
OWL 2 Profiles: An Introduction to Lightweight
Ontology Languages

Markus Krötzsch

Department of Computer Science, University of Oxford, UK
markus.kroetzsch@cs.ox.ac.uk

Abstract. This chapter gives an extended introduction to the lightweight pro-
files OWL EL, OWL QL, and OWL RL of the Web Ontology Language OWL.
The three ontology language standards are sublanguages of OWL DL that are
restricted in ways that significantly simplify ontological reasoning. Compared to
OWL DL as a whole, reasoning algorithms for the OWL profiles show higher per-
formance, are easier to implement, and can scale to larger amounts of data. Since
ontological reasoning is of great importance for designing and deploying OWL
ontologies, the profiles are highly attractive for many applications. These advan-
tages come at a price: various modelling features of OWL are not available in all
or some of the OWL profiles. Moreover, the profiles are mutually incomparable
in the sense that each of them offers a combination of features that is available
in none of the others. This chapter provides an overview of these differences and
explains why some of them are essential to retain the desired properties. To this
end, we recall the relationship between OWL and description logics (DLs), and
show how each of the profiles is typically treated in reasoning algorithms.

1 Introduction

The Web Ontology Language OWL has been standardised by the World Wide Web
Consortium (W3C) as a powerful knowledge representation language for the Web. In
spite of its name, OWL is not confined to the Web, and it has indeed been applied suc-
cessfully for knowledge modelling in many application areas. Modelling information
in OWL has two practical benefits: as a descriptive language, it can be used to express
expert knowledge in a formal way, and as a logical language, it can be used to draw
conclusions from this knowledge. The second aspect is what distinguishes OWL from
other modelling languages such as UML. However, computing all interesting logical
conclusions of an OWL ontology can be a challenging problem, and reasoning is typi-
cally multi-exponential or even undecidable.

To address this problem, the recent update OWL 2 of the W3C standard introduced
three profiles: OWL EL, OWL RL, and OWL QL. These lightweight sublanguages of
OWL restrict the available modelling features in order to simplify reasoning. This has
led to large improvements in performance and scalability, which has made the OWL 2
profiles very attractive for practitioners. OWL EL is used in huge biomedical ontologies,
OWL RL became the preferred approach for reasoning with Web data, and OWL QL
provides database applications with an ontological data access layer. The most impor-
tant computation tasks are tractable in each of these cases, that is, they can be performed
in polynomial time.

Besides their practical importance, however, there are many further reasons why the
OWL profiles are of special interest to researchers and practitioners:

– More Understandable. The lower complexity of reasoning also leads to algorithms
that are conceptually simpler than general reasoning techniques for OWL.

– Simpler Implementation. Simpler reasoning algorithms are easier to implement cor-
rectly and (with some further effort) also efficiently.

– Better Tool Support. Users of OWL profiles have more reasoners to choose from.
Specialised implementations often provide best performance, but general-purpose
OWL reasoners can also be used.

– Easier to Extend. Simpler ontology languages are easier to extend with new fea-
tures, due to simpler algorithms and less complex semantic interactions.

In spite of the many motivations for studying the tractable profiles of OWL, the
available resources for learning about this subject are very limited. Indeed, the inter-
ested reader is largely left with the study of the official W3C standardisation documents,
which are comprehensive and accurate, but also laden with technical details. Alterna-
tively, one can resort to a plethora of academic papers that cover many related topics
individually. Often the first task of the reader is to understand how a given work relates
to the OWL standard at all. In any case, information remains distributed and usually
focussed on one of the OWL profiles. Indeed, even researchers often have only a rather
partial understanding of how the three OWL profiles compare to each other. This leads
to unnecessary misconceptions among academics and practitioners alike.

This text sets out to tackle this problem by providing a comprehensive first intro-
duction to the OWL profiles. Our overall premise is that the advantages and limitations
of any one profile can best be understood by comparing it to the other two. The result
should be a fresh perspective that opens up new possibilities: instead of depending on
the (sometimes coincidental) design choices made when defining the OWL profiles, one
can freely combine modelling features to suit the need of one’s very own application or
research. The OWL specification allows us to do this without giving up standard con-
formance or interoperability. The key for enjoying this flexibility is to understand the
constraints that are at the very heart of the current language design.

1.1 Goals of this Document

The purpose of this text is to give a comprehensive introduction to the three lightweight
profiles of OWL 2, with a particular focus on expressivity and efficient reasoning. A
central goal is to explain how the three profiles differ, and why these differences are
important to retain the desired properties. Our preferred perspective will be that of a
computer scientist or ontology engineer who wants to gain a deeper understanding of
the characteristics of the three profiles. This will not stop us, however, from discussing
formal properties whenever they are important for practical usage or implementation.
In particular, we are interested in the correctness of algorithms and in the complexity of
relevant computational problems.

The text does not intend to be a general introduction to OWL (it omits practical
aspects such as URIs, RDF translation, syntactic forms, and advanced features), or to

description logics (it omits many advanced topics and formal details). Moreover, we
mainly focus on the conceptual basics of language design and reasoning. Much could
be said about practical aspects of implementation and optimisation, but this is well
beyond the scope of one lecture. Readers who want to deepen their understanding of
these topics can find many pointers to further literature in Section 6.

Intended Audience This text addresses two main audiences: practitioners who want to
gain a deeper understanding of the OWL profiles, and researchers or students who are
interested in tractable knowledge representation and reasoning. Hence the text is largely
self-contained and does not assume prior knowledge in formal logics or ontology lan-
guages, although some familiarity with these topics will come in handy. However, a
graduate-level understanding of basic computer science topics is generally assumed.
For the benefit of advanced readers, we usually include full details and formal argu-
ments, which can easily be skipped on a first reading.

How to Read this Text The text largely follows a linear structure, but still allows sec-
tions to be skipped on a first reading. Sections are relatively short in general and are
concluded by a short summary of their essential content. We include various proofs,
mainly for their didactic value of explaining why exactly something is the case. They
can easily be skipped by the hurried reader. Examples and remarks are presented in
visually distinguished boxes; both can typically be skipped without loss of continuity.

1.2 Overview

The remaining sections are organised as follows:

Section 2: An Introduction to OWL In this section, we take a first look at the Web On-
tology Language OWL in general. We introduce the most important reasoning tasks for
OWL ontologies, and discuss the computational challenges that they create. A num-
ber of expressive features of OWL are introduced by means of examples in the OWL
Functional-Style Syntax. The more concise description logic syntax is introduced as
a convenient shorter notation for OWL axioms. Most of our discussions are based on
a rather limited set of OWL features, that are encompassed by the description logic
ALCI. Finally, we discuss the two formal semantics of OWL – Direct Semantics and
RDF-Based Semantics – and explain how they relate to each other.

Section 3: Reasoning in the OWL Profiles Here we introduce for the first time the OWL
Profiles EL, RL, and QL by means of three very simple ontology languages ELtiny ,
RLtiny , and QLtiny . We then explain how reasoning tasks are typically solved for each
of these languages. We begin with RLtiny , for which we present a saturation-based in-
stance retrieval calculus that is based on a simple set of inference rules. For ELtiny , we
then develop a classification calculus that works in a similar fashion, although it com-
putes subclass inclusion axioms rather than instance assertions. The task we consider
for QLtiny is query answering, a generalised form of instance retrieval. Our reasoning
method of choice in this case is query rewriting, which is an interesting alternative to
the saturation-based approaches in EL and RL. In each of the three cases, we show

that the proposed methods are correct, and a number of interesting proof techniques are
introduced in the process.

Section 4: The Limits of Lightweight Ontology Languages We now ask how far the ex-
pressive power of the lightweight profiles of OWL can be extended without loosing their
good properties (especially the possibility to use the polynomial time reasoning meth-
ods of Section 3). We will see that some extensions are indeed possible, and that even
the official OWL standard is overly restrictive in various cases. However, many exten-
sions lead to considerably higher computational complexities. To explain this, we first
recall some basic ideas of complexity theory, and show that unrestricted class unions
must make reasoning NP-hard. We then demonstrate that the combination of any two
of the three OWL profiles leads to an even higher exponential reasoning complexity.
This result also justifies the existence of three different profiles. To show this, we use
an ontology to simulate the computation of an Alternating Turing Machine, which is an
interesting technique in its own right.

Section 5: Advanced Modelling Features This short section completes the overview of
the three OWL profiles by discussing a number of additional features that had not been
introduced before. In most cases, these features do not significantly change the way in
which reasoning is implemented, and we do not present reasoning methods for them.

Section 6: Summary and Further Reading We conclude with a short summary of the
main insights, and provide many pointers to related literature. References are avoided
in the rest of the text.

2 An Introduction to OWL

2.1 The Web Ontology Language

The Web Ontology Language OWL is a formal language for expressing ontologies. In
computer science, an ontology is a description of knowledge about a domain of inter-
est, the core of which is a machine-processable specification with a formally defined
meaning.1 This is best explained by an example.

Example 1. A classical kind of ontology are biological taxonomies as used to classify species.
For example, the species of house cats (Felis catus) belongs to the class of mammals (Mammalia),
i.e., every instance of the former is also an instance of the latter. In OWL, we could formally
express this as follows:

SubClassOf(FelisCatus Mammalia)

This allows us to formally state a subclass relation in a way that is understood by OWL reasoners.
Note that this formal relationship does not capture all the knowledge that we intend to express

1 The term is derived from the philosophical discipline of Ontology – the study of existence and
the basic relationships between the things that are – since a basic purpose of ontologies in
computer science is to describe the existing entities and their interrelation.

here: it is also important to know what is actually meant by the classes FelisCatus and Mammalia.
This aspect is essential if we want to view ontologies as representations of knowledge about the
world, but it cannot be captured formally.

OWL statements as in the previous example are known as OWL axioms. There are
many additional kinds of axioms that one can express in OWL – we will introduce a
number of further expressive features later on. For now, however, we focus on the most
basic aspects of OWL that do not depend on concrete features.

When speaking of an (OWL) ontology below, we always mean its formal, machine-
readable content, which essentially is a set of OWL axioms. The informal documenta-
tion of the intended meaning is an important part of ontology engineering, but will not
be discussed here. Information that is formally expressed in OWL can be used to draw
interesting new conclusions, even without taking the informal meaning into account.

Example 2. If we happen to learn that a particular individual, say Silvester, is a cat, then from
Example 1 above we can conclude that Silvester is also a mammal. In OWL, the fact that there is
an individual in a class is expressed as follows:

ClassAssertion(FelisCatus silvester)

and, together with the axiom from Example 1, an OWL reasoner would now be able to draw the
expected conclusion ClassAssertion(Mammalia silvester).

Reasoning (more precisely: deductive reasoning) is the task of computing such con-
clusions. The W3C standard defines which conclusions are entailed by an ontology,
thus specifying the semantics of OWL. While this provides the official requirements
for correct implementations, it does not explain how to actually compute the required
inferences in practice. Indeed, there are many deduction methods for OWL, and the de-
velopment of efficient approaches is an active area of research. We will look at various
concrete algorithms in more detail later on.

Users of OWL can actually select between two slightly different semantics:

– The Direct Semantics defines the meaning of OWL axioms directly by relating
them to description logic (DL), a fragment of first-order logic that provides similar
expressive features as OWL.

– The RDF-Based Semantics first translates OWL axioms into directed graphs in the
W3C’s data exchange language RDF, where each axiom can lead to many edges
(called triples) in the graph. The semantics is then defined for arbitrary RDF graphs,
whether or not they can be obtained by translating an actual set of axioms.

Both semantics have advantages and disadvantages, and they can also lead to differ-
ent conclusions. The Direct Semantics is not applicable to all RDF databases that use
OWL features, whereas the RDF-Based Semantics does not allow for algorithms that
compute all specified conclusions in all cases (i.e., reasoning is undecidable). In prac-
tice, however, both limitations are not as severe as one might expect. Direct Semantics

tools can handle arbitrary RDF data using tolerant, “best effort” parsing. RDF-Based
Semantics tools often specialise to decidable sublanguages (typically OWL RL) and
ignore “unreasonable” combinations of features. In this chapter, we mainly use the Di-
rect Semantics, since it is easier to explain, without having to introduce RDF first. This
perspective is also closer to the view of ontology engineers, who normally design an
ontology by editing OWL axioms, not RDF triples. However, actual reasoning algo-
rithms for either semantics can be very similar, and lead to the same conclusions in
many practical cases.

The above discussion also hints at the fact that there are many ways of writing
OWL ontologies syntactically. The notation used in our above examples is known as
the Functional-Style Syntax (FSS), since expressive features, such as SubClassOf, are
written like function symbols in prefix notation. Two additional syntax standards for
OWL axioms are OWL/XML and the Manchester Syntax. Moreover, OWL axioms can
be faithfully represented in RDF graphs, which in turn can be written (i.e., serialised)
in various syntactic forms, such as the RDF/XML syntax or the more concise Turtle syn-
tax. Among those many options, FSS represents the data model of OWL most closely,
whereas RDF/XML is the main exchange syntax that is most common on the Web. We
will prefer FSS here since it is much more concise.2 Moreover, we will soon introduce
an even more concise writing based on description logics.

Summary The W3C OWL standard can represent machine-readable ontologies in a
variety of syntactic encodings. Two semantics formally define the entailments of OWL.

2.2 OWL Reasoning Tasks

When deploying an OWL ontology in applications, explicitly stated axioms are just as
relevant as the ones that are entailed. In other words, the meaning of an ontology is
given by all the conclusions one can draw from it, no matter which of these conclusions
are explicitly stated. Reasoning therefore is important for using and also for designing
ontologies. Indeed, ontology engineers must be able to check the consequences of an
ontology, just as as a software engineer must be able to test a program.

Every ontology (even if it is empty) entails an infinite number of OWL axioms.
Therefore, the purpose of reasoning algorithms is generally not to compute all entail-
ments, but merely all entailments of a particular form. This leads to various reasoning
tasks that are of particular importance. This section gives an overview of the most com-
mon such tasks.

Example 2 illustrated a particular kind of deductive reasoning where we are inter-
ested in deriving a ClassAssertion axiom. The reasoning task of computing the indi-
viduals that belong to a given class (or set of classes) is called instance retrieval. If we
merely want to find out whether one particular individual belongs to the given class, this
task is called instance checking. Analogous tasks exist for SubClassOf axioms: com-
puting all subclass relationships between a set of classes is called classification, and
checking a particular subclass relationship is called subsumption checking.

2 Contrary to popular belief, FSS is also easier to parse than RDF/XML, since the latter requires
multiple passes to re-assemble OWL axioms from XML-encoded RDF triples. The practical
importance of RDF/XML mainly stems from its wide use for encoding RDF data on the Web.

Another important reasoning task is consistency checking, the task of determining
whether an ontology is logically consistent or contradictory. All OWL axioms in our
previous examples required a particular relationship to hold, but axioms can also be
used to state that a relationship must not hold, as illustrated in the next example.

Example 3. OWL allows us to express the disjointness of two classes, i.e., to say that two classes
must never have any instances in common. For example, we can state that humans are distinct
from cats using the axiom

DisjointClasses(FelisCatus HomoSapiens)

If an additional axiom ClassAssertion(HomoSapiens silvester) would now assert that Silvester
is also human (in addition to him being a cat as stated in Example 2), then a reasoner would infer
the ontology to be inconsistent.

According to (both of) the OWL semantics, an inconsistent ontology entails every
axiom, and is therefore of no practical use. Inconsistency detection is thus important
when developing ontologies. A closely related problem is inconsistency (or incoher-
ence) of classes. A class is inconsistent if it is necessarily empty, i.e., if the ontology can
only be consistent if the class contains no elements. For example, we could formalise an
inconsistent class by requiring it to be disjoint with itself. Inconsistent classes are typ-
ically modelling errors, of which the ontology engineer should be alerted. Especially,
OWL already includes a special class name owl:Nothing3 to refer to an empty class, so
it is never necessary to define additional inconsistent classes.

This completes our overview of the most important reasoning tasks. Luckily, many
of these standard reasoning tasks can be solved by very similar algorithms. This is due
to the following relationships:

– An ontology is inconsistent if some arbitrary class SomeClass that is not used in
any axiom is inconsistent.

– A class SomeClass is inconsistent if the subsumption SubClassOf(SomeClass
owl:Nothing) is entailed.

– A subsumption SubClassOf(ClassA ClassB) is entailed if the fact ClassAsser-
tion(ClassB something) is entailed when extending the ontology with the axiom
ClassAssertion(ClassA something), where something is a new individual name.

– A fact ClassAssertion(SomeClass something) is entailed if the ontology becomes
inconsistent when adding the axioms DisjointClasses(SomeClass AnotherClass)
and ClassAssertion(AnotherClass something), where AnotherClass is a new class
not used anywhere yet.

This cyclic reduction allows us to reformulate each of the above reasoning problems
in terms of any other, although we might need to modify the ontology for this purpose.
Note that only very few features are needed for this reduction: all sublanguages of OWL
that we consider in this chapter will thus allow us to do this. Instance retrieval and

3 The actual name of owl:Nothing is http://www.w3.org/2002/07/owl#Nothing but we do not go
into the details of class naming in OWL, and thus use a common abbreviation.

http://www.w3.org/2002/07/owl#Nothing

classification tasks can be solved by using many individual instance and subsumption
checks. However, this is rarely the most efficient approach, and dedicated algorithms
rather try to perform many instance or subsumption checks at once.

Summary The need to compute deductions for OWL ontologies leads to a number of
standard reasoning tasks, which can be reduced to each other with only little effort.

2.3 Hardness of Reasoning

How difficult is it to actually compute entailments of OWL ontologies? To answer this
question, we need to be more specific. Indeed, it is very easy to compute some OWL
entailments – the challenge is to compute all entailments of a certain kind. Our require-
ments towards a “good” reasoner are usually as follows:

– Soundness: All computed inferences are really entailed.
– Completeness: All entailed inferences (of the kind we are interested in) are really

computed.

The lack of completeness is sometimes accepted if it allows for simpler or more ef-
ficient implementations. This depends on the application: ontology engineers usually
want to know all relevant consequences, while users of ontologies might already be
content to retrieve some of the relevant information. Ideally, it should be clear and well-
documented under which circumstances certain entailments will be missed, so that users
can decide whether this is acceptable or not. The lack of soundness, in contrast, is usu-
ally not desirable, since unsound systems can only reliably tell us which axioms are not
entailed, and this information is less interesting in most applications.

The other main requirement beyond soundness and completeness is efficiency: we
want reasoning algorithms to use as little time and memory as possible. So our question
should be: how hard is it to implement efficient, sound and complete reasoning proce-
dures for OWL? A partial answer to this is given by computational complexity theory,
which allows us to classify reasoning tasks according to their worst-case requirements
in terms of time or memory. In their most common form, complexity measures refer to
decision problems, i.e., to the complexity of solving problems that can only have either
yes or no as an answer. Clearly, all the above checks for instances, subsumptions, and
inconsistency are decision problems in this sense. The following can be stated:

– The standard entailment checks for OWL under RDF-Based Semantics are unde-
cidable, i.e., there is no sound and complete reasoning algorithm that terminates in
finite time.

– The standard entailment checks for OWL under Direct Semantics are N2ExpTime-
complete, i.e., there are sound and complete, non-deterministic reasoning algo-
rithms that terminate in doubly exponential time.

Recall that the RDF-Based Semantics covers a more general RDF-based language;
the above undecidability result refers to arbitrary ontologies from this language. The
N2ExpTime complexity for reasoning under Direct Semantics can roughly be described
by saying: even if we are lucky enough to guess the right answer, it still takes dou-
bly exponentially long to verify this guess. Recall that a double exponential function

in n is linear in kkn
for some constant k, which is not to be confused with kn × kn (e.g.,

224
= 65536 while 24×24 = 256). Given that already NP algorithms (those that perform

this check in polynomial time) are often considered infeasible in practice, this paints a
rather gloomy picture indeed.

However, reasoning in practice rarely is close to this worst-case estimation. Imple-
mentations have been optimised to efficiently deal with typical ontologies, and often
perform very well in these cases. Yet, the complexity result shows that it will always
be possible to construct inputs that reasoners will fail to process (in practice, reasoners
rarely succeed after running for a very long time; they rather run out of memory or need
to use secondary memory that is so slow that processing must be aborted). Moreover,
although the worst case is not typical in practice, even highly optimised implementa-
tions cannot be expected to scale up linearly to very large ontologies. What is worse,
the performance of reasoners is very hard to predict, and small changes or errors may
lead to significant differences.

The three profiles of OWL have been proposed as a way to overcome this problem.
The high worst-case complexity of OWL is based on the interaction of many different
expressive features. By restricting the supported features syntactically, each OWL pro-
file defines a subset of ontologies for which standard reasoning tasks are tractable, i.e.,
for which reasoning is possible in polynomial time (or even less). In general, a tractable
ontology language is one for which standard reasoning is tractable in this sense.

In practice, worst-case complexities can only provide partial information about the
hardness of a problem. For example, an algorithm that solves a problem of size n in
time n42 is polynomial, but it would still be infeasible to use it in practice. Indeed, even
quadratic runtime behaviour is often not tolerable. Nevertheless, optimised reasoners
for the OWL profiles have also been shown to achieve excellent performance in many
practical cases. Moreover, algorithms that are worst-case polynomial are usually less
complicated and easier to implement efficiently than algorithms of exponential com-
plexity. This is certainly the case for the OWL profiles.

Summary Sound and complete OWL reasoning is of high complexity or even undecid-
able. The OWL profiles restrict OWL to improve complexity and practical performance.

2.4 Further Expressive Features in OWL

So far, we have only introduced a few expressive features of OWL by means of exam-
ples. In this section, we take a closer look at the basic expressive features of OWL, and
introduce a slightly bigger set of basic features. The complete feature set of OWL is
a lot bigger (see Section 5), but the features we select here are interesting enough to
explain many important concepts related to OWL and its profiles.

OWL axioms are formed by combining vocabulary entities (e.g., FelisCatus or sil-
vester) by means of language constructors for axioms and other expressions (e.g., Sub-
ClassOf and DisjointClasses). Vocabulary entities can have three different basic types:

– Individual names refer to individual objects.
– Class names refer to sets of objects.
– Property names refer to binary relationships between objects.

Example 4. We have already used the class name FelisCatus to represent the set of all cats, and
the individual name silvester to represent Silvester the cat. For an example of a property, let
preysOn express the relationship between a predator and its prey. For instance, we could state
that Silvester preys on Tweety:

ObjectPropertyAssertion(preysOn silvester tweety)

It is customary to use lower case letters for the names of individuals and properties,
and upper case letters for the names of classes, as we already did in all examples above.

Remark 5. OWL does not require entities to have a unique type. For example, we could use
FelisCatus as a class name as above, and additionally use it as an individual name to assert that it
is a species:

ClassAssertion(Species FelisCatus)

Under the Direct Semantics, this does not establish any formal relationship between FelisCatus
the class and FelisCatus the individual. They still represent either an object or a set of objects,
depending on the context they are used in, but never both at the same time. The use of the same
name for two things is therefore known as punning. In spite of its weak semantics, it can still be
convenient in ontological modelling.

Under the RDF-Based Semantics, the relationship is stronger and leads to additional semantic
entailments. However, it is difficult to compute these entailments in all cases: it is one of the
reasons why reasoning under RDF-Based Semantics is undecidable.

OWL provides many language constructors to express statements about vocabulary
entities. So far, we have encountered examples of various types of axioms:

– SubClassOf: a class is a subclass of another
– DisjointClasses: two (or more) classes must not share elements
– ClassAssertion: a class contains an individual
– ObjectPropertyAssertion: a property relates two individuals

There are a number of further types of axioms in OWL. However, most of the expressiv-
ity of OWL is in its class constructors that allow us to build complex class descriptions
from basic vocabulary entities. Since classes represent sets, the standard set operations
are an obvious candidate for this:

– ObjectIntersectionOf: the intersection of two (or more) classes
– ObjectUnionOf: the union of two (or more) classes
– ObjectComplementOf: the complement of a class

Example 6. The following examples show how these constructors could be used:

– ObjectIntersectionOf(FelisCatus Hungry): the class of objects that are in the class FelisCatus
and in the class Hungry

– ObjectUnionOf(FelisCatus SerinusCanaria): the class of objects that are cats (FelisCatus)
or canary birds (SerinusCanaria)

– ObjectComplementOf(HomoSapiens): the class of objects that are not humans

Such class descriptions can be used in all OWL axioms that work with class names, e.g., to say
that birds are not cats:

SubClassOf(SerinusCanaria ObjectComplementOf(FelisCatus))

or that Silvester is either a cat or a human (or both – this case is not excluded here):

ClassAssertion(silvester ObjectUnionOf(FelisCatus HomoSapiens))

Note that intersection, union, and complement therefore correspond to the logical
operations of conjunction (and), disjunction (or), and negation (not). The empty class
owl:Nothing that we encountered earlier can be viewed as a class constructor without
arguments. Its dual is the class owl:Thing that contains all objects. The logical counter-
parts of owl:Nothing and owl:Thing would be constants false and true.

Remark 7. Many features of OWL have overlapping expressivity, and the same statement can
usually be expressed in various ways. For example, the following five axioms are semantically
equivalent:

DisjointClasses(FelisCatus HomoSapiens)

SubClassOf(FelisCatus ObjectComplementOf(HomoSapiens))

SubClassOf(HomoSapiens ObjectComplementOf(FelisCatus))

SubClassOf(ObjectIntersectionOf(FelisCatus HomoSapiens) owl:Nothing)

SubClassOf(owl:Thing ObjectUnionOf(ObjectComplementOf(FelisCatus)

ObjectComplementOf(HomoSapiens))

Therefore, DisjointClasses is not really needed and merely makes some statements more conve-
nient. We call such features syntactic sugar.

The operations we have encountered so far are only related to basic Boolean opera-
tions of classes. In many cases, however, we would like to take properties into account
when defining classes. This is possible using property restrictions. We will discuss two
features of this type here: ObjectSomeValuesFrom and ObjectAllValuesFrom.

Example 8. In Example 4 we have stated that Silvester is preying on Tweety. Using property
restrictions, we can define the class of all objects that prey on some canary bird:

ObjectSomeValuesFrom(preysOn SerinusCanaria)

Note that this is not an axiom but merely a class expression. A predator can be described as
something that preys on anything (not just on canary birds). The class owl:Thing is handy for
relaxing the description accordingly:

SubClassOf(ObjectSomeValuesFrom(preysOn owl:Thing) Predator)

In other words, ObjectSomeValuesFrom expresses an existential restriction that
refers to the existence a certain property relationship. Dually, ObjectAllValuesFrom en-
codes a universal restriction that refers to all relationships of a property:

Example 9. The following defines the class of objects for which all preysOn relations point to
some canary bird, i.e., the class of the things that prey on canary birds only:

ObjectAllValuesFrom(preysOn SerinusCanaria)

This can be used, e.g., to state that one can only prey on animals. In this case, we use the class
owl:Thing to state that something is true for all things:

SubClassOf(owl:Thing ObjectAllValuesFrom(preysOn Animal))

This yields a property range axiom, stating that everything that somebody preys on must be an
animal. Importantly, this does not mean that every object preys on something in the first place: if
something has no preysOn relations, then all of its (zero) preysOn relations satisfy the require-
ment. This is the usual reading of universal quantifiers in logic, but it can be a source of confusion.
In daily live, statements like “all of my children have won the Nobel prize” are suggesting that at
least one such child exists.

This completes the set of class constructors that we want to consider here, although
there are a number of further features of this kind. In contrast, expressions for con-
structing complex properties are much less frequent in OWL. In fact, the only such
constructor in OWL is ObjectInverseOf, which allows us to reverse the direction of a
property:

Example 10. The inverse of preysOn can be described in OWL as ObjectInverseOf(preysOn);
it is the property relating a prey to its predator. One could use it, e.g., to describe the class of
objects that are preyed on by some cat:

ObjectSomeValuesFrom(ObjectInverseOf(preysOn) FelisCatus)

Using inverses, the property range axiom of Example 9 could also be written as

SubClassOf(ObjectSomeValuesFrom(ObjectInverseOf(preysOn) owl:Thing) Animal)

which again can be read as “everything that is preyed on by anybody must be an animal.”

Summary Statements in OWL are built from a vocabulary of individual, class, and prop-
erty names using various constructors for axioms, and class and property expressions.

2.5 From OWL to Description Logics

OWL is closely related to (and partly based on) a family of knowledge representation
languages called description logics (DLs). DLs have inspired many of the current ex-
pressive features of OWL, and they are the basis for defining OWL’s Direct Semantics.

Table 1. Translating OWL expressions to description logics

OWL Functional-Style Syntax DL Syntax
Axioms SubClassOf(C D) C v D

ClassAssertion(C a) C(a)
ObjectPropertyAssertion(P a b) P(a, b)

Class expressions ObjectIntersectionOf(C D) C u D
ObjectUnionOf(C D) C t D
ObjectComplementOf(C) ¬C
owl:Thing >

owl:Nothing ⊥

ObjectSomeValuesFrom(P C) ∃P.C
ObjectAllValuesFrom(P C) ∀P.C

Property expressions ObjectInverseOf(P) P−

A typical DL is a fragment of first-order predicate logic, and OWL reasoning under Di-
rect Semantics can therefore be viewed as a special case of first-order logic reasoning.
In addition, DLs come with a very convenient syntax for writing OWL axioms in much
less space. In this section, we briefly introduce description logics from the perspective
of OWL.

The building blocks of DL are very similar to that of OWL. DL axioms are con-
structed from vocabulary elements and various constructors (i.e., logical operators).
Ontologies in DL are usually called knowledge bases; classes and properties in DL
are called concepts and roles. To avoid confusion, however, we will stick to the OWL
terminology throughout this chapter. The OWL axioms and expressions that we have
encountered so far can easily be written in description logics according to Table 1.

Example 11. The following ontology illustrates some expressive features of DL:

FelisCatus(silvester) Silvester is a cat. (1)

preysOn(silvester, tweety) Silvester preys on Tweety. (2)

FelisCatus v Mammalia Cats are mammals. (3)

∃preysOn.> v Predator What preys on something is a predator. (4)

> v ∀preysOn.Animal What is preyed on is an animal. (5)

Animal u PlaysChess v HomoSapiens All animals that play chess are humans. (6)

Mammalia v ∃hasFather.Mammalia Every mammal has a mammal father. (7)

Note that, intuitively speaking, the meaning of u, t, and v corresponds to the well-
known set theoretic operations and relations ∩, ∪, and ⊆. We will see in Section 2.6
below that this intuition also agrees with the precise definition of the DL semantics.

As in the case of OWL, one can obtain different DLs by adding or omitting expres-
sive features. The description logic that supports all class expressions with >, ⊥, u, t,
¬, ∃, and ∀ is known asALC (which originally used to be an abbreviation for Attribute
Language with Complement). Inverse properties are not supported by ALC, and the
DL we have introduced above is actually calledALCI (forALC with inverses). Many

description logics can be defined by simply listing their supported features, but there
are also cases where some features are only allowed in certain places (we will see ex-
amples of this in the profiles OWL RL and OWL QL later on). It is therefore easy to
obtain a big number of different DLs, and many of them have been named and studied.
The motivation for considering that many different DLs is that even slight changes in
the supported features can lead to very different computational properties. In general,
the more features we allow, the more complex and complicated reasoning becomes. On
the other hand, the following example shows that the omission of a (syntactic) feature
does not necessarily reduce expressivity, since we might still be able to express the same
thing indirectly.

Example 12. The OWL axiom DisjointClasses(FelisCatus HomoSapiens) cannot be directly
expressed in DLs, but we can easily encode it using any of the following four axioms (see also
Remark 7):

FelisCatus v ¬HomoSapiens

HomoSapiens v ¬FelisCatus

FelisCatus u HomoSapiens v ⊥

> v ¬FelisCatus t ¬HomoSapiens

Comparing this with Remark 7, it is evident that the DL notation saves a lot of space.
By discarding syntactic sugar such as DisjointClasses, we can also reduce the number
of cases that we need to consider in definitions and algorithms, which will generally
simplify the presentation.

DL ontologies are often structured into two sets: ABox and TBox. The ABox consists
of all (class or property) assertions. The TBox consists of all terminological axioms,
i.e., of all subclass inclusion axioms. The ABox provides information about concrete
individuals while the TBox describes general rules that hold for all individuals. In con-
sequence, ABoxes tend to be much larger than TBoxes. Moreover, TBoxes are usually
more general (e.g., a biological taxonomy of species) while ABoxes are specific to an
application (e.g., a database of a zoo that stores the species of each of its animals).
Ontology engineers often develop TBoxes, which users of ontologies combine with ex-
isting ABox information (that might also come from traditional databases). In spite of
these practical differences, TBox and ABox axioms can be treated in mostly the same
way when explaining the underlying theory.

Summary Description logics provide a concise language for OWL axioms and expres-
sions. DLs are characterised by their expressive features. The DL we use here isALCI.

2.6 The OWL Direct Semantics

For following the rest of this chapter, it will suffice to understand the intuitive semantics
of each of the above description logic constructs (and the corresponding OWL expres-
sions). When developing reasoning algorithms, however, a more precise definition of

Table 2. Interpreting description logic expressions semantically

Expression ex Interpretation exI

Class expressions C u D CI ∩ DI

C t D CI ∪ DI

¬C ∆I \ CI

> ∆I

⊥ ∅

∃P.C {e | there is f with 〈e, f 〉 ∈ PI and f ∈ CI}
∀P.C {e | for all f with 〈e, f 〉 ∈ PI we have f ∈ CI}

Property expressions P− {〈 f , e〉 | 〈e, f 〉 ∈ PI}

the semantics is needed to check if the algorithm really computes the right results. In
this section, we will therefore define the semantics of DL, which is known as the Di-
rect Semantics of OWL. This section and the next could be skipped by readers who are
interested in a general overview only.

The semantics of DL is based on the simple idea that every ontology specifies in-
formation about a possible “state of the world.” Initially, all that we know is that indi-
vidual names represent objects, classes represent sets of objects, and properties repre-
sent binary relations between objects. Many different situations are possible: we do not
know which objects, sets, or relations our vocabulary symbols are meant to represent.
By asserting a DL axiom, we narrow down the possibilities. For example, the axiom
FelisCatus v Mammalia can only be satisfied if the set represented by FelisCatus is a
subset of the set represented by Mammalia, even if we still have infinitely many possible
ways to interpret these sets. Adding more axioms will further restrict the possible inter-
pretations (i.e., “states of the world”). An entailment of an ontology then is simply an
axiom that is satisfied by every interpretation that satisfies all axioms of the ontology.

To make this idea formal, we need to define what an interpretation really is, math-
ematically speaking, and which conditions need to be met by it in order to satisfy a
particular axiom. In other words, we need to define a model theory. This approach is
similar to first-order logic, but our interpretations can be a bit simpler due to the restric-
tions imposed by DL.

Definition 13. An interpretation I consist of a non-empty set ∆I (called its domain),
and an interpretation function ·I that assigns

– every individual name a to an element aI ∈ ∆I,
– every class name C to a set CI ⊆ ∆I,
– every property name P to a binary relation PI ⊆ ∆I × ∆I.

This definition merely formalises what we have said above: individuals are objects,
classes are sets, and properties are relations. Once we have such an interpretation of
the basic vocabulary, the meaning of class and property expressions, and the truth of
axioms can be calculated.

Definition 14. The value of an interpretation I for class and property expressions is
defined as in Table 2. A DL axiom ax is satisfied by I, written I |= ax, if the corre-
sponding condition holds:

– I |= C v D if CI ⊆ DI,
– I |= C(a) if aI ∈ CI,
– I |= P(a, b) if 〈aI, bI〉 ∈ PI.

I satisfies an ontology O, written I |= O, if it satisfies all axioms in O. In this case, I is
called a model of O.

Example 15. Consider the interpretation I with domain ∆I = {♥,♣, ?}, and the following inter-
pretations for vocabulary symbols:

silvesterI = ♣ tweetyI = ♥

FelisCatusI = {♣} preysOnI = {〈♣,♥〉, 〈?,?〉}

MammaliaI = {♣, ?} PredatorI = {♣, ?}

AnimalI = {?,♥} PlaysChessI = {?}

hasFatherI = {〈♣, ?〉, 〈?,?〉} HomoSapiensI = {}

This interprets all vocabulary symbols that occur in Example 11. It is easy to check that axiom (6)
is the only axiom of that example that is not satisfied by I. Indeed, ? ∈ (Animal u PlaysChess)I

but ? < HomoSapiens.
Note that interpretations do usually not fully capture our intuition about the domain that we

model. For example, the interpretation asserts that ? is its own father – none of our axioms state
that this should not be possible. Moreover, we might be surprised that MammaliaI * AnimalI

and that there are no humans in our model. It is usually impossible to fully enforce one particular
interpretation, and it is also unnecessary, since we are interested in the logical conclusions rather
than in the exact shape of possible models. Indeed, modelling too many details can also slow
down reasoning without leading to any new consequences that are relevant to the application.
The challenge in modelling ontologies therefore is to understand to which extent the models can
and should mirror reality.

Definition 16. A DL ontology O entails a DL axiom ax, written O |= ax, if every model
of O is also a model of ax. O is inconsistent if it has no models. O entails that a class C
is inconsistent if CI = ∅ in all models I of O.

An OWL axiom is entailed by an OWL ontology under Direct Semantics if the
corresponding DL axiom is entailed by the corresponding DL ontology. Inconsistency
of OWL ontologies and classes under Direct Semantics is defined analogously.

Note that this standard definition of entailment means that inconsistent ontologies
entail every axiom. Indeed, each of the (zero) models of an inconsistent ontology sat-
isfies any axiom. Inconsistency of ontologies and classes can be expressed as axiom
entailment problems:

– O is inconsistent exactly if O |= > v ⊥.
– O entails a class C to be inconsistent exactly if O |= C v ⊥.

Summary Entailments of DL ontologies are defined with a model theoretic semantics
by interpreting individual names as objects, classes as sets, and properties as relations.
By translating OWL to DL, this also provides the Direct Semantics for OWL.

2.7 The OWL RDF-Based Semantics

As explained above, the RDF-Based Semantics of OWL is not based on description
logics. It uses a similar model theoretic approach, but interpretations are based on the
graph-based data model of RDF, which is not the topic of this chapter. Nevertheless,
the underlying intuitive interpretation of individuals, classes, and properties is the same
as in the case of DL and the Direct Semantics. Fortunately, this similarity extends to
the formal semantics, and many entailments under RDF-Based Semantics can also be
obtained under Direct Semantics. This section explains the practical impact of this re-
lationship.

The main ingredient of our discussion is the following correspondence theorem,
which we will discuss in detail below. This theorem is derived from a more general
correspondence theorem in the OWL 2 standard, where a full proof can be found [40,
Section 7.2].

Theorem 17. Let O be an OWL ontology and let ax be an OWL axiom that contains
only individuals, class expressions, and property expressions that also occur in O. If O
entails ax under Direct Semantics, then O entails ax under RDF-Based Semantics.

Moreover, if O is inconsistent under the Direct Semantics, then O is also inconsis-
tent under the RDF-Based Semantics. In this case, O entails every axiom under either
semantics.

Let us first discuss the significance of this theorem. In essence, it states that, under
certain conditions, entailments under Direct Semantics are also valid under RDF-Based
Semantics. In practice, this means that we can use a Direct Semantics algorithm to
build a sound but incomplete reasoner for RDF-Based Semantics. Considering the fact
that there can be no sound and complete, terminating algorithm for the RDF-Based
Semantics (since it is undecidable), this is actually not too bad. However, in many
cases one could obtain a “more complete” procedure by taking additional aspects of
the RDF-Based Semantics into account. Even if this is done, the actual reasoning al-
gorithms could use similar principles, and might be faced with similar implementation
challenges. From the viewpoint of a practitioner, the relevance of this correspondence
strongly depends on two further questions:

(1) Is the theorem applicable in many practical cases?
(2) Are the RDF-based entailments that we can obtain from the Direct Semantics

enough for being useful in practice?

Question (1) essentially asks if the requirements of Theorem 17 are too restrictive to
apply it in realistic cases. We require that individuals, classes, and properties in ax must
occur in O. From the viewpoint of Direct Semantics (and DLs), this turns out to be a
very weak (and even strange) condition. For example, one could ensure that O contains
C by adding an axiom SubClassOf(C owl:Thing) (in DL terms: C v >). This does not

change the meaning under Direct Semantics: we simply have stated that all objects in
the class C are contained in the domain of interpretation. Similar tautological axioms
can be used to introduce arbitrary individual names and property expressions. There-
fore, every OWL ontology can be extended to satisfy the preconditions of Theorem 17
without changing its Direct Semantics.

Under RDF-Based Semantics, however, such additional axioms do make a differ-
ence: it only supports entailments about entities that are syntactically present in the on-
tology. On the other hand, many natural reasoning tasks relate to expressions that occur
in the ontology. The second part of the theorem illustrates that inconsistency checking
is also very similar under both semantics, even without additional side conditions. In
summary, we find that Theorem 17 is applicable in many practical situations.

There is another “hidden” precondition in Theorem 17 that should be noted. Namely,
we start from the assumption that ontologies are given as sets of OWL axioms. The
RDF-Based Semantics, in contrast, can also be applied to arbitrary RDF graphs that
may not correspond to any set of OWL axioms in a clean way. In other words, the
theorem restricts to the part of RDF-based OWL ontologies that can be represented
in terms of OWL axioms. Thus, if we want to process arbitrary RDF documents un-
der RDF-Based Semantics, there is a second source of incompleteness, since ignoring
some of the input (the part that does not represent OWL axioms) may lead us to fewer
conclusions.4 Hence, this aspect is more closely related to our second question.

Question (2) can be rephrased as follows: if a Direct Semantics reasoner is incom-
plete for RDF-Based Semantics, how many practically interesting conclusions will it
be missing? We cannot expect a quantitative answer (such as “85.3% of all entailments
are found”), because there are infinitely many entailments under either semantics. In
general, it is difficult to measure the degree of incompleteness. However, even a coarse
answer to the question is difficult to give, partly due to the fact that there has not been
much research on this topic. We already mentioned that some RDF documents can-
not be mapped to OWL ontologies without loosing some information, and it is clear
that in such cases we can expect additional entailments under RDF-Based Semantics.
Moreover, even valid OWL ontologies contain some information that is not taken into
account when reasoning under the Direct Semantics. For example, every OWL ontol-
ogy has an ontology header that can be used to specify, e.g., the name of the ontology.
Under RDF-Based Semantics, this information is used during reasoning (e.g., the on-
tology name is treated in the same way as Silvester the cat, and both might be inferred
to occur in classes and properties). Again, it is obvious and well-understood that this
will lead to conclusions that we cannot obtain under the Direct Semantics. Therefore
the essential remaining question is:

Is there an OWL ontology O and an axiom ax that has a logical meaning in
DL (i.e., that is not something like the ontology header), such that O entails ax
under the RDF-Based Semantics but not under the Direct Semantics?

In general, the answer to this question is yes. An example is given in Remark 18 below,
which possibly covers the most important practical difference between the two seman-

4 Fortunately, disregarding part of the input can never lead to more conclusions. In other words,
the RDF-Based Semantics is monotone, just like the Direct Semantics.

tics. However, this example uses some features that we have not introduced so far. It is
an open question if there is any such case if we restrict to axioms that are expressible
inALCI. In fact, it is conceivable that the logical entailments under Direct Semantics
and RDF-Based Semantics are exactly the same for an interesting part of OWL.

Remark 18. The most prominent example where OWL’s RDF-Based Semantics is notably dif-
ferent from the Direct Semantics is related to equality. In OWL, it is possible to state that two
individuals are equal, i.e., that two different individual names refer to the same object. As ex-
plained in Remark 5, we can also do this for entities that represent classes in other contexts, e.g.,
to state that the species Felis catus is the same as housecat:

SameIndividual(FelisCatus Housecat)

In the Direct Semantics, this only means that the individuals represented by these names are
equal, but it would not imply anything about the classes of the same name. In the RDF-Based
Semantics, in contrast, classes are identified with individuals, and the above statement would
imply, e.g., that every member of the species Felis catus is also a housecat:

SubClassOf(FelisCatus Housecat)

This would not follow from the Direct Semantics. However, it would be easy to add this RDF-
based entailment to a Direct Semantics reasoner by silently adding, for every equality assertion
between two individuals, two mutual subclass inclusion axioms (and, to cover the case that equal
entities are also used as properties, additional property inclusion axioms; we have not discussed
this here).

The situation becomes more complicated if the equality of two individuals is not asserted but
entailed indirectly. Again, this is not possible when restricting to the features we have discussed
so far, but it can happen when using additional OWL features. In general, the interpretation of
inferred equalities as subclass relationships makes reasoning undecidable, but there are cases
(notably OWL RL) where inferred equalities can still be treated like asserted ones.

In practice, covering asserted equalities can be very important since users may (intentionally
or accidentally) use SameIndividual to state that two classes or two properties are the same. In-
ferred equalities between class or property names, in contrast, should rarely have that practical
importance.

Summary OWL’s RDF-Based Semantics is based on a model theory that is defined on
RDF documents. Yet, many entailments agree with those under the Direct Semantics.

3 Reasoning in the OWL Profiles

Equipped with basic background knowledge about OWL and its semantics, we are now
ready to discuss the lightweight profiles of OWL. We first define small sublanguages of
OWL that we use for explaining the core ideas underlying each profile, and then dis-
cuss typical reasoning algorithms for each language that illustrate how many practical
systems operate.

Throughout this section, we use the DL syntax introduced above for its brevity. It
should be understood as an abbreviation for OWL axioms, that does not necessarily

require Direct Semantics to be used for defining entailments. Indeed, the algorithms
that we discuss are also applicable to reasoning under RDF-Based Semantics, as shown
in Theorem 17.

3.1 Three Tiny OWLs

To explain the characteristics of the three OWL profiles, we introduce three small on-
tology languages ELtiny , RLtiny , and QLtiny that represent typical features of the
profiles. To do this, let us first sum up the features of ALCI. An easy way to do this
is to describe the syntax using formal grammars. The following language Axiom de-
scribes the three possible forms of ALCI axioms, based on some auxiliary languages
for class and property expressions:

ALCI

AxiomF C v C | C(IName) | P(IName, IName)
CF CName | > | ⊥ | C u C | C t C | ¬C | ∃P.C | ∀P.C
PF PName | PName−

Here and in the following, we use IName, CName, and PName for the sets of
individual names, class names, and property names in our vocabulary. Recall that an
expression like C v C represents any axiom of the form D v E with D,E ∈ C, including
the case where D , E.

The three profiles of OWL are defined by restricting the features of ALCI appro-
priately. We first introduce ELtiny , the language related to OWL EL, since it is easiest
to define. It can be obtained by restrictingALCI to allow only conjunction, existential
restrictions, top and bottom:

ELtiny

AxiomF C v C | C(IName) | P(IName, IName)
CF CName | > | ⊥ | C u C | ∃P.C
PF PName

This ontology language is very similar to a lightweight description logic known
as EL (the only difference is that EL does not allow >). This relationship is also the
reason why the according OWL profile has been called EL. OWL EL actually also
supports additional ALCI axioms of the form > v ∀P.C (i.e., property range axioms
as discussed in Example 9), but no other uses of universal quantifiers. We exclude this
special case here for simplicity.

Example 19. The following is an example of an ELtiny ontology:

FelisCatus v ∃preysOn.(Animal u Small) (8)

Animal u ∃preysOn.Animal v Predator (9)

FelisCatus v Animal (10)

where the axioms state that every cat preys on some animal that is small (8), every animal that
preys on some animal is a predator (9), and cats are animals (10).

When compared to other lightweight ontology languages, the characteristic feature
of ELtiny is that it allows for arbitrary existential quantifiers but not for universal quan-
tifiers. As shown in Example 10, inverse properties would be a loophole in this restric-
tion, so they must be forbidden as well. Moreover, all tractable ontology languages dis-
allow or restrict the use of union t, since this could otherwise require non-deterministic
choices during reasoning (see Section 4.3). Complement ¬ must therefore also be re-
stricted; otherwise one could simply express CtD by writing ¬(¬Cu¬D). We will see
other approaches to restrict t and ¬ in RLtiny and QLtiny .

The most typical usage of OWL EL in practice is the modelling of large biomedi-
cal ontologies. Such ontologies are carefully modelled by a group of experts to capture
general domain knowledge (e.g., the fact that all cats are mammals). Existential quan-
tifiers can be useful for defining general concepts, e.g., to express that a heart disease is
a disease that occurs in some part of the heart.

The axioms of ELtiny are exactly thoseALCI axioms that use only a certain subset
of constructors (u, ∃,⊥,>). The languageRLtiny takes a slightly different approach for
restrictingALCI. Whether a constructor is allowed or not now depends on its position
within an axiom. Roughly speaking, the constructors that are allowed on the left-hand
side of class inclusions are different from those that are allowed on the right-hand side.
We can capture this by defining two languages of class expressions as follows:

RLtiny

AxiomF CL v CR | CR(IName) | P(IName, IName)
CLF CName | ⊥ | CL u CL | CL t CL | ∃P.CL
CRF CName | ⊥ | CR u CR | ¬CL | ∀P.CR

PF PName | PName−

Hence, for example, the axiom CtD v E is in RLtiny , but E v CtD is not. Indeed,
the meaning of CtD v E could also be captured using two axioms C v E and D v E, so
we can see that the union on the left of class inclusions does not really add expressive
power. The situation for complement is similar: C v ¬D can be expressed as CuD v ⊥,
as we already observed in Example 12. This explains why negated classes on the right-
hand side are of the form ¬CL instead of ¬CR. Therefore, union and complement in

RLtiny are mainly syntactic sugar that one could add to ELtiny as well (but at the cost
of requiring separate left and right class expression languages, which are not otherwise
needed in ELtiny).

The characteristic feature of RLtiny is its asymmetric use of quantifiers: existen-
tials are allowed only on the left and universals are allowed only on the right. Inverse
properties can be allowed without weakening these restrictions. Also note that RLtiny
does not allow >.5

Example 20. The following is an example of an RLtiny ontology:

FelisCatus v ∀preysOn.(Animal u Small) (11)

Animal u ∃preysOn.Animal v Predator (12)

FelisCatus v Animal (13)

where axiom (11) states that cats prey only on small animals. Axioms (12) and (13) are the same
as in Example 19.

The name RL hints at the fact that the restrictions lead to a kind of rule language,
where all axioms can be expressed as rules (logical implications). For instance, axioms
of Example 20 could be expressed as follows:

FelisCatus(x) ∧ preysOn(x, y)→ Animal(y) ∧ Small(y) (14)
Animal(x) ∧ preysOn(x, y) ∧ Animal(y)→ Predator(x) (15)

FelisCatus(x)→ Animal(x) (16)

If we read this as first-order logic implications where all variables are universally quan-
tified, then these rule capture exactly the Direct Semantics of the example ontology. The
RDF-Based Semantics is not fully defined in this way, but the rule-based forms can still
be used to draw valid conclusions in this case.

The ontology language QLtiny is defined in a similar way to RLtiny using separate
grammars for class expressions on the left and right of class inclusion axioms:

QLtiny

AxiomF CL v CR | CR(IName) | P(IName, IName)
CLF CName | > | ⊥ | ∃P.>
CRF CName | > | ⊥ | CR u CR | ¬CL | ∃P.CR

PF PName | PName−

Notably, QLtiny is a lot more restricted than ELtiny and RLtiny regarding its
Boolean constructors: it does not even allow intersection u on the left-hand side. The

5 This restriction of OWL RL does not have a deeper technical reason but is based on the pref-
erences of OWL RL tool developers who participated in the W3C OWL Working Group.

reasons for this seem to be mostly historic – at least there is no big computational chal-
lenge in allowing u as in ELtiny and RLtiny . The left-hand side also is restricted to
a very specific form of existential restriction, where only > can be used as a filler; as
opposed to the case of u, this restriction is very important for reasoning in QLtiny .
On the other hand, QLtiny supports inverse properties (which are not in ELtiny) and
existential quantifiers on the right-hand side (which are not in RLtiny).

Example 21. The following is an example of an QLtiny ontology:

FelisCatus v ∃preysOn.(Animal u Small) (17)

∃preysOn.> v Predator (18)

∃preysOn−.> v Animal (19)

FelisCatus v Animal (20)

As before, we can state that every cat preys on some small animal (17), and that cats are animals
(20). We can also say that everything that preys on anything else is a predator (18), without being
able to specify the additional restriction to animals as in (9) above. On the other hand, we can
state that everything that is preyed on must be an animal (19), which expresses a range axiom
using inverses as in Example 10.

The specific feature combination supported by QLtiny is motivated by its intended
usage as a rich query language (hence the name QL). In ontology-based data access
(OBDA), an ontology is used to augment an existing database (viewed as a set of
facts/ABox). A (database) query then should return not only the data that is stored
explicitly in the database, but also additional facts that can be inferred from it using the
ontological information. OWL QL (and QLtiny) allows this to be done without needing
to write inferred facts to the database, but rather by using a query rewriting approach
that we will explain in Section 3.8.

Summary The characteristics of the OWL profiles are exemplified by three languages:
ELtiny that allows ∃ but no ∀, RLtiny that allows ∃ on the left and ∀ on the right of
class inclusions, and QLtiny that even restricts u but allows ∃ and inverse properties.

3.2 Rule-based Reasoning for Instance Retrieval in RLtiny

The first reasoning method that we present for the OWL profiles is for instance retrieval
in OWL RL, that is, in our little fragment RLtiny of OWL RL. The common approach
to RL reasoning is to use a set of inference rules that are applied to an input ontology to
derive new consequences. This is a fundamental technique that we will also encounter
for ELtiny , and we will use the example of RLtiny to introduce related concepts that
will also come in handy later on.

Instance retrieval is the most important inference task for OWL RL. Applications
of RL often involve a large amount of explicit facts, which are augmented by a set of
TBox axioms that is much smaller (typically by at least one order of magnitude). This
situation is common for input ontologies that are obtained by crawling the Semantic

Av
D(c)
E(c)

: D v E ∈ O

A−
u

D1 u D2(c)
D1(c) D2(c)

A+
u

D1(c) D2(c)
D1 u D2(c)

: D1 u D2 occurs in O

A−
∀

∀P.E(c) P(c, d)
E(d)

A+
∃

P(c, d) E(d)
∃P.E(c)

: ∃P.E occurs in O

A−¬
¬D(c) D(c)
⊥(c)

A+
t

D(c)
D1 t D2(c)

:
D = D1 or D = D2

D1 t D2 occurs in O

A−
inv

P−(c, d)
P(d, c)

A+
inv

P(c, d)
P−(d, c)

: P− occurs in O

Fig. 1. Inference rules for ABox reasoning in RLtiny

Web, but it is also typical for OBDA applications. Accordingly, many RDF databases
also support some amount of OWL RL reasoning.

We have seen in Section 2.2 that the standard reasoning tasks of OWL can all be
reduced to one another. Hence, in principle, it does not seem to matter for which of them
we specify a reasoning method. However, the reduction of one reasoning task to another
requires the ontology to be modified, which is not always convenient, especially if many
queries should be answered at once (e.g., if many users of an ontology-based system
submit queries). Moreover, we typically want to retrieve all instances of a certain class
or property, not just check if some particular instance is contained. To do this efficiently,
we need an approach that computes many instance relationships at once, rather than
requiring us to check every possible instance individually.

A suitable calculus for instance retrieval is specified in Fig. 1. It consists of a list of
inference rules of the form

Premise
Conclusion

: Side condition,

which can be read as follows: if the Premise is given and the Side condition is satisfied,
then the Conclusion should be derived. We suggest the reader to have a closer look
at the rules in Fig. 1 now to verify that each of them expresses a plausible inference.
For example, rule Av states that, if c is in class D, and D is a subclass of E, then c
is also in E. The symbols c, D, and E should be thought of as place holders that can
represent arbitrary expressions of the respective type. In other words, every inference
rule in Fig. 1 is actually a template for many concrete instances of this inference rule.
Unless we want to be very formal, we will usually ignore the difference between an
inference rule and an instance of this inference rule. A rule is applicable to an ontology
O if it has an instance such that O contains the respective premises and satisfies the
respective side conditions. In this case, the rule can be applied, i.e., the conclusion of
the (instance of the) rule can be added to O.

Let us look at a concrete example to see how we can apply the rules of Fig. 1 to
derive new conclusions:

Example 22. Consider the TBox given in Example 20 together with two ABox axioms:

FelisCatus(silvester) (21)

preysOn(silvester, tweety) (22)

Applying the inference rules of Fig. 1, we can draw the following conclusions, where each line
specifies the applied rule and premises (and the side condition in case of rule Av):

Animal(silvester) Av : (21), (13) (23)

∀preysOn.(Animal u Small)(silvester) Av : (21), (11) (24)

Animal u Small(tweety) A−
∀

: (24), (22) (25)

Animal(tweety) A−
u

: (25) (26)

Small(tweety) A−
u

: (25) (27)

∃preysOn.Animal(silvester) A+
∃

: (22), (26) (28)

Animal u ∃preysOn.Animal(silvester) A+
u

: (23), (28) (29)

Predator(silvester) Av : (29), (12) (30)

We have thus derived that Silvester is a predator.

The previous example illustrates the interplay of rules in our calculus. Class inclu-
sions are taken into account by the single rule Av. The remaining rules are used to
derive facts that are immediate from the structure of class (and property) expressions.
The A− rules thereby decompose an axiom into smaller axioms, while the A+ rules
assemble smaller parts into bigger expressions. The main goal of assembling bigger ax-
ioms is to make rule Av applicable, and this is why side conditions restrict A+ rules to
produce only expressions that occur in O. The example shows the typical sequence of
derivations: in (24) a new complex axiom is derived using a class inclusion; (25) to (27)
decompose this statement; (28) and (29) compose a new axiom; (30) applies another
class inclusion to the result.

This also explains why we include rules A+
∃

and A+
t

that deriveALCIABox axioms
that are not allowed in RLtiny . Indeed, the task of the A+ rules is to derive the left-hand
side of a class inclusion axiom, i.e., an axiom of the form CL(IName) rather than an
RLtiny ABox axiom CR(IName).

Finally, note that both premises and side conditions in our calculus play the role of
preconditions that must hold in order to apply some rule. However, the application of
a rule can only produce new premises, and will not affect the side conditions that hold.
This is useful for implementing rule-based reasoning, where performance crucially de-
pends on how efficiently one can check which rules are applicable.

Summary Rule-based reasoning methods apply a set of inference rules to derive new
consequences. The rules in Fig. 1 produce consequences of RLtiny ontologies.

3.3 Defining a Saturation Calculus for RLtiny

The previous section introduced the concept of inference rules and gave an example
where a valid consequence could be obtained. For a more systematic study of this rea-
soning approach, we need to be a bit more precise in defining the results of applying
our calculus. This is the goal of the next definition:

Definition 23. An ontology is saturated under the rules of Fig. 1 if it contains the
conclusions of all applicable rules. The saturation of an ontologyO is the least saturated
set O′ that contains O.

The calculus of Fig. 1 derives an axiom ax from O if one of the following holds:

– the saturation of O contains the axiom ax, or
– the saturation of O contains the axiom ⊥(c) for some individual c.

Most of this definition should simply spell out our intuitive idea of what it means
to compute derivations based on a set of inference rules. In general, there are many
saturated sets that contain an ontology; e.g., the set of allALCI axioms over the given
signature is always saturated. We thus refer to the least saturated superset of O to make
sure that the derivations of the calculus correspond to the minimal amount of conse-
quences that are really necessary. It is clear that any consequence that is derived by
repeated application of rules must also be part of this least saturated ontology. The
case where ⊥(c) is derived occurs if the ontology is inconsistent and thus entails every
axiom, including ax.

Remark 24. This type of rule-based reasoning is known under various names, since it can be
found in various forms in many areas of knowledge representation and artificial intelligence.
Related names include:

– Saturation: we saturate an input; common term in theorem proving
– Deductive closure: another name for saturation; alludes to the notion of a closure operator
– Materialisation: derivations are “materialised,” i.e., made explicit and stored; common term

in the database literature
– Bottom-up reasoning: we start from the given ontology for computing derivations; com-

monly used in contrast to top-down reasoning that starts from a query (see Section 3.8)
– Forward chaining: rules are applied in a forward manner, from premise to conclusion; com-

mon term in rule-based knowledge representation and logic programming; the opposite is
backward chaining, of which we see an example in Section 3.10

– Consequence-based reasoning: we produce consequences based on what is given, rather than
trying to prove a hypothesis; term used in description logics, where many reasoning methods
are guided by a hypothesis rather than by the given input

Definition 23 thus unambiguously specifies what our calculus derives. But is this
really true? The definition is based on the saturation, the least saturated superset of O.
How can we be sure that such a set exists in all cases? So far, our intuition has been that
the saturation is the “limit” of applying inference rules to O, but rule application is not
completely deterministic. One can often apply multiple rules at the same time, so there
are many possible saturation processes for some ontologies. How can we be sure that

the overall result does not depend on the order of rule applications? Indeed, it could be
that there are multiple saturated sets, none of which is the least.

Example 25. To illustrate this problem, consider the following inference rules:

D1 t D2(c)
D1(c)

: D2(c) was not derived
D1 t D2(c)

D2(c)
: D1(c) was not derived

Together, these rules ensure that every instance of a union D1tD2 is also derived to be an instance
of at least one of D1 and D2. This captures the semantics of t, but it prevents the existence of a
unique saturation. Indeed, the ontology O = {D1 t D2(c)} in contained in two saturated sets

{D1 t D2(c),D1(c)} and {D1 t D2(c),D2(c)}

but neither of these sets is the smaller than the other, and all sets that are contained in both are
not saturated. Hence, the least saturated set that contains O does not exist.

Fortunately, the calculus in Fig. 1 has unique saturations. This is intuitively plausible
since no rule application can prevent the application of any other rule. So whenever
there are multiple possibilities for applying rules, it does not matter what we chose to
do first: the other rule applications will still be possible later on. Formally, this property
of the rule set is called monotonicity, meaning that a rule (instance) that is applicable to
some ontology is also applicable to every larger ontology. This is enough to guarantee
the existence of a unique saturation. A formal argument could look as follows:

Theorem 26. The saturation of an ontology under the rules in Fig. 1 exists. In particu-
lar, Definition 23 is well-defined.

Proof. We show the result by constructing the saturation as follows. Let Ô be the set
intersection of all saturated ontologies that contain O. Note that the set of all axioms
over the signature of O is always saturated, so Ô is an intersection of one or more sets.
We show that Ô is the saturation that we are looking for.

Since Ô is an intersection of sets that contain O, we find O ⊆ Ô. To establish the
claim it remains to show that Ô is also saturated. To this end, we have to show that
Ô contains the consequences of every rule instance that is applicable to Ô. To do this,
consider an arbitrary rule instance R that is applicable to Ô. We must show that the
consequence of R is in Ô.

To this end, consider an arbitrary saturated ontology O′ that contains O. Then Ô =

Ô ∩ O′ by our definition of Ô. In other words, Ô ⊆ O′. Since the inference rules are
monotone, the rule instance R is applicable to O′ as well. Since O′ is saturated, we can
conclude that O′ contains the consequence of R. Since O′ was arbitrary, we have thus
shown that every saturated ontology that contains O also contains the consequence of
R. Therefore, Ô contains the consequence of R. Since R was arbitrary, this applies to
all instances of all inference rules – in other words, Ô is saturated.

Summing up, we have shown that Ô is a saturated ontology that contains O, and
that (by constriction) is contained in all other saturated ontologies. Therefore, Ô is the
desired saturation. �

This proof works for all monotone inference systems, and is therefore often omitted
as “obvious.” However, even if the argument does not need to be repeated in every case,
one should never forget to verify that the inference rules are indeed monotone. If a rule
depends on the absence of some axiom, or if the application of a rule deletes an axiom
rather than adding one, then it is no longer clear that a saturation exists. Many unwary
computer scientists have fallen into that trap.

Summary The derivations of a calculus of monotone inference rules are defined by
considering the saturation of an input ontology. The rules in Fig. 1 are monotone.

3.4 Correctness of the RLtiny Instance Retrieval Calculus

Now that we have clearly defined a reasoning procedure based on the rules of Fig. 1,
we would like to know if this calculus is correct (and in which sense). As discussed in
Section 2.3, this question relates to soundness and completeness. To obtain a practical
procedure, it should further be guaranteed that derivations can be computed in finite
time. We thus arrive at the following three questions:

(1) Will a (naive) implementation of the calculus terminate, i.e., is the computation
guaranteed to halt after a finite number of computation steps?

(2) Is the calculus sound, i.e., does it only produce valid consequences?
(3) Is the calculus complete, i.e., does it produce all valid consequences?

In this section, we will explain in some detail how one can prove termination and sound-
ness. Completeness requires a bit more effort and is therefore discussed separately in
Section 3.5. Proving these properties is not just an academic exercise but constitutes an
important part of verifying the quality of any software system that is based on this cal-
culus. When compared to other tasks of ensuring software quality, such as unit testing
or profiling, the effort for establishing the correctness of the approach is rather small,
but it requires a different set of techniques. The basic ideas found in this section and the
next are used in many correctness proofs, but are rarely explained in full detail. Here,
we give a more verbose and slow-paced presentation.

Termination We begin by showing termination, which will also have the important
side effect of connecting our intuitive understanding of the calculus (“apply rules until
nothing changes”) to the formal definition in Section 3.3 (“consider the least saturated
superset”). Indeed, we have only established the existence of the saturation by con-
structing it as the intersection of all saturated supersets, not by showing that the rules
will lead to this result.

To obtain termination, we show that the repeated application of inference rules to
O will stop after a finite number of steps. The simple reason for this is that there are
only finitely many different axioms that the rules can derive from a given input. Indeed,
every class expression, property expression, and individual in the conclusion of a rule
must occur in its premises or in the input ontology. Thus, ultimately, all expressions in
derivations occur in the input ontology. Since there are only finitely many such expres-
sions in a finite input, the number of possible combinations of these expressions must
also be finite. This is an induction argument, which can be made formal as follows:

Theorem 27. The repeated application of the rules of Fig. 1 to an ontology O termi-
nates after at most O(s3) steps, where s is the size of O.6

Proof. We first show that every axiom ax that can be derived by a finite number n of
rule applications contains only class expressions, property expressions, and individuals
that also occur in the input ontology. This is easily done by induction over n.

If n = 0 (base case), then ax ∈ O and the claim is immediate. For the induction step,
we assume that the claim has been shown for all axioms that are derived in less than
n steps (induction hypothesis). The axiom ax must be obtained by applying some rule
from Fig. 1 for which the premises have been derived before. By induction hypothesis,
the premises only use expressions that occur in O. By inspecting each individual rule,
we find that ax also satisfies the claim. This finishes the induction.

Since every possible conclusion contains at most three expressions (classes, proper-
ties, individuals), this bounds the total number of derivations that can be obtained in a
finite number of steps by O(s3). This implies that the derivation terminates after at most
that many steps. �

It is clear that the finite set of axioms that is obtained after termination is saturated.
Moreover, it only contains axioms that are strictly necessary for this property (again,
we could formalise this with an induction argument). Therefore, the set of derivations
obtained by exhaustively applying the rules is indeed the saturation of an ontology in
the sense of Definition 23.

Note that Theorem 27 does not state that the saturation can be computed in polyno-
mial time. For this, we also need to observe that the applicability of a single rule can
be checked in polynomial time. Since the total number of successful rule applications
is linearly bounded by s3, this leads to the overall polynomial bound.

Soundness Verifying that a set of inference rules is sound is often not a difficult task.
In essence, we merely need to check that every rule will derive valid consequences
provided that the inputs are valid. To make this formal, we need to refer to the formal
semantics which defines the meaning of valid. Yet, we only need to show it under Di-
rect Semantics: the case of RDF-Based Semantics then follows from Theorem 17. The
following result illustrates how to formalise and prove a soundness result:

Proposition 28. Rule A−
∀

is sound, i.e., for any ontology O with O |= ∀P.E(c) and
O |= P(c, d), we have O |= E(d).

Proof. According to the definition of the Direct Semantics in Section 2.6, we need to
show that every interpretation that satisfies O also satisfies E(d). To this end, let I be an
arbitrary interpretation with I |= O. Thus I |= P(c, d), that is, 〈cI, dI〉 ∈ PI. Moreover,
I |= ∀P.E(c), that is, cI ∈ (∀P.E)I. According to Table 2, this means that for all f with
〈cI, f 〉 ∈ PI we have f ∈ EI. Thus, in particular, dI ∈ EI, that is, I |= E(d). Since I
was arbitrary, this finishes the proof. �

6 It is inessential how exactly we define the size of O. We could, e.g., take the length of O when
written down as a set of axioms in DL syntax. However, the number of axioms in O (i.e., its
cardinality) is not a good measure of size since it ignores the size of individual axioms.

The cases of the other rules are similar. The side conditions are only relevant for
rule Av. For all other rules, they are only used to avoid unnecessary derivations, which
is important for termination but not for soundness.

Now given that the initial ontology O itself is certainly a consequence of O, and that
every rule can derive only valid consequences from valid premises, it is easy to see that
only valid consequences will ever be derived.

Theorem 29. The calculus in Fig. 1 is sound, i.e., all axioms in the saturation of an
ontology are logical consequences of this ontology.

Proof. Consider an axiom ax in the saturation of an ontology O. Then ax can be ob-
tained by applying inference rules to O. Let n be the number of rule applications needed
to derive ax. The fact that this number n is finite follows from our above discussion on
termination. The induction proceeds as in the proof of Theorem 27, where we use the
correctness of individual rules (e.g., Proposition 28) in the induction step. �

Again, this is a standard proof scheme that is rarely explicated in such detail. The
essential ingredient is that every rule is sound in the sense of Proposition 28.

Summary The correctness of a calculus involves checking soundness, completeness,
and termination. Termination and soundness can be shown by verifying that each rule
preserves the required property (boundedness and validity of derivations, respectively).

3.5 Completeness of the RLtiny Instance Retrieval Calculus

In this section, we explain how to prove that the instance retrieval calculus for RLtiny
is complete. This is often the most challenging task for proving the correctness of a
reasoning procedure. As a first step, we need to understand what the expected output of
the reasoning calculus is. Typically, we do not expect all valid results to be computed,
but only valid results of a certain form. In our case, the calculus is expected to compute
ABox axioms (since it is for instance retrieval). However, we already noted that the
calculus does not compute arbitrary RLtiny ABox axioms but rather axioms of the form
CL(IName). Indeed, the following example illustrates that the calculus is not complete
for RLtiny ABox axioms:

Example 30. The following RLtiny ontology is saturated under the rules of Fig. 1:

{D(c),D u E v ⊥}

This ontology entails the RLtiny ABox axiom ¬E(c) but this axiom is not in the saturation.

Moreover, the calculus can only compute axioms that are built from expressions that
occur in the ontology: this is clear for A− rules, and it is enforced by the side condition
in A+ rules. Summing up, we arrive at the following completeness statement that we
would like to establish:

Theorem 31. The calculus in Fig. 1 is complete in the following sense:

– If O |= E(c) where E ∈ CL and E occurs in O, then E(c) is derived by the calculus.
– If O |= P(c, d) where P ∈ P and P occurs in O, then P(c, d) is derived by the

calculus.

Note that derived by the calculus includes the two possible conditions of Defini-
tion 23. In spite of the restrictions, Theorem 31 still ensures that we can use the cal-
culus to compute the instances of arbitrary class and property names. Class names are
certainly in CL, and neither class nor property names require us to check if they really
occur in O. If not, then they will never have any instances, so there is no danger of
incompleteness in this case.

It remains to show that Theorem 31 is actually true. How can we possibly be sure
that no important consequences are missed? The proof idea here (and in many other
completeness proofs) is to show the contrapositive: whenever an axiom as in the claim
is not derived by the calculus, the axiom is also not entailed byO. To show that an axiom
is not entailed, one can provide a counter-model, i.e., an interpretation that satisfies O
but that does not satisfy the respective axiom. If such an interpretation exists, then it is
clear that not all interpretations that satisfy O satisfy the axiom – in other words, the
axiom is not a logical consequence.

In the case of RLtiny it is particularly easy to find a good counter-model. In fact,
we can almost directly translate the saturated ontology into an interpretation, and this
unique interpretation will work as a counter-model for all facts that have not been de-
rived. We have already mentioned that OWL RL can be viewed as a kind of rule lan-
guage, and indeed this construction is related to the least Herbrand model used in Logic
Programming. To formalise this argument, we must mainly check that the axioms that
are true in our chosen counter-model correspond to the axioms that are derived in the
saturation. Doing this for class and property expressions of all relevant forms requires
us to consider many cases, which makes the proof somewhat lengthy. Nevertheless, all
of the individual steps should be easy to follow:

Proof (of Theorem 31). Consider an RLtiny ontology O. Let O′ be the saturation of
O under the rules of Fig. 1. If O′ contains an axiom of the form ⊥(c), then the claim
follows immediately since in this case the calculus is defined to entail every axiom.

For the remainder, we assume that O′ does not contain an axiom of the form ⊥(c).
We define an interpretation I as follows:

– The domain ∆I of I is the set of all individual symbols in the signature (without
loss of generality, we can assume that there is at least one, even if it does not occur
in O).

– For every individual symbol c, define cI B c.
– For every class name A, define c ∈ AI if and only if A(c) ∈ O′.
– For every property name P, define 〈c, d〉 ∈ PI if and only if P(c, d) ∈ O′.

We want to show that I is a model of O that satisfies only axioms that either occur in
O′ or that are not of the forms defined in the claim of Theorem 31. We first observe that
the relationship used to define I for property names extends to inverse properties:

Claim 1 The following statements are equivalent:

– P− occurs in O and 〈c, d〉 ∈ P−I

– P−(c, d) ∈ O′

If the first statement holds, then 〈d, c〉 ∈ PI by the semantics of inverse properties.
Thus P(d, c) ∈ O′ and rule A+

inv
is applicable. Since O′ is saturated, P−(c, d) ∈ O′.

Conversely, if the second statement holds, then A−
inv

is applicable. Thus P(d, c) ∈ O′.

By the definition of I, 〈d, c〉 ∈ PI. Therefore 〈c, d〉 ∈ P−I, as required. The fact that P−

occurs in O follows since either P−(c, d) ∈ O′ was derived by rule A+
inv

, or P−(c, d) ∈ O.
This completes the proof of Claim 1. Lifting the definition of I to arbitrary CL

classes requires a bit more effort. We first show the following direction:

Claim 2 If E ∈ CL occurs in O, then c ∈ EI implies E(c) ∈ O′.
In other words, all relationships c ∈ EI that hold in I are also derived in O′. To

show this claim for arbitrary CL classes E, we perform an induction over the structure
of such classes, as defined by the grammar in Section 3.1. We begin with the base cases:

– If E is a class name, then the claim follows from the definition of EI.
– If E = ⊥, then the claim holds since c ∈ EI does not hold for any c (since ⊥I = ∅).

For the remaining cases, we assume that the claim has already been established for the
classes D, D1 and D2 (induction hypothesis). In all cases, we assume that E occurs in O
and that c ∈ EI.

– Case E = D1 u D2. By the semantics of u, we find c ∈ DI1 and c ∈ DI2 . Clearly, D1
and D2 occur in O since E does. Thus, the induction hypothesis implies D1(c) ∈ O′

and D2(c) ∈ O′. Since E occurs in O, rule A+
u

applies and E(c) ∈ O′ as required.
– Case E = D1 t D2. By the semantics of t, we find c ∈ DI1 or c ∈ DI2 . Clearly, D1

and D2 occur in O since E does. Thus, the induction hypothesis implies D1(c) ∈ O′

or D2(c) ∈ O′. Since E occurs in O, rule A+
t

applies and E(c) ∈ O′ as required.
– Case E = ∃P.D. By the semantics of ∃, there is an element d ∈ ∆I such that
〈c, d〉 ∈ PI and d ∈ DI. By the definition of I, d is an individual name. Since E
occurs in O, so do P and D. According to Claim 1 (if P is inverse) or the definition
of I (otherwise), we find that P(c, d) ∈ O′. By the induction hypothesis, D(d) ∈ O′.
Since E occurs in O, rule A+

∃
applies and E(c) ∈ O′ as required.

This finishes the proof of Claim 2. The other direction needs to be established for
another language of class expressions:

Claim 3 If E ∈ CR and E(c) ∈ O′, then E occurs in O and c ∈ EI.
The fact that E occurs in O is not hard to see. Given only premises with classes in O,

every rule will only introduce classes with that property (in the A+ rules this is ensured
by side conditions). So this part of the claim can be shown with an easy induction,
similar to the one we did for Theorem 27.

To show the remaining claim for arbitrary CR classes E, we perform an induction
over the structure of such classes, as defined by the grammar in Section 3.1. We begin
with the base cases:

– If E is a class name, then the claim follows from the definition of EI.
– If E = ⊥, then the claim holds since we assumed that no axiom of the form E(c)

occurs in O′.

For the remaining cases, we assume that the claim has already been established for the
classes D, D1 and D2 (induction hypothesis). In all cases, we assume that E(c) ∈ O′.

– Case E = D1 u D2. Then rule A−
u

is applicable. Since O′ is saturated, we find
D1(c) ∈ O′ and D2(c) ∈ O′. By the induction hypothesis, c ∈ DI1 and c ∈ DI2 . By the
semantics of u, this implies c ∈ EI as required.

– Case E = ¬D where D ∈ CL. We have assumed that O′ does not contain the axiom
⊥(c). Therefore, rule A−¬ is not applicable, that is, D(c) < O′. We already noted
above that E and thus D must occur in O. Therefore, (the contrapositive of) Claim 2
implies that c < DI. By the semantics of ¬, c ∈ EI.

– Case E = ∀P.D. Consider an arbitrary element d such that 〈c, d〉 ∈ PI. According to
Claim 1 (if P is inverse) or the definition of I (otherwise), we find that P(c, d) ∈ O′.
Therefore, rule A−

∀
is applicable to obtain D(d) ∈ O′. By the induction hypothesis,

this implies d ∈ DI. Since d was arbitrary, this shows that c ∈ EI according to the
semantics of ∀.

This finishes the proof of Claim 3. We can now show that I is a model of O. We
need to show that I satisfies each axiom in O. We distinguish the possible forms of
RLtiny axioms:

– ABox axioms E(c) ∈ O: then E ∈ CR occurs in O, so c ∈ EI follows from Claim 3.
– ABox axioms P(c, d) ∈ O: then 〈c, d〉 ∈ PI follows from Claim 1 (if P is inverse)

or the definition of I (otherwise).
– TBox axioms D v E ∈ O. Whenever there is an element c ∈ DI, then D(c) ∈ O′ by

Claim 2. Thus, rule Av is applicable and yields E(c) ∈ O′. By Claim 3, c ∈ EI.

This shows that I models all axioms of O. Finally, the two cases of the overall claim
can be shown by a similar argument:

– If E(c) < O′ for some E ∈ CL that occurs in O, then c < EI by (the contrapositive
of) Claim 2. Hence O 6|= E(c).

– If P(c, d) < O′ for some P that occurs in O, then 〈c, d〉 < PI by (the contrapositive
of) Claim 1 and the definition of I. Hence O 6|= P(c, d).

We have thus shown that, whenever axioms of this type are not derived, they are not
logical consequences of O. This finishes the claim. �

We have thus convinced us that our calculus is indeed complete. In long proofs, it
is easy to overlook some possible cases. A good cross check for the completeness of
our completeness proof is therefore that every rule in the calculus is actually mentioned
somewhere. If we had been able to show completeness without using each rule, then
we would either have forgotten something, or the calculus would contain more rules
than needed for deriving all results (this is usually bad in practice, since it means that
algorithms have more possibilities for deriving the same result redundantly).

Tv
C v D
C v E

: D v E ∈ O T+
i C v C C v >

: C occurs in O

T−
u

C v D1 u D2

C v D1 C v D2
T+
u

C v D1 C v D2

C v D1 u D2
: D1 u D2 occurs in O

T−
∃

C v ∃P.⊥
C v ⊥

T+
∃

C v ∃P.D D v E
C v ∃P.E

: ∃P.E occurs in O

Fig. 2. Inference rules for TBox reasoning in ELtiny

Summary Completeness of reasoning algorithms can often been shown by constructing
counter-models to show that axioms that are not derived are not true in all models either.

3.6 A Rule-based Classification Calculus for ELtiny

We now consider the reasoning task of classification in OWL EL (or rather ELtiny)
ontologies. It turns out that a suitable reasoning method is actually very similar to the
instance retrieval calculus that we have considered for RLtiny , in spite of the difference
in ontology language and reasoning task.

Classification is the most important inference task for OWL EL. Many applications
of EL involve ontologies that are built by experts and that can be used in many con-
crete scenarios. For example, the ontology SNOMED CT (Clinical Terms) defines about
300,000 classes about human diseases and related concepts. It does not contain any in-
dividuals, since individual patients and diseases are only added when SNOMED CT is
deployed, e.g., in hospitals. In the case of SNOMED CT, the class hierarchy is even pre-
computed before shipping the ontology to users. OWL is therefore used to simplify the
development of the ontology: instead of modelling a huge taxonomy of medical terms,
experts describe terms in OWL so that the taxonomy can be computed automatically.

As in the case of instance retrieval, classification could be done by checking all
possible class subsumptions individually, but we are interested in a more efficient algo-
rithm that can compute all valid subsumptions in a single run. A suitable set of inference
rules is given in Fig. 2. We are already familiar with this kind of inference rules from
the RLtiny instance retrieval calculus. The main difference is that we are now comput-
ing class subsumptions rather than ABox axioms. In fact, the rules in Fig. 2 do not take
ABox axioms into account at all, i.e., they are tailored for ontologies that consist only
of TBox axioms.

A closer look reveals that the inference rules have many similarities with those in
Fig. 1. For example, if we compare rule Av with rule Tv, we see that the basic structure
of the rule is very similar: we mainly replaced the individual c by the class C to change
from ABox to TBox axioms. Likewise, the rules A−

u
, A+
u

, and A+
∃

are similar to T−
u

,
T+
u

, and T+
∃

, respectively. The main differences stem from the fact that many RLtiny
features are not relevant for ELtiny . Moreover, we have an additional initialisation rule
T+

i
that requires no premises but produces multiple conclusions, and an additional rule

T−
∃

that propagates the empty class back along existential restrictions. The latter was

not necessary in RLtiny , where all existential quantifiers in derivations are derived by
rule A+

∃
, such that the empty class would lead to an inconsistency there already. The

following example illustrates the use of the calculus:

Example 32. Consider the TBox given in Example 19 which we repeat here for convenience:

FelisCatus v ∃preysOn.(Animal u Small) (31)

Animal u ∃preysOn.Animal v Predator (32)

FelisCatus v Animal (33)

Applying the inference rules of Fig. 2, we can draw the following conclusions, where each line
specifies the applied rule and premises:

FelisCatus v FelisCatus T+
i

(34)

FelisCatus v > T+
i

(35)

FelisCatus v Animal Tv : (34), (33) (36)

FelisCatus v ∃preysOn.Animal u Small Tv : (34), (31) (37)

Animal u Small v Animal u Small T+
i

(38)

Animal u Small v > T+
i

(39)

Animal u Small v Animal T−
u

: (38) (40)

Animal u Small v Small T−
u

: (38) (41)

FelisCatus v ∃preysOn.Animal T+
∃

: (37), (40) (42)

FelisCatus v Animal u ∃preysOn.Animal T+
u

: (36), (42) (43)

FelisCatus v Predator Tv : (43), (32) (44)

We have thus derived that all cats are predators.

The dynamics of this derivation are again similar to the case of RLtiny : rules Tv and
T+

i
are used to derive new class expressions, T− rules decompose these expressions, and

T+ rules are used to build more complex expressions that may be relevant for applying
Tv again. Note that we have used T+

i
rather selectively in our example: in (34) to ini-

tialise the class FelisCatus we were interested in, and in (38) to initialise the expression
Animal u Small that we had just encountered as a filler for the existential in (37). These
are indeed the only cases where T+

i
needs to be used, and a more optimised calculus

should restrict rule applications further to avoid unnecessary computations.
The application of inference rules for obtaining a saturation is defined as in the case

of RLtiny . It is easy to see that we can apply similar arguments as before to show that
the unique saturation of every ontology exists and can be obtained in a finite number
of steps by applying the rules. An axiom C v D is derived from an ontology O by the
resulting calculus if any of the following axioms occurs in the saturation of O:

– C v D (axiom derived directly)
– C v ⊥ (class C is inconsistent)
– > v ⊥ (ontology O is inconsistent)

Note that, in the absence of ABox axioms, there is only one possible form of inconsis-
tency that can be derived. However, we need to take into account the case where C v ⊥:
in this case, C must be empty and is therefore a subclass of any other class, but our
calculus would not explicitly derive this.

Remark 33. In this chapter, we focus on ELtiny ontologies that contain subclass inclusion ax-
ioms only, since we want to illustrate the new ideas related to classification. However, it is not
difficult to extend the rules of Fig. 2 to support instance retrieval for ELtiny . Some of the required
rules can just be adapted from Fig. 1. All rules in Fig. 1 are sound, i.e., they cannot lead to wrong
results when applied to any ontology, but only rules Av, A−

u
, A+
u

, and A+
∃

are relevant for ELtiny .
The following additional rules are needed:

A+
i >(c)

: c occurs in O A−
∃

∃P.⊥(c)
⊥(c)

AT+
∃

∃P.D(c) D v E
∃P.E(c)

Rules rules A+
i

and A−
∃

are essentially the ABox versions of rules T+
i

and T−
∃

, respectively. Rule
AT+
∃

can be considered as a middle ground between rule A+
∃

and T+
∃

.
These rules, including all of the rules in Fig. 2, together yield a complete instance retrieval

calculus for ELtiny . As in the case of RLtiny , it is also necessary to check if derivations of the
form ⊥(c) indicate that the ontology is inconsistent. Note that, even if we are only interested in
deriving ABox axioms, we have to compute certain class subsumptions that might be needed as
a second premise for rule AT+

∃
.

Summary Subclass inclusion axioms entailed by ELtiny ontologies can be computed
with a rule-based saturation calculus, similar to the one for instance retrieval in RLtiny .

3.7 Correctness of Rule-based Classification in ELtiny

We still need to check that the classification calculus for ELtiny is really correct. In
particular, we need to clarify for what kind of computations the calculus is complete.
As in the case of RLtiny , only certain kinds of logical consequences are computed, and
we can only use the calculus in implementations if we properly understand what we can
expect from it. The other aspects of correctness – soundness and termination – can be
shown just as in the case of RLtiny , so we will not discuss them in such detail again.

Concretely, termination follows since rules only derive axioms with subclass and
superclass expressions that occur in the ontology. Therefore, there is at most a quadratic
number of possible derivations. Note that this is even a lower estimate than for RLtiny
(Theorem 27), where we could have a cubic number of derivations (by combining all
properties with all possible pairs of individuals). Soundness follows by observing that
each individual rule is sound (i.e., preserves the validity of its inputs).

To show completeness, we can also use some of the ideas that we introduced in
Section 3.5 for RLtiny . Namely, we take the approach of showing that all axioms (of
a certain kind) that are not derived are no logical consequences either. To do this, we
again construct a single counter-model that refutes all underived axioms.

The new challenge for ELtiny is that we cannot define a counter-model by simply
taking individuals as domain elements and ABox facts to define the interpretation of

classes and properties: there are no ABox facts in our case; there are not even individ-
uals. So where should we get sufficiently many elements from to construct a counter-
model? The solution is to use one element for every class name. The idea is that this
element represents the properties that all representatives of this class must share. For ex-
ample, the element eFelisCatus would represent the “typical cat” in our model. The derived
class inclusion axioms are enough to know the relationship that such representative el-
ements need to be in. For example, the axiom FelisCatus v ∃preysOn.(Animalu Small)
tells us that the “typical cat” preys on the “typical small animal.” Furthermore, we need
to take care to introduce representative elements only for classes that are not empty. If
C v ⊥ was derived, then we should obviously not create an element for C.

The key insight here is that a single typical representative per class is enough to find
a suitable counter-model. As an interesting side effect, this also ensures that the model
is rather small, just as in the case of RLtiny . This is not the case for OWL in general,
where some satisfiable ontologies have only models that are very large or even infinite.
Let us now formulate the exact kind of completeness that we want to show and see how
exactly the counter-model can be constructed:

Theorem 34. The calculus in Fig. 2 is complete in the following sense: Consider an
ELtiny ontology O that consists only of class inclusion axioms. If O |= C v D where C
and D occur in O, then C v D is derived by the calculus.

Proof. Consider an ELtiny ontology O that contains no ABox axioms. Let O′ be the
saturation of O under the rules of Fig. 2. If O′ contains the axiom > v ⊥, then the claim
follows immediately since in this case the calculus is defined to entail every axiom.

For the remainder, we assume that O′ does not contain the axiom > v ⊥. Moreover,
for technical reasons that will become clear soon, we first show the claim only for
ontologies O that contain >. It will be easy to lift this restriction later. Given such an
ontology O, we define an interpretation I as follows:

– The domain ∆I of I is the set of all elements of the form eC where C is a class
expression that occurs in O and C v ⊥ < O′.

– For every class name A, define eC ∈ AI if and only if C v A ∈ O′.
– For every property name P, define 〈eC, eD〉 ∈ PI if and only if C v ∃P.D ∈ O′.

Note that there are no individual symbols to be interpreted. The domain of I is not
empty since O contains > and > v ⊥ was not derived (this is why we assume that > is
in O – otherwise we would have to introduce an additional element that would require
separate consideration in all arguments). We want to show that I is a model of O that
satisfies only axioms that either occur in O′ or that are not of the form defined in the
claim of Theorem 34.

Claim 1 If E occurs in O, then eC ∈ EI implies C v E ∈ O′.
Note that this implies that C occurs in O; otherwise there would not be an element

eC ∈ ∆
I. To show this claim for arbitrary ELtiny classes E, we perform an induction

over the structure of such classes, as defined by the grammar in Section 3.1. We begin
with the base cases:

– If E is a class name, then the claim follows from the definition of EI.

– If E = >, then the claim holds since C v E ∈ O′ holds by rule T+
i

.
– If E = ⊥, then the claim holds since eC ∈ EI does not hold for any eC (since
⊥I = ∅).

For the remaining cases, we assume that the claim has already been established for the
classes D, D1 and D2 (induction hypothesis). In all cases, we assume that E occurs in O
and that eC ∈ EI.

– Case E = D1uD2. By the semantics of u, we find eC ∈ DI1 and eC ∈ DI2 . Clearly, D1
and D2 occur inO since E does. Thus, the induction hypothesis implies C v D1 ∈ O

′

and C v D2 ∈ O
′. Since E occurs in O, rule T+

u
applies and C v E ∈ O′ as required.

– Case E = ∃P.D. By the semantics of ∃, there is an element eF ∈ ∆I such that
〈eC, eF〉 ∈ PI and eF ∈ DI. By the definition of I, F must occur in O, and C v
∃P.F ∈ O′. Since E occurs inO, so does D. By the induction hypothesis, F v D ∈ O′.
Since E occurs in O, rule T+

∃
applies and C v E ∈ O′ as required.

This finishes the proof of Claim 1. It remains to show the converse:

Claim 2 If C v E ∈ O′ and eC ∈ ∆
I, then E occurs in O and eC ∈ EI.

The fact that E occurs in O is not hard to see; we already noted this when discussing
termination above. To show the remaining claim for arbitrary ELtiny classes E, we
perform another induction over the structure of such classes. We begin with the base
cases:

– If E is a class name, then the claim follows from the definition of EI.
– If E = >, then the claim holds since eC ∈ ∆

I = >I.
– If E = ⊥, then the claim holds since C v E < O′, which follows from eC ∈ ∆

I.

For the remaining cases, we assume that the claim has already been established for the
classes D, D1 and D2 (induction hypothesis). In all cases, we assume that C v E ∈ O′

and eC ∈ ∆
I.

– Case E = D1 u D2. Then rule T−
u

is applicable. Since O′ is saturated, we find C v
D1 ∈ O

′ and C v D2 ∈ O
′. By the induction hypothesis, eC ∈ DI1 and eC ∈ DI2 . By

the semantics of u, this implies eC ∈ EI as required.
– Case E = ∃P.D. We first show that eD ∈ ∆I. Suppose for a contradiction that

D v ⊥ ∈ O′. Then C v ∃P.⊥ ∈ O′ by rule T+
∃

. But then C v ⊥ ∈ O′ by rule T−
∃

,
which contradicts our assumption that eC ∈ ∆

I. Therefore D v ⊥ < O′.
Thus eD ∈ ∆

I. By definition of I, 〈eC, eD〉 ∈ PI. By rule T+
i

, D v D ∈ O′, and
therefore eD ∈ DI. By the semantics of ∃, this implies eC ∈ EI as required.

This finishes the proof of Claim 2. We can now show that I is a model of O. We
need to show that I satisfies each axiom in O. Consider an axiom D v E ∈ O. Whenever
there is an element eC ∈ DI, then C v D ∈ O′ by Claim 1. Thus, rule Tv is applicable
and yields C v E ∈ O′. By Claim 2, eC ∈ EI.

This shows that I models all axioms of O. To show the overall claim, consider a
subclass inclusion C v D where C and D occur in O, such that C v D is not derived.

In particular, this means that C v ⊥ < O′. Thus there is an element eC ∈ ∆
I. Since

C v C ∈ O′ by rule T+
i

, we also have eC ∈ CI. However, by (the contrapositive of)
Claim 1, eC < DI. Therefore, I 6|= C v D. Summing up, whenever an axiom C v D is
not derived, it is not a logical consequence of O.

This finishes the proof for all ontologies O that contain >. If O does not contain >,
then we can construct the model I based on the extended ontology O> B O∪ {> v >}.
If O′ is the saturation of O, then the saturation of O> is O′ ∪ {> v >}. This is easy
to see: O> may allow additional rule applications of rules Tv and T+

i
, but the possible

derivations are already contained in O′ ∪ {> v >}. Therefore, the completeness result
for O> (established by our above proof) carries over to O. �

The counter-model that we have constructed in the above proof is also known as
a universal or canonical model of the ELtiny ontology. This name hints at the fact
that all logical entailments and non-entailments are captured in this single model. It
therefore generalises the idea of a least model that is used for rule languages (and also
for RLtiny). Not all OWL ontologies have a canonical model (e.g., in every model of
the axiom C t D(a), the individual a corresponds to an instance of C or D, but neither
C(a) nor D(a) is a logical consequence; hence no model can be canonical).

Summary Completeness of the ELtiny classification calculus is shown by constructing
a canonical counter-model, which refutes all TBox axioms that have not been derived.

3.8 Query Rewriting for Reasoning in QLtiny

We now turn our attention to reasoning in QLtiny , where we will again focus on in-
stance retrieval and a related (more difficult) task of conjunctive query answering. The
reasoning method used for QLtiny is rather different from the saturation-based ap-
proaches used for RLtiny and ELtiny . Instead of deriving all consequences (of a certain
form) from an ontology, reasoning in QLtiny is done by query rewriting. This works as
follows:

(1) The user specifies a query, e.g., the query Animal(x) to retrieve all animals.
(2) Using the TBox of the ontology, this query is rewritten into a set of queries. For

example, if the ontology only states FelisCatus v Animal, then the query would
rewrite to two queries, Animal(x) and FelisCatus(x).

(3) The rewritten queries are answered using the ABox of the ontology only, i.e., they
are matched to the facts. In our example, the answers to the queries would thus be
all individuals a for which there is a fact Animal(a) or a fact FelisCatus(a) in the
ontology.

It is guaranteed that the answers to the ABox queries of step (3) are exactly the answers
to the original query (over ABox and TBox) of step (1). The advantage of this approach
is that the TBox of the ontology is only needed in step (2), while step (3) can be solved
by querying the ABox like a standard database. Indeed, the queries of step (3) can also
be expressed in standard database query languages like SQL, and existing database
management systems can be used to compute the query answers efficiently. The special

feature ofQLtiny is that the set of queries that is relevant in step (3) is finite. Example 43
below will illustrate that this is not the case for ELtiny and RLtiny .

Before explainingQLtiny query rewriting in detail, we should clarify what we mean
by query.7 As in the example above, a query could simply be an ABox axiom where a
variable is used instead of an individual name, e.g., Animal(x) or preysOn(x, y).8 This
provides a convenient syntax for specifying an instance retrieval problem. However, a
more powerful query language is obtained by combining many such statements con-
junctively. For example,

FelisCatus(x) ∧ preysOn(x, y) ∧ Animal(y) (45)

asks for all cats x and animals y such that x preys on y. This query consists of three
expressions that are combined with conjunctions; each such expression in a query is
called a query atom. The following example illustrates a subtle issue that we have to
take into account when answering such queries over OWL ontologies.

Example 35. Consider the following QLtiny ontology:

FelisCatus(silvester) Silvester is a cat. (46)

FelisCatus(tom) Tom is a cat. (47)

SerinusCanaria(tweety) Tweety is a canary bird. (48)

preysOn(silvester, tweety) Silvester preys on Tweety. (49)

SerinusCanaria v Animal All canary birds are animals. (50)

FelisCatus v ∃preysOn.Animal All cats prey on some animal. (51)

Then the query (45) has the solution x = silvester, y = tweety. Indeed, (46) and (49) immediately
show that the first two query atoms in the query are satisfied by this solution. The third atom is
also satisfied, since Animal(tweety) is a consequence of (48) and (50).

In contrast, the query (45) has no solution with x = tom. This might be surprising, since we
know that Tom is a cat (47) and that all cats prey on some animal (51). However, we do not know
of any concrete animal that Tom preys on, so we cannot find an assignment for y to construct a
query solution.

The previous example shows that it makes a difference whether we know that an
individual has certain properties, or whether we merely know that some element with
these properties must exist. In the latter case, the anonymous element cannot be the
answer to a query. It is therefore useful to have a way of specifying that a variable in
a query should not be part of the answer, so that it is enough if some suitable value
is known to exist. To express this syntactically, we bind such variables with existential
quantifiers. For example,

∃y.FelisCatus(x) ∧ preysOn(x, y) ∧ Animal(y) (52)

7 For a more detailed (and more formal) introduction to conjunctive queries in DLs, see the
chapter Reasoning and Query Answering in Description Logics in these lecture notes [33].

8 We will always use x, y, z for variables, so that no confusion with individual names is likely.

specifies a query for all cats x that prey on some animal. The animal y is not part of
the answer, and no concrete value has to be found for it. Thus, both x = silvester and
x = tom would be answers to query (52) over the ontology in Example 35.

This completes the notion of conjunctive query, as summed up in the next definition:

Definition 36. A conjunctive query Q is a formula of the form ∃y.C1 ∧ . . . ∧C` where
y is a list of variables and each query atom Ci is of one of the following forms:

– A(x) where A is a class name, or
– P(x, y) where P is a property name.

The variables y are the non-distinguished variables of Q. All other variables in Q are
distinguished.

The semantics of conjunctive queries can be formalised by reading a query Q as
a first-order logic formula. A solution mapping for a query is given by assigning an
individual name to each distinguished variable. We call a solution mapping a solution
(or an answer) to the query over some ontology, if the formula that we get by replacing
each distinguished variable by its assigned individual name is a logical consequence of
the ontology (under first-order logic semantics). For most of this section, it suffices to
have an intuitive understanding of the meaning of conjunctive queries. A more formal
definition is given in Section 3.13. In general, our definitions via first-order logic corre-
spond to the Direct Semantics of OWL; for conjunctive queries under the RDF-Based
Semantics, we provide some pointers in Section 6.

Summary Conjunctive query answering is a generalisation of instance retrieval. The
main method to compute query answers in QLtiny is query rewriting, explained below.

3.9 A Normal Form for QLtiny

The rewriting of queries in QLtiny is not too complicated, but it can be a bit cumber-
some due to the syntactic form of QLtiny axioms. To simplify our discussion, we will
look at a slightly different ontology language that only allows axioms of the following
forms:

QL normal form:

A v B A v ⊥ A v ∃P.B

A u A′ v B > v B ∃P.> v B

A(c) P(c, d)

where A, A′, and B are class names, and P is a property or an inverse property

We say that an axiom is in QL normal form if it is in one of these forms. In this
section, we show how to transform QLtiny ontologies into QL normal form. The idea
of normalising axioms can be used in many situations to reduce the number of cases

If O contains an axiom of the form . . . then replace it by the set of axioms . . .

A+(c) {F(c), F v A+}

A+ v B+ {A+ v F, F v B+}

A v B1 u B2 {A v B1,A v B2}

A v ∃P.B+ {A v ∃P.F, F v B+}

A v ¬B {B v F,A u F v F’, F’ v ⊥}
A v > ∅

⊥ v B ∅

. . . where A+ and B+ must not be class names, A must be a class name, and
F and F’ always are fresh class names (not occurring in any axiom yet).

Fig. 3. Transformation of QLtiny ontologies into QL normal form

that need to be considered in reasoning. Many implementations also compute suitable
normal forms internally for that purpose.

Note that the QL normal form A u A′ v B is not allowed in QLtiny . Adding it does
not make reasoning significantly more complex (see Remark 37), but it allows us to
simplify our presentation of the reasoning algorithm.

Remark 37. Our addition of u in subclasses of QL normal form does not lead to a significant
increase in reasoning complexity. The resulting logic has a slightly larger combined worst-case
complexity than OWL QL (namely P instead of NLogSpace), but is still tractable. For efficiently
processing large amounts of assertional data (ABox), one is often more interested in the reason-
ing complexity that is obtained if we neglect the size of the TBox and query, that is, if we assume
that they are bounded by some constant. This measure is called data complexity and is the same
for OWL QL as for our extension with u in subclasses. This might not have been clear when
OWL QL has been designed: the slightest change of expressivity can lead to different computa-
tional properties, and there are a great number of feature combinations. A good overview is given
in [1], where the authors study 40 different logics. In their terminology, our QL normal form is
closely related to the logic DL-LiteHhorn whereas the OWL QL is based on DL-LiteHcore.

QL normal form is expressive enough to capture all QLtiny axioms. This is shown
by providing a syntactic transformation algorithm:

Definition 38. Given a QLtiny ontology O, an ontology QLNF(O) is obtained by ex-
haustively applying the replacement rules in Fig. 3 to axioms in O.

Example 39. To illustrate Definition 38, we use the axiom ∃P−.> v A u ∃Q.∃R.B u ¬∃S.> as
an abstract example. The rewriting steps are as follows, where we underline the axiom that is
rewritten in each step:

{∃P−.> v A u ∃Q.∃R.B u ¬∃S.>}

{∃P−.> v F1, F1 v A u ∃Q.∃R.B u ¬∃S.>}

{∃P−.> v F1, F1 v A, F1 v ∃Q.∃R.B u ¬∃S.>}

{∃P−.> v F1, F1 v A, F1 v ∃Q.∃R.B, F1 v ¬∃S.>}

{∃P−.> v F1, F1 v A, F1 v ∃Q.F2, F2 v ∃R.B, F1 v ¬∃S.>}

{∃P−.> v F1, F1 v A, F1 v ∃Q.F2, F2 v ∃R.B,∃S.> v F3, F1 u F3 v F4, F4 v ⊥}

The last line is the QL normal form that we wanted. Fresh class names F1, F2, F3, and F4 have
been introduced to decompose axioms.

It is not hard to show that the transformation to QL normal form will always termi-
nate in a linear number of steps. The steps for A+(c) and A+ v B+ can only be applied
at most once to every axiom. Each of the remaining rules strictly decrease the nest-
ing depth of operators in some class expression, or delete an axiom. The rewriting of
A v B1 u B2 is the only rule that duplicates an expression (A), but it is ensured that it is
a class name only (so the total remaining work is not increased by the duplication).

Similarly, one can show that the result of the transformation is always in QL normal
form. To do this, one has to observe that the transformation only leads toQLtiny axioms
(with the exception of case A v ¬B, which also produces an axiom Au F v F′ that is in
QL normal form already and will not be transformed further). It remains to show that,
for all QLtiny axioms that are not in QL normal form, one of the rules of Definition 38
must apply. This can be shown by an easy case distinction.

Finally, one needs to show the semantic correctness of the transformation. We would
like to be sure that conjunctive query answers over the original QLtiny ontology are
the same as query answers over the transformed ontology in QL normal form. This
is true for all queries that use only vocabulary symbols that occurred in the original
ontology, but none of the fresh auxiliary class names F that were introduced only in
the introduction. Obviously, we cannot expect that these new classes F have the same
meaning as in the original ontology (where they did not even occur).

Note that we need u in subclasses only to express QLtiny negation in QL normal
form. Representing negation like this will be more convenient for our reasoning ap-
proach.

Summary QLtiny ontologies can be transformed in linear time into ontologies in QL
normal form with the same semantics. QL normal form allows arbitrary u in subclasses.

3.10 Rewriting-Based Reasoning for QLtiny

We are now ready to look at a concrete approach for answering conjunctive queries in
QLtiny . To simplify the presentation, we will usually not distinguish between proper-
ties and inverse properties. However, if P already is an inverse property R−, then the
expression P− would be of the form (R−)−, which is not allowed. Therefore, we assume
(R−)− to be a shortcut for R in such a case.

The possible query rewriting steps are specified in Fig. 4 using the syntax of in-
ference rules. However, the meaning of rules is slightly different than for our earlier
calculi. A rule can be applied to a conjunctive query if the query contains the premises
of the rule and the side conditions are satisfied. When we say that a query contains a

Qv
E(x)
D(x)

: D v E ∈ O Qinv
P(x, y)
P−(y, x)

Q−
u

D1 u D2(x)
D1(x) D2(x)

Q−
>

>(x)

Q+
∃

∃P.>(x) ∃P−.>(y) P(x, y) P−(y, x) B(y)
∃P.B(x)

:
y a non-distinguished variable that occurs
only in the query atoms in the premise;
∃P.B occurs in O

plus any rule obtained from Q+
∃

by leaving away some (but not all) of the premises

Fig. 4. Rewriting rules for conjunctive queries over ontologies in QL normal form

premise, we treat the query like a set of query atoms, i.e., we ignore the order and mul-
tiplicity of atoms. The application of a rule creates a new query, obtained by replacing
the premise with the conclusion(s) of the rule.

Queries that are derived in this way are not supposed to replace the original query,
but to be used in addition to find more answers. For example, rule Qv states that, to
find all elements in E in the presence of an axiom D v E, one also needs to find all
elements in D. The subclass inclusion D v E can be any axiom in QL normal form. The
remaining rules can be read in a similar way, but are based only on the meaning of class
and property operators that does not depend on the presence of axioms in the ontology.
Note that the queries that are created by such derivations may contain query atoms D(x)
where D is not just a class name. We allow this during the computation, and return to
proper conjunctive queries later on.

Q+
∃

is the only rule that builds more complex class expressions rather than decom-
posing them. This is necessary to be able to apply rule Qv for axioms of the form
A v ∃P.B. The side condition of Q+

∃
ensures that all relevant information about y is cap-

tured by ∃P.B(x). Moreover, we allow Q+
∃

to be applied even if some of its premises are
not given. In any case, however, the remaining premises must contain all occurrences
of y. If only premises of the form B(y) and ∃P−.>(y) are given, then x does not occur
in the premise. In this case, we use an arbitrary unused variable x in the conclusion. In
contrast, B is determined by the side condition, even if it does not occur in the premise.

Example 40. As an example, consider the ontology from Example 35 and query (52). The rewrit-
ing rules lead to the following queries:

∃y.FelisCatus(x) ∧ preysOn(x, y) ∧ Animal(y) initial query (53)

∃y.FelisCatus(x) ∧ preysOn−(y, x) ∧ Animal(y) Qinv : (53) (54)

∃y.FelisCatus(x) ∧ preysOn(x, y) ∧ SerinusCanaria(y) Qv : (53), (50) (55)

∃y.FelisCatus(x) ∧ preysOn−(y, x) ∧ SerinusCanaria(y) Qinv : (55) (56)

FelisCatus(x) ∧ ∃preysOn.Animal(x) Q+
∃

: (53) (57)

FelisCatus(x) Qv : (57), (51) (58)

Note that we have slightly simplified queries during rewriting. We have dropped the existential
quantifier after eliminating the non-distinguished variable y. Moreover, the step from (57) to (58)
leads to an atom FelisCatus(x) that is already present in the query; we have directly removed this
duplicate (as mentioned before, we view conjunctions as sets during rewriting).

No further queries can be obtained through rewriting. For example, rule Q+
∃

is not applicable
to (55), since ∃preysOn.SerinusCanaria does not occur in O. Moreover, Q+

∃
cannot be applied

to a proper subset of the premise preysOn(x, y), Animal(y), since y would occur outside this set.
Finally, applying Q+

∃
to (54) would be possible, but only to obtain query (57) again.

To find all answers to the original query, each of the rewritten queries are answered
over the ABox, and the results are combined. When doing this, we do not need to
consider any queries that contain classes of the form ∃P.B with B , >, since they must
have been introduced using rule Q+

∃
, and the premises of this rule are equivalent to the

conclusion. Likewise, we do not need queries with classes of the form A1 u A2, which
are decomposed using rule Q−

u
.

The remaining queries may still contain expressions of the form ∃P.>(x). We rewrite
these expressions to P(x, y) where y is a fresh variable not used in the query yet. This
yields the final set of queries that we need to answer over the ABox. At this stage,
it does not matter any more whether a variable is distinguished or non-distinguished,
since the ABox contains only information about individual names anyway.

Example 41. Of the queries obtained in Example 40, queries (53), (54), (55), (56), and (58) are
relevant to answer the original query. Further analysis could be used to recognise that all of these
queries are subsumed by (58) (i.e., have at most the answers of (58)). Therefore, one can find all
results of the original query by evaluating (58) only. For the ABox of Example 35, this yields the
two results x = silvester and x = tom, as expected.

To practically answer the queries over the ABox, we could, for example, compute
the possible answers for every query atom individually and then combine (join) the
results. This part is standard query answering over a database (conjunctive queries can
easily be expressed in query languages like SQL or SPARQL), and many optimised
procedures are available. However, in general, the computation of query answers is
exponential in the size of the query, which is the case even for databases without any
additional ontology. In addition, the number of queries that are obtained by rewriting
can also be exponential. As mentioned in Remark 37, reasoning for QL normal form
is tractable and even highly scalable with respect to the size of the ABox. This does
not mean that our algorithm actually achieves these worst-case optimal bounds: as the
following remark discusses, it shows the latter but not the former.

Remark 42. For some inputs in QL normal form, our query rewriting algorithm may produce
exponentially many rewritten queries, even for instance retrieval queries (those that have only one
query atom). To give an example, we consider axioms of the form Cw0 u Cw1 v Cw for all words
w in {0, 1}∗ of length at most `. For example, if ` = 2, we obtain:

C0 uC1 v C C00 uC01 v C0 C10 uC11 v C1 C000 uC001 v C00 . . . C110 uC111 v C11

There are 2`+1 − 1 such axioms (7 in our example). Now the query C(x) has (among others) a
rewriting of the form

∧
w∈{0,1}` Cw(x). In our example:

C00(x) ∧C01(x) ∧C10(x) ∧C11(x)

This rewriting has 2` atoms (4 in our example). Now each of these atoms Cw(x) could again be
rewritten into two atoms Cw0(x)∧Cw1(x). There are 22` many possible rewritings of this form (16
in our example). For example, we can obtain:

C00(x) ∧C01(x) ∧C10(x) ∧C11(x)

C000(x) ∧C001(x) ∧C01(x) ∧C10(x) ∧C11(x)

C00(x) ∧C010(x) ∧C011(x) ∧C10(x) ∧C11(x) . . .

Thus, we have an ontology of s = 2`+1−1 axioms for which we get at least 2(s+1)/2 query rewritings
– that is, exponentially many. This shows that our algorithm is not polynomial.

This is normal (and unavoidable) when rewriting conjunctive queries, where each query atom
might either be rewritten or not. In our case, however, we start with a simple query C(x) and use
u in subclasses to introduce more and more query atoms. Going back to the transformation to QL
normal form in Fig. 3, it is not hard to see that a QLtiny input cannot lead to a situation as in the
problematic example above: u in subclasses is only used with fresh class names in superclasses,
which cannot be “layered” as above. Indeed, for QLtiny inputs, our algorithm is polynomial.

For general QL normal form ontologies, our algorithm thus does not show tractability of
reasoning. However, it does show the low data complexity that we claimed above, since the
number of rewritings does not matter in this case (it would be considered constant).

Finally, we can observe why this approach cannot work for ELtiny and RLtiny :

Example 43. Consider an ontology that contains the following TBox axiom

∃hasMother.Human v Human

which states that everybody who has a human mother must also be human. Then an element x is
an answer to the query Human(x) whenever it matches any of the following queries:

Human(x)

∃y1.hasMother(x, y1) ∧ Human(y1)

∃y1, y2.hasMother(x, y1) ∧ hasMother(y1, y2) ∧ Human(y2)

∃y1, y2, y3.hasMother(x, y1) ∧ hasMother(y1, y2) ∧ hasMother(y2, y3) ∧ Human(y3)

. . .

In other words, an ABox from which it follows that x is human may involve an arbitrarily long
chain of hasMother relations. Without knowing the ABox in advance, there is no way of re-
stricting the number of rewritten queries. This explains why existential quantifiers in QLtiny
subclasses can only use > as a filler.

Summary Query rewriting for QL normal form ontologies is done by applying rewriting
rules until all possible queries have been computed. The (post-processed) queries are
then evaluated over the ABox.

3.11 Completing the Query Rewriting Method

The query rewriting method introduced above can already be used to obtain correct
query answers, but it is not complete yet. To fix this, two additional considerations are
necessary. First, we have obviously neglected the possibility that the ontology is incon-
sistent. In this case, every possible solution mapping should be an answer to every query.
Second, our side conditions for rule Q+

∃
prevent its application in some cases where a

query condition is essentially duplicated. To solve this, we need to allow variables to be
unified during rewriting.

Taking inconsistency into account turns out to be very simple. We merely need to
use our approach to answer the query ∃y.⊥(y). Again, this is not really a valid conjunc-
tive query, since ⊥ is not a class name, but the rewriting may lead to proper queries.
If any of these queries has an answer, then the ontology is inconsistent. This needs to
be checked before answering any other queries. Note that y is non-distinguished in the
query ∃y.⊥(y), so the answer will only be “match” or “no match” without giving any
variable bindings. Such queries are called Boolean queries.

To understand the second problem, consider the following example:

Example 44. Consider the following ontology:

Predator(silvester) Predator v ∃preysOn.Animal Animal v ∃hasMother.Animal

and the query

∃y1, y2, z.preysOn(x, y1) ∧ hasMother(y1, z) ∧ preysOn(x, y2) ∧ hasMother(y2, z). (59)

This query is basically just a complicated way of stating the query

∃y1, z.preysOn(x, y1) ∧ hasMother(y1, z). (60)

Indeed, there is no reason why y1 and y2 need to represent different elements. So whenever the
query atoms in query (60) are satisfied, the additional atoms in (59) that involve y2 can also be
satisfied. Therefore, both queries have the same answer x = silvester. Indeed, query (60) can be
rewritten as follows:

∃y1, z.preysOn(x, y1) ∧ hasMother(y1, z)

∃y1.preysOn(x, y1) ∧ ∃hasMother.Animal(y1) Q+
∃

∃y1.preysOn(x, y1) ∧ Animal(y1) Qv
∃preysOn.Animal(x) Q+

∃

Predator(x) Qv

The final query then yields the desired result. However, query rewriting does not work as expected
for (59). The reason is that we cannot apply rule Q+

∃
, since the variable z occurs in multiple atoms

that cannot be eliminated in one application of this rule. Therefore, the only possible rewritings
are based on rule Qinv, and none of the rewritten queries has any results over the ABox.

To fix this problem, we introduce an additional query transformation operation that
can be applied during rewriting: factorisation. It is applicable to a query Q if the fol-
lowing conditions hold:

– Q contains conditions P(x, y) and P(x′, y),
– x , x′,
– x is distinguished or x′ is non-distinguished.

In this case, a new query Q′ is obtained by replacing every occurrence of x′ in Q by x.

Example 45. Query (59) in Example 44 can be factorised by mapping y2 to y1. The result is the
same as query (60), provided that we eliminate duplicate atoms.

If distinguished variables are eliminated in factorisation, then this needs to be taken
into account for computing the final results. It is obvious how to do this: if a distin-
guished variable x was replaced by a (necessarily also distinguished) variable y, then
the variable assignments found for y will also count as assignments for x in the final
query evaluation.

Summary To obtain a complete query answering procedure for QL normal form on-
tologies, query rewriting must check inconsistencies and support factorisation.

3.12 Correctness of Query Rewriting

It remains to show that query rewriting leads to a correct reasoning method for QLtiny .
The properties we need to verify are the same as before: well-definedness, termination,
soundness, and completeness.

Well-definedness For this we merely need to note that the rewriting of queries is again
a monotone saturation process. Although we replace (delete and insert) atoms in an
individual rewriting step, the resulting query is always added to the overall result set.
Every rewriting step increases the set of rewritten queries, and additional queries never
prevent a rewriting step from being possible. Therefore, the process must eventually
lead to saturation.

Termination It is essential for termination that we eagerly eliminate duplicate query
atoms. Moreover, we need to abstract from the names of non-distinguished variables,
i.e., two queries that only differ in the name of some non-distinguished variable must
be considered to be the same. The reason for termination is then as follows:

– in every rewriting step, the total number of variables in the query remains the same
or becomes smaller;

– all class expressions that occur in a rewritten query occur either in the initial query
or in the ontology;

– every property expression that occurs in a rewritten query is one that occurs in the
initial query, an inverse thereof, or a property expression that occurs in the ontology.

These properties are preserved by each rule application, and can therefore be shown by
an induction over the length of the derivation. Thus, the total number of classes and
properties that can be used in query atoms are bounded linearly by the size of the on-
tology and the initial query, and the maximal number of variables per query is bounded
by a constant. Up to renaming of variables, there is only a finite (but exponential) num-
ber of different queries that can be constructed from this vocabulary. Therefore, the
rewriting must terminate.

Soundness Soundness can be established as in the case of RLtiny and ELtiny by noting
that every rule is sound. The exact property in this case is: if a variable assignment is
an answer to the query that was produced by applying a rewriting rule, then it is also an
answer to the query that has been rewritten in this step, given that we take the ontology
into account. This is easy to verify for each rule. The overall claim can be shown by an
inductive argument over the length of the derivation.

Completeness, once more, is more difficult to show. We will lay out the main ideas
of this proof in the next section.

Summary Well-definedness, termination, and soundness of query rewriting are not hard
to show using similar ideas as for the saturation approaches used in RLtiny and ELtiny .

3.13 Completeness of Query Rewriting

To show completeness of query rewriting, we need a couple of additional techniques.
Like in the case of RLtiny and ELtiny , we make use of a canonical model, but now this
model turns out to be infinite. Moreover, we need to be somewhat more precise about
the semantics of query answering. In this section, we outline the basic argumentation
used for this proof, since it is interesting in its own right (and different from what we
have seen so far). Readers who want to focus on the practical aspects of the OWL
profiles, however, can safely skip this section.

Semantics of Query Answering Let us first introduce some additional notation to for-
malise the semantics of conjunctive query answering, which we have only discussed in
an intuitive fashion so far. A solution mapping σ for a conjunctive query Q is a substi-
tution that maps each distinguished variable x of Q to an individual name xσ. We write
Qσ to denote the formula obtained by replacing every distinguished variable x in Q by
xσ. Therefore, Qσ is a first order formula of the form ∃y.A1 ∧ . . .∧ A`, where y is a list
of variables, and each atom Ai is a formula of the form C(t) or P(t, s) and t, s are either
variables from y or individual names.

The first-order semantics of existentially quantified variables is defined as usual by
means of variable assignments. Given an interpretation I, a variable assignmentZ for
I is a function from variables to domain elements of ∆I. If t is an individual name or
variable, then tI,Z = tI if t is an individual name, and tI,Z = Z(t) if t is a variable.
According to the standard semantics of first-order logic, an interpretation I satisfies
Qσ if there is a variable assignmentZ such that:

– for each query atom C(t) in Qσ, we have tI,Z ∈ CI;

– for each query atom P(t, s) in Qσ, we have 〈tI,Z, sI,Z〉 ∈ PI.

The formula Qσ is entailed by an ontology O, written O |= Qσ, if all models of O
satisfy Qσ. In this case, the solution mapping σ is an answer for Q with respect to
O. In essence, these remarks merely recall some standard ideas of first-order logic to
formalise what we said earlier.

Defining a Canonical Model We now define a canonical model for ontologies in QL
normal form. For now, we consider only ontologies that do not contain the empty class
⊥; it will come in only later. The construction of the canonical model for such ontologies
is very similar to the saturation process used in RLtiny reasoning. However, instead of
deriving ABox facts, we now apply class inclusion axioms directly to interpretations:

Definition 46. Consider an interpretation I with domain ∆I, and an axiom C v D in
QL normal form with D , ⊥. We say that C v D is applicable to an element e ∈ ∆I if
e ∈ CI. In this case, we can apply C v D to I to obtain a new interpretation J that is
defined as follows:

(a) If D is a class name, then DJ = DI ∪ {e}.
(b) If D = ∃P.B, then ∆J = ∆I ∪ { f } for a fresh element f < ∆I, BJ = BI ∪ { f }, and

PJ = PI ∪ {〈e, f 〉} (this is understood even if P is inverse).

In all other aspects, J agrees with I.

Intuitively speaking, applying an axiom to an interpretation means that we modify
the interpretation in such a way that an element e that is in the subclass of the axiom
must also be in the superclass of the axiom. We can now build an interpretation by
applying rules in a (possibly infinite) construction.

Definition 47. Consider an ontology O with axioms in QL normal form. An initial
interpretation I0 is defined as follows:

– The domain ∆I0 of I0 is the set of all individual symbols in the signature (without
loss of generality, we can assume that there is at least one, even if it does not occur
in O).

– For every individual symbol c, define cI0 B c.
– For every class name A, define c ∈ AI0 if and only if A(c) ∈ O.
– For every property name P, define 〈c, d〉 ∈ PI0 if and only if P(c, d) ∈ O or

P−(d, c) ∈ O.

Given an interpretation In, the interpretation In+1 is constructed by applying an axiom
of O to an element of In. If this is not possible, then In+1 = In.

This process defines an interpretation In for every natural number n. However, the
construction is not deterministic, since there might be many elements to which some
axiom can be applied in each step. To fix this, we need to fix a strategy for applying
axioms to elements. There are many ways to do this; one is sketched in Remark 48.

Remark 48. To fix a deterministic strategy of constructing the interpretations In in Defini-
tion 47, we can assume that all axioms are applied in some (fixed but arbitrary order). To this
end, assume that the axioms of the ontology are totally ordered, and will always be applied in
that order. Likewise, assume that all individual names have a total order, and that, whenever we
introduce a fresh domain element, we define it to be bigger than all existing elements with respect
to this order. This will ensure that new elements are only processed after all current elements have
been considered. Now we can apply rules with the following strategy:

(1) Initialise e be the largest domain element
(2) Apply all applicable axioms to e (in the order chosen for axioms)
(3) Update e: if e is the smallest domain element, set e to be the largest domain element;

otherwise, set e to be the next largest domain element below the current e
(4) Go to (2)

This defines a fair strategy for applying axioms in Definition 47 (fair means that every axioms
that is applicable to some element e will actually be applied at some point in time). To make the
process fully deterministic, we should additionally fix what the new elements f in step (b) of
Definition 46 are, although this does not have an effect on the semantics. For example, we could
use natural numbers for f , always picking the smallest number that is not in the domain of I yet.

This allows us to assume that each In is uniquely determined. Now we can define
I to be the union of all (infinitely many) interpretations In:9

– The domain of I is ∆I =
⋃

n≥0 ∆
I
n .

– For every individual symbol c, we set cI B cI0 .
– For every class or property name X, we set XI =

⋃
n≥0 XIn .

This defines the canonical model I of the original ontology O. I is usually infinite –
already a single axiom A v ∃P.A suffices to create infinitely many domain elements.
This is not a concern for us, since we only need I as a theoretical guideline for showing
completeness. The canonical quality of I is expressed in the following statement:

Theorem 49. Consider an ontology O in QL normal form that does not contain ⊥, and
let I be the canonical model of O. Then I is a model of O.

Moreover, the answers of a conjunctive query over O are the same as the answers
of Q over I. More precisely, if σ is a solution mapping for the distinguished variables
of Q, then O |= Qσ if and only if I |= Qσ.

We do not go into the details of proving this statement. The key idea for the proof is
that the relationships that hold in the canonical model must hold in every model of O.
So whenever a query matches the canonical model, it also matches every other model.

Showing Completeness We can use the canonical model and its construction to show
completeness of query rewriting for ontologies without ⊥.

9 On a first glance, the union might seem unnecessary, given that the models In are growing
monotonically (“In ⊆ In+1”). However, since this is an infinite union, we can generally not
write it as Ik for any natural number k. The union is a formal way of writing “I∞”.

Theorem 50. Consider an ontology O in QL normal form without ⊥. Let Q be a con-
junctive query and let σ be a solution mapping for Q. If O |= Qσ then there is a query
rewriting P of Q such that Pσ is entailed by the ABox of O.

Proof. We show the claim for generalised conjunctive queries Q that may also contain
query atoms of the form ∃P.>(x) but no other complex class expressions (i.e., A1uA2(x)
or ∃P.B(x)).

Consider a query answer σ as in the claim, and let I be the canonical model of O.
By Theorem 49, I |= Qσ. Since Q is finite, there is a number n such that In |= Qσ. Let
n be the smallest number with this property. We show the claim by induction over n.

If n = 0, then, according to the construction of I0, Qσ is entailed by the ABox of
O. This establishes the claim.

If n > 0, then In−1 6|= Qσ since n was chosen to be the smallest number with
In |= Qσ. Since In |= Qσ, there is a variable assignment Z for In under which all
query atoms in Qσ are satisfied (we will refer to this particular assignment Z below).
By definition, In has been obtained from In−1 by applying some axiom C v D to some
element e ∈ ∆In−1. We need to consider the two possible cases of Definition 46:

Case (a) The only change from In−1 to In is that the extension of D has been extended
to include e. Thus, since In−1 6|= Qσ, Q must contain at least one atom of the form
D(x) where (xσ)I,Z = e. Using rule Qv, we can obtain a query Q′ where all such
atoms D(x) are replaced by C(x). The query Q′′ is obtained from Q′ by exhaustively
applying Q−

u
and Q−

>
(to cover the case where C contains u or >; recall that we do not

allow these in the queries for which we prove the claim). By assumption, e ∈ CIn−1 , so
In−1 |= Q′′σ can be shown by the same variable assignment Z that showed In |= Qσ.
By the induction hypothesis, there is a rewriting P of Q′′ for which σ is an answer over
the ABox. Since P is also a rewriting of Q, this shows the claim.

Case (b) Then D = ∃P.B and In extends In−1 with an additional domain element f
and according relationships. The query atoms that we allow in Q can capture exactly
the following semantic conditions that hold in In but (possibly) not in In−1:

e ∈ ∃P.>In f ∈ ∃P−.>In 〈e, f 〉 ∈ PIn 〈 f , e〉 ∈ (P−)In f ∈ BIn (61)

Since In−1 6|= Qσ, Q must thus contain at least one query atom of the following forms:

∃P.>(x) ∃P−.>(y) P(x, y) P−(y, x) B(y) (62)

where (xσ)I,Z = e and (yσ)I,Z = f . Moreover, Q cannot contain any other atoms of the
form E(y), since they would not be satisfied inIn. Likewise, all atoms of the form P(x, y)
and P−(y, x) must be such that (xσ)I,Z = e. Yet, there can be multiple such variables
x in different atoms, e.g., P−(y, x1) and P(x2, y), as long as (x1σ)I,Z = (x2σ)I,Z = e.
Applying rule Qinv, we can obtain a query Q′ that contains an atom P(x, y) for every
atom P−(x, y). If multiple variables xi occur in such atoms, we can identify them using
factorisation.

Thus, we obtain a query Q′′ where there is at most one statement of the form P(x, y)
(and at most one statement of the form P−(y, x)) for every variable y with (yσ)I,Z = f .

Therefore, rule Q+
∃

can be applied to replace all sets of atoms of the form (62) by the
atom ∃P.B(x). As explained before, we may introduce a new non-distinguished variable
x for that purpose if it is not determined by the premises. In this case, we extend the
assignmentZ by settingZ(x) = e. Finally, we apply rule Qv to replace all occurrences
of ∃P.B(x) by C(x), and exhaustively rewrite the resulting query using Q−

u
and Q−

>
.

If Q′′′ is the result of this transformation, then In−1 |= Q′′′σ holds since e ∈ CIn−1

as in Case (a). The variable assignmentZ can be used to show this, since we extended
Z to cover new variables introduced in the transformation. Assignments Z(y) = f
can simply be forgotten (all such variables y have been eliminated). The overall claim
follows by induction as in Case (a). �

Adding ⊥ and Wrapping up Theorem 50 already shows completeness for all ontologies
in OWL normal form that do not contain ⊥. To cover the cases with ⊥, we only need
a very simple transformation: given an ontology O, the ontology O′ is obtained by
replacing all occurrences of ⊥ with a new class name B⊥ that was not used anywhere
yet. Then O is inconsistent if and only if O′ ∪ {B⊥ v ⊥} is. Clearly, this is only the case
if B⊥ is inferred to be non-empty, which we can check by evaluating the query ∃y.B⊥(y)
over O′. Theorem 50 shows that this check is complete. It is clear that the results of this
check agree with the results of the check ∃y.⊥(y) on O.

Provided that O is consistent, all conjunctive queries that do not use B⊥ have the
same answers over O and O′. Thus, the answers to such queries can again be obtained
completely according to Theorem 50.

Summary Completeness of query answering for QL normal forms (and thus forQLtiny)
can be shown with the help of an infinite canonical model.

4 The Limits of Lightweight Ontology Languages

So far, we have seen various sublanguages of OWL (or rather: ALCI) for which rea-
soning was possible in polynomial time. Could we add even more features without
loosing this useful property? Is it even justified to have three different profiles, or could
we just combine the profiles to obtain a single lightweight ontology language that sub-
sumes them all? In the following sections, we explain how to investigate such questions.
We will see that some extensions of the profiles are indeed feasible, but that many others
make reasoning exponentially harder.

4.1 What Really Counts: Relaxing Unnecessary Restrictions

Throughout Section 3, we have seen a number of techniques for solving typical reason-
ing problems for our tiny versions of the three OWL profiles. Our goal was to explain
and illustrate the most essential tools we have for reasoning with lightweight ontology
languages today. The natural question now is: how strongly do these techniques depend
on the tiny languages that we have picked to illustrate them? This section shows how
far we can go with our approaches (at the very least). This will help us to understand

CL CName > ⊥ CL u CL CL t CL ¬CR ∃P.CL ∃P.> ∀P.CL ∀P.⊥
OWL RL × (×) × × × × ×

OWL EL × × × × (×) × ×

OWL QL × × × (×) (×) ×

CR CName > ⊥ CR u CR CR t CR ¬CL ∃P.CR ∃P.> ∀P.CR ∀P.⊥
OWL RL × (×) × × × × ×

OWL EL × × × × (×) × × (×)
OWL QL × × × × × × × (×)

Fig. 5.ALCI class expressions allowed on the left (top) and right (bottom) of subclass inclusions
in the OWL profiles; parentheses mean that a feature is not in a profile but could easily be added

which differences between the profiles are really essential for implementing efficient
systems.

The definitions of our three tiny ontology languages have been restricted for three
different and partly independent reasons:

(1) Reasoning complexity: allow lightweight reasoning methods to work
(2) Standard compliance: make sure that each language is contained in its correspond-

ing OWL profile
(3) Didactic convenience: disregard inessential features to simplify the presentation

From a user perspective, only (1) is really a good reason. Standard compliance is of
course important, but it is not against the standard if a tool supports a few additional
features.10 And indeed, every OWL profile has some omissions that are not motivated
by (1). Item (3) might actually be important in some applications, too. For example,
OWL EL has been deliberately restricted to simplify its definition (as opposed to RL
and QL, it does not require different definitions for subclass and superclass expres-
sions). However, we should still have a clear understanding if an omitted feature is
merely deemed too hard to understand for users, or if it would actually derail our whole
reasoning approach and possibly boost the overall computational complexity.

Even when restricting to the features in ALCI, our tiny profiles can be signifi-
cantly extended without loosing their good properties for reasoning. The axioms of the
extended languages can in each case be described as follows:

AxiomF CL v CR | > v ∀P.CR | CR(IName) | P(IName, IName),

where the definitions of CL and CR for each profile are shown in Fig. 5. As before P
includes inverse properties for OWL RL and OWL QL, but not for OWL EL. Note that
we generally allow range axioms > v ∀P.CR which had only been allowed in RLtiny

10 Actually, a reasoner can even conform to the OWL standard if it does not support all features
of OWL or one of its profiles; the important quality is that the tool knows about its limitations
and does not accidentally give wrong answers.

so far. Indeed, all OWL profiles support ranges using a special syntax. In QLtiny this
is syntactic sugar that could be transformed away during normalisation (as Example 21
illustrated), but for ELtiny the saturation algorithm needs to be extended to support
ranges properly. Moreover, some advanced features of OWL EL (property chains; see
Section 5) are restricted in the presence of range axioms.

Let us now take a closer look at the features in Fig. 5. Crosses indicate that a feature
is directly supported in the respective OWL profile, while crosses in parentheses mean
that a feature could easily be added without major changes in our reasoning algorithms.
We specifically list ∃P.> due to its special role in QL, and (mainly for symmetry) we
also mention ∀P.⊥.

At a first glance, it is remarkable how similar the profiles are – or rather: could be –
regarding most features. For example, the expressions CL on the left of subclass inclu-
sions are essentially the same in all cases. The only relevant difference is the omission
of ∃P.CL in OWL QL. We have seen in Example 43 why this restriction is important
for query rewriting. Unions t on the left can always be allowed, either directly during
reasoning as we did for RLtiny , or by transforming them away in a preprocessing step
similar to the normalisation of QLtiny in Section 3.9. Indeed, A t B v C can always be
written as A v C, B v C. This also means that this feature is always syntactic sugar that
does not allow any new relationships to be modelled.

In contrast, intersection u on the left cannot be expressed indirectly in an easy way.
Including it in OWL QL would really improve its expressivity. We have already speci-
fied a reasoning method for OWL QL that achieves low data complexity in the presence
of intersections; some more would be needed to obtain a procedure that is also tractable
with respect to the size of the ontology (see Remark 42). Allowing> in OWL RL is also
a slight extension, since it cannot be expressed indirectly. However, OWL RL already
allows > in expressions ∃P.> (which we did not include in RLtiny). Allowing > every-
where would mainly simplify the language description, and not really add practically
relevant modelling power.

Considering the right-hand classes CR, we see that the Boolean features are again
the same in all cases. Adding ¬CL in OWL EL is easy to do, since it is again syntactic
sugar. Our transformation of QLtiny to QL normal form showed how one can eliminate
such negations using u and ⊥. The addition of > in OWL RL is again only a formal
simplification, as > is never relevant as a superclass. The main difference between the
profiles thus is in their support of quantifiers in superclasses. OWL RL supports univer-
sal quantifiers while OWL EL and QL support existentials. The special case of ∀P.⊥
can be used to state that no P-relations exist. Axioms of the form C v ∀P.⊥ can be
expressed as C v B,B u ∃P.> v ⊥ using a new class name B. This feature is therefore
syntactic sugar in all profiles (provided that we allow for u in QL).

Finally, note that none of the profiles allow unions on the right, or negations or
universals on the left. This has fundamental reasons that will be explained below.

Summary The essential differences between the profiles are in their restrictions on
inverse properties, and universal and existential quantifiers. One can allow the same
Boolean features (u, t, ¬, >, ⊥) in all profiles without major effects on reasoning.

4.2 Measuring Complexity

In order to understand the limits of lightweight ontology languages, we first need to
talk a bit about what we mean by lightweight. The question that we are generally asking
is: given a certain ontology language, is there an algorithm that solves the standard
reasoning tasks for this language in polynomial time? If the answer to this question
is yes, then we can show this by specifying a suitable algorithm and showing that it
solves the problem. We have done this above in various cases. However, if the answer
is no, we cannot show this by failing to find a suitable algorithm – maybe we just did
not look hard enough. Therefore, a different approach is needed to show hardness of a
computation task. We now recall the basic ideas and introduce some notation. Readers
who are in need of a more thorough introduction should consult a textbook, e.g., [41].

The general vehicle to measure the hardness of a problem on computer science is
the Turing machine. It provides us with a computational model: a standard platform on
which we can “implement” algorithms. We will use the following notation for Turing
machines:

Definition 51. A (non-deterministic) Turing machine (TM) M is a tuple 〈Q, Σ, ∆, q0〉

where

– Q is a finite set of states,
– Σ is a finite alphabet that includes a blank symbol �,
– ∆ ⊆ (Q × Σ) × (Q × Σ × {l, r}) is a transition relation, and
– q0 ∈ Q is the initial state.

A configuration of a TM is given by its current state q ∈ Q, the sequence of alphabet
symbols that is currently written on the tape, and the current position of the read/write
head on the tape. The tape is of unbounded length, but a configuration can be repre-
sented finitely by only including non-blank symbols. Initially, the tape only contains a
(finite) input sequence and the TM is at the first position of the tape in state q0.

The transition relation specifies how to change between configurations. A tuple
〈q, σ, q′, σ′, r〉 should be read as follows: if the machine is in state q and reads sym-
bol σ at its current position on the tape, then the machine will change its internal state
to q′, write the symbol σ′ to the tape, and move the read/write head to the right. In any
configuration, the TM might have one, many, or no possible transitions to chose from.
If it has many, the TM non-deterministically follows one of them. A TM where there
is at most one transition for every state q and symbol σ is deterministic. If there are
no possible transitions, the machine halts. The output of the computation then is the
current content of the tape. Sometimes, we are only interested in whether the TM halts
at all (accepts an input), and will ignore the output.

The Turing machine can perform a computation in a discrete number of computation
steps (clock ticks), using a certain portion of the tape memory to store intermediate and
final results. We can therefore measure complexity by counting the number of steps
(time) or the number of memory cells (space) that a TM needs to solve a problem.

For example, a problem can be solved in (deterministic) polynomial time if there is
a polynomial function f and a deterministic Turing machineM that solves the problem
after at most f (s) steps, where s is the size of the input. Such statements only make

sense if the “problem” is a general class of problems (e.g., checking consistency of any
ALCI ontology), rather than an individual problem instance (e.g., checking consis-
tency of the ontology from Example 19). For a single problem instance (or finite set of
instances), the maximal number of steps is always bounded by some constant. In other
words, a measure like polynomial time complexity describes the runtime behaviour of
the algorithm if the input problem instances are getting larger and larger (without end).
One therefore also speaks of asymptotic complexity. A complexity class is defined by
specifying a model of computation (e.g., deterministic or non-deterministic Turing ma-
chine) and a class of functions to asymptotically bound time or space.

This explains how we can measure algorithmic complexity and how to define com-
plexity classes such as polynomial time. However, it does not solve the problem of
showing that there cannot be a polynomial algorithm for a given problem. To ad-
dress this, computational complexity theory introduces the idea of hardness. Intuitively
speaking, a problem is hard for a complexity class if solving the problem would also
“easily” lead to a solution of any other problem in that complexity class. To make this
more precise, we need to recall some basic definitions:

– A decision problem is given by a set P of input sequences (those that the TM should
accept). In practice, we often specify problems in some more convenient notation,
knowing that they could be suitably encoded for a Turing machine. A TM solves a
decision problem P if it accepts every input from P, and rejects every other input.

– A decision problem belongs to a complexity class if it is solved by a TM in the
constraints of the complexity class (e.g., deterministically in polynomial time).

– A decision problem P can be reduced to a decision problem Q by a Turing machine
M if, for every input string win, the machine M halts after computing an output
string wout, such that win ∈ P if and only if wout ∈ Q.

– A decision problem P is hard for a complexity class C, if every decision problem
from C can be reduced to P by a deterministic TM that runs in polynomial time.11

– A decision problem P is complete for a complexity class C if P belongs to C and is
hard for C.

To show that a problem P is hard, we therefore need to show that all other problems of a
certain class can easily be reduced to it. To do this, it is enough to take another problem
that is already known to be hard and show that this problem can be reduced to P (where
the reduction is of strictly lower complexity than the given class; see footnote 11).
Typical complexity classes are defined in such a way that their first hard problem is im-
mediate. For example, for the class of non-deterministically polynomial time solvable
decision problems, a hard problem is the question whether a given non-deterministic
Turing machine accepts an input in polynomial time. By showing other problems to be
hard, we obtain a bigger choice of problems that we can conveniently use for reduction
proofs.

How can hardness be used to show that a given problem cannot be solved by any
polynomial time algorithm? Ideally, we can establish hardness for a complexity class

11 The definition of hardness through deterministic polynomial time reductions only works with
complexity classes that are (expected to be) strictly harder than this. We will not consider any
other classes here.

that is known to contain strictly more problems than P. For example, it is known that
some problems that can be solved in exponential time (ExpTime) cannot be solved in
P. Hence, no ExpTime-hard problem can admit a polynomial algorithm. In other cases,
it is not known if a complexity class does really contain more problems than P. Most
famously, we do not know if NP , P. However, if a problem is hard for NP, then solving
it in polynomial time would also lead to polynomial algorithms for all problems in NP.
The fact that a large amount of practically important problems are hard for NP, while
nobody managed to find a polynomial algorithm for any of them yet, is therefore a
strong evidence that no such algorithm exists. In any case, we don’t have it. Therefore,
even NP-hardness can be used to show that the existence of a polynomial algorithm to
solve a problem is at least very unlikely, even if not theoretically impossible.

Summary Decision problems are classified in complexity classes according to the re-
sources a Turing machine needs to solve them. Hardness can be used to argue that no
polynomial time algorithm exists (or is likely to exist) for solving a certain problem.

4.3 Unions are Hard

We have already noted that all profiles avoid unions of classes on the right-hand side
of subclass inclusion axioms. In this section, we explain the reason for this: reasoning
would become hard for NP and thus intractable if unions were allowed on the right. In-
tuitively speaking, unions introduce a kind of non-determinism that requires a reasoning
algorithm to make guesses for checking ontology consistency.

The result is fairly easy to show by using a well-known NP-complete problem:

Definition 52. An instance of the 3-satisfiability problem (3SAT) is given by a propo-
sitional logic formula of the form

(a11 ∨ a12 ∨ a13) ∧ . . . ∧ (an1 ∨ an2 ∨ an3)

where n is a number and every ai j is either a propositional letter or a negated proposi-
tional letter. The decision problem 3SAT is to decide whether the formula is satisfiable
(i.e., becomes true for some assignment of truth values to propositional letters).

It is not hard to reduce 3SAT to the consistency checking problem of OWL ontolo-
gies that are allowed to use union and intersection:

Theorem 53. Consistency checking in any ontology language that allows u on the left
and t on the right of subclass inclusion axioms, as well as > and ⊥, is NP-hard.

Proof. Consider a propositional formula as in Definition 52. For every propositional
letter p, we introduce a class name Ap, and for every disjunction of the form (ai1 ∨ ai2 ∨

ai3), we construct a TBox axiom. Ignoring the order of formulae in the disjunction,
there are four possible cases that we translate as follows:

(p1 ∨ p2 ∨ p3) 7→ > v Ap1 t Ap2 t Ap3

(¬p1 ∨ p2 ∨ p3) 7→ Ap1 v Ap2 t Ap3

(¬p1 ∨ ¬p2 ∨ p3) 7→ Ap1 u Ap2 v Ap3

(¬p1 ∨ ¬p2 ∨ ¬p3) 7→ Ap1 u Ap2 u Ap3 v ⊥

Let O be the resulting ontology. If O is consistent, then it has a model I. Every model
contains at least one domain element e. For every class Ap, we have either e ∈ AIp or
e < AIp . This defines an assignment of truth values for the original 3SAT formula: p
maps to true if e ∈ AIp , and to false otherwise. It is easy to see that this assignment
makes the 3SAT formula true, since I satisfies every TBox axiom in O.

Conversely, every valid assignment of truth values for the 3SAT formula can be
used to construct a model for O (with just one domain element). Thus, it is clear that
O is consistent if and only if the original formula was satisfiable. The reduction can be
computed in polynomial time. �

This shows that adding unions on the right-hand side of class inclusion axioms
would make OWL EL intractable. For OWL RL, there is a minor technical difficulty
since > is not allowed. It is easy to see that we can replace >with an arbitrary new class
name A, and add an additional axiom A(c) for some individual c. A similar reduction is
then possible.

The situation is not so clear for OWL QL in its official form, where no intersections
are allowed in classes on the left-hand side. Indeed, the ontology language that only
allows arbitrary unions but no intersections would still allow polynomial reasoning.
However, given that we need to chose between u on the left and t on the right, it seems
clear that the former is more practical in most applications. Theorem 53 asserts that we
cannot have both.

Finally, note that the result also explains why we do not allow complement ¬ on the
left. For example, the disjunction ¬p1 ∨ p2 ∨ p3 could directly be encoded as

Ap1 u ¬Ap2 u ¬Ap3 v ⊥

if this feature would be allowed. A similar but slightly more subtle encoding is possible
with universal quantifiers on the left. This time, we use property names Pp to encode
propositions p. The disjunction can then be expressed as

∃Pp1 .> u ∀Pp2 .⊥ u ∀Pp3 .⊥ v ⊥.

A little consideration shows that this is essentially the same encoding as for comple-
ments, since ∀P.⊥ means that there are no P-relations.

Summary In any ontology language that allows u on the left of TBox axioms, reasoning
becomes intractable (NP-hard) when allowing t on the right, or ¬ or ∀ on the left.

4.4 Showing ExpTime-Hardness with Alternating Turing Machines

After settling the case of t, the remaining option for extending the profiles is to allow
additional quantifiers in class inclusion axioms, i.e., to combine the features of two of
the three profiles. It turns out that this makes reasoning significantly more difficult: the

standard reasoning problems become hard for ExpTime (the class of problems solvable
in exponential time on a deterministic TM) rather than just for NP (the class of problems
solvable in polynomial time on a non-deterministic TM). In practice, both classes re-
quire us to use algorithms that need exponentially many computation steps in the worst
case, yet there is a big qualitative difference between the two: it is known that ExpTime
contains strictly more problems than P, whereas this is not clear for NP. Therefore, dif-
ferent approaches are necessary to show hardness for ExpTime. The approach that we
will use is based on a particularly elegant characterisation of ExpTime that uses a special
kind of computational model: the alternating Turing machine.

An alternating Turing machine (ATM) consists of the same components as the nor-
mal TM introduced in Section 4.2: a set of states Q with an initial state q0, a tape
alphabet Σ, and a transition relation that defines one, none, or many transitions that
the ATM can perform in each step. The difference between ATMs and TMs is in the
acceptance condition. A normal TM accepts an input if there is a (non-deterministic)
choice of transitions for getting from the initial configuration to a final configuration
(one in which no further transitions are possible). In other words, a configuration of
a normal TM is accepting if it is either final, or there exists a transition that leads to
an accepting configuration (defined recursively). What happens if we change this exis-
tential statement into a universal one, requiring that all possible transitions lead to an
accepting state? We could think of this as a point where there Turing machine “forks”
to create many identical copies of its current state (including the tape contents), so that
each possible transition can be explored in parallel by one of the TM copies.

The special power of an ATM is that it can alternate between these two modes: in
some states, it will only explore one possible transition non-deterministically, in other
states, it will fork and explore all possible transitions in parallel. To control this, the set
of states Q is partitioned into a set E of existential states and a set U of universal states.
A configuration is accepting if one of the following conditions hold:

– The configuration is final, i.e., there is no possible transition.
– The ATM is in an existential state and there is a transition that leads to an accepting

configuration.
– The ATM is in a universal state and all transitions lead to an accepting configura-

tion.

Note that the second and third cases of this definition are recursive. An ATM accepts a
given input if its initial configuration is accepting. Note that this computational model
only works well for decision problems where we only want to know if the ATM ac-
cepted an input or not. ATMs do not produce any output.

A non-deterministic TM can be viewed as an ATM that has only existential states.
In a sense, universal states can be used to model the dual of the acceptance condition of
a non-deterministic TM. For example, to check whether a propositional formula is sat-
isfiable, a non-deterministic TM can check if there exists one possible way of assigning
truth values to propositional letters that makes the formula true. This is a classical NP
problem. If, dually, we want to check if a propositional formula is unsatisfiable, then we
need to verify that all possible truth assignments evaluate to false. This is a so-called
co-NP problem, i.e., the dual of an NP problem. Using ATMs, we can express both

types of problems in a uniform way. Moreover, we can arbitrarily combine existential
and universal modes of computation, resulting in a real gain in computational power.

When we measure the resources (time and space) needed by an ATM, we consider
each of its computation paths individually: even if many parallel copies of the ATM
have been created during the computation, we only measure the resources used by any
one of them. For example, the space (memory) needed by an ATM is the maximal size
of any configuration that is considered in the computation. Likewise, the time (steps)
needed by an ATM on an accepting run is the maximal number of transitions used to
get from the initial to a final configuration. The kind of ATMs that we are interested in
have a limited amount of memory:

Definition 54. An ATM accepts an input in space s if it uses at most s tape cells in
any accepting configuration. A decision problem P is solved by a polynomially space-
bounded ATM if there is a polynomial p such that an input sequence w is in P if and
only if w is accepted in space p(|w|), where |w| is the length of w.

The special power of ATMs lies in the fact that they can solve ExpTime problems in
polynomial space:

Theorem 55. The complexity class APSpace of languages accepted by polynomially
space-bounded ATMs coincides with the complexity class ExpTime.

Summary Alternating Turing machines (ATMs) generalise TMs through existential and
universal acceptance conditions. ATMs solve ExpTime problems in polynomial space.

4.5 Universal + Existential = Exponential

The ontology language that is obtained by combining OWL RL and OWL EL is essen-
tially the same that is obtained by combining OWL RL and OWL QL. In either case,
we obtain the sublanguage ofALCI that allows u and ∃ on the left, and ∃ and ∀ on the
right. In this section, we show that this already leads to ExpTime-hard reasoning prob-
lems that can certainly not be solved by a deterministic polynomial time algorithm. To
see this, we “simulate” the computation of an ATM using an ontology. More precisely,
given an ATM M and an input sequence w, we construct an ontology OM,w such that
M accepts w if and only if OM,w entails a certain class inclusion axiom. In other words,
we reduce ATM acceptance to subsumption checking.

How can we simulate a Turing machine in an ontology? In essence, we need to cre-
ate an ontology that describes what it means for M to accept w. Therefore, we need
to represent configurations, possible transitions between them, and the acceptance con-
dition, using ontological axioms only. Intuitively, the domain elements of a model of
the ontology will represent possible configurations ofM, encoded with the help of the
following class names:

– Aq : the ATM is in state q,
– Hi : the ATM’s read/write head is at position i on the storage tape,
– Cσ,i : position i on the storage tape contains symbol σ,
– Acc : the ATM accepts this configuration.

For example, to express that c is a configuration where the ATM is in state q at position
2 of the tape, and the tape contains the sequence of letters example, we could use the
following axiom:

Aq u H2 u Ce,0 u Cx,1 u Ca,2 u Cm,3 u Cp,4 u Cl,5 u Ce,6(c)

In order for our approach to work, however, the ontology OM,w must be constructed in
polynomial time from the input M and w. Therefore, the key to our encoding is that
we only need a relatively small number of class names. For example, there are only
a linear number of ATM states, hence there are only linearly many class names Aq.
Moreover, since the ATM is polynomially space-bounded, we only need to consider a
polynomial number of possible head positions i for Hi. For every position i, we need
one class Cσ,i for each possible alphabet symbol σ (of which there are only linearly
many), so the overall number of classes Cσ,i is again polynomial. This is why it is so
convenient to use ATMs here: with a classical ExpTime TM it would be possible to use
an exponential amount of memory, and it would not be that easy to encode this in a
polynomial ontology. In order to describe possible transitions between configurations,
we also introduce some property names:

– Sδ : connects two configurations if the second can be reached from the first using
the transition δ ∈ ∆ (where δ is a tuple 〈q, σ, q′, σ′, direction〉)

Again, there are only a linearly many transitions δ, so the number of properties Sδ is
small.

Now to describe the ontology OM,w in detail, consider a fixed ATMM with states
Q = U ∪ E, initial state q0, tape alphabet Σ, and transition relation ∆. The sets U
and E specify the universal and existential states as in Section 4.4. Moreover, M is
polynomially space-bounded, i.e., there is a polynomial p that defines for a given input
sequence w an upper bound p(|w|) for the number of tape cells that will be needed.

Now for a given input word w, the ontologyOM,w is defined to contain the axioms in
Fig. 6. Every axiom is taken for all combinations of states, positions, alphabet symbols,
and transition relations for which the conditions on the side are satisfied. Using the
intuitive meaning of class and property names, it is not hard to understand each axiom:

(1) Left and right transition rules. Each of these axioms encodes a possible transition
of the form δ = 〈q, σ, q′, σ′, direction〉. The left-hand classes express that the ATM
is in state q on position i, reading the symbol σ. The right-hand class then asserts
that the configuration obtained by applying δ can be reached through property Sδ.
The side conditions ensure that we do not accidentally move the ATM head out of
the available memory area.

(2) Memory. These axioms make sure that tape cells which are not changed are not
forgotten during a transition. Whenever the tape containsσ at position i but the head
is at a different position j, then every successor configuration must also contain σ
at position i.

(3) Final configurations. If the ATM is in a state q reading symbol σ, and there is no
possible transition for this combination, then the configuration is accepting.

(4) Existential acceptance. If the ATM is in an existential state and there is any transi-
tion to an accepting configuration, then the current configuration is also accepting.

The following axioms are instantiated for all states q, q′ ∈ Q, alphabet symbols σ,σ′ ∈ Σ,
tape positions i, j ∈ {0, . . . , p(|w|) − 1}, and transitions δ ∈ ∆:

(1) Left and right transition rules
Aq u Hi u Cσ,i v ∃Sδ.(Aq′ u Hi+1 u Cσ′ ,i) if δ = 〈q, σ, q′, σ′, r〉 and i < p(|w|) − 1

Aq u Hi u Cσ,i v ∃Sδ.(Aq′ u Hi−1 u Cσ′ ,i) if δ = 〈q, σ, q′, σ′, l〉 and i > 0

(2) Memory
H j u Cσ,i v ∀Sδ.Cσ,i if i , j

(3) Final configurations
Aq u Hi u Cσ,i v Acc if there is no transition from q and σ

(4) Existential acceptance
Aq u ∃Sδ.Acc v Acc if q ∈ E

(5) Universal acceptance
Aq u Hi u Cσ,i u

�
δ∈∆(q,σ) ∃Sδ.Acc v Acc if q ∈ U and where ∆(q, σ) is the set of

all transitions from q and σ

Fig. 6. Knowledge base OM,w simulating a polynomially space-bounded ATM

(5) Universal acceptance. If the ATM is in a universal state q reading symbol σ, and
if it has an accepting successor configuration for all possible transitions, then the
current configuration is also accepting. Note how we avoid the use of universal
quantifiers on the left by explicitly requiring accepting successor configurations for
each possible transition. This is the reason why we use special successor relations
Sδ for each transition δ.

Together, these axioms ensure that domain elements of every model of the ontology
OM,w can be interpreted as ATM configurations that are related with the expected tran-
sition relations. This works, even though we are not very strict in enforcing that every
domain element is really some valid configuration. On the one hand, we do not require
that all necessary information (state, position, tape content) is specified for all elements.
Indeed, to express a disjunctive statement like “in every configuration, the ATM is in
one of its states” we would need some kind of class union on the right. On the other
hand, we also do not require that all of the information is specified consistently (just one
state and position at once, just one symbol on each tape cell). Overall, the axioms only
state that, whenever a domain element can be viewed as a (partial) representation of
an ATM configuration, it should also have the according successor configurations and
acceptance status. This turns out to be enough to capture the behaviour of the ATM.

Now the initial configuration for the input w of the form σ0, σ1, . . . , σ|w|−1 is de-
scribed by the following class Iw:

Iw B Aq0 u H0 u Cσ0,0 u . . . u Cσ|w|−1,|w|−1 u C�,|w| u . . . u C�,p(|w|)−1,

where we also specify that all unused tape cells contain the blank symbol. We will show
that checking whether the initial configuration is accepting is equivalent to checking
whether Iw v Acc follows from OM,w.

First we specify the relationship between elements of an interpretation that satisfies
OM,w and configurations ofM, which we have only sketched so far. For this, consider
an interpretation I of OM,w and an element e ∈ ∆I. Let α be an ATM configuration
where M is in state q at position i, and the tape contains the symbols σ0 . . . σp(|w|)−1.
We say that e represents this configuration α if e ∈ AIq , e ∈ HIi and e ∈ CIσ j, j for every
j = 0, . . . , p(|w|) − 1. Again, observe that a single element might represent more than
one configuration. We will see that this does not affect our results. If e represents a
configuration, we will also say that e has state q, position i, symbol σ j at position j etc.

Lemma 56. Consider a model I of OM,w. If some element e of I represents a con-
figuration α and some transition δ is applicable to α, then e has an SIδ -successor that
represents the (unique) result of applying δ to α.

Proof. Consider an element e, state α, and transition δ as in the claim. Then one of the
axioms (1) of Fig. 6 applies, and e must also have an SIδ -successor. This successor rep-
resents the correct state, position, and symbol at position i of e, again by the axioms (1).
By axiom (2), symbols at all other positions are also represented by all SIδ -successors
of e. �

The next lemma shows the correctness of our ATM simulation.

Lemma 57. The input sequence w is accepted byM if and only if Iw v Acc is a conse-
quence of OM,w.

Proof. Consider an arbitrary interpretation I that satisfies OM,w. We first show that, if
any element e of I represents an accepting configuration α, then e ∈ AccI. We use an
inductive argument along the recursive definition of acceptance. As a base case, assume
that α is a final configuration (without transitions). Then axiom (3) applies and we find
that e ∈ AccI as required.

For the induction step, first assume that α is an existential configuration. Then there
is some accepting δ-successor configuration α′ of α. By Lemma 56, there is an SIδ -
successor e′ of e that represents α′, and we find e′ ∈ AccI by the induction hypothesis.
Hence axiom (4) applies and we conclude e ∈ AccI.

As the remaining case, assume that α is a universal configuration. Then all succes-
sors of α are accepting, too. By Lemma 56, for any δ-successor configuration α′ of α,
there is a corresponding SIδ -successor e′ of e. By the induction hypothesis for α′, we
find e′ ∈ AccI. Since this holds for all δ-successors of α, axiom (5) implies e ∈ AccI.
This finishes the induction.

Since all elements in IIw represent the initial configuration of the ATM, this shows
that IIw ⊆ AccI whenever the initial configuration is accepting.

It remains to show the converse: if the initial configuration is not accepting, there is
some interpretation I such that IIw * AccI. To this end, we define a canonical interpre-
tation J of OM,w as follows. The domain of J is the set of all configurations ofM that
encode a tape of length p(|w|). The interpretations for the classes Aq, Hi, and Cσ,i are

defined as expected so that every configuration represents itself but no other configura-
tion. Especially, IJw is the singleton set containing the initial configuration. Given two
configurations α and α′, and a transition δ, we define 〈α, α′〉 ∈ SJδ if and only if there
is a transition δ from α to α′. AccJ is defined to be the set of accepting configurations.

By checking the individual axioms of Fig. 6, it is easy to see that J satisfies OM,w.
Now if the initial configuration is not accepting, IJw * AccJ by construction. Thus J is
a counterexample for Iw v Acc, which thus is not a logical consequence. �

Theorem 58. The standard reasoning problems are ExpTime-hard for any ontology lan-
guage that allows ∀ on the right-hand side of subclass expressions, and u and ∃ (with
arbitrary filler classes) on the left and right. In particular, this is the case for the combi-
nation of ELtiny and RLtiny , and for the combination of RLtiny and QLtiny .

Proof. Lemma 57 shows that the acceptance problem for polynomially space-bounded
ATMs can be reduced to checking class subsumption in OM,w. The other standard rea-
soning problems can be reduced to satisfiability checking as discussed on Section 2.2.
The reduction is polynomially bounded due to the restricted number of axioms: there are
at most p(|w|)×|∆| axioms of type (1), p(|w|)2×|Σ |×|∆| axioms of type (2), |Q|×p(|w|)×|Σ |
axioms of type (3), |Q| × |∆| axioms of type (4), and |Q| × p(|w|)× |Σ | axioms of type (5).
The claim then follows from Theorem 55. �

Summary Reasoning becomes ExpTime-hard when combining OWL RL with OWL EL
or OWL QL, which can be shown by simulating a polynomially space-bounded ATM.

4.6 OWL EL + OWL QL = ExpTime

It remains to investigate the combination of OWL EL and OWL QL. On the first glance,
the features of the two profiles may seem very similar, and one could thus hope that the
combination of both languages would not lead to major difficulties. Unfortunately, this
case leads to the same exponential complexity that we already got for the combinations
with OWL RL in the previous section. Thankfully it is at least easy to prove this now.

It turns out that we can largely re-use the proof of Section 4.5. Looking at the axioms
in Fig. 6, we can see that the memory axioms (2) are the only ones that we cannot readily
express using the features of ELtiny alone. Of course, (2) is not in QLtiny either, but
we can use inverse properties to write it in a different form:

∃S−δ .(H j u Cσ,i) v Cσ,i if i , j

It is easy to see that this axiom is equivalent to (2). Therefore, all previous proofs can
be applied using this alternative axiom, and we obtain the following result:

Theorem 59. The standard reasoning problems are ExpTime-hard for any ontology lan-
guage that allows inverse properties,u, and ∃ (with arbitrary filler classes). In particular,
this is the case for the combination of ELtiny and QLtiny .

Summary OWL EL has all features of OWL QL other than inverse properties. Adding
them makes all standard reasoning tasks ExpTime-hard.

5 Advanced Modelling Features

The little ontology languages ELtiny , RLtiny , andQLtiny have served us well for illus-
trating the most essential characteristics of the three OWL profiles. In this section, we
will complete the picture by mentioning the most important additional features that can
be found in the OWL profiles. Only a few of these have a real impact on computation,
and all of the reasoning methods introduced in Section 3.1 can be adopted to the larger
languages.

Property Hierarchies Just like in the case of classes, we can also specify that a property
is more specific than another one. For example, we could state

hasMother v hasParent

to say that motherhood is a special form of parenthood. In OWL this is encoded using
SubObjectPropertyOf, which is supported by all profiles. Property hierarchies can also
be used to declare two properties to be equivalent by stating that they mutually include
each other.

Property Chains This generalisation of property hierarchies allows us to state that the
combination of two properties leads to a new relationship. A typical example is

hasParent ◦ hasBrother v hasUncle

which states that the brother of someone’s parent is one’s uncle. In OWL this is en-
coded using SubObjectPropertyChain, and some restrictions apply regarding the use
of this feature (which, by the way, are unnecessary in the profiles). Only OWL EL
and OWL RL support property chains, while OWL QL disallows them since they
would make query rewriting in the sense of Section 3.8 impossible. To stay polyno-
mial, OWL EL needs to impose some further restrictions regarding the interplay of
property range axioms > v ∀P.C and property chains. A special case of property chain
can be used to express transitivity, as in the following example:

hasAncestor ◦ hasAncestor v hasAncestor

Equality OWL allows us to express that two individual names refer to the same thing,
e.g., to declare two different names for Tweety:

tweety ≈ tweetyBird

In OWL this is encoded using SameIndividual, which is supported in OWL EL and
OWL RL but not in OWL QL. One can also say the opposite, i.e., that two individuals
cannot be the same. This is supported by all profiles, but it is uninteresting in OWL QL,
where there is no reason why two individuals should ever be equal.

Nominals A special form of class expressions allows us to specify classes with exactly
one element, called nominals in description logics. For example,

∃livesIn.{europe} v European

states that everybody who lives in (the individual) Europe belongs to the class of Eu-
ropeans. Nominals can be very powerful modelling constructs that can also be used
to encode ABox statements, equality, and inequality. In OWL, nominals are expressed
using ObjectOneOf and (in constructions as in the above example) ObjectHasValue.
OWL RL and OWL EL support these features, while OWL QL does not allow them.

Local Reflexivity: Self This feature allows us to speak about things that are related to
themselves with some property. For example,

CEO v ∃isSupervisorOf.Self

states that every CEO is her own supervisor. This is expressed in OWL using Object-
HasSelf. This is only allowed in OWL EL, although there is no technical reason to
exclude it from OWL RL.12

Datatypes OWL supports a variety of datatypes such as numbers, strings, and booleans.
They can be used as values to specific properties, called data properties. In contrast, the
properties we have used so far are called object properties (hence the word Object in
most OWL language features that we have seen). Many kinds of statements that we
have seen before can also be made with data properties:

hasName(tweety, "Tweety Bird") ABox axiom that assigns a string value
Person v ∃hasName.String Every person has a string name

firstName v hasName Every first name is also a name

However, data properties always relate individuals to data values, hence they cannot be
chained or inverted. All profiles of OWL support data properties. The main difference is
in the set of available datatypes. The profiles OWL EL and OWL QL that allow existen-
tial data property restrictions on the right-hand side of class inclusions support a more
limited set of datatypes than OWL RL. As in the case of class unions, these restrictions
could be lifted on the left-hand side of class inclusions. For OWL QL, it is notewor-
thy that existential restrictions on data properties are not restricted when occurring on
the left-hand side of class expressions. The difficulties explained in Example 43 do not
occur in this case.

Keys It is possible to state that the individuals of some class are uniquely identified by
certain keys. This means, whenever two individuals have the same property values for
a given list of properties, it is inferred that they are equal. There is no dedicated syntax
for this in description logics. An example in OWL notation is:

HasKey(Person bornIn hasName birthday)

12 The author is not aware of any investigation of this feature in OWL QL and conjectures that
Self could be included there as well.

which states that two persons that are born in the same place, and have the same name
and birthday are necessarily the same. Keys are only applied to elements that are de-
noted by an individual name (not to elements that have been inferred to exist without
a name being known for them; see Example 35). Keys are available in OWL EL and
OWL RL, but not in OWL QL.

Syntactic Sugar Many further features in OWL are merely syntactic abbreviations for
statements that can also be expressed with other features. For example, there are special
constructs for defining disjoint classes (see Remark 7), and transitive and symmetric
properties. As a general rule, these abbreviations are available in any profile where one
could also express the feature indirectly.

Summary All profiles also support datatypes and property hierarchies. OWL EL and
OWL RL further support equality, keys, nominals, property chains, and Self (EL only).

6 Summary and Further Reading

Lightweight ontology languages have become a highly relevant in many applications,
and the standardisation of the OWL 2 profiles EL, RL, and QL has supported their
practical adoption.

Each profile allows for highly efficient polynomial time reasoning algorithms. For
OWL RL and OWL EL, these are typically founded on rule-based saturation approaches
where logical consequences are computed in a bottom-up fashion. For OWL QL, rea-
soning is typically implemented through query rewriting algorithms, which generate a
set of queries that can be evaluated over the ABox. This approach has the advantage
that reasoning complexity mainly depends on the TBox, but it leads to a comparatively
restricted set of expressive features.

To the best of our knowledge, this is the first text that treats all three OWL pro-
files and the related reasoning methods. A number of sources are available for further
reading. The foremost reference on the OWL 2 Profiles is the W3C standard [34], and
in particular the profiles document [32]. A step-by-step introduction to all features of
OWL is found in the OWL Primer [13]. For a comprehensive treatment of OWL, RDF,
and related technologies, we recommend an introductory textbook [14].

For more information on description logics, the DL Primer provides a gentle first
exposition [28]. More detailed introductions can be found in previous lecture notes of
the Reasoning Web Summer School: Rudolph provides a detailed discussion of DL se-
mantics and modelling [38], Baader gives a general overview with extended historical
notes [2], and Sattler focusses on tableau-based reasoning methods [39]. An introduc-
tion to conjunctive query answering in description logics is given by Ortiz and Simkus
in another chapter of these lecture notes [33]. A basic reference for advanced topics in
DL research is the Description Logic Handbook [5].

More information on OWL EL and its implementation can be found in a number
of research papers. Basic investigations on the related description logic EL++ have
first been made by Baader, Brandt, and Lutz [3], who also introduced the extension
with property ranges that is used in OWL EL [4]. Implementation aspects have been

discussed in detail in a series of recent works related to the OWL EL reasoner ELK
[18,19,21]. A discussion of the engineering aspects of implementing such a saturation-
based system can be found in a technical report [20]. Other dedicated OWL EL rea-
soners include CEL [6], Snorocket [29], and jCEL [31]. The general-purpose OWL
reasoner Pellet uses special algorithms if the input ontology belongs to a certain subset
of OWL EL, allowing it to classify some large OWL EL ontologies that would other-
wise not be supported. Conjunctive query answering in OWL EL tends to be harder
than in OWL QL and OWL RL, and is intractable even under additional restrictions
[26]. Efficient solutions were proposed for sublanguages of OWL EL [30,24].

OWL RL is often studied as an extension of the Semantic Web data representa-
tion standard RDF [22] with additional inference rules. Relevant sublanguages that
cover only some features of OWL RL include RDF Schema [7] and pD∗ (a.k.a. OWL-
Horst) [17]. The OWL standard includes a set of inference rules that are formulated
in terms of the RDF encoding of OWL [32]. In contrast to OWL EL, the main focus
of many OWL RL implementations is on large datasets that need to be managed in a
database system. Noteworthy RDF database systems which support a certain amount
of OWL RL reasoning include AllegroGraph, Jena, OpenLink Virtuoso, Oracle 11g,
OWLIM, and Sesame. Reasoning is typically implemented with saturation-based cal-
culi, sometimes based on a configurable set of inference rules. Virtuoso can also be
configured to use query rewriting for some tasks. In general, conjunctive query answer-
ing is easy in OWL RL, since the saturated ontology can simply be queried like an
extended database. Academic research in OWL RL has strongly focussed on aspects
of scalability and distribution; examples include [43,16,25,15,44,42]. There have also
been works on data quality and cleaning in the context of reasoning, where noisy data
can have stronger effects [15].

OWL QL was originally inspired by the so-called DL-Lite family of description log-
ics [8]. The current W3C standard is closely related to the logic DL-LiteR, later called
DL-LiteRcore [1]. Query rewriting can often lead to a huge number of ABox queries,
and various suggestions have been made to improve this [24,12,23,37]. The only freely
available implementation for OWL QL appears to be Owlgres.13 Another implemen-
tation, QuOnto,14 is available to registered users. Some query rewriting approaches in
OWL RL systems can usually also be viewed as OWL QL implementations.

The study of computational complexity is an important area of investigation in
knowledge representation and reasoning, and it is often used to guide the design of on-
tology languages. A good textbook introduction to the field is provided by Sipser [41], a
more extensive treatment is given by Papadimitriou [35]. Alternating Turing Machines
were originally introduced in [9]. The proof of ExpTime-hardness for reasoning in com-
binations of OWL profiles that is given in Section 4.5 has first been formulated in [27],
where additional related results can be found. In particular, it is shown there that the ex-
tension of OWL QL with universal quantifiers on the right, but without allowing general
existential quantifiers on the left, leads to a PSpace-complete ontology language.

Most of our results can readily be applied to reasoning under the RDF-Based Se-
mantics as well. Following Theorem 17, all of our reasoning methods are also sound

13 http://pellet.owldl.com/owlgres
14 http://www.dis.uniroma1.it/quonto/

http://pellet.owldl.com/owlgres

(but not complete) in this case. Our use of description logic syntax was mainly for sim-
plifying the presentation, and the inference rules in our calculi can easily be translated
to OWL syntax along the lines of Table 1. For the case of OWL QL, one should also
define the meaning of conjunctive query answering under RDF-Based Semantics first,
which is closely related to the semantics of SPARQL queries under RDF-Based Seman-
tics [10]. This is also part of the upcoming W3C SPARQL 1.1 entailment regime for
OWL RDF-Based Semantics [11].

Acknowledgements The author would like to thank Yavor Nenov and an anonymous
reviewer for their helpful comments. Work on this chapter was supported by the EU
FP7 project SEALS and by the EPSRC projects ConDOR and ExODA.

Errata, if any, will be published at http://korrekt.org/page/OWL 2 Profiles. Feed-
back can be sent to the author.

References

1. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and re-
lations. J. of Artificial Intelligence Research 36, 1–69 (2098)

2. Baader, F.: Description logics. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Hand-
schuh, S., Rousset, M.C., Schmidt, R.A. (eds.) Reasoning Web. Semantic Technologies for
Information Systems – 5th International Summer School, 2009, LNCS, vol. 5689, pp. 1–39.
Springer (2009)

3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L., Saffiotti, A.
(eds.) Proc. 19th Int. Joint Conf. on Artificial Intelligence (IJCAI’05). pp. 364–369. Profes-
sional Book Center (2005)

4. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope further. In: Clark, K.G., Patel-
Schneider, P.F. (eds.) Proc. OWLED 2008 DC Workshop on OWL: Experiences and Direc-
tions. CEUR Workshop Proceedings, vol. 496. CEUR-WS.org (2008)

5. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge Univer-
sity Press, second edn. (2007)

6. Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL—a polynomial-time reasoner for life science
ontologies. In: Furbach, U., Shankar, N. (eds.) Proc. 3rd Int. Joint Conf. on Automated Rea-
soning (IJCAR’06). LNCS, vol. 4130, pp. 287–291. Springer (2006)

7. Brickley, D., Guha, R.V. (eds.): RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Recommendation (10 February 2004), available at http://www.w3.org/TR/rdf-schema/

8. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning 39(3), 385–429 (2007)

9. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. of the ACM 28(1), 114–133
(1981)

10. Glimm, B., Krötzsch, M.: SPARQL beyond subgraph matching. In: Patel-Schneider et al.
[36], pp. 241–256

11. Glimm, B., Ogbuji, C. (eds.): SPARQL 1.1 Entailment Regimes. W3C Working Draft (05
January 2012), available at http://www.w3.org/TR/sparql11-entailment/

12. Gottlob, G., Orsi, G., Pieris, A.: Ontological queries: Rewriting and optimization. In: Abite-
boul, S., Böhm, K., Koch, C., Tan, K.L. (eds.) Proc. 27th Int. Conf. on Data Engineering
(ICDE’11). pp. 2–13. IEEE Computer Society (2011)

http://korrekt.org/page/OWL_2_Profiles

13. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.): OWL 2 Web
Ontology Language: Primer. W3C Recommendation (27 October 2009), available at http:
//www.w3.org/TR/owl2-primer/

14. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman
& Hall/CRC (2009)

15. Hogan, A., Harth, A., Polleres, A.: Scalable authoritative OWL reasoning for the Web. Int.
J. of Semantic Web Inf. Syst. 5(2), 49–90 (2009)

16. Hogan, A., Pan, J.Z., Polleres, A., Decker, S.: SAOR: template rule optimisations for dis-
tributed reasoning over 1 billion linked data triples. In: Patel-Schneider et al. [36], pp. 337–
353

17. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF Schema
and a semantic extension involving the OWL vocabulary. J. of Web Semantics 3(2–3), 79–
115 (2005)

18. Kazakov, Y., Krötzsch, M., Simančı́k, F.: Concurrent classification of EL ontologies. In:
Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E.
(eds.) Proceedings of the 10th International Semantic Web Conference (ISWC’11). LNCS,
vol. 7032. Springer (2011)

19. Kazakov, Y., Krötzsch, M., Simančı́k, F.: Unchain my EL reasoner. In: Proceedings of the
23rd International Workshop on Description Logics (DL’10). CEUR Workshop Proceedings,
vol. 745. CEUR-WS.org (2011)

20. Kazakov, Y., Krötzsch, M., Simančı́k, F.: ELK: a reasoner for OWL EL ontologies. Tech.
rep. (2012), available from http://code.google.com/p/elk-reasoner/wiki/Publications

21. Kazakov, Y., Krötzsch, M., Simančı́k, F.: Practical reasoning with nominals in the EL fam-
ily of description logics. In: Proc. 13th Int. Conf. on Principles of Knowledge Represen-
tation and Reasoning (KR’12) (2012), to appear, available from http://code.google.com/p/

elk-reasoner/wiki/Publications
22. Klyne, G., Carroll, J.J. (eds.): Resource Description Framework (RDF): Concepts and Ab-

stract Syntax. W3C Recommendation (10 February 2004), available at http://www.w3.org/

TR/rdf-concepts/
23. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach

to query answering in DL-Lite. In: Lin, F., Sattler, U., Truszczynski, M. (eds.) Proc. 12th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR’10). pp. 247–257.
AAAI Press (2010)

24. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach
to ontology-based data access. In: Walsh, T. (ed.) Proc. 22nd Int. Joint Conf. on Artificial
Intelligence (IJCAI’11). pp. 2656–2661. AAAI Press/IJCAI (2011)

25. Kotoulas, S., Oren, E., van Harmelen, F.: Mind the data skew: distributed inferencing by
speeddating in elastic regions. In: Proc. 19th Int. Conf. on World Wide Web (WWW’10). pp.
531–540. WWW’10, ACM (2010)

26. Krötzsch, M., Rudolph, S., Hitzler, P.: Conjunctive queries for a tractable fragment of OWL
1.1. In: Aberer, K., Choi, K.S., Noy, N., Allemang, D., Lee, K.I., Nixon, L., Golbeck, J.,
Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) Proc. 6th Int.
Semantic Web Conf. (ISWC’07). LNCS, vol. 4825, pp. 310–323. Springer (2007)

27. Krötzsch, M., Rudolph, S., Hitzler, P.: Complexities of Horn description logics. ACM Trans.
Comp. Log. (2012), to appear; preprint available at http://tocl.acm.org/accepted.html

28. Krötzsch, M., Simančı́k, F., Horrocks, I.: A description logic primer. CoRR abs/1201.4089
(2012)

29. Lawley, M.J., Bousquet, C.: Fast classification in Protégé: Snorocket as an OWL 2 EL rea-
soner. In: Taylor, K., Meyer, T., Orgun, M. (eds.) Proc. 6th Australasian Ontology Workshop
(IAOA’10). Conferences in Research and Practice in Information Technology, vol. 122, pp.
45–49. Australian Computer Society Inc. (2010)

http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-primer/
http://code.google.com/p/elk-reasoner/wiki/Publications
http://code.google.com/p/elk-reasoner/wiki/Publications
http://code.google.com/p/elk-reasoner/wiki/Publications
http://tocl.acm.org/accepted.html

30. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description logic EL us-
ing a relational database system. In: Boutilier, C. (ed.) Proc. 21st Int. Joint Conf. on Artificial
Intelligence (IJCAI’09). pp. 2070–2075. IJCAI (2009)

31. Mendez, J., Ecke, A., Turhan, A.Y.: Implementing completion-based inferences for the EL-
family. In: Rosati, R., Rudolph, S., Zakharyaschev, M. (eds.) Proceedings of the international
Description Logics workshop. vol. 745. CEUR (2011)

32. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.): OWL 2 Web
Ontology Language: Profiles. W3C Recommendation (27 October 2009), available at http:
//www.w3.org/TR/owl2-profiles/

33. Ortiz, M., Simkus, M.: Reasoning and query answering in description logics. In: Reasoning
Web – 8th International Summer School 2012. LNCS, Springer (2012), to appear

34. OWL Working Group, W.: OWL 2 Web Ontology Language: Document Overview. W3C
Recommendation (27 October 2009), available at http://www.w3.org/TR/owl2-overview/

35. Papadimitriou, C.H.: Computational Complexity. Addison Wesley (1994)
36. Patel-Schneider, P.F., Pan, Y., Glimm, B., Hitzler, P., Mika, P., Pan, J., Horrocks, I. (eds.):

Proc. 9th Int. Semantic Web Conf. (ISWC’10), LNCS, vol. 6496. Springer (2010)
37. Pérez-Urbina, H., Motik, B., Horrocks, I.: A comparison of query rewriting techniques for

DL-lite. In: Cuenca Grau, B., Horrocks, I., Motik, B., Sattler, U. (eds.) Proc. 22nd Int.
Workshop on Description Logics (DL’09). CEUR Workshop Proceedings, vol. 477. CEUR-
WS.org (2009)

38. Rudolph, S.: Foundations of description logics. In: Polleres, A., d’Amato, C., Arenas, M.,
Handschuh, S., Kroner, P., Ossowski, S., Patel-Schneider, P.F. (eds.) Reasoning Web. Seman-
tic Technologies for the Web of Data – 7th International Summer School 2011, LNCS, vol.
6848, pp. 76–136. Springer (2011)

39. Sattler, U.: Reasoning in description logics: Basics, extensions, and relatives. In: Antoniou,
G., Aßmann, U., Baroglio, C., Decker, S., Henze, N., Patranjan, P.L., Tolksdorf, R. (eds.)
Reasoning Web – 3rd International Summer School, 2007, LNCS, vol. 4636, pp. 154–182.
Springer (2007)

40. Schneider, M. (ed.): OWL 2 Web Ontology Language: RDF-Based Semantics.
W3C Recommendation (27 October 2009), available at http://www.w3.org/TR/

owl2-rdf-based-semantics/
41. Sipser, M.: Introduction to the Theory of Computation. Thomson Course Technology, inter-

national edition of second edn. (2005)
42. Soma, R., Prasanna, V.K.: Parallel inferencing for OWL knowledge bases. In: Proc. Int. Conf.

on Parallel Processing (ICPP’08). pp. 75–82. IEEE Computer Society (2008)
43. Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: WebPIE: a Web-scale par-

allel inference engine using MapReduce. J. of Web Semantics (2011), in press, accepted
manuscript, preprint available at http://www.cs.vu.nl/∼frankh/postscript/JWS11.pdf

44. Weaver, J., Hendler, J.A.: Parallel materialization of the finite RDFS closure for hundreds
of millions of triples. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard,
D., Motta, E., Thirunarayan, K. (eds.) Proc. 8th Int. Semantic Web Conf. (ISWC’09). LNCS,
vol. 5823, pp. 682–697. Springer (2009)

http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-overview/
http://www.cs.vu.nl/~frankh/postscript/JWS11.pdf

	OWL 2 Profiles: An Introduction to Lightweight Ontology Languages
	1 Introduction
	1.1 Goals of this Document
	1.2 Overview

	2 An Introduction to OWL
	2.1 The Web Ontology Language
	2.2 OWL Reasoning Tasks
	2.3 Hardness of Reasoning
	2.4 Further Expressive Features in OWL
	2.5 From OWL to Description Logics
	2.6 The OWL Direct Semantics
	2.7 The OWL RDF-Based Semantics

	3 Reasoning in the OWL Profiles
	3.1 Three Tiny OWLs
	3.2 Rule-based Reasoning for Instance Retrieval in RLtiny
	3.3 Defining a Saturation Calculus for RLtiny
	3.4 Correctness of the RLtiny Instance Retrieval Calculus
	3.5 Completeness of the RLtiny Instance Retrieval Calculus
	3.6 A Rule-based Classification Calculus for ELtiny
	3.7 Correctness of Rule-based Classification in ELtiny
	3.8 Query Rewriting for Reasoning in QLtiny
	3.9 A Normal Form for QLtiny
	3.10 Rewriting-Based Reasoning for QLtiny
	3.11 Completing the Query Rewriting Method
	3.12 Correctness of Query Rewriting
	3.13 Completeness of Query Rewriting

	4 The Limits of Lightweight Ontology Languages
	4.1 What Really Counts: Relaxing Unnecessary Restrictions
	4.2 Measuring Complexity
	4.3 Unions are Hard
	4.4 Showing ExpTime-Hardness with Alternating Turing Machines
	4.5 Universal + Existential = Exponential
	4.6 OWL EL + OWL QL = ExpTime

	5 Advanced Modelling Features
	6 Summary and Further Reading

