a vec3 using the default array type * Any javascript array-like objects containing at least 3 numeric elements can serve as a vec3 * * @param {vec3} [vec] vec3 containing values to initialize with * * @returns {vec3} New vec3 */ vec3.create = function (vec) { var dest = new MatrixArray(3); if (vec) { dest[0] = vec[0]; dest[1] = vec[1]; dest[2] = vec[2]; } else { dest[0] = dest[1] = dest[2] = 0; } return dest; }; /** * Creates a new instance of a vec3, initializing it with the given arguments * * @param {number} x X value * @param {number} y Y value * @param {number} z Z value * @returns {vec3} New vec3 */ vec3.createFrom = function (x, y, z) { var dest = new MatrixArray(3); dest[0] = x; dest[1] = y; dest[2] = z; return dest; }; /** * Copies the values of one vec3 to another * * @param {vec3} vec vec3 containing values to copy * @param {vec3} dest vec3 receiving copied values * * @returns {vec3} dest */ vec3.set = function (vec, dest) { dest[0] = vec[0]; dest[1] = vec[1]; dest[2] = vec[2]; return dest; }; /** * Compares two vectors for equality within a certain margin of error * * @param {vec3} a First vector * @param {vec3} b Second vector * * @returns {Boolean} True if a is equivalent to b */ vec3.equal = function (a, b) { return a === b || ( Math.abs(a[0] - b[0]) < FLOAT_EPSILON && Math.abs(a[1] - b[1]) < FLOAT_EPSILON && Math.abs(a[2] - b[2]) < FLOAT_EPSILON ); }; /** * Performs a vector addition * * @param {vec3} vec First operand * @param {vec3} vec2 Second operand * @param {vec3} [dest] vec3 receiving operation result. If not specified result is written to vec * * @returns {vec3} dest if specified, vec otherwise */ vec3.add = function (vec, vec2, dest) { if (!dest || vec === dest) { vec[0] += vec2[0]; vec[1] += vec2[1]; vec[2] += vec2[2]; return vec; } dest[0] = vec[0] + vec2[0]; dest[1] = vec[1] + vec2[1]; dest[2] = vec[2] + vec2[2]; return dest; }; /** * Performs a vector subtraction * * @param {vec3} vec First operand * @param {vec3} vec2 Second operand * @param {vec3} [dest] vec3 receiving operation result. If not specified result is written to vec * * @returns {vec3} dest if specified, vec otherwise */ vec3.subtract = function (vec, vec2, dest) { if (!dest || vec === dest) { vec[0] -= vec2[0]; vec[1] -= vec2[1]; vec[2] -= vec2[2]; return vec; } dest[0] = vec[0] - vec2[0]; dest[1] = vec[1] - vec2[1]; dest[2] = vec[2] - vec2[2]; return dest; }; /** * Performs a vector multiplication * * @param {vec3} vec First operand * @param {vec3} vec2 Second operand * @param {vec3} [dest] vec3 receiving operation result. If not specified result is written to vec * * @returns {vec3} dest if specified, vec otherwise */ vec3.multiply = function (vec, vec2, dest) { if (!dest || vec === dest) { vec[0] *= vec2[0]; vec[1] *= vec2[1]; vec[2] *= vec2[2]; return vec; } dest[0] = vec[0] * vec2[0]; dest[1] = vec[1] * vec2[1]; dest[2] = vec[2] * vec2[2]; return dest; }; /** * Negates the components of a vec3 * * @param {vec3} vec vec3 to negate * @param {vec3} [dest] vec3 receiving operation result. If not specified result is written to vec * * @returns {vec3} dest if specified, vec otherwise */ vec3.negate = function (vec, dest) { if (!dest) { dest = vec; } dest[0] = -vec[0]; dest[1] = -vec[1]; dest[2] = -vec[2]; return dest; }; /** * Multiplies the components of a vec3 by a scalar value * * @param {vec3} vec vec3 to scale * @param {number} val Value to scale by * @param {vec3} [dest] vec3 receiving operation result. If not specified result is written to vec * * @returns {vec3} dest if specified, vec otherwise */ vec3.scale = function (vec, val, dest) { if (!dest || vec === dest) { vec[0] *= val; vec[1] *= val; vec[2] *= val; return vec; } dest[0] = vec[0] * val; dest[1] = vec[1] * val; dest[2] = vec[2] * val; return dest; }; /** * Generates a unit vector of the same direction as the provided vec3 * If vector length is 0, returns [0, 0, 0] * * @param {vec3} vec vec3 to normalize * @param {vec3} [dest] vec3 receiving operation result. If not specified result is written to vec * * @returns {vec3} dest if specified, vec otherwise */ vec3.normalize = function (vec, dest) { if (!dest) { dest = vec; } var x = vec[0], y = vec[1], z = vec[2], len = Math.sqrt(x * x + y * y + z * z); if (!len) { dest[0] = 0; dest[1] = 0; dest[2] = 0; return dest; } else if (len === 1) { dest[0] = x; dest[1] = y; dest[2] = z; return dest; } len = 1 / len; dest[0] = x * len; dest[1] = y * len; dest[2] = z * len; return dest; }; /** * Generates the cross product of two vec3s * * @param {vec3} vec First operand * @param {vec3} vec2 Second operand * @param {vec3} [dest] vec3 receiving operation result. If not specified result is written to vec * * @returns {vec3} dest if specified, vec otherwise */ vec3.cross = function (vec, vec2, dest) { if (!dest) { dest = vec; } var x = vec[0], y = vec[1], z = vec[2], x2 = vec2[0], y2 = vec2[1], z2 = vec2[2]; dest[0] = y * z2 - z * y2; dest[1] = z * x2 - x * z2; dest[2] = x * y2 - y * x2; return dest; }; /** * Caclulates the length of a vec3 * * @param {vec3} vec vec3 to calculate length of * * @returns {number} Length of vec */ vec3.length = function (vec) { var x = vec[0], y = vec[1], z = vec[2]; return Math.sqrt(x * x + y * y + z * z); }; /** * Caclulates the squared length of a vec3 * * @param {vec3} vec vec3 to calculate squared length of * * @returns {number} Squared Length of vec */ vec3.squaredLength = function (vec) { var x = vec[0], y = vec[1], z = vec[2]; return x * x + y * y + z * z; }; /** * Caclulates the dot product of two vec3s * * @param {vec3} vec First operand * @param {vec3} vec2 Second operand * * @returns {number} Dot product of vec and vec2 */ vec3.dot = function (vec, vec2) { return vec[0] * vec2[0] + vec[1] * vec2[1] + vec[2] * vec2[2]; }; /** * Generates a unit vector pointing from one vector to another * * @param {vec3} vec Origin vec3 * @param {vec3} vec2 vec3 to point to * @param {vec3} [dest] vec3 receiving operation result. If not specified result is written to vec * * @returns {vec3} dest if specified, vec otherwise */ vec3.direction = function (vec, vec2, dest) { if (!dest) { dest = vec; } var x = vec[0] - vec2[0], y = vec[1] - vec2[1], z = vec[2] - vec2[2], len = Math.sqrt(x * x + y * y + z * z); if (!len) { dest[0] = 0; dest[1] = 0; dest[2] = 0; return dest; } len = 1 / len; dest[0] = x * len; dest[1] = y * len; dest[2] = z * len; return dest; }; /** * Performs a linear interpolation between two vec3 * * @param {vec3} vec First vector * @param {vec3} vec2 Second vector * @param {number} lerp Interpolation amount between the two inputs * @param {vec3} [dest] vec3 receiving operation result. If not specified result is written to vec * * @returns {vec3} dest if specified, vec otherwise */ vec3.lerp = function (vec, vec2, lerp, dest) { if (!dest) { dest = vec; } dest[0] = vec[0] + lerp * (vec2[0] - vec[0]); dest[1] = vec[1] + lerp * (vec2[1] - vec[1]); dest[2] = vec[2] + lerp * (vec2[2] - vec[2]); return dest; }; /** * Calculates the euclidian distance between two vec3 * * Params: * @param {vec3} vec First vector * @param {vec3} vec2 Second vector * * @returns {number} Distance between vec and vec2 */ vec3.dist = function (vec, vec2) { var x = vec2[0] - vec[0], y = vec2[1] - vec[1], z = vec2[2] - vec[2]; return Math.sqrt(x*x + y*y + z*z); }; // Pre-allocated to prevent unecessary garbage collection var unprojectMat = null; var unprojectVec = new MatrixArray(4); /** * Projects the specified vec3 from screen space into object space * Based on the <a href="http://webcvs.freedesktop.org/mesa/Mesa/src/glu/mesa/project.c?revision=1.4&view=markup">Mesa gluUnProject implementation</a> * * @param {vec3} vec Screen-space vector to project * @param {mat4} view View matrix * @param {mat4} proj Projection matrix * @param {vec4} viewport Viewport as given to gl.viewport [x, y, width, height] * @param {vec3} [dest] vec3 receiving unprojected result. If not specified result is written to vec * * @returns {vec3} dest if specified, vec otherwise */ vec3.unproject = function (vec, view, proj, viewport, dest) { if (!dest) { dest = vec; } if(!unprojectMat) { unprojectMat = mat4.create(); } var m = unprojectMat; var v = unprojectVec; v[0] = (vec[0] - viewport[0]) * 2.0 / viewport[2] - 1.0; v[1] = (vec[1] - viewport[1]) * 2.0 / viewport[3] - 1.0; v[2] = 2.0 * vec[2] - 1.0; v[3] = 1.0; mat4.multiply(proj, view, m); if(!mat4.inverse(m)) { return null; } mat4.multiplyVec4(m, v); if(v[3] === 0.0) { return null; } dest[0] = v[0] / v[3]; dest[1] = v[1] / v[3]; dest[2] = v[2] / v[3]; return dest; }; var xUnitVec3 = vec3.createFrom(1,0,0); var yUnitVec3 = vec3.createFrom(0,1,0); var zUnitVec3 = vec3.createFrom(0,0,1); var tmpvec3 = vec3.create(); /** * Generates a quaternion of rotation between two given normalized vectors * * @param {vec3} a Normalized source vector * @param {vec3} b Normalized target vector * @param {quat4} [dest] quat4 receiving operation result. * * @returns {quat4} dest if specified, a new quat4 otherwise */ vec3.rotationTo = function (a, b, dest) { if (!dest) { dest = quat4.create(); } var d = vec3.dot(a, b); var axis = tmpvec3; if (d >= 1.0) { quat4.set(identityQuat4, dest); } else if (d < (0.000001 - 1.0)) { vec3.cross(xUnitVec3, a, axis); if (vec3.length(axis) < 0.000001) vec3.cross(yUnitVec3, a, axis); if (vec3.length(axis) < 0.000001) vec3.cross(zUnitVec3, a, axis); vec3.normalize(axis); quat4.fromAngleAxis(Math.PI, axis, dest); } else { var s = Math.sqrt((1.0 + d) * 2.0); var sInv = 1.0 / s; vec3.cross(a, b, axis); dest[0] = axis[0] * sInv; dest[1] = axis[1] * sInv; dest[2] = axis[2] * sInv; dest[3] = s * 0.5; quat4.normalize(dest); } if (dest[3] > 1.0) dest[3] = 1.0; else if (dest[3] < -1.0) dest[3] = -1.0; return dest; }; /** * Returns a string representation of a vector * * @param {vec3} vec Vector to represent as a string * * @returns {string} String representation of vec */ vec3.str = function (vec) { return '[' + vec[0] + ', ' + vec[1] + ', ' + vec[2] + ']'; }; /** * @class 3x3 Matrix * @name mat3 */ var mat3 = {}; /** * Creates a new instance of a mat3 using the default array type * Any javascript array-like object containing at least 9 numeric elements can serve as a mat3 * * @param {mat3} [mat] mat3 containing values to initialize with * * @returns {mat3} New mat3 */ mat3.create = function (mat) { var dest = new MatrixArray(9); if (mat) { dest[0] = mat[0]; dest[1] = mat[1]; dest[2] = mat[2]; dest[3] = mat[3]; dest[4] = mat[4]; dest[5] = mat[5]; dest[6] = mat[6]; dest[7] = mat[7]; dest[8] = mat[8]; } else { dest[0] = dest[1] = dest[2] = dest[3] = dest[4] = dest[5] = dest[6] = dest[7] = dest[8] = 0; } return dest; }; /** * Creates a new instance of a mat3, initializing it with the given arguments * * @param {number} m00 * @param {number} m01 * @param {number} m02 * @param {number} m10 * @param {number} m11 * @param {number} m12 * @param {number} m20 * @param {number} m21 * @param {number} m22 * @returns {mat3} New mat3 */ mat3.createFrom = function (m00, m01, m02, m10, m11, m12, m20, m21, m22) { var dest = new MatrixArray(9); dest[0] = m00; dest[1] = m01; dest[2] = m02; dest[3] = m10; dest[4] = m11; dest[5] = m12; dest[6] = m20; dest[7] = m21; dest[8] = m22; return dest; }; /** * Calculates the determinant of a mat3 * * @param {mat3} mat mat3 to calculate determinant of * * @returns {Number} determinant of mat */ mat3.determinant = function (mat) { var a00 = mat[0], a01 = mat[1], a02 = mat[2], a10 = mat[3], a11 = mat[4], a12 = mat[5], a20 = mat[6], a21 = mat[7], a22 = mat[8]; return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20); }; /** * Calculates the inverse matrix of a mat3 * * @param {mat3} mat mat3 to calculate inverse of * @param {mat3} [dest] mat3 receiving inverse matrix. If not specified result is written to mat * * @param {mat3} dest is specified, mat otherwise, null if matrix cannot be inverted */ mat3.inverse = function (mat, dest) { var a00 = mat[0], a01 = mat[1], a02 = mat[2], a10 = mat[3], a11 = mat[4], a12 = mat[5], a20 = mat[6], a21 = mat[7], a22 = mat[8], b01 = a22 * a11 - a12 * a21, b11 = -a22 * a10 + a12 * a20, b21 = a21 * a10 - a11 * a20, d = a00 * b01 + a01 * b11 + a02 * b21, id; if (!d) { return null; } id = 1 / d; if (!dest) { dest = mat3.create(); } dest[0] = b01 * id; dest[1] = (-a22 * a01 + a02 * a21) * id; dest[2] = (a12 * a01 - a02 * a11) * id; dest[3] = b11 * id; dest[4] = (a22 * a00 - a02 * a20) * id; dest[5] = (-a12 * a00 + a02 * a10) * id; dest[6] = b21 * id; dest[7] = (-a21 * a00 + a01 * a20) * id; dest[8] = (a11 * a00 - a01 * a10) * id; return dest; }; /** * Performs a matrix multiplication * * @param {mat3} mat First operand * @param {mat3} mat2 Second operand * @param {mat3} [dest] mat3 receiving operation result. If not specified result is written to mat * * @returns {mat3} dest if specified, mat otherwise */ mat3.multiply = function (mat, mat2, dest) { if (!dest) { dest = mat; } // Cache the matrix values (makes for huge speed increases!) var a00 = mat[0], a01 = mat[1], a02 = mat[2], a10 = mat[3], a11 = mat[4], a12 = mat[5], a20 = mat[6], a21 = mat[7], a22 = mat[8], b00 = mat2[0], b01 = mat2[1], b02 = mat2[2], b10 = mat2[3], b11 = mat2[4], b12 = mat2[5], b20 = mat2[6], b21 = mat2[7], b22 = mat2[8]; dest[0] = b00 * a00 + b01 * a10 + b02 * a20; dest[1] = b00 * a01 + b01 * a11 + b02 * a21; dest[2] = b00 * a02 + b01 * a12 + b02 * a22; dest[3] = b10 * a00 + b11 * a10 + b12 * a20; dest[4] = b10 * a01 + b11 * a11 + b12 * a21; dest[5] = b10 * a02 + b11 * a12 + b12 * a22; dest[6] = b20 * a00 + b21 * a10 + b22 * a20; dest[7] = b20 * a01 + b21 * a11 + b22 * a21; dest[8] = b20 * a02 + b21 * a12 + b22 * a22; return dest; }; /** * Transforms the vec2 according to the given mat3. * * @param {mat3} matrix mat3 to multiply against * @param {vec2} vec the vector to multiply * @param {vec2} [dest] an optional receiving vector. If not given, vec is used. * * @returns {vec2} The multiplication result **/ mat3.multiplyVec2 = function(matrix, vec, dest) { if (!dest) dest = vec; var x = vec[0], y = vec[1]; dest[0] = x * matrix[0] + y * matrix[3] + matrix[6]; dest[1] = x * matrix[1] + y * matrix[4] + matrix[7]; return dest; }; /** * Transforms the vec3 according to the given mat3 * * @param {mat3} matrix mat3 to multiply against * @param {vec3} vec the vector to multiply * @param {vec3} [dest] an optional receiving vector. If not given, vec is used. * * @returns {vec3} The multiplication result **/ mat3.multiplyVec3 = function(matrix, vec, dest) { if (!dest) dest = vec; var x = vec[0], y = vec[1], z = vec[2]; dest[0] = x * matrix[0] + y * matrix[3] + z * matrix[6]; dest[1] = x * matrix[1] + y * matrix[4] + z * matrix[7]; dest[2] = x * matrix[2] + y * matrix[5] + z * matrix[8]; return dest; }; /** * Copies the values of one mat3 to another * * @param {mat3} mat mat3 containing values to copy * @param {mat3} dest mat3 receiving copied values * * @returns {mat3} dest */ mat3.set = function (mat, dest) { dest[0] = mat[0]; dest[1] = mat[1]; dest[2] = mat[2]; dest[3] = mat[3]; dest[4] = mat[4]; dest[5] = mat[5]; dest[6] = mat[6]; dest[7] = mat[7]; dest[8] = mat[8]; return dest; }; /** * Compares two matrices for equality within a certain margin of error * * @param {mat3} a First matrix * @param {mat3} b Second matrix * * @returns {Boolean} True if a is equivalent to b */ mat3.equal = function (a, b) { return a === b || ( Math.abs(a[0] - b[0]) < FLOAT_EPSILON && Math.abs(a[1] - b[1]) < FLOAT_EPSILON && Math.abs(a[2] - b[2]) < FLOAT_EPSILON && Math.abs(a[3] - b[3]) < FLOAT_EPSILON && Math.abs(a[4] - b[4]) < FLOAT_EPSILON && Math.abs(a[5] - b[5]) < FLOAT_EPSILON && Math.abs(a[6] - b[6]) < FLOAT_EPSILON && Math.abs(a[7] - b[7]) < FLOAT_EPSILON && Math.abs(a[8] - b[8]) < FLOAT_EPSILON ); }; /** * Sets a mat3 to an identity matrix * * @param {mat3} dest mat3 to set * * @returns dest if specified, otherwise a new mat3 */ mat3.identity = function (dest) { if (!dest) { dest = mat3.create(); } dest[0] = 1; dest[1] = 0; dest[2] = 0; dest[3] = 0; dest[4] = 1; dest[5] = 0; dest[6] = 0; dest[7] = 0; dest[8] = 1; return dest; }; /** * Transposes a mat3 (flips the values over the diagonal) * * Params: * @param {mat3} mat mat3 to transpose * @param {mat3} [dest] mat3 receiving transposed values. If not specified result is written to mat * * @returns {mat3} dest is specified, mat otherwise */ mat3.transpose = function (mat, dest) { // If we are transposing ourselves we can skip a few steps but have to cache some values if (!dest || mat === dest) { var a01 = mat[1], a02 = mat[2], a12 = mat[5]; mat[1] = mat[3]; mat[2] = mat[6]; mat[3] = a01; mat[5] = mat[7]; mat[6] = a02; mat[7] = a12; return mat; } dest[0] = mat[0]; dest[1] = mat[3]; dest[2] = mat[6]; dest[3] = mat[1]; dest[4] = mat[4]; dest[5] = mat[7]; dest[6] = mat[2]; dest[7] = mat[5]; dest[8] = mat[8]; return dest; }; /** * Copies the elements of a mat3 into the upper 3x3 elements of a mat4 * * @param {mat3} mat mat3 containing values to copy * @param {mat4} [dest] mat4 receiving copied values * * @returns {mat4} dest if specified, a new mat4 otherwise */ mat3.toMat4 = function (mat, dest) { if (!dest) { dest = mat4.create(); } dest[15] = 1; dest[14] = 0; dest[13] = 0; dest[12] = 0; dest[11] = 0; dest[10] = mat[8]; dest[9] = mat[7]; dest[8] = mat[6]; dest[7] = 0; dest[6] = mat[5]; dest[5] = mat[4]; dest[4] = mat[3]; dest[3] = 0; dest[2] = mat[2]; dest[1] = mat[1]; dest[0] = mat[0]; return dest; }; /** * Returns a string representation of a mat3 * * @param {mat3} mat mat3 to represent as a string * * @param {string} String representation of mat */ mat3.str = function (mat) { return '[' + mat[0] + ', ' + mat[1] + ', ' + mat[2] + ', ' + mat[3] + ', ' + mat[4] + ', ' + mat[5] + ', ' + mat[6] + ', ' + mat[7] + ', ' + mat[8] + ']'; }; /** * @class 4x4 Matrix * @name mat4 */ var mat4 = {}; /** * Creates a new instance of a mat4 using the default array type * Any javascript array-like object containing at least 16 numeric elements can serve as a mat4 * * @param {mat4} [mat] mat4 containing values to initialize with * * @returns {mat4} New mat4 */ mat4.create = function (mat) { var dest = new MatrixArray(16); if (mat) { dest[0] = mat[0]; dest[1] = mat[1]; dest[2] = mat[2]; dest[3] = mat[3]; dest[4] = mat[4]; dest[5] = mat[5]; dest[6] = mat[6]; dest[7] = mat[7]; dest[8] = mat[8]; dest[9] = mat[9]; dest[10] = mat[10]; dest[11] = mat[11]; dest[12] = mat[12]; dest[13] = mat[13]; dest[14] = mat[14]; dest[15] = mat[15]; } return dest; }; /** * Creates a new instance of a mat4, initializing it with the given arguments * * @param {number} m00 * @param {number} m01 * @param {number} m02 * @param {number} m03 * @param {number} m10 * @param {number} m11 * @param {number} m12 * @param {number} m13 * @param {number} m20 * @param {number} m21 * @param {number} m22 * @param {number} m23 * @param {number} m30 * @param {number} m31 * @param {number} m32 * @param {number} m33 * @returns {mat4} New mat4 */ mat4.createFrom = function (m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) { var dest = new MatrixArray(16); dest[0] = m00; dest[1] = m01; dest[2] = m02; dest[3] = m03; dest[4] = m10; dest[5] = m11; dest[6] = m12; dest[7] = m13; dest[8] = m20; dest[9] = m21; dest[10] = m22; dest[11] = m23; dest[12] = m30; dest[13] = m31; dest[14] = m32; dest[15] = m33; return dest; }; /** * Copies the values of one mat4 to another * * @param {mat4} mat mat4 containing values to copy * @param {mat4} dest mat4 receiving copied values * * @returns {mat4} dest */ mat4.set = function (mat, dest) { dest[0] = mat[0]; dest[1] = mat[1]; dest[2] = mat[2]; dest[3] = mat[3]; dest[4] = mat[4]; dest[5] = mat[5]; dest[6] = mat[6]; dest[7] = mat[7]; dest[8] = mat[8]; dest[9] = mat[9]; dest[10] = mat[10]; dest[11] = mat[11]; dest[12] = mat[12]; dest[13] = mat[13]; dest[14] = mat[14]; dest[15] = mat[15]; return dest; }; /** * Compares two matrices for equality within a certain margin of error * * @param {mat4} a First matrix * @param {mat4} b Second matrix * * @returns {Boolean} True if a is equivalent to b */ mat4.equal = function (a, b) { return a === b || ( Math.abs(a[0] - b[0]) < FLOAT_EPSILON && Math.abs(a[1] - b[1]) < FLOAT_EPSILON && Math.abs(a[2] - b[2]) < FLOAT_EPSILON && Math.abs(a[3] - b[3]) < FLOAT_EPSILON && Math.abs(a[4] - b[4]) < FLOAT_EPSILON && Math.abs(a[5] - b[5]) < FLOAT_EPSILON && Math.abs(a[6] - b[6]) < FLOAT_EPSILON && Math.abs(a[7] - b[7]) < FLOAT_EPSILON && Math.abs(a[8] - b[8]) < FLOAT_EPSILON && Math.abs(a[9] - b[9]) < FLOAT_EPSILON && Math.abs(a[10] - b[10]) < FLOAT_EPSILON && Math.abs(a[11] - b[11]) < FLOAT_EPSILON && Math.abs(a[12] - b[12]) < FLOAT_EPSILON && Math.abs(a[13] - b[13]) < FLOAT_EPSILON && Math.abs(a[14] - b[14]) < FLOAT_EPSILON && Math.abs(a[15] - b[15]) < FLOAT_EPSILON ); }; /** * Sets a mat4 to an identity matrix * * @param {mat4} dest mat4 to set * * @returns {mat4} dest */ mat4.identity = function (dest) { if (!dest) { dest = mat4.create(); } dest[0] = 1; dest[1] = 0; dest[2] = 0; dest[3] = 0; dest[4] = 0; dest[5] = 1; dest[6] = 0; dest[7] = 0; dest[8] = 0; dest[9] = 0; dest[10] = 1; dest[11] = 0; dest[12] = 0; dest[13] = 0; dest[14] = 0; dest[15] = 1; return dest; }; /** * Transposes a mat4 (flips the values over the diagonal) * * @param {mat4} mat mat4 to transpose * @param {mat4} [dest] mat4 receiving transposed values. If not specified result is written to mat * * @param {mat4} dest is specified, mat otherwise */ mat4.transpose = function (mat, dest) { // If we are transposing ourselves we can skip a few steps but have to cache some values if (!dest || mat === dest) { var a01 = mat[1], a02 = mat[2], a03 = mat[3], a12 = mat[6], a13 = mat[7], a23 = mat[11]; mat[1] = mat[4]; mat[2] = mat[8]; mat[3] = mat[12]; mat[4] = a01; mat[6] = mat[9]; mat[7] = mat[13]; mat[8] = a02; mat[9] = a12; mat[11] = mat[14]; mat[12] = a03; mat[13] = a13; mat[14] = a23; return mat; } dest[0] = mat[0]; dest[1] = mat[4]; dest[2] = mat[8]; dest[3] = mat[12]; dest[4] = mat[1]; dest[5] = mat[5]; dest[6] = mat[9]; dest[7] = mat[13]; dest[8] = mat[2]; dest[9] = mat[6]; dest[10] = mat[10]; dest[11] = mat[14]; dest[12] = mat[3]; dest[13] = mat[7]; dest[14] = mat[11]; dest[15] = mat[15]; return dest; }; /** * Calculates the determinant of a mat4 * * @param {mat4} mat mat4 to calculate determinant of * * @returns {number} determinant of mat */ mat4.determinant = function (mat) { // Cache the matrix values (makes for huge speed increases!) var a00 = mat[0], a01 = mat[1], a02 = mat[2], a03 = mat[3], a10 = mat[4], a11 = mat[5], a12 = mat[6], a13 = mat[7], a20 = mat[8], a21 = mat[9], a22 = mat[10], a23 = mat[11], a30 = mat[12], a31 = mat[13], a32 = mat[14], a33 = mat[15]; return (a30 * a21 * a12 * a03 - a20 * a31 * a12 * a03 - a30 * a11 * a22 * a03 + a10 * a31 * a22 * a03 + a20 * a11 * a32 * a03 - a10 * a21 * a32 * a03 - a30 * a21 * a02 * a13 + a20 * a31 * a02 * a13 + a30 * a01 * a22 * a13 - a00 * a31 * a22 * a13 - a20 * a01 * a32 * a13 + a00 * a21 * a32 * a13 + a30 * a11 * a02 * a23 - a10 * a31 * a02 * a23 - a30 * a01 * a12 * a23 + a00 * a31 * a12 * a23 + a10 * a01 * a32 * a23 - a00 * a11 * a32 * a23 - a20 * a11 * a02 * a33 + a10 * a21 * a02 * a33 + a20 * a01 * a12 * a33 - a00 * a21 * a12 * a33 - a10 * a01 * a22 * a33 + a00 * a11 * a22 * a33); }; /** * Calculates the inverse matrix of a mat4 * * @param {mat4} mat mat4 to calculate inverse of * @param {mat4} [dest] mat4 receiving inverse matrix. If not specified result is written to mat * * @param {mat4} dest is specified, mat otherwise, null if matrix cannot be inverted */ mat4.inverse = function (mat, dest) { if (!dest) { dest = mat; } // Cache the matrix values (makes for huge speed increases!) var a00 = mat[0], a01 = mat[1], a02 = mat[2], a03 = mat[3], a10 = mat[4], a11 = mat[5], a12 = mat[6], a13 = mat[7], a20 = mat[8], a21 = mat[9], a22 = mat[10], a23 = mat[11], a30 = mat[12], a31 = mat[13], a32 = mat[14], a33 = mat[15], b00 = a00 * a11 - a01 * a10, b01 = a00 * a12 - a02 * a10, b02 = a00 * a13 - a03 * a10, b03 = a01 * a12 - a02 * a11, b04 = a01 * a13 - a03 * a11, b05 = a02 * a13 - a03 * a12, b06 = a20 * a31 - a21 * a30, b07 = a20 * a32 - a22 * a30, b08 = a20 * a33 - a23 * a30, b09 = a21 * a32 - a22 * a31, b10 = a21 * a33 - a23 * a31, b11 = a22 * a33 - a23 * a32, d = (b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06), invDet; // Calculate the determinant if (!d) { return null; } invDet = 1 / d; dest[0] = (a11 * b11 - a12 * b10 + a13 * b09) * invDet; dest[1] = (-a01 * b11 + a02 * b10 - a03 * b09) * invDet; dest[2] = (a31 * b05 - a32 * b04 + a33 * b03) * invDet; dest[3] = (-a21 * b05 + a22 * b04 - a23 * b03) * invDet; dest[4] = (-a10 * b11 + a12 * b08 - a13 * b07) * invDet; dest[5] = (a00 * b11 - a02 * b08 + a03 * b07) * invDet; dest[6] = (-a30 * b05 + a32 * b02 - a33 * b01) * invDet; dest[7] = (a20 * b05 - a22 * b02 + a23 * b01) * invDet; dest[8] = (a10 * b10 - a11 * b08 + a13 * b06) * invDet; dest[9] = (-a00 * b10 + a01 * b08 - a03 * b06) * invDet; dest[10] = (a30 * b04 - a31 * b02 + a33 * b00) * invDet; dest[11] = (-a20 * b04 + a21 * b02 - a23 * b00) * invDet; dest[12] = (-a10 * b09 + a11 * b07 - a12 * b06) * invDet; dest[13] = (a00 * b09 - a01 * b07 + a02 * b06) * invDet; dest[14] = (-a30 * b03 + a31 * b01 - a32 * b00) * invDet; dest[15] = (a20 * b03 - a21 * b01 + a22 * b00) * invDet; return dest; }; /** * Copies the upper 3x3 elements of a mat4 into another mat4 * * @param {mat4} mat mat4 containing values to copy * @param {mat4} [dest] mat4 receiving copied values * * @returns {mat4} dest is specified, a new mat4 otherwise */ mat4.toRotationMat = function (mat, dest) { if (!dest) { dest = mat4.create(); } dest[0] = mat[0]; dest[1] = mat[1]; dest[2] = mat[2]; dest[3] = mat[3]; dest[4] = mat[4]; dest[5] = mat[5]; dest[6] = mat[6]; dest[7] = mat[7]; dest[8] = mat[8]; dest[9] = mat[9]; dest[10] = mat[10]; dest[11] = mat[11]; dest[12] = 0; dest[13] = 0; dest[14] = 0; dest[15] = 1; return dest; }; /** * Copies the upper 3x3 elements of a mat4 into a mat3 * * @param {mat4} mat mat4 containing values to copy * @param {mat3} [dest] mat3 receiving copied values * * @returns {mat3} dest is specified, a new mat3 otherwise */ mat4.toMat3 = function (mat, dest) { if (!dest) { dest = mat3.create(); } dest[0] = mat[0]; dest[1] = mat[1]; dest[2] = mat[2]; dest[3] = mat[4]; dest[4] = mat[5]; dest[5] = mat[6]; dest[6] = mat[8]; dest[7] = mat[9]; dest[8] = mat[10]; return dest; }; /** * Calculates the inverse of the upper 3x3 elements of a mat4 and copies the result into a mat3 * The resulting matrix is useful for calculating transformed normals * * Params: * @param {mat4} mat mat4 containing values to invert and copy * @param {mat3} [dest] mat3 receiving values * * @returns {mat3} dest is specified, a new mat3 otherwise, null if the matrix cannot be inverted */ mat4.toInverseMat3 = function (mat, dest) { // Cache the matrix values (makes for huge speed increases!) var a00 = mat[0], a01 = mat[1], a02 = mat[2], a10 = mat[4], a11 = mat[5], a12 = mat[6], a20 = mat[8], a21 = mat[9], a22 = mat[10], b01 = a22 * a11 - a12 * a21, b11 = -a22 * a10 + a12 * a20, b21 = a21 * a10 - a11 * a20, d = a00 * b01 + a01 * b11 + a02 * b21, id; if (!d) { return null; } id = 1 / d; if (!dest) { dest = mat3.create(); } dest[0] = b01 * id; dest[1] = (-a22 * a01 + a02 * a21) * id; dest[2] = (a12 * a01 - a02 * a11) * id; dest[3] = b11 * id; dest[4] = (a22 * a00 - a02 * a20) * id; dest[5] = (-a12 * a00 + a02 * a10) * id; dest[6] = b21 * id; dest[7] = (-a21 * a00 + a01 * a20) * id; dest[8] = (a11 * a00 - a01 * a10) * id; return dest; }; /** * Performs a matrix multiplication * * @param {mat4} mat First operand * @param {mat4} mat2 Second operand * @param {mat4} [dest] mat4 receiving operation result. If not specified result is written to mat * * @returns {mat4} dest if specified, mat otherwise */ mat4.multiply = function (mat, mat2, dest) { if (!dest) { dest = mat; } // Cache the matrix values (makes for huge speed increases!) var a00 = mat[ 0], a01 = mat[ 1], a02 = mat[ 2], a03 = mat[3]; var a10 = mat[ 4], a11 = mat[ 5], a12 = mat[ 6], a13 = mat[7]; var a20 = mat[ 8], a21 = mat[ 9], a22 = mat[10], a23 = mat[11]; var a30 = mat[12], a31 = mat[13], a32 = mat[14], a33 = mat[15]; // Cache only the current line of the second matrix var b0 = mat2[0], b1 = mat2[1], b2 = mat2[2], b3 = mat2[3]; dest[0] = b0*a00 + b1*a10 + b2*a20 + b3*a30; dest[1] = b0*a01 + b1*a11 + b2*a21 + b3*a31; dest[2] = b0*a02 + b1*a12 + b2*a22 + b3*a32; dest[3] = b0*a03 + b1*a13 + b2*a23 + b3*a33; b0 = mat2[4]; b1 = mat2[5]; b2 = mat2[6]; b3 = mat2[7]; dest[4] = b0*a00 + b1*a10 + b2*a20 + b3*a30; dest[5] = b0*a01 + b1*a11 + b2*a21 + b3*a31; dest[6] = b0*a02 + b1*a12 + b2*a22 + b3*a32; dest[7] = b0*a03 + b1*a13 + b2*a23 + b3*a33; b0 = mat2[8]; b1 = mat2[9]; b2 = mat2[10]; b3 = mat2[11]; dest[8] = b0*a00 + b1*a10 + b2*a20 + b3*a30; dest[9] = b0*a01 + b1*a11 + b2*a21 + b3*a31; dest[10] = b0*a02 + b1*a12 + b2*a22 + b3*a32; dest[11] = b0*a03 + b1*a13 + b2*a23 + b3*a33; b0 = mat2[12]; b1 = mat2[13]; b2 = mat2[14]; b3 = mat2[15]; dest[12] = b0*a00 + b1*a10 + b2*a20 + b3*a30; dest[13] = b0*a01 + b1*a11 + b2*a21 + b3*a31; dest[14] = b0*a02 + b1*a12 + b2*a22 + b3*a32; dest[15] = b0*a03 + b1*a13 + b2*a23 + b3*a33; return dest; }; /** * Transforms a vec3 with the given matrix * 4th vector component is implicitly '1' * * @param {mat4} mat mat4 to transform the vector with * @param {vec3} vec vec3 to transform * @param {vec3} [dest] vec3 receiving operation result. If not specified result is written to vec * * @returns {vec3} dest if specified, vec otherwise */ mat4.multiplyVec3 = function (mat, vec, dest) { if (!dest) { dest = vec; } var x = vec[0], y = vec[1], z = vec[2]; dest[0] = mat[0] * x + mat[4] * y + mat[8] * z + mat[12]; dest[1] = mat[1] * x + mat[5] * y + mat[9] * z + mat[13]; dest[2] = mat[2] * x + mat[6] * y + mat[10] * z + mat[14]; return dest; }; /** * Transforms a vec4 with the given matrix * * @param {mat4} mat mat4 to transform the vector with * @param {vec4} vec vec4 to transform * @param {vec4} [dest] vec4 receiving operation result. If not specified result is written to vec * * @returns {vec4} dest if specified, vec otherwise */ mat4.multiplyVec4 = function (mat, vec, dest) { if (!dest) { dest = vec; } var x = vec[0], y = vec[1], z = vec[2], w = vec[3]; dest[0] = mat[0] * x + mat[4] * y + mat[8] * z + mat[12] * w; dest[1] = mat[1] * x + mat[5] * y + mat[9] * z + mat[13] * w; dest[2] = mat[2] * x + mat[6] * y + mat[10] * z + mat[14] * w; dest[3] = mat[3] * x + mat[7] * y + mat[11] * z + mat[15] * w; return dest; }; /** * Translates a matrix by the given vector * * @param {mat4} mat mat4 to translate * @param {vec3} vec vec3 specifying the translation * @param {mat4} [dest] mat4 receiving operation result. If not specified result is written to mat * * @returns {mat4} dest if specified, mat otherwise */ mat4.translate = function (mat, vec, dest) { var x = vec[0], y = vec[1], z = vec[2], a00, a01, a02, a03, a10, a11, a12, a13, a20, a21, a22, a23; if (!dest || mat === dest) { mat[12] = mat[0] * x + mat[4] * y + mat[8] * z + mat[12]; mat[13] = mat[1] * x + mat[5] * y + mat[9] * z + mat[13]; mat[14] = mat[2] * x + mat[6] * y + mat[10] * z + mat[14]; mat[15] = mat[3] * x + mat[7] * y + mat[11] * z + mat[15]; return mat; } a00 = mat[0]; a01 = mat[1]; a02 = mat[2]; a03 = mat[3]; a10 = mat[4]; a11 = mat[5]; a12 = mat[6]; a13 = mat[7]; a20 = mat[8]; a21 = mat[9]; a22 = mat[10]; a23 = mat[11]; dest[0] = a00; dest[1] = a01; dest[2] = a02; dest[3] = a03; dest[4] = a10; dest[5] = a11; dest[6] = a12; dest[7] = a13; dest[8] = a20; dest[9] = a21; dest[10] = a22; dest[11] = a23; dest[12] = a00 * x + a10 * y + a20 * z + mat[12]; dest[13] = a01 * x + a11 * y + a21 * z + mat[13]; dest[14] = a02 * x + a12 * y + a22 * z + mat[14]; dest[15] = a03 * x + a13 * y + a23 * z + mat[15]; return dest; }; /** * Scales a matrix by the given vector * * @param {mat4} mat mat4 to scale * @param {vec3} vec vec3 specifying the scale for each axis * @param {mat4} [dest] mat4 receiving operation result. If not specified result is written to mat * * @param {mat4} dest if specified, mat otherwise */ mat4.scale = function (mat, vec, dest) { var x = vec[0], y = vec[1], z = vec[2]; if (!dest || mat === dest) { mat[0] *= x; mat[1] *= x; mat[2] *= x; mat[3] *= x; mat[4] *= y; mat[5] *= y; mat[6] *= y; mat[7] *= y; mat[8] *= z; mat[9] *= z; mat[10] *= z; mat[11] *= z; return mat; } dest[0] = mat[0] * x; dest[1] = mat[1] * x; dest[2] = mat[2] * x; dest[3] = mat[3] * x; dest[4] = mat[4] * y; dest[5] = mat[5] * y; dest[6] = mat[6] * y; dest[7] = mat[7] * y; dest[8] = mat[8] * z; dest[9] = mat[9] * z; dest[10] = mat[10] * z; dest[11] = mat[11] * z; dest[12] = mat[12]; dest[13] = mat[13]; dest[14] = mat[14]; dest[15] = mat[15]; return dest; }; /** * Rotates a matrix by the given angle around the specified axis * If rotating around a primary axis (X,Y,Z) one of the specialized rotation functions should be used instead for performance * * @param {mat4} mat mat4 to rotate * @param {number} angle Angle (in radians) to rotate * @param {vec3} axis vec3 representing the axis to rotate around * @param {mat4} [dest] mat4 receiving operation result. If not specified result is written to mat * * @returns {mat4} dest if specified, mat otherwise */ mat4.rotate = function (mat, angle, axis, dest) { var x = axis[0], y = axis[1], z = axis[2], len = Math.sqrt(x * x + y * y + z * z), s, c, t, a00, a01, a02, a03, a10, a11, a12, a13, a20, a21, a22, a23, b00, b01, b02, b10, b11, b12, b20, b21, b22; if (!len) { return null; } if (len !== 1) { len = 1 / len; x *= len; y *= len; z *= len; } s = Math.sin(angle); c = Math.cos(angle); t = 1 - c; a00 = mat[0]; a01 = mat[1]; a02 = mat[2]; a03 = mat[3]; a10 = mat[4]; a11 = mat[5]; a12 = mat[6]; a13 = mat[7]; a20 = mat[8]; a21 = mat[9]; a22 = mat[10]; a23 = mat[11]; // Construct the elements of the rotation matrix b00 = x * x * t + c; b01 = y * x * t + z * s; b02 = z * x * t - y * s; b10 = x * y * t - z * s; b11 = y * y * t + c; b12 = z * y * t + x * s; b20 = x * z * t + y * s; b21 = y * z * t - x * s; b22 = z * z * t + c; if (!dest) { dest = mat; } else if (mat !== dest) { // If the source and destination differ, copy the unchanged last row dest[12] = mat[12]; dest[13] = mat[13]; dest[14] = mat[14]; dest[15] = mat[15]; } // Perform rotation-specific matrix multiplication dest[0] = a00 * b00 + a10 * b01 + a20 * b02; dest[1] = a01 * b00 + a11 * b01 + a21 * b02; dest[2] = a02 * b00 + a12 * b01 + a22 * b02; dest[3] = a03 * b00 + a13 * b01 + a23 * b02; dest[4] = a00 * b10 + a10 * b11 + a20 * b12; dest[5] = a01 * b10 + a11 * b11 + a21 * b12; dest[6] = a02 * b10 + a12 * b11 + a22 * b12; dest[7] = a03 * b10 + a13 * b11 + a23 * b12; dest[8] = a00 * b20 + a10 * b21 + a20 * b22; dest[9] = a01 * b20 + a11 * b21 + a21 * b22; dest[10] = a02 * b20 + a12 * b21 + a22 * b22; dest[11] = a03 * b20 + a13 * b21 + a23 * b22; return dest; }; /** * Rotates a matrix by the given angle around the X axis * * @param {mat4} mat mat4 to rotate * @param {number} angle Angle (in radians) to rotate * @param {mat4} [dest] mat4 receiving operation result. If not specified result is written to mat * * @returns {mat4} dest if specified, mat otherwise */ mat4.rotateX = function (mat, angle, dest) { var s = Math.sin(angle), c = Math.cos(angle), a10 = mat[4], a11 = mat[5], a12 = mat[6], a13 = mat[7], a20 = mat[8], a21 = mat[9], a22 = mat[10], a23 = mat[11]; if (!dest) { dest = mat; } else if (mat !== dest) { // If the source and destination differ, copy the unchanged rows dest[0] = mat[0]; dest[1] = mat[1]; dest[2] = mat[2]; dest[3] = mat[3]; dest[12] = mat[12]; dest[13] = mat[13]; dest[14] = mat[14]; dest[15] = mat[15]; } // Perform axis-specific matrix multiplication dest[4] = a10 * c + a20 * s; dest[5] = a11 * c + a21 * s; dest[6] = a12 * c + a22 * s; dest[7] = a13 * c + a23 * s; dest[8] = a10 * -s + a20 * c; dest[9] = a11 * -s + a21 * c; dest[10] = a12 * -s + a22 * c; dest[11] = a13 * -s + a23 * c; return dest; }; /** * Rotates a matrix by the given angle around the Y axis * * @param {mat4} mat mat4 to rotate * @param {number} angle Angle (in radians) to rotate * @param {mat4} [dest] mat4 receiving operation result. If not specified result is written to mat * * @returns {mat4} dest if specified, mat otherwise */ mat4.rotateY = function (mat, angle, dest) { var s = Math.sin(angle), c = Math.cos(angle), a00 = mat[0], a01 = mat[1], a02 = mat[2], a03 = mat[3], a20 = mat[8], a21 = mat[9], a22 = mat[10], a23 = mat[11]; if (!dest) { dest = mat; } else if (mat !== dest) { // If the source and destination differ, copy the unchanged rows dest[4] = mat[4]; dest[5] = mat[5]; dest[6] = mat[6]; dest[7] = mat[7]; dest[12] = mat[12]; dest[13] = mat[13]; dest[14] = mat[14]; dest[15] = mat[15]; } // Perform axis-specific matrix multiplication dest[0] = a00 * c + a20 * -s; dest[1] = a01 * c + a21 * -s; dest[2] = a02 * c + a22 * -s; dest[3] = a03 * c + a23 * -s; dest[8] = a00 * s + a20 * c; dest[9] = a01 * s + a21 * c; dest[10] = a02 * s + a22 * c; dest[11] = a03 * s + a23 * c; return dest; }; /** * Rotates a matrix by the given angle around the Z axis * * @param {mat4} mat mat4 to rotate * @param {number} angle Angle (in radians) to rotate * @param {mat4} [dest] mat4 receiving operation result. If not specified result is written to mat * * @returns {mat4} dest if specified, mat otherwise */ mat4.rotateZ = function (mat, angle, dest) { var s = Math.sin(angle), c = Math.cos(angle), a00 = mat[0], a01 = mat[1], a02 = mat[2], a03 = mat[3], a10 = mat[4], a11 = mat[5], a12 = mat[6], a13 = mat[7]; if (!dest) { dest = mat; } else if (mat !== dest) { // If the source and destination differ, copy the unchanged last row dest[8] = mat[8]; dest[9] = mat[9]; dest[10] = mat[10]; dest[11] = mat[11]; dest[12] = mat[12]; dest[13] = mat[13]; dest[14] = mat[14]; dest[15] = mat[15]; } // Perform axis-specific matrix multiplication dest[0] = a00 * c + a10 * s; dest[1] = a01 * c + a11 * s; dest[2] = a02 * c + a12 * s; dest[3] = a03 * c + a13 * s; dest[4] = a00 * -s + a10 * c; dest[5] = a01 * -s + a11 * c; dest[6] = a02 * -s + a12 * c; dest[7] = a03 * -s + a13 * c; return dest; }; /** * Generates a frustum matrix with the given bounds * * @param {number} left Left bound of the frustum * @param {number} right Right bound of the frustum * @param {number} bottom Bottom bound of the frustum * @param {number} top Top bound of the frustum * @param {number} near Near bound of the frustum * @param {number} far Far bound of the frustum * @param {mat4} [dest] mat4 frustum matrix will be written into * * @returns {mat4} dest if specified, a new mat4 otherwise */ mat4.frustum = function (left, right, bottom, top, near, far, dest) { if (!dest) { dest = mat4.create(); } var rl = (right - left), tb = (top - bottom), fn = (far - near); dest[0] = (near * 2) / rl; dest[1] = 0; dest[2] = 0; dest[3] = 0; dest[4] = 0; dest[5] = (near * 2) / tb; dest[6] = 0; dest[7] = 0; dest[8] = (right + left) / rl; dest[9] = (top + bottom) / tb; dest[10] = -(far + near) / fn; dest[11] = -1; dest[12] = 0; dest[13] = 0; dest[14] = -(far * near * 2) / fn; dest[15] = 0; return dest; }; /** * Generates a perspective projection matrix with the given bounds * * @param {number} fovy Vertical field of view * @param {number} aspect Aspect ratio. typically viewport width/height * @param {number} near Near bound of the frustum * @param {number} far Far bound of the frustum * @param {mat4} [dest] mat4 frustum matrix will be written into * * @returns {mat4} dest if specified, a new mat4 otherwise */ mat4.perspective = function (fovy, aspect, near, far, dest) { var top = near * Math.tan(fovy * Math.PI / 360.0), right = top * aspect; return mat4.frustum(-right, right, -top, top, near, far, dest); }; /** * Generates a orthogonal projection matrix with the given bounds * * @param {number} left Left bound of the frustum * @param {number} right Right bound of the frustum * @param {number} bottom Bottom bound of the frustum * @param {number} top Top bound of the frustum * @param {number} near Near bound of the frustum * @param {number} far Far bound of the frustum * @param {mat4} [dest] mat4 frustum matrix will be written into * * @returns {mat4} dest if specified, a new mat4 otherwise */ mat4.ortho = function (left, right, bottom, top, near, far, dest) { if (!dest) { dest = mat4.create(); } var rl = (right - left), tb = (top - bottom), fn = (far - near); dest[0] = 2 / rl; dest[1] = 0; dest[2] = 0; dest[3] = 0; dest[4] = 0; dest[5] = 2 / tb; dest[6] = 0; dest[7] = 0; dest[8] = 0; dest[9] = 0; dest[10] = -2 / fn; dest[11] = 0; dest[12] = -(left + right) / rl; dest[13] = -(top + bottom) / tb; dest[14] = -(far + near) / fn; dest[15] = 1; return dest; }; /** * Generates a look-at matrix with the given eye position, focal point, and up axis * * @param {vec3} eye Position of the viewer * @param {vec3} center Point the viewer is looking at * @param {vec3} up vec3 pointing "up" * @param {mat4} [dest] mat4 frustum matrix will be written into * * @returns {mat4} dest if specified, a new mat4 otherwise */ mat4.lookAt = function (eye, center, up, dest) { if (!dest) { dest = mat4.create(); } var x0, x1, x2, y0, y1, y2, z0, z1, z2, len, eyex = eye[0], eyey = eye[1], eyez = eye[2], upx = up[0], upy = up[1], upz = up[2], centerx = center[0], centery = center[1], centerz = center[2]; if (eyex === centerx && eyey === centery && eyez === centerz) { return mat4.identity(dest); } //vec3.direction(eye, center, z); z0 = eyex - centerx; z1 = eyey - centery; z2 = eyez - centerz; // normalize (no check needed for 0 because of early return) len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2); z0 *= len; z1 *= len; z2 *= len; //vec3.normalize(vec3.cross(up, z, x)); x0 = upy * z2 - upz * z1; x1 = upz * z0 - upx * z2; x2 = upx * z1 - upy * z0; len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2); if (!len) { x0 = 0; x1 = 0; x2 = 0; } else { len = 1 / len; x0 *= len; x1 *= len; x2 *= len; } //vec3.normalize(vec3.cross(z, x, y)); y0 = z1 * x2 - z2 * x1; y1 = z2 * x0 - z0 * x2; y2 = z0 * x1 - z1 * x0; len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2); if (!len) { y0 = 0; y1 = 0; y2 = 0; } else { len = 1 / len; y0 *= len; y1 *= len; y2 *= len; } dest[0] = x0; dest[1] = y0; dest[2] = z0; dest[3] = 0; dest[4] = x1; dest[5] = y1; dest[6] = z1; dest[7] = 0; dest[8] = x2; dest[9] = y2; dest[10] = z2; dest[11] = 0; dest[12] = -(x0 * eyex + x1 * eyey + x2 * eyez); dest[13] = -(y0 * eyex + y1 * eyey + y2 * eyez); dest[14] = -(z0 * eyex + z1 * eyey + z2 * eyez); dest[15] = 1; return dest; }; /** * Creates a matrix from a quaternion rotation and vector translation * This is equivalent to (but much faster than): * * mat4.identity(dest); * mat4.translate(dest, vec); * var quatMat = mat4.create(); * quat4.toMat4(quat, quatMat); * mat4.multiply(dest, quatMat); * * @param {quat4} quat Rotation quaternion * @param {vec3} vec Translation vector * @param {mat4} [dest] mat4 receiving operation result. If not specified result is written to a new mat4 * * @returns {mat4} dest if specified, a new mat4 otherwise */ mat4.fromRotationTranslation = function (quat, vec, dest) { if (!dest) { dest = mat4.create(); } // Quaternion math var x = quat[0], y = quat[1], z = quat[2], w = quat[3], x2 = x + x, y2 = y + y, z2 = z + z, xx = x * x2, xy = x * y2, xz = x * z2, yy = y * y2, yz = y * z2, zz = z * z2, wx = w * x2, wy = w * y2, wz = w * z2; dest[0] = 1 - (yy + zz); dest[1] = xy + wz; dest[2] = xz - wy; dest[3] = 0; dest[4] = xy - wz; dest[5] = 1 - (xx + zz); dest[6] = yz + wx; dest[7] = 0; dest[8] = xz + wy; dest[9] = yz - wx; dest[10] = 1 - (xx + yy); dest[11] = 0; dest[12] = vec[0]; dest[13] = vec[1]; dest[14] = vec[2]; dest[15] = 1; return dest; }; /** * Returns a string representation of a mat4 * * @param {mat4} mat mat4 to represent as a string * * @returns {string} String representation of mat */ mat4.str = function (mat) { return '[' + mat[0] + ', ' + mat[1] + ', ' + mat[2] + ', ' + mat[3] + ', ' + mat[4] + ', ' + mat[5] + ', ' + mat[6] + ', ' + mat[7] + ', ' + mat[8] + ', ' + mat[9] + ', ' + mat[10] + ', ' + mat[11] + ', ' + mat[12] + ', ' + mat[13] + ', ' + mat[14] + ', ' + mat[15] + ']'; }; /** * @class Quaternion * @name quat4 */ var quat4 = {}; /** * Creates a new instance of a quat4 using the default array type * Any javascript array containing at least 4 numeric elements can serve as a quat4 * * @param {quat4} [quat] quat4 containing values to initialize with * * @returns {quat4} New quat4 */ quat4.create = function (quat) { var dest = new MatrixArray(4); if (quat) { dest[0] = quat[0]; dest[1] = quat[1]; dest[2] = quat[2]; dest[3] = quat[3]; } else { dest[0] = dest[1] = dest[2] = dest[3] = 0; } return dest; }; /** * Creates a new instance of a quat4, initializing it with the given arguments * * @param {number} x X value * @param {number} y Y value * @param {number} z Z value * @param {number} w W value * @returns {quat4} New quat4 */ quat4.createFrom = function (x, y, z, w) { var dest = new MatrixArray(4); dest[0] = x; dest[1] = y; dest[2] = z; dest[3] = w; return dest; }; /** * Copies the values of one quat4 to another * * @param {quat4} quat quat4 containing values to copy * @param {quat4} dest quat4 receiving copied values * * @returns {quat4} dest */ quat4.set = function (quat, dest) { dest[0] = quat[0]; dest[1] = quat[1]; dest[2] = quat[2]; dest[3] = quat[3]; return dest; }; /** * Compares two quaternions for equality within a certain margin of error * * @param {quat4} a First vector * @param {quat4} b Second vector * * @returns {Boolean} True if a is equivalent to b */ quat4.equal = function (a, b) { return a === b || ( Math.abs(a[0] - b[0]) < FLOAT_EPSILON && Math.abs(a[1] - b[1]) < FLOAT_EPSILON && Math.abs(a[2] - b[2]) < FLOAT_EPSILON && Math.abs(a[3] - b[3]) < FLOAT_EPSILON ); }; /** * Creates a new identity Quat4 * * @param {quat4} [dest] quat4 receiving copied values * * @returns {quat4} dest is specified, new quat4 otherwise */ quat4.identity = function (dest) { if (!dest) { dest = quat4.create(); } dest[0] = 0; dest[1] = 0; dest[2] = 0; dest[3] = 1; return dest; }; var identityQuat4 = quat4.identity(); /** * Calculates the W component of a quat4 from the X, Y, and Z components. * Assumes that quaternion is 1 unit in length. * Any existing W component will be ignored. * * @param {quat4} quat quat4 to calculate W component of * @param {quat4} [dest] quat4 receiving calculated values. If not specified result is written to quat * * @returns {quat4} dest if specified, quat otherwise */ quat4.calculateW = function (quat, dest) { var x = quat[0], y = quat[1], z = quat[2]; if (!dest || quat === dest) { quat[3] = -Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z)); return quat; } dest[0] = x; dest[1] = y; dest[2] = z; dest[3] = -Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z)); return dest; }; /** * Calculates the dot product of two quaternions * * @param {quat4} quat First operand * @param {quat4} quat2 Second operand * * @return {number} Dot product of quat and quat2 */ quat4.dot = function(quat, quat2){ return quat[0]*quat2[0] + quat[1]*quat2[1] + quat[2]*quat2[2] + quat[3]*quat2[3]; }; /** * Calculates the inverse of a quat4 * * @param {quat4} quat quat4 to calculate inverse of * @param {quat4} [dest] quat4 receiving inverse values. If not specified result is written to quat * * @returns {quat4} dest if specified, quat otherwise */ quat4.inverse = function(quat, dest) { var q0 = quat[0], q1 = quat[1], q2 = quat[2], q3 = quat[3], dot = q0*q0 + q1*q1 + q2*q2 + q3*q3, invDot = dot ? 1.0/dot : 0; // TODO: Would be faster to return [0,0,0,0] immediately if dot == 0 if(!dest || quat === dest) { quat[0] *= -invDot; quat[1] *= -invDot; quat[2] *= -invDot; quat[3] *= invDot; return quat; } dest[0] = -quat[0]*invDot; dest[1] = -quat[1]*invDot; dest[2] = -quat[2]*invDot; dest[3] = quat[3]*invDot; return dest; }; /** * Calculates the conjugate of a quat4 * If the quaternion is normalized, this function is faster than quat4.inverse and produces the same result. * * @param {quat4} quat quat4 to calculate conjugate of * @param {quat4} [dest] quat4 receiving conjugate values. If not specified result is written to quat * * @returns {quat4} dest if specified, quat otherwise */ quat4.conjugate = function (quat, dest) { if (!dest || quat === dest) { quat[0] *= -1; quat[1] *= -1; quat[2] *= -1; return quat; } dest[0] = -quat[0]; dest[1] = -quat[1]; dest[2] = -quat[2]; dest[3] = quat[3]; return dest; }; /** * Calculates the length of a quat4 * * Params: * @param {quat4} quat quat4 to calculate length of * * @returns Length of quat */ quat4.length = function (quat) { var x = quat[0], y = quat[1], z = quat[2], w = quat[3]; return Math.sqrt(x * x + y * y + z * z + w * w); }; /** * Generates a unit quaternion of the same direction as the provided quat4 * If quaternion length is 0, returns [0, 0, 0, 0] * * @param {quat4} quat quat4 to normalize * @param {quat4} [dest] quat4 receiving operation result. If not specified result is written to quat * * @returns {quat4} dest if specified, quat otherwise */ quat4.normalize = function (quat, dest) { if (!dest) { dest = quat; } var x = quat[0], y = quat[1], z = quat[2], w = quat[3], len = Math.sqrt(x * x + y * y + z * z + w * w); if (len === 0) { dest[0] = 0; dest[1] = 0; dest[2] = 0; dest[3] = 0; return dest; } len = 1 / len; dest[0] = x * len; dest[1] = y * len; dest[2] = z * len; dest[3] = w * len; return dest; }; /** * Performs quaternion addition * * @param {quat4} quat First operand * @param {quat4} quat2 Second operand * @param {quat4} [dest] quat4 receiving operation result. If not specified result is written to quat * * @returns {quat4} dest if specified, quat otherwise */ quat4.add = function (quat, quat2, dest) { if(!dest || quat === dest) { quat[0] += quat2[0]; quat[1] += quat2[1]; quat[2] += quat2[2]; quat[3] += quat2[3]; return quat; } dest[0] = quat[0]+quat2[0]; dest[1] = quat[1]+quat2[1]; dest[2] = quat[2]+quat2[2]; dest[3] = quat[3]+quat2[3]; return dest; }; /** * Performs a quaternion multiplication * * @param {quat4} quat First operand * @param {quat4} quat2 Second operand * @param {quat4} [dest] quat4 receiving operation result. If not specified result is written to quat * * @returns {quat4} dest if specified, quat otherwise */ quat4.multiply = function (quat, quat2, dest) { if (!dest) { dest = quat; } var qax = quat[0], qay = quat[1], qaz = quat[2], qaw = quat[3], qbx = quat2[0], qby = quat2[1], qbz = quat2[2], qbw = quat2[3]; dest[0] = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; dest[1] = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; dest[2] = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; dest[3] = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; return dest; }; /** * Transforms a vec3 with the given quaternion * * @param {quat4} quat quat4 to transform the vector with * @param {vec3} vec vec3 to transform * @param {vec3} [dest] vec3 receiving operation result. If not specified result is written to vec * * @returns dest if specified, vec otherwise */ quat4.multiplyVec3 = function (quat, vec, dest) { if (!dest) { dest = vec; } var x = vec[0], y = vec[1], z = vec[2], qx = quat[0], qy = quat[1], qz = quat[2], qw = quat[3], // calculate quat * vec ix = qw * x + qy * z - qz * y, iy = qw * y + qz * x - qx * z, iz = qw * z + qx * y - qy * x, iw = -qx * x - qy * y - qz * z; // calculate result * inverse quat dest[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy; dest[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz; dest[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx; return dest; }; /** * Multiplies the components of a quaternion by a scalar value * * @param {quat4} quat to scale * @param {number} val Value to scale by * @param {quat4} [dest] quat4 receiving operation result. If not specified result is written to quat * * @returns {quat4} dest if specified, quat otherwise */ quat4.scale = function (quat, val, dest) { if(!dest || quat === dest) { quat[0] *= val; quat[1] *= val; quat[2] *= val; quat[3] *= val; return quat; } dest[0] = quat[0]*val; dest[1] = quat[1]*val; dest[2] = quat[2]*val; dest[3] = quat[3]*val; return dest; }; /** * Calculates a 3x3 matrix from the given quat4 * * @param {quat4} quat quat4 to create matrix from * @param {mat3} [dest] mat3 receiving operation result * * @returns {mat3} dest if specified, a new mat3 otherwise */ quat4.toMat3 = function (quat, dest) { if (!dest) { dest = mat3.create(); } var x = quat[0], y = quat[1], z = quat[2], w = quat[3], x2 = x + x, y2 = y + y, z2 = z + z, xx = x * x2, xy = x * y2, xz = x * z2, yy = y * y2, yz = y * z2, zz = z * z2, wx = w * x2, wy = w * y2, wz = w * z2; dest[0] = 1 - (yy + zz); dest[1] = xy + wz; dest[2] = xz - wy; dest[3] = xy - wz; dest[4] = 1 - (xx + zz); dest[5] = yz + wx; dest[6] = xz + wy; dest[7] = yz - wx; dest[8] = 1 - (xx + yy); return dest; }; /** * Calculates a 4x4 matrix from the given quat4 * * @param {quat4} quat quat4 to create matrix from * @param {mat4} [dest] mat4 receiving operation result * * @returns {mat4} dest if specified, a new mat4 otherwise */ quat4.toMat4 = function (quat, dest) { if (!dest) { dest = mat4.create(); } var x = quat[0], y = quat[1], z = quat[2], w = quat[3], x2 = x + x, y2 = y + y, z2 = z + z, xx = x * x2, xy = x * y2, xz = x * z2, yy = y * y2, yz = y * z2, zz = z * z2, wx = w * x2, wy = w * y2, wz = w * z2; dest[0] = 1 - (yy + zz); dest[1] = xy + wz; dest[2] = xz - wy; dest[3] = 0; dest[4] = xy - wz; dest[5] = 1 - (xx + zz); dest[6] = yz + wx; dest[7] = 0; dest[8] = xz + wy; dest[9] = yz - wx; dest[10] = 1 - (xx + yy); dest[11] = 0; dest[12] = 0; dest[13] = 0; dest[14] = 0; dest[15] = 1; return dest; }; /** * Performs a spherical linear interpolation between two quat4 * * @param {quat4} quat First quaternion * @param {quat4} quat2 Second quaternion * @param {number} slerp Interpolation amount between the two inputs * @param {quat4} [dest] quat4 receiving operation result. If not specified result is written to quat * * @returns {quat4} dest if specified, quat otherwise */ quat4.slerp = function (quat, quat2, slerp, dest) { if (!dest) { dest = quat; } var cosHalfTheta = quat[0] * quat2[0] + quat[1] * quat2[1] + quat[2] * quat2[2] + quat[3] * quat2[3], halfTheta, sinHalfTheta, ratioA, ratioB; if (Math.abs(cosHalfTheta) >= 1.0) { if (dest !== quat) { dest[0] = quat[0]; dest[1] = quat[1]; dest[2] = quat[2]; dest[3] = quat[3]; } return dest; } halfTheta = Math.acos(cosHalfTheta); sinHalfTheta = Math.sqrt(1.0 - cosHalfTheta * cosHalfTheta); if (Math.abs(sinHalfTheta) < 0.001) { dest[0] = (quat[0] * 0.5 + quat2[0] * 0.5); dest[1] = (quat[1] * 0.5 + quat2[1] * 0.5); dest[2] = (quat[2] * 0.5 + quat2[2] * 0.5); dest[3] = (quat[3] * 0.5 + quat2[3] * 0.5); return dest; } ratioA = Math.sin((1 - slerp) * halfTheta) / sinHalfTheta; ratioB = Math.sin(slerp * halfTheta) / sinHalfTheta; dest[0] = (quat[0] * ratioA + quat2[0] * ratioB); dest[1] = (quat[1] * ratioA + quat2[1] * ratioB); dest[2] = (quat[2] * ratioA + quat2[2] * ratioB); dest[3] = (quat[3] * ratioA + quat2[3] * ratioB); return dest; }; /** * Creates a quaternion from the given 3x3 rotation matrix. * If dest is omitted, a new quaternion will be created. * * @param {mat3} mat the rotation matrix * @param {quat4} [dest] an optional receiving quaternion * * @returns {quat4} the quaternion constructed from the rotation matrix * */ quat4.fromRotationMatrix = function(mat, dest) { if (!dest) dest = quat4.create(); // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes // article "Quaternion Calculus and Fast Animation". var fTrace = mat[0] + mat[4] + mat[8]; var fRoot; if ( fTrace > 0.0 ) { // |w| > 1/2, may as well choose w > 1/2 fRoot = Math.sqrt(fTrace + 1.0); // 2w dest[3] = 0.5 * fRoot; fRoot = 0.5/fRoot; // 1/(4w) dest[0] = (mat[7]-mat[5])*fRoot; dest[1] = (mat[2]-mat[6])*fRoot; dest[2] = (mat[3]-mat[1])*fRoot; } else { // |w| <= 1/2 var s_iNext = quat4.fromRotationMatrix.s_iNext = quat4.fromRotationMatrix.s_iNext || [1,2,0]; var i = 0; if ( mat[4] > mat[0] ) i = 1; if ( mat[8] > mat[i*3+i] ) i = 2; var j = s_iNext[i]; var k = s_iNext[j]; fRoot = Math.sqrt(mat[i*3+i]-mat[j*3+j]-mat[k*3+k] + 1.0); dest[i] = 0.5 * fRoot; fRoot = 0.5 / fRoot; dest[3] = (mat[k*3+j] - mat[j*3+k]) * fRoot; dest[j] = (mat[j*3+i] + mat[i*3+j]) * fRoot; dest[k] = (mat[k*3+i] + mat[i*3+k]) * fRoot; } return dest; }; /** * Alias. See the description for quat4.fromRotationMatrix(). */ mat3.toQuat4 = quat4.fromRotationMatrix; (function() { var mat = mat3.create(); /** * Creates a quaternion from the 3 given vectors. They must be perpendicular * to one another and represent the X, Y and Z axes. * * If dest is omitted, a new quat4 will be created. * * Example: The default OpenGL orientation has a view vector [0, 0, -1], * right vector [1, 0, 0], and up vector [0, 1, 0]. A quaternion representing * this orientation could be constructed with: * * quat = quat4.fromAxes([0, 0, -1], [1, 0, 0], [0, 1, 0], quat4.create()); * * @param {vec3} view the view vector, or direction the object is pointing in * @param {vec3} right the right vector, or direction to the "right" of the object * @param {vec3} up the up vector, or direction towards the object's "up" * @param {quat4} [dest] an optional receiving quat4 * * @returns {quat4} dest **/ quat4.fromAxes = function(view, right, up, dest) { mat[0] = right[0]; mat[3] = right[1]; mat[6] = right[2]; mat[1] = up[0]; mat[4] = up[1]; mat[7] = up[2]; mat[2] = view[0]; mat[5] = view[1]; mat[8] = view[2]; return quat4.fromRotationMatrix(mat, dest); }; })(); /** * Sets a quat4 to the Identity and returns it. * * @param {quat4} [dest] quat4 to set. If omitted, a * new quat4 will be created. * * @returns {quat4} dest */ quat4.identity = function(dest) { if (!dest) dest = quat4.create(); dest[0] = 0; dest[1] = 0; dest[2] = 0; dest[3] = 1; return dest; }; /** * Sets a quat4 from the given angle and rotation axis, * then returns it. If dest is not given, a new quat4 is created. * * @param {Number} angle the angle in radians * @param {vec3} axis the axis around which to rotate * @param {quat4} [dest] the optional quat4 to store the result * * @returns {quat4} dest **/ quat4.fromAngleAxis = function(angle, axis, dest) { // The quaternion representing the rotation is // q = cos(A/2)+sin(A/2)*(x*i+y*j+z*k) if (!dest) dest = quat4.create(); var half = angle * 0.5; var s = Math.sin(half); dest[3] = Math.cos(half); dest[0] = s * axis[0]; dest[1] = s * axis[1]; dest[2] = s * axis[2]; return dest; }; /** * Stores the angle and axis in a vec4, where the XYZ components represent * the axis and the W (4th) component is the angle in radians. * * If dest is not given, src will be modified in place and returned, after * which it should not be considered not a quaternion (just an axis and angle). * * @param {quat4} quat the quaternion whose angle and axis to store * @param {vec4} [dest] the optional vec4 to receive the data * * @returns {vec4} dest */ quat4.toAngleAxis = function(src, dest) { if (!dest) dest = src; // The quaternion representing the rotation is // q = cos(A/2)+sin(A/2)*(x*i+y*j+z*k) var sqrlen = src[0]*src[0]+src[1]*src[1]+src[2]*src[2]; if (sqrlen > 0) { dest[3] = 2 * Math.acos(src[3]); var invlen = glMath.invsqrt(sqrlen); dest[0] = src[0]*invlen; dest[1] = src[1]*invlen; dest[2] = src[2]*invlen; } else { // angle is 0 (mod 2*pi), so any axis will do dest[3] = 0; dest[0] = 1; dest[1] = 0; dest[2] = 0; } return dest; }; /** * Returns a string representation of a quaternion * * @param {quat4} quat quat4 to represent as a string * * @returns {string} String representation of quat */ quat4.str = function (quat) { return '[' + quat[0] + ', ' + quat[1] + ', ' + quat[2] + ', ' + quat[3] + ']'; }; /** * @class 2 Dimensional Vector * @name vec2 */ var vec2 = {}; /** * Creates a new vec2, initializing it from vec if vec * is given. * * @param {vec2} [vec] the vector's initial contents * @returns {vec2} a new 2D vector */ vec2.create = function(vec) { var dest = new MatrixArray(2); if (vec) { dest[0] = vec[0]; dest[1] = vec[1]; } else { dest[0] = 0; dest[1] = 0; } return dest; }; /** * Creates a new instance of a vec2, initializing it with the given arguments * * @param {number} x X value * @param {number} y Y value * @returns {vec2} New vec2 */ vec2.createFrom = function (x, y) { var dest = new MatrixArray(2); dest[0] = x; dest[1] = y; return dest; }; /** * Adds the vec2's together. If dest is given, the result * is stored there. Otherwise, the result is stored in vecB. * * @param {vec2} vecA the first operand * @param {vec2} vecB the second operand * @param {vec2} [dest] the optional receiving vector * @returns {vec2} dest */ vec2.add = function(vecA, vecB, dest) { if (!dest) dest = vecB; dest[0] = vecA[0] + vecB[0]; dest[1] = vecA[1] + vecB[1]; return dest; }; /** * Subtracts vecB from vecA. If dest is given, the result * is stored there. Otherwise, the result is stored in vecB. * * @param {vec2} vecA the first operand * @param {vec2} vecB the second operand * @param {vec2} [dest] the optional receiving vector * @returns {vec2} dest */ vec2.subtract = function(vecA, vecB, dest) { if (!dest) dest = vecB; dest[0] = vecA[0] - vecB[0]; dest[1] = vecA[1] - vecB[1]; return dest; }; /** * Multiplies vecA with vecB. If dest is given, the result * is stored there. Otherwise, the result is stored in vecB. * * @param {vec2} vecA the first operand * @param {vec2} vecB the second operand * @param {vec2} [dest] the optional receiving vector * @returns {vec2} dest */ vec2.multiply = function(vecA, vecB, dest) { if (!dest) dest = vecB; dest[0] = vecA[0] * vecB[0]; dest[1] = vecA[1] * vecB[1]; return dest; }; /** * Divides vecA by vecB. If dest is given, the result * is stored there. Otherwise, the result is stored in vecB. * * @param {vec2} vecA the first operand * @param {vec2} vecB the second operand * @param {vec2} [dest] the optional receiving vector * @returns {vec2} dest */ vec2.divide = function(vecA, vecB, dest) { if (!dest) dest = vecB; dest[0] = vecA[0] / vecB[0]; dest[1] = vecA[1] / vecB[1]; return dest; }; /** * Scales vecA by some scalar number. If dest is given, the result * is stored there. Otherwise, the result is stored in vecA. * * This is the same as multiplying each component of vecA * by the given scalar. * * @param {vec2} vecA the vector to be scaled * @param {Number} scalar the amount to scale the vector by * @param {vec2} [dest] the optional receiving vector * @returns {vec2} dest */ vec2.scale = function(vecA, scalar, dest) { if (!dest) dest = vecA; dest[0] = vecA[0] * scalar; dest[1] = vecA[1] * scalar; return dest; }; /** * Calculates the euclidian distance between two vec2 * * Params: * @param {vec2} vecA First vector * @param {vec2} vecB Second vector * * @returns {number} Distance between vecA and vecB */ vec2.dist = function (vecA, vecB) { var x = vecB[0] - vecA[0], y = vecB[1] - vecA[1]; return Math.sqrt(x*x + y*y); }; /** * Copies the values of one vec2 to another * * @param {vec2} vec vec2 containing values to copy * @param {vec2} dest vec2 receiving copied values * * @returns {vec2} dest */ vec2.set = function (vec, dest) { dest[0] = vec[0]; dest[1] = vec[1]; return dest; }; /** * Compares two vectors for equality within a certain margin of error * * @param {vec2} a First vector * @param {vec2} b Second vector * * @returns {Boolean} True if a is equivalent to b */ vec2.equal = function (a, b) { return a === b || ( Math.abs(a[0] - b[0]) < FLOAT_EPSILON && Math.abs(a[1] - b[1]) < FLOAT_EPSILON ); }; /** * Negates the components of a vec2 * * @param {vec2} vec vec2 to negate * @param {vec2} [dest] vec2 receiving operation result. If not specified result is written to vec * * @returns {vec2} dest if specified, vec otherwise */ vec2.negate = function (vec, dest) { if (!dest) { dest = vec; } dest[0] = -vec[0]; dest[1] = -vec[1]; return dest; }; /** * Normlize a vec2 * * @param {vec2} vec vec2 to normalize * @param {vec2} [dest] vec2 receiving operation result. If not specified result is written to vec * * @returns {vec2} dest if specified, vec otherwise */ vec2.normalize = function (vec, dest) { if (!dest) { dest = vec; } var mag = vec[0] * vec[0] + vec[1] * vec[1]; if (mag > 0) { mag = Math.sqrt(mag); dest[0] = vec[0] / mag; dest[1] = vec[1] / mag; } else { dest[0] = dest[1] = 0; } return dest; }; /** * Computes the cross product of two vec2's. Note that the cross product must by definition * produce a 3D vector. If a dest vector is given, it will contain the resultant 3D vector. * Otherwise, a scalar number will be returned, representing the vector's Z coordinate, since * its X and Y must always equal 0. * * Examples: * var crossResult = vec3.create(); * vec2.cross([1, 2], [3, 4], crossResult); * //=> [0, 0, -2] * * vec2.cross([1, 2], [3, 4]); * //=> -2 * * See http://stackoverflow.com/questions/243945/calculating-a-2d-vectors-cross-product * for some interesting facts. * * @param {vec2} vecA left operand * @param {vec2} vecB right operand * @param {vec2} [dest] optional vec2 receiving result. If not specified a scalar is returned * */ vec2.cross = function (vecA, vecB, dest) { var z = vecA[0] * vecB[1] - vecA[1] * vecB[0]; if (!dest) return z; dest[0] = dest[1] = 0; dest[2] = z; return dest; }; /** * Caclulates the length of a vec2 * * @param {vec2} vec vec2 to calculate length of * * @returns {Number} Length of vec */ vec2.length = function (vec) { var x = vec[0], y = vec[1]; return Math.sqrt(x * x + y * y); }; /** * Caclulates the squared length of a vec2 * * @param {vec2} vec vec2 to calculate squared length of * * @returns {Number} Squared Length of vec */ vec2.squaredLength = function (vec) { var x = vec[0], y = vec[1]; return x * x + y * y; }; /** * Caclulates the dot product of two vec2s * * @param {vec2} vecA First operand * @param {vec2} vecB Second operand * * @returns {Number} Dot product of vecA and vecB */ vec2.dot = function (vecA, vecB) { return vecA[0] * vecB[0] + vecA[1] * vecB[1]; }; /** * Generates a 2D unit vector pointing from one vector to another * * @param {vec2} vecA Origin vec2 * @param {vec2} vecB vec2 to point to * @param {vec2} [dest] vec2 receiving operation result. If not specified result is written to vecA * * @returns {vec2} dest if specified, vecA otherwise */ vec2.direction = function (vecA, vecB, dest) { if (!dest) { dest = vecA; } var x = vecA[0] - vecB[0], y = vecA[1] - vecB[1], len = x * x + y * y; if (!len) { dest[0] = 0; dest[1] = 0; dest[2] = 0; return dest; } len = 1 / Math.sqrt(len); dest[0] = x * len; dest[1] = y * len; return dest; }; /** * Performs a linear interpolation between two vec2 * * @param {vec2} vecA First vector * @param {vec2} vecB Second vector * @param {Number} lerp Interpolation amount between the two inputs * @param {vec2} [dest] vec2 receiving operation result. If not specified result is written to vecA * * @returns {vec2} dest if specified, vecA otherwise */ vec2.lerp = function (vecA, vecB, lerp, dest) { if (!dest) { dest = vecA; } dest[0] = vecA[0] + lerp * (vecB[0] - vecA[0]); dest[1] = vecA[1] + lerp * (vecB[1] - vecA[1]); return dest; }; /** * Returns a string representation of a vector * * @param {vec2} vec Vector to represent as a string * * @returns {String} String representation of vec */ vec2.str = function (vec) { return '[' + vec[0] + ', ' + vec[1] + ']'; }; /** * @class 2x2 Matrix * @name mat2 */ var mat2 = {}; /** * Creates a new 2x2 matrix. If src is given, the new matrix * is initialized to those values. * * @param {mat2} [src] the seed values for the new matrix, if any * @returns {mat2} a new matrix */ mat2.create = function(src) { var dest = new MatrixArray(4); if (src) { dest[0] = src[0]; dest[1] = src[1]; dest[2] = src[2]; dest[3] = src[3]; } else { dest[0] = dest[1] = dest[2] = dest[3] = 0; } return dest; }; /** * Creates a new instance of a mat2, initializing it with the given arguments * * @param {number} m00 * @param {number} m01 * @param {number} m10 * @param {number} m11 * @returns {mat2} New mat2 */ mat2.createFrom = function (m00, m01, m10, m11) { var dest = new MatrixArray(4); dest[0] = m00; dest[1] = m01; dest[2] = m10; dest[3] = m11; return dest; }; /** * Copies the values of one mat2 to another * * @param {mat2} mat mat2 containing values to copy * @param {mat2} dest mat2 receiving copied values * * @returns {mat2} dest */ mat2.set = function (mat, dest) { dest[0] = mat[0]; dest[1] = mat[1]; dest[2] = mat[2]; dest[3] = mat[3]; return dest; }; /** * Compares two matrices for equality within a certain margin of error * * @param {mat2} a First matrix * @param {mat2} b Second matrix * * @returns {Boolean} True if a is equivalent to b */ mat2.equal = function (a, b) { return a === b || ( Math.abs(a[0] - b[0]) < FLOAT_EPSILON && Math.abs(a[1] - b[1]) < FLOAT_EPSILON && Math.abs(a[2] - b[2]) < FLOAT_EPSILON && Math.abs(a[3] - b[3]) < FLOAT_EPSILON ); }; /** * Sets a mat2 to an identity matrix * * @param {mat2} [dest] mat2 to set. If omitted a new one will be created. * * @returns {mat2} dest */ mat2.identity = function (dest) { if (!dest) { dest = mat2.create(); } dest[0] = 1; dest[1] = 0; dest[2] = 0; dest[3] = 1; return dest; }; /** * Transposes a mat2 (flips the values over the diagonal) * * @param {mat2} mat mat2 to transpose * @param {mat2} [dest] mat2 receiving transposed values. If not specified result is written to mat * * @param {mat2} dest if specified, mat otherwise */ mat2.transpose = function (mat, dest) { // If we are transposing ourselves we can skip a few steps but have to cache some values if (!dest || mat === dest) { var a00 = mat[1]; mat[1] = mat[2]; mat[2] = a00; return mat; } dest[0] = mat[0]; dest[1] = mat[2]; dest[2] = mat[1]; dest[3] = mat[3]; return dest; }; /** * Calculates the determinant of a mat2 * * @param {mat2} mat mat2 to calculate determinant of * * @returns {Number} determinant of mat */ mat2.determinant = function (mat) { return mat[0] * mat[3] - mat[2] * mat[1]; }; /** * Calculates the inverse matrix of a mat2 * * @param {mat2} mat mat2 to calculate inverse of * @param {mat2} [dest] mat2 receiving inverse matrix. If not specified result is written to mat * * @param {mat2} dest is specified, mat otherwise, null if matrix cannot be inverted */ mat2.inverse = function (mat, dest) { if (!dest) { dest = mat; } var a0 = mat[0], a1 = mat[1], a2 = mat[2], a3 = mat[3]; var det = a0 * a3 - a2 * a1; if (!det) return null; det = 1.0 / det; dest[0] = a3 * det; dest[1] = -a1 * det; dest[2] = -a2 * det; dest[3] = a0 * det; return dest; }; /** * Performs a matrix multiplication * * @param {mat2} matA First operand * @param {mat2} matB Second operand * @param {mat2} [dest] mat2 receiving operation result. If not specified result is written to matA * * @returns {mat2} dest if specified, matA otherwise */ mat2.multiply = function (matA, matB, dest) { if (!dest) { dest = matA; } var a11 = matA[0], a12 = matA[1], a21 = matA[2], a22 = matA[3]; dest[0] = a11 * matB[0] + a12 * matB[2]; dest[1] = a11 * matB[1] + a12 * matB[3]; dest[2] = a21 * matB[0] + a22 * matB[2]; dest[3] = a21 * matB[1] + a22 * matB[3]; return dest; }; /** * Rotates a 2x2 matrix by an angle * * @param {mat2} mat The matrix to rotate * @param {Number} angle The angle in radians * @param {mat2} [dest] Optional mat2 receiving the result. If omitted mat will be used. * * @returns {mat2} dest if specified, mat otherwise */ mat2.rotate = function (mat, angle, dest) { if (!dest) { dest = mat; } var a11 = mat[0], a12 = mat[1], a21 = mat[2], a22 = mat[3], s = Math.sin(angle), c = Math.cos(angle); dest[0] = a11 * c + a12 * s; dest[1] = a11 * -s + a12 * c; dest[2] = a21 * c + a22 * s; dest[3] = a21 * -s + a22 * c; return dest; }; /** * Multiplies the vec2 by the given 2x2 matrix * * @param {mat2} matrix the 2x2 matrix to multiply against * @param {vec2} vec the vector to multiply * @param {vec2} [dest] an optional receiving vector. If not given, vec is used. * * @returns {vec2} The multiplication result **/ mat2.multiplyVec2 = function(matrix, vec, dest) { if (!dest) dest = vec; var x = vec[0], y = vec[1]; dest[0] = x * matrix[0] + y * matrix[1]; dest[1] = x * matrix[2] + y * matrix[3]; return dest; }; /** * Scales the mat2 by the dimensions in the given vec2 * * @param {mat2} matrix the 2x2 matrix to scale * @param {vec2} vec the vector containing the dimensions to scale by * @param {vec2} [dest] an optional receiving mat2. If not given, matrix is used. * * @returns {mat2} dest if specified, matrix otherwise **/ mat2.scale = function(matrix, vec, dest) { if (!dest) { dest = matrix; } var a11 = matrix[0], a12 = matrix[1], a21 = matrix[2], a22 = matrix[3], b11 = vec[0], b22 = vec[1]; dest[0] = a11 * b11; dest[1] = a12 * b22; dest[2] = a21 * b11; dest[3] = a22 * b22; return dest; }; /** * Returns a string representation of a mat2 * * @param {mat2} mat mat2 to represent as a string * * @param {String} String representation of mat */ mat2.str = function (mat) { return '[' + mat[0] + ', ' + mat[1] + ', ' + mat[2] + ', ' + mat[3] + ']'; }; /** * @class 4 Dimensional Vector * @name vec4 */ var vec4 = {}; /** * Creates a new vec4, initializing it from vec if vec * is given. * * @param {vec4} [vec] the vector's initial contents * @returns {vec4} a new 2D vector */ vec4.create = function(vec) { var dest = new MatrixArray(4); if (vec) { dest[0] = vec[0]; dest[1] = vec[1]; dest[2] = vec[2]; dest[3] = vec[3]; } else { dest[0] = 0; dest[1] = 0; dest[2] = 0; dest[3] = 0; } return dest; }; /** * Creates a new instance of a vec4, initializing it with the given arguments * * @param {number} x X value * @param {number} y Y value * @param {number} z Z value * @param {number} w W value * @returns {vec4} New vec4 */ vec4.createFrom = function (x, y, z, w) { var dest = new MatrixArray(4); dest[0] = x; dest[1] = y; dest[2] = z; dest[3] = w; return dest; }; /** * Adds the vec4's together. If dest is given, the result * is stored there. Otherwise, the result is stored in vecB. * * @param {vec4} vecA the first operand * @param {vec4} vecB the second operand * @param {vec4} [dest] the optional receiving vector * @returns {vec4} dest */ vec4.add = function(vecA, vecB, dest) { if (!dest) dest = vecB; dest[0] = vecA[0] + vecB[0]; dest[1] = vecA[1] + vecB[1]; dest[2] = vecA[2] + vecB[2]; dest[3] = vecA[3] + vecB[3]; return dest; }; /** * Subtracts vecB from vecA. If dest is given, the result * is stored there. Otherwise, the result is stored in vecB. * * @param {vec4} vecA the first operand * @param {vec4} vecB the second operand * @param {vec4} [dest] the optional receiving vector * @returns {vec4} dest */ vec4.subtract = function(vecA, vecB, dest) { if (!dest) dest = vecB; dest[0] = vecA[0] - vecB[0]; dest[1] = vecA[1] - vecB[1]; dest[2] = vecA[2] - vecB[2]; dest[3] = vecA[3] - vecB[3]; return dest; }; /** * Multiplies vecA with vecB. If dest is given, the result * is stored there. Otherwise, the result is stored in vecB. * * @param {vec4} vecA the first operand * @param {vec4} vecB the second operand * @param {vec4} [dest] the optional receiving vector * @returns {vec4} dest */ vec4.multiply = function(vecA, vecB, dest) { if (!dest) dest = vecB; dest[0] = vecA[0] * vecB[0]; dest[1] = vecA[1] * vecB[1]; dest[2] = vecA[2] * vecB[2]; dest[3] = vecA[3] * vecB[3]; return dest; }; /** * Divides vecA by vecB. If dest is given, the result * is stored there. Otherwise, the result is stored in vecB. * * @param {vec4} vecA the first operand * @param {vec4} vecB the second operand * @param {vec4} [dest] the optional receiving vector * @returns {vec4} dest */ vec4.divide = function(vecA, vecB, dest) { if (!dest) dest = vecB; dest[0] = vecA[0] / vecB[0]; dest[1] = vecA[1] / vecB[1]; dest[2] = vecA[2] / vecB[2]; dest[3] = vecA[3] / vecB[3]; return dest; }; /** * Scales vecA by some scalar number. If dest is given, the result * is stored there. Otherwise, the result is stored in vecA. * * This is the same as multiplying each component of vecA * by the given scalar. * * @param {vec4} vecA the vector to be scaled * @param {Number} scalar the amount to scale the vector by * @param {vec4} [dest] the optional receiving vector * @returns {vec4} dest */ vec4.scale = function(vecA, scalar, dest) { if (!dest) dest = vecA; dest[0] = vecA[0] * scalar; dest[1] = vecA[1] * scalar; dest[2] = vecA[2] * scalar; dest[3] = vecA[3] * scalar; return dest; }; /** * Copies the values of one vec4 to another * * @param {vec4} vec vec4 containing values to copy * @param {vec4} dest vec4 receiving copied values * * @returns {vec4} dest */ vec4.set = function (vec, dest) { dest[0] = vec[0]; dest[1] = vec[1]; dest[2] = vec[2]; dest[3] = vec[3]; return dest; }; /** * Compares two vectors for equality within a certain margin of error * * @param {vec4} a First vector * @param {vec4} b Second vector * * @returns {Boolean} True if a is equivalent to b */ vec4.equal = function (a, b) { return a === b || ( Math.abs(a[0] - b[0]) < FLOAT_EPSILON && Math.abs(a[1] - b[1]) < FLOAT_EPSILON && Math.abs(a[2] - b[2]) < FLOAT_EPSILON && Math.abs(a[3] - b[3]) < FLOAT_EPSILON ); }; /** * Negates the components of a vec4 * * @param {vec4} vec vec4 to negate * @param {vec4} [dest] vec4 receiving operation result. If not specified result is written to vec * * @returns {vec4} dest if specified, vec otherwise */ vec4.negate = function (vec, dest) { if (!dest) { dest = vec; } dest[0] = -vec[0]; dest[1] = -vec[1]; dest[2] = -vec[2]; dest[3] = -vec[3]; return dest; }; /** * Caclulates the length of a vec2 * * @param {vec2} vec vec2 to calculate length of * * @returns {Number} Length of vec */ vec4.length = function (vec) { var x = vec[0], y = vec[1], z = vec[2], w = vec[3]; return Math.sqrt(x * x + y * y + z * z + w * w); }; /** * Caclulates the squared length of a vec4 * * @param {vec4} vec vec4 to calculate squared length of * * @returns {Number} Squared Length of vec */ vec4.squaredLength = function (vec) { var x = vec[0], y = vec[1], z = vec[2], w = vec[3]; return x * x + y * y + z * z + w * w; }; /** * Performs a linear interpolation between two vec4 * * @param {vec4} vecA First vector * @param {vec4} vecB Second vector * @param {Number} lerp Interpolation amount between the two inputs * @param {vec4} [dest] vec4 receiving operation result. If not specified result is written to vecA * * @returns {vec4} dest if specified, vecA otherwise */ vec4.lerp = function (vecA, vecB, lerp, dest) { if (!dest) { dest = vecA; } dest[0] = vecA[0] + lerp * (vecB[0] - vecA[0]); dest[1] = vecA[1] + lerp * (vecB[1] - vecA[1]); dest[2] = vecA[2] + lerp * (vecB[2] - vecA[2]); dest[3] = vecA[3] + lerp * (vecB[3] - vecA[3]); return dest; }; /** * Returns a string representation of a vector * * @param {vec4} vec Vector to represent as a string * * @returns {String} String representation of vec */ vec4.str = function (vec) { return '[' + vec[0] + ', ' + vec[1] + ', ' + vec[2] + ', ' + vec[3] + ']'; }; /* * Exports */ if(root) { root.glMatrixArrayType = MatrixArray; root.MatrixArray = MatrixArray; root.setMatrixArrayType = setMatrixArrayType; root.determineMatrixArrayType = determineMatrixArrayType; root.glMath = glMath; root.vec2 = vec2; root.vec3 = vec3; root.vec4 = vec4; root.mat2 = mat2; root.mat3 = mat3; root.mat4 = mat4; root.quat4 = quat4; } return { glMatrixArrayType: MatrixArray, MatrixArray: MatrixArray, setMatrixArrayType: setMatrixArrayType, determineMatrixArrayType: determineMatrixArrayType, glMath: glMath, vec2: vec2, vec3: vec3, vec4: vec4, mat2: mat2, mat3: mat3, mat4: mat4, quat4: quat4 }; }));