arXiv:1201.4089v1 [cs.Al] 19 Jan 2012

A Description Logic Primer

Markus Krotzsch, FrantiSek Siméik, lan Horrocks
Department of Computer Science, University of Oxford, UK

Abstract. This paper provides a self-contained first introductionesdliption log-
ics (DLs). The main concepts and features are explainedexamples before syn-
tax and semantics of the DEROZQ are defined in detail. Additional sections
review light-weight DL languages, discuss the relatiopsioi the Web Ontology
Language OWL and give pointers to further reading.

Introduction

Description logics (DLs) are a family of knowledge represéion languages that are
widely used in ontological modelling. An important praeticeason for this is that they
provide one of the main underpinnings for the Web Ontologgdisage OWL as stan-
dardised by the World Wide Web Consortium (W3C). Howeversbiave been used in
knowledge representation long before the advent of onicddgrodelling in the context
of the Semantic Web, tracing back to first DL modelling langgsin the mid 1980s.

As their name suggests, DLs are logics (in fact they are dbtédragments of first-
order logic), and as such they are equipped witbrenal semanticsa precise specifica-
tion of the meaning of DL ontologies. This formal semantileves humans and com-
puter systems to exchange DL ontologies without ambigugttoaheir intended mean-
ing, and also makes it possible to use logical deductianfer additional information
from the facts stated explicitly in an ontology — an impottieature that distinguishes
DLs from other modelling languages such as UML.

The capability of inferring additional knowledge increaske modelling power of
DLs but it also requires some understanding on the side afnibdeller and, above alll,
good tool support for computing the conclusions. The comput of inferences is called
reasoningand an important goal of DL language design has been to etisineasoning
algorithms of good performance are available. This is orta@feasons why there is not
just a single description logic: the best balance betwepnessivity of the language and
complexity of reasoning depends on the intended applicatio

In this paper we provide a self-contained first introductimdescription logics. We
start by explaining the basic way in which knowledge is mtedein DLs in Section 1
and continue with an intuitive introduction to the most imgat DL modelling features
in Section 2. This leads us to the rather expressive DL ca#llB@7Q, the syntax of
which we summarise in Section 3. In Section 4, we explain tidedying ideas of DL

“Version 1.0 of 19 January 2012. Comments and suggestionsbeasent to Markus Krotzsch at
markus.kroetzsch@cs.ox.ac.uk. This document can freelyded and distributed under the terms of CC
By-SA-NC 3.0. Please contact the authors if you would likesfaroduce this document under another license.

http://arxiv.org/abs/1201.4089v1
http://korrekt.org/
http://www.cs.ox.ac.uk/isg/people/frantisek.simancik/
http://www.cs.ox.ac.uk/ian.horrocks/
http://creativecommons.org/licenses/by-nc-sa/3.0/

semantics and use it to define the meaning&07Q ontologies. Many DLs can be
obtained by omitting some features&RO7Q and in Section 5 we review some of the
most important DLs obtained in this way. In particular, tinisludes various light-weight
description logics that allow for particularlyffecient reasoning. In Section 6 we discuss
the relationship of DLs to the Web Ontology Language OWL. \&eatude with pointers
to further reading in Section 7.

1. Basic Building Blocks of DL Ontologies

Description logics (DLs) provide means to model the relalups between entities in a
domain of interest. In DLs there are three kinds of entitsicepts, roles and individ-
ual names. Concepts denote sets of individuals, roles denote bindayioas between
the individuals, and individual names denote single irdiigils in the domain. Readers
familiar with first-order logic will recognise these as upgaredicates, binary predicates
and constants.

For example, an ontology modelling the domain of people &mit family rela-
tionships might use concepts suetrent to denote the set of all parents aRemale to
represent the set of all female individuals, roles suchaasntOf to denote the (binary)
relationship between parents and their children, and iddat names such gslia and
john to denote the individuals Julia and John.

Unlike a database, a DL ontology does not fully describe &iqudar situation or
“state of the world”; rather it consists of a set of statersgtlled axioms, each of
which must be true in the situation described. These axigpisdlly capture only partial
knowledge about the situation that the ontology is desegijand there may be many dif-
ferent states of the world that are consistent with the ogiplAlthough, from the point
of view of logic, there is no principal ffierence between filerent types of axioms, it is
customary to separate them into three groups: assertiaBal() axioms, terminological
(TBox) axioms and relational (RBox) axioms.

1.1. Asserting Facts with ABox Axioms
ABox axioms capture knowledge about named individuals, ttee concepts to which
they belong and how they are related to each other. The moshom ABox axioms are
concept assertionsuch as

Mother(julia), (1)
which asserts that Julia is a mother or, more precisely thgaindividual namegllia is
aninstanceof the concepMother.

Role assertiondescribe relations between named individuals. The asgerti

parentOf(julia, john), (2)

for example, states that Julia is a parent of John or, moreigalg, that the individual
namedjulia is in the relation that is denoted IparentOf to the individual namegbhn.

1In OWL concepts and roles are respectively known as classkpraperties; see Section 6.

The previous sentence shows that it can be rather cumbetsaxplicitly point out that
the relationships expressed by an axiom are really relships between the individuals,
sets and relations that are denoted by the respective thdilihames, concepts and roles.
Assuming that this subtle distinction between syntaceéatdiers and semantic entities is
understood, we will thus often adopt a more sloppy and rdadatmulation. Section 4
below explains the underlying semantics with greater greoi

Although it is intuitively clear that Julia and John aréfeient individuals, this fact
does not logically follow from what we have stated so far. Dlosnot make theinique
name assumptiqiso diferent names might refer to the same individual unless attplic
stated otherwise. Thadividual inequalityassertion

julia # john 3

is used to assert that Julia and John are actudiigréint individuals. On the other hand,
anindividual equalityassertion, such as

john = johnny, 4)
states that two dierent names are known to refer to the same individual. Steatgins
can arise, for example, when combining knowledge aboutaheesiomain from several
different sources, a task that is knowroasology alignment

1.2. Expressing Terminological Knowledge with TBox Axioms

TBox axioms describe relationships between concepts. ¥ample, the fact that all
mothers are parents is expressed bydhcept inclusion

Mother C Parent, (5)

in which case we say that the concefiither is subsumedby the concepParent. Such
knowledge can be used to infer further facts about indivgluleor example, (1) and (5)
together imply that Julia is a parent.

Concept equivalencasserts that two concepts have the same instances, as in

Person = Human. (6)
While synonyms are an obvious example of equivalent cosc@pipractice one more
often uses concept equivalence to give a name to complerssipns as introduced in
Section 2.1 below. Furthermore, such additional conceptessions can be combined
with equivalence and inclusion to describe more complerasitns such as the disjoint-
ness of concepts, which asserts that two concepts do n@ ahgiinstances.

1.3. Modelling Relationships between Roles with RBox Axiom

RBox axioms refer to properties of roles. As for conceptssBupportole inclusion
androle equivalencaxioms. For example, the inclusion

parentOf £ ancestorOf (7

states thaparentOf is asubroleof ancestorOf, i.e., every pair of individuals related by
parentOf is also related byncestorOf. Thus (2) and (7) together imply that Julia is an
ancestor of John.

In role inclusion axiomsyole compositioncan be used to describe roles such as
uncleOf. Intuitively, if Charles is a brother of Julia and Julia is arent of John, then
Charles is an uncle of John. This kind of relationship betwte rolesbrotherOf,
parentOf anduncleOf is captured by theomplex role inclusiomxiom

brotherOf o parentOf C uncleOf. (8)

Note that role composition can only appear on the left-haahel sf complex role inclu-
sions. Furthermore, in order to retain decidability of tedng (see the end of Section 4
for a discussion on decidability), their use is restrictgdadditional structural restric-
tions that specify whether or not a collection of such axiaans be used together in one
ontology.

Nobody can be both a parent and a child of the same individoathe two roles
parentOf andchildOf are disjoint. In DLs we can writdisjoint rolesas follows:

Disjoint(parentOf, childOf). (9)

Further RBox axioms includele characteristicsuch as reflexivity, symmetry and
transitivity of roles. These are closely related to a nundfeather DL features and we
will discuss them again in more detail in Section 2.5.

2. Constructorsfor Conceptsand Roles

The basic types of axioms introduced in Section 1 are ratheteld for accurate mod-
elling. To describe more complex situations, DLs allow nemaepts and roles to be
built using a variety of dferent constructors. We distinguish concept and role coostr
tors depending on whether concept or role expressions agtrasted. In the case of
concepts, one can further separate basic Boolean corssuule restrictions and nom-
inalgenumerations. At the end of this section, we revisit the timithl kinds of RBox
axioms that have been omitted in Section 1.3.

2.1. Boolean Concept Constructors

Boolean concept constructors provide basic Boolean dpesathat are closely related to
the familiar operations of intersection, union and compatof sets, or to conjunction,
disjunction and negation of logical expressions.

For example, concept inclusions allow us to state that athers are female and that
all mothers are parents, but what we really mean is that metmeexactlythe female
parents. DLs support such statements by allowing us to fammptex concepts such as
theintersection(also callecconjunctior)

Female 1 Parent, (20)

which denotes the set of individuals that are both femalepardnts. A complex con-
cept can be used in axioms in exactly the same way as an atomiepgt, e.g., in the
equivalenceMother = Female rn Parent.

Union (also calledisjunction is the dual of intersection. For example, the concept

Father LI Mother (12)

describes those individuals that are either fathers or ersttf\gain, it can be used in an
axiom such a®arent = Father LI Mother, which states that a parent is either a father or
a mother (and vice versa).

Sometimes we are interested in individuals thandbbelong to a certain concept,
e.g., in women who are not married. These could be descripduebcomplex concept

Female rm =Married, (12)

where thecomplemengalso callechegatior) ~Married denotes the set of all individuals
that are not married.

Itis sometimes useful to be able to make a statement abouyt ienvidual, e.g., to
say that everybody is either male or female. This can be aplisined by the axiom

T C Male U Female, (13)

where thetop conceptT is a special concept with every individual as an instance; it
can be viewed as an abbreviation @t/ -C for an arbitrary concepf. Note that this
modelling is rather coarse as it presupposes that everyidchdil has a gender, which
may not be reasonable for instances of a concept suClomputer. We will see more
useful applications for later on.

To express that, for the purposes of our modelling, nobodybeaboth a male and
a female at the same time, we can declare the set of male agdttbéfemale individ-
uals to be disjoint. While ontology languages like OWL paw®/ia basic constructor for
disjointness, it is naturally captured in DLs with the axiom

Male M Female C L, (14)

where thebottom concept is the dual ofT, that is the special concept with no individ-
uals as instances; it can be seen as an abbreviatidhforC for an arbitrary concept
C. The above axiom thus says that the intersection of the twoegats is empty.

2.2. Role Restrictions

So far we have seen how to use TBox and RBox axioms to expilessnships between

concepts and roles, respectively. The most interestinyfeaf DLs, however, is their

ability to form statements that link concepts and roles tioge For example, there is an
obvious relationship between the conceptent and the rolgarentOf, namely, a parent

is someone who is a parent of at least one individual. In Dhis, telationship can be

captured by the concept equivalence

Parent = dparentOf. T, (15)

where theexistential restrictiordparentOf. T is a complex concept that describes the set
of individuals that are parents of at least one individuast@ance ofr). Similarly, the
conceptdparentOf.Female describes those individuals that are parents of at least one
female individual, i.e., those that have a daughter.

To denote the set of individuals all of whose children aredtnwe use thaniver-
sal restriction

YparentOf.Female. (16)

It is a common error to forget that (16) also includes thosd ttave no children at
all. More accurately (and less naturally), the axiom candid ®© describe the set of
all individuals that have “no children other than female @hee., no “no children that
are not female.” Following this wording, the concept (16licbindeed be equivalently
expressed asdparentOf.—Female. If this meaning is not intended, one can describe the
individuals who have at least one child and with all theiddtan being female by the
concept fparentOf. T) N (YparentOf.Female).

Existential and universal restrictions are useful in camakibn with the top concept
for expressinglomainandrange restrictionn roles; that is, restrictions on the kinds of
individual that can be in the domain and range of a given mdeaestrict the domain of
sonOf to male individuals we can use the axiom

dsonOf. T C Male, a7
and to restrict its range to parents we can write
T C VsonOf.Parent. (18)

In combination with the asserti@onOf(john, julia), these axioms would then allow us to
deduce that John is male and Julia is a parent. Note how thisasts with the meaning
of constraintdn databases, which would also allow us to state, e.qg., thetas must be
male. However, given only the fact that John is the son ofJslich a constraint would
simply be violated (leading to an error) rather than impiptinat John is male. Mistaking
DL axioms for constraints is a very common source of modgMrrors.

Number restrictionsllow us to restrict the number of individuals that can beheal
via a given role. For example, we can form #iteleast restriction

>2 childOf.Parent (29)

to describe the set of individuals that are children of atiiéao parents, and tre-most
restriction

<2 childOf.Parent (20)

for those that are children of at most two parents. The aerson C >2 childOf.Parent

M <2 childOf.Parent then states that every person is a child of exactly two parent
Finally, local reflexivitycan be used to describe the set of individuals that are tklate

to themselves via a given role. For example, the set of iddais that are talking to

themselves is described by the concept

JtalksTo.Self. (21)

2.3. Nominals

As well as defining concepts in terms of other concepts (aled)dt may also be useful
to define a concept by simply enumerating its instances. ¥ample, we might define
the concepBeatle by enumerating its instancgshn, paul, george, andringo. Enumer-
ations are not supported natively in DLs, but they can be ksitad in DLs usinghom-
inals. A nominal is a concept that has exactly one instance. Fanpla{john} is the
concept whose only instance is (the individual denotedjdy). Combining nominals
with union, the enumeration in our example could be exprkase

Beatle = {john} U {paul} LI {george} LI {ringo}. (22)

Itis interesting to note that, using nominals, a conceprisg Mother(julia) can be
turned into a conceptinclusidjulia} C Mother and a role assertigrarentOf(julia, john)
into a concept inclusiofjulia} T JparentOf.{john}. This illustrates that the distinction
between ABox and TBox does not have a deeper logical meaning.

2.4. Role Constructors

In contrast to the variety of concept constructors, DLs ftewnly few constructor for
forming complexroles. In practicawverse rolesre the most important such constructor.
Intuitively, the relationship between the rolesrentOf andchildOf is that, for example,
if Julia is a parent of John, then John is a child of Julia ame viersa. More formally,
parenfOf is the inverse othildOf, which in DLs can be expressed by the equivalence

parentOf = childOf~, (23)

where the complex rolehildOf™ denotes the inverse ohildOf.

In analogy to the top concept, DLs also provide thmversal role denoted byJ,
which always relates all pairs of individuals. It typicatiiays a minor role in modelling,
but it establishes symmetry between roles and concepts avtop element. Similarly,
an empty rolethat corresponds to the bottom concept is also availableA. ®ut has
rarely been introduced as a constructor in DLs; however,avedefine any rol® to be
empty using the axiont © -3dR.T (“all things do not relate to anything throudgy).
Interestingly, the universal role cannot be defined by TBagras using the constructors
introduced above, and in particular universal role restns cannot express that a role
is universal.

2.5. More RBox Axioms: Role Characteristics

In Section 1.3 we introduced three forms of RBox axioms: mtdusions, role equiv-
alences and role disjointness. OWL provides a variety oémthnamely role transi-
tivity, symmetry, asymmetry, reflexivity and irreflexivitfhese are sometimes consid-
ered as basic axiom types in DLs as well, using some suggestitation such as
TrangancestorOf) to express that the rolncestorOf is transitive. However, such ax-

2Although there are a few interesting things that could beesged witHJ, such asoncept product§l2],
tool support is rarely ficient for using this feature in practice.

ioms are just syntactic sugar; all role characteristicshmexpressed using the features
of DLs that we have already introduced.

Transitivityis a special form of complex role inclusion. For examplensitivity of
ancestorOf can be captured by the axioamcestorOf o ancestorOf C ancestorOf. A
role issymmetridf it is equivalent to its own inverse, e.gnarriedTo = marriedTo™, and
itis asymmetrigf it is disjoint from its own inverse, as iBisjoint(parentOf, parentOf™).

If desired,global reflexivitycan be expressed by imposing local reflexivity on the top
concept as i C Jknows.Self. A role isirreflexiveif it is never locally reflexive, as in
the case ofr C —dmarriedTo.Self.

3. TheDescription Logic SROIQ

In this section, we summarise the various features that bega introduced informally
above to provide a comprehensive definition of DL syntax.nigaio yields the descrip-
tion logic calledSROZQ, which is one of the most expressive DLs commonly consid-
ered today. It also largely agrees in expressivity with thiolomgy language OWL 2 DL,
though there are still someftiirences as explained in Section 6.

Formally, every DL ontology is based on three finite sets gfiature symbols: a set
N, of individual namesa setN¢c of concept nameand a seNg of role namesUsually
these sets are assumed to be fixed for some application atttbaeéore not mentioned
explicitly. Now the set ofSROZQ role expression® (over this signature) is defined by
the following grammar:

R :=U|NRr|Nr™

whereU is the universal role (Section 2.4). Based on this, the s&RP7Q concept
expressiong is defined as:

C:=Nc |[(CnC)|(CuC)|=C|T|L|]IRC|VYRC|=2nRC|<nNRC|3IR.Self| {N;}

wheren is a non-negative integer. As usual, expressions likel C) represent any ex-
pression of the form@ r1 D) with C,D € C. It is common to omit parentheses if this
cannot lead to confusion with expressions dfefient semantics. For example, parenthe-
ses do not matter foh LU B LI C whereas the expressioAs1 B LI C andJdR.AM B are
ambiguous.

Using the above sets of individual names, roles and condbpxiomsof SROIQ
can be defined to be of the following basic forms:

ABoOX: C(N)) R(N;, N) Ni = N Ni £ N

TBox: ccc cC=C

RBox: RCR R=R RoRLCR Disjoint(R, R)
with the intuitive meanings as explained in Section 1 and 2.

Roughly speaking, &R0 Q ontology (orknowledge bagds simply a set of such
axioms. To ensure the existence of reasoning algorithnisithacorrect and terminating,

8

however, additional syntactic restrictions must be impase ontologies. These restric-
tions refer not to single axioms but to the structure of thelmgy as a whole, hence they
are calledstructural restrictions The two concrete such conditions relevant$®07Q
are based on the notions simplicity and regularity. Notably, both are automatically
satisfied for ontologies that do not contain complex roléugsion axioms.

Arole Rin an ontology0 is callednon-simpléf some complex role inclusion axiom
(i.e., one that uses role compositionin O implies instances dr; otherwise it is called
simple To be more precise, we first define therolesof a roleR as follows:

e Ris a subrole of itself,
e if R isasubrole oRandO containsanaxiom C R, T =R orR =T, thenT
is a subrole oR.

Now the roleR is non-simple if the ontology contains an axi@dm» T C R whereR’
is a subrole oR. All other roles are called simpfeNow for a SROIQ ontology it is
required that the following axioms and concepts contairpgmoles only:

Restricted axioms: Disjoint(R, R)

Restricted concept expressions: dR.Self >nR.C <nR.C.

The other structural restriction that is relevant8&R07Q is calledregularityand is
concerned with RBox axioms only. Roughly speaking, theiatiin ensures that cyclic
dependencies between complex role inclusion axioms oadwriw a limited form. For
details, please see the pointers given in Section 7. Fonthediuctory treatment in this
paper, it stifices to note that regularity, just like simplicity, is a prayef the ontology
as a whole that cannot be checked for each axiom individuallymportant practical
consequence is that the union of two regular ontologies nodgmger be regular. This
must be taken into account when merging ontologies in practi

4, Description Logic Semantics

The formal meaning of DL axioms is given by their semantingarticular, the seman-
tics specifies what the logical consequences of an ontologyTde formal semantics
is therefore the main guideline for every tool that complaggcal consequences of DL
ontologies, and a basic understanding of its working isl ¥itanake reasonable mod-
elling choices and to comprehend the results given by soéagplications. Luckily, the
semantics of description logics is noffitiult to understand provided that some common
misconceptions are avoided.

Intuitively speaking, an ontology describes a particuiaragion in a given domain
of discourse. For example, the axioms in Sections 1 and Zibest particular situation
in the “families and relationships” domain. However, ooties usually cannot fully
specify the situation that they describe. On the one hamdetis no formal relationship
between the symbols we use and the objects that they reprréisenndividual name
julia, for example, is just a syntactic identifier with no intringneaning. Indeed, the

SWhether the universal rold is simple or not is a matter of preference that does fietathe computational
properties of the logic [13]. However, the universal rol©WL 2 is considered non-simple.

intended meaning of the identifiers in our ontologies hasnfloénce on their formal
semantics: what we know about them stems only from the ogittdbaxioms. On the
other hand, the axioms in an ontology typically do not prevddmplete information. For
example, (3) and (4) in Section 1.1 state that some indiVédai@e equal and that others
are unequal, but in many other cases this information migheft unspecified.

Description logics have been designed to deal with suchnipdete information.
Rather than making default assumptions in order to fullycgp®ne particular interpre-
tation for each ontology, the DL semantics generally comrsi@ll the possible situations
(i.e., states of the world) where the axioms of an ontologylddold (we also say:
where the axioms argatisfied. This characteristic is sometimes called ®pen World
Assumptiorsince it keeps unspecified information ogfeA.logical consequence of an
ontology is an axiom that holds in all interpretations ttetsfy the ontology, i.e., some-
thing that is true in all conceivable states of the world #igitee with what is said in the
ontology. The more axioms an ontology contains, the moreipare the constraints
that it imposes on possible interpretations, and the femterpretations exist that sat-
isfy all of the axioms. Conversely, if fewer interpretatiogatisfy an ontology, then more
axioms hold in all of them, and more logical consequencdsviofrom the ontology.
The previous two sentences imply that the semantics of igitiser logics ismonotonic
additional axioms always lead to additional consequemges)ore informally, the more
knowledge we feed into a DL system the more results it returns

An extreme case is when an ontology is not satisfied in anypreation. The ontol-
ogy is then calledinsatisfiableor inconsistentin this caseeveryaxiom holds vacuously
in all of the (zero) interpretations that satisfy the onggldSuch an ontology is clearly of
no utility, and avoiding inconsistency (and checking fanithe first place) is therefore
an important task during modelling.

We have outlined above the most important ideas of DL semgritVhat remains
to be done is to define what we really mean by an “interpratatimd which conditions
must hold for particular axioms to be satisfied by an inteigdien. For this, we closely
follow the intuitive ideas established above: an intergtien 7 consists of a set’ called
the domainof 7 and an interpretation functioh that maps each atomic concepto a
setA? c A’, each atomic rol® to a binary relatiorR? ¢ A7 x A7, and each individual
nameato an elemena’ € A’. The interpretation of complex concepts and roles follows
from the interpretation of the basic entities. Table 1 shbhaw to obtain the semantics
of each compound expression from the semantics of its [BytsR’ -successor of” we
mean any individuay such thakx,y) € R’. The definition should confirm the intuitive
explanations given for each case in Section 2. For exanfpesémantics dfemale 11
Parent is indeed the intersection of the semanticEefale andParent.

Since an interpretatiod fixes the meaning of all entities, we can unambiguously
say for each axiom whether it holds ihor not. An axiomholdsin I (we also say/
satisfiesyr and writeZ [«) if the corresponding condition in Table 2 is met. Again she
definitions fully agree with the intuitive explanations givin Section 1. If all axioms
in an ontologyO hold in I (i.e., if I satisfiesO, written 7 E O), then1 is amodel
of 0. Thus a model is an abstraction of a state of the world thadfieest all axioms in
the ontology. An ontology igonsistentf it has at least one model. An axiomis a

4A Closed World Assumptiottloses” the interpretation by assuming that every factegtlicitly stated
to be true is actually false. Both terms are not formally et and rather outline the general flavour of a
semantics than any particular definition.

10

Table 1. Syntax and semantics ROZQ constructors

Syntax Semantics

Individuals:
individual name a al

Roles:
atomic role R R!
inverse role R (X Y) | ¢y, x)y € RT}
universal role U Al x AT

Concepts:
atomic concept A AL
intersection cnbD cf npf
union CubD cfubf
complement -C Af\ct
top concept T AL
bottom concept 1 0
existential restriction 3JRC {x | someR!-successor ok is in C'}
universal restriction YRC {x | all R -successors of are inC’}
at-least restriction >nRC {x | at leastn R!-successors of are inCZ}
at-most restriction <nRC {x | at mosn R -successors of are inC’}
local reflexivity JR Self (x| (X, x) € R}
nominal {a} {al)

wherea, b € N; are individual namesA € N¢ is a concept nam&;, D € C are conceptsR € R is a role

Table 2. Syntax and semantics SfROZQ axioms

Syntax Semantics
ABox:
concept assertion C(a) al ec’
role assertion R(a, b) @ ,blyeRl
individual equality axb al =p!
individual inequality azb al #bl
TBox:
concept inclusion ccD e e
concept equivalence CcC=D cl =pf
RBox:
role inclusion RCS Rf c s’
role equivalence R=S Rl = st
complex role inclusion RioR;ES RIoRIcS’
role disjointness Disjoint(R,.S) RINSf=0

consequencef an ontologyoO (or O entailsa written O k «) if @ holds in every model
of O. In particular, an inconsistent ontology entails everyoaxi

A noteworthy consequence of this semantics is the meaniimglafidual names in
DL ontologies. We already remarked that DLs do not usuallkenthe Unique Name
Assumption, and indeed our formal definition allows two undiial names to be inter-
preted as the same individual (element of the domain). Blyssiven more important
is the fact that the domain of an interpretation is alloweddatain many individuals

11

that are not denoted by any individual name. A common coafusi modelling arises
from the implicit assumption that interpretations mustyordntain individuals that are
denoted by individual names (such individuals are alseedalhmed individuals For
example, one could wrongly assume the ontology consisfitiggotaxioms

parentOf(julia, john) manyChildren(julia) manyChildren C >3 parentOf. T

to be inconsistent since it requires Julia to have at leasii@en when only one (John) is
given. However, there are many conceivable models wheieedaogs have three children,
even though only one of them is explicitly named. A significanmber of modelling
errors can be traced back to similar misconceptions thaaswg to prevent if the general
open world assumption of DLs is kept in mind.

Another point to note is that the above specification of thea#ics does not pro-
vide any hint as to how to compute the relevant entailmenfgactical software tools.
There are infinitely many possible interpretations, eactwloith may have an infinite
domain (in fact there are some ontologies that are satisfibdhy interpretations with
infinite domains). Therefore it is impossible to test aleimiretations to see if they model
a given ontology, and impossible to test all models of an logtpto see if they entail
a given axiom. Rather, one has to devise concrete deduatmegures and prove their
correctness with respect to the above specification. Tleeglaty of certain expressive
features can make reasoning algorithms more complicatthasome cases it can even
be shown that no correct and terminating algorithm existsldi.e., that reasoning is
undecidable). For our purposes itisces to know that entailment of axioms is decidable
for SROIQ (with the structural restrictions explained in Section 8 that a number of
free and commercial tools are available. Such tools are&jlgioptimised for more spe-
cific reasoning problems, such as consistency checkingrtalment of concept sub-
sumptions (subsumption checking) or of concept asserfiostance checking). Many
of these standard inferencing problems can be expressedhis bf each other, so they
can be handled by very similar reasoning algorithms.

5. Important Fragments of SROIQ

Many different description logics have been introduced in the litwea Typically, they
can be characterised by the types of constructors and axfahthey allow, which are
often a subset of the constructorsSROZQ. For example, the description logigLC
is the fragment o8RO Q that allows no RBox axioms and onty, LI, —, 3 andV as its
concept constructors. It is often considered the most HalsicThe extension ofALC
with transitive roles is traditionally denoted by the let Some other letters used in
DL names hint at a particular constructor, such as invellgs #9 nominalsO, qualified
number restrictiong, and role hierarchies (role inclusion axioms without cosifion)
H. So, for example, the DL named LCHIQ extendsALC with role hierarchies,
inverse roles and qualified number restrictions. The le®t@nost commonly refers to
the presence of role inclusions, local reflexiv@glf, and the universal rolg, as well as
the additional role characteristics of transitivity, syetny, asymmetry, role disjointness,
reflexivity, and irreflexivity. This naming scheme explathe nameSROI Q.

In recent years, fragments of DLs have been specificallyldpee in order to ob-
tain favourable computational properties. For this puepc®LC is already too large,

12

since it only admits reasoning algorithms that run in waade exponential time. More
light-weight DLs can be obtained by further restricting eegsivity, while at the same
time a number of additiona$ROZQ features can be added without loosing the good
computational properties. The three main approaches tairobg light-weight DLs are
&L, DLP andDL-Lite, which also correspond to language fragments OWL EL, OWL RL
and OWL QL of the Web Ontology Language.

The &L family of description logics is characterised by allowinglimited use of
existential quantifiers and concept intersection. Thelmaiglescription logi& L allows
only those features and but no unions, complements or universal quantifiers, and no
RBox axioms. Further extensions of this language are knawd/& andEL**. The
largest such extension allows the constructars, L, 3, Self, nominals and the univer-
sal role, and it supports all types of axioms other than rgtarsetry, asymmetry and
irreflexivity. Interestingly, all standard reasoning ta$@r this DL can still be solved in
worst-case polynomial time. One can even drop the structasiriction of regularity
that is important forSROIQ. EL-type ontologies have been used to model large but
light-weight ontologies that consist mainly of terminoicg data, in particular in the
life sciences. A nhumber of reasoners are specifically oggchifor handlingS£-type
ontologies, the most recent of which is the ELK reasoner i CEL.5

DLP is short forDescription Logic Programand comprises various DLs that are
syntactically restricted in such a way that axioms could alsread as rules in first-order
Horn logic without function symbols. Due to this, DLP-tymglcs can be considered as
kinds of rule languages (hence the name OWL RL) contained s Do accomplish this,
one has to allow dierent syntactic forms for subconcepts and superconceptsicept
inclusion axioms. We do not provide the details here. Whiles ln general may require
us to consider domain elements that are not denoted by thdiVhames, for DLP one
can always restrict attention to models in which all domdements are denoted by
individual names. This is why DLP is often used to augmenaliases (interpreted as
sets of ABox axioms), e.g., in an implementation of OWL RLte Oracle 11g database
management system.

DL-Lite is a family of DLs that is also used in combination viarge data collec-
tions and existing databases, in particular to augmentxtpeessivity of a query lan-
guage that retrieves such data. This approach, known adagytBased Data Access,
considers ontologies as a language for construatiagysor mapping ruleson top of
existing data. The core feature of DL-Lite is that data as@@s be realised with stan-
dard query languages such as SQL that are not aware of therbdngies. Ontological
information is merely used in a query preprocessing stelge OLP, DL-Lite requires
different syntactic restrictions for subconcepts and supeggia. We do not present the
details here.

6. Relationship to OWL

TheWeb Ontology Languad@WL is a knowledge representation language standardised
by the World Wide Web Consortium (W3C). OWL is one of the masportant appli-
cations of description logics today. In this section, wefbyioutline the relationship of
the two languages. A comprehensive treatment is beyondcthygesof this paper; see

Shttpy/elk-reasoner.googlecode.com

13

http://elk-reasoner.googlecode.com/

Section 7 for pointers to further reading. The current warsif the OWL specification is
OWL 2 as standardised in 2009. This supersedes the earliér Dstandard of 2004.

The main building blocks of OWL are indeed very similar to gshof DLs, with
the main diference that concepts are callddssesand roles are callegroperties It is
therefore not surprising that description logics have hathgr influence on the devel-
opment of OWL and the expressive features that it providesoHcally, however, OWL
has also been conceived as an extension to RDF, a Web datdlingpienguage whose
expressivity is comparable to DL ABoxes. The formal sen@if RDF is subtly dier-
ent from that of DLs, even though both lead to the same cormseras in many common
cases. Extending the RDF semantics to the expressive ésatirOWL improves the
compatibility between the two, but it also makes reasonimdpeidable. Therefore, it has
been decided to specify both styles of formal semantics i.Othe Direct Semantics
based on DLs and tHRDF-based Semantics

In this section, we are therefore mainly interested in the®iSemantics of OWL.
This semantics is only defined for OWL ontologies that abigeértain syntactic re-
strictions (essentially the restriction that the OWL ax®oan be read aSROIQ ax-
ioms for which the structural restrictions of Section 3 aatisfied). This syntactic frag-
ment of OWL is calledOWL DL® Under the Direct Semantics, large parts of OWL DL
can indeed be considered as a syntactic variar$®O7Q. For example, the axiom
Mother = Female 1 Parent would be written as follows in OWL:

EquivalentClasses(Mother ObjectIntersectionOf(Female Parent))

where the symbolsiother, Female andParent would be identifier strings that conform
to the OWL specificatio. The above example illustrates the close relationship betwe
the syntax ofSROZQ and that of OWL. In many cases, it is indeed enough to tramslat
an operator symbol a$R0OZQ into the corresponding operator name in OWL, which is
then written in prefix notation like a function. This is alsbythe above form of syntax
is calledFunctional-Style SyntaxThe OWL standard provides a number of syntactic
forms that can be used to express OWL ontologies. The mostipemt among these
is the RDFXML serialisation since it is the only format that all confising OWL tools
need to understand. On the other hand, it is moffecdit for humans to read and we do
not present it here.

It is interesting to note that there are still a fevifdiences between OWL DL under
the Direct Semantics an®ROZ Q. On a syntactic level, OWL provides a lot more oper-
ators that, though logically redundant, can be convenieshartcuts for compound DL
axioms. For example, OWL has special constructs for spagf§jomain and range of
a property, even though these could equally well be expdegsén Section 2.2. These
kinds of features also include the empty (bottom) propevhich can easily be defined
but is not included as a language feature in DLs.

However, OWL also includes some expressive features thatidveot include in
our treatment oSROZQ above. Most notably, this includes support for datatypes an
datatype literals. These behave like classes and indivithmes but come with a fixed,

61n contrast, the OWL language without any syntactic coitsisas calledOWL Full. It comprises ontologies
that can only be interpreted under the RDF-based Semantics.

“Entity names in OWL are generally based on Uniform Resouteatlfiers (URIs). The details are not
relevant here.

14

pre-defined interpretation. For example, the datatype émi@an values has exactly two
elements — true and false — in any interpretation. This caa bé introduced in DLs
by so-calledconcrete domaind.e., pre-defined interpretation domains. Both DLs and
OWL in this case strictly distinguish rolgsoperties that relate to “abstract” individuals
from those that relate to values from some datatype. In OW& cbnstructs that relate to
datatypes include “Data” in their name while constructd tieéate to abstract individu-
als include “Object.” For example, OWL distinguish@sjectIntersectionOf (used
above) fronDataIntersectionOf (the intersection of datatypes).

The only other logical feature that is missing in DLs are atledd Keys These are
special forms of rules that can be used for data integraonghly speaking, a key spec-
ifies that two named individuals are entailed to be equakifthgree on certain property
values and class memberships, similar to key constrairdati@bases. For example, the
combination of nationality and registration number mighttkeated as a key for (i.e.,
sufficient to uniquely identify) motor vehicles.

Besides the logical features, OWL also includes a numbett@raspects that are
not considered in description logics at all. For exampléndludes means of naming
an ontology and of importing ontological axioms from oneaogy into another. Fur-
ther extra-logical features include a simple forrmwdta-modellingalledpunning non-
logical axioms tadeclareidentifiers, and the possibility to adthnotationgo arbitrary
axioms and entities similar to comments in a programminguage.

7. Further Reading

This paper can only provide a first introduction to descoiptiogics and OWL. Further
details, especially regarding formal semantics and mindgl€éan be found in the exten-
sive lecture notes for the courBeundations of Description Logicgiven at theReason-
ing Web Summer School 20[1]. For a more detailed coverage of OWL and its relation-
ship to DL, we recommend the textboB&undations of Semantic Web Technologjigs
This introductory text also treats the relationship of Daditst-order logic, DL query
answering and extensions for rule-based modelling (rélatdeys in OWL), which we
have omitted here. An in-depth treatment of descriptioitlognd related research topics
is provided by theDescription Logic Handboqglkwhich also covers interesting aspects
of deduction algorithms and computational complexity #ratbeyond the scope of this
paper [2].

A number of research papers focus on specific topics in DLssdly related to
this paper is the original article aBR0OZQ that also provides the details on regularity
conditions that have been skipped above [8]. There are alsous works that focus on
&EL[1,9], DLP [5] and DL-Lite [3]. Current developments in DLsearch are discussed at
the annual DL Workshop (see httfatl.kr.org for proceedings) and at the major Semantic
Web and Atrtificial Intelligence conferences.

The primary resource on OWL 2 are the online documents ofgkeification [10]
where the OWL Primer provides a first introduction [6]. Thé&eliences of the 2009
OWL 2 standard to its predecessor are explained in [4].

Many related tools such as reasoners and ontology editeravailable. The most
popular free ontology editor is Proté§éhich can be used with a variety of OWL rea-

8httpy/protege.stanford.edu

15

http://www.aifb.kit.edu/web/Incollection3026/en
http://www.semantic-web-book.org/
http://dl.kr.org/
http://protege.stanford.edu/

soners. Pointers to current OWL reasoners are best foumedrPopular systems for
large parts of OWL 2 DL $ROIQ) include FaCH+, HermiT, Pellet and RacerPro.
Some typical light-weight systems are ELK (OWL EL), JCEL (@QVL), Owlgress
(OWL QL), OWLIM (OWL RL and QL), Quonto (OWL QL) and Snorock@WL EL).
Details about these tools and related publications can tredfon the respective home-
pages.

References

[1] Franz Baader, Sebastian Brandt, and Carsten Lutz. fRgishéEL envelope. In Leslie Pack Kaelbling
and Alessandro S$otti, editors,Proc. 19th Int. Joint Conf. on Atrtificial Intelligence (IJCB5), pages
364-369. Professional Book Center, 2005.

[2] Franz Baader, Diego Calvanese, Deborah McGuinnessiel®aNardi, and Peter Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementatiang Applications Cambridge Univer-
sity Press, second edition, 2007.

[3] Diego Calvanese, Guiseppe De Giacomo, Domenico Lemlawyridio Lenzerini, and Riccardo Rosati.
Tractable reasoning andfieient query answering in description logics: The DL-Litenfyy. J. of Auto-
mated Reasonin@9(3):385-429, 2007.

[4] Bernardo Cuenca Grau, lan Horrocks, Boris Motik, Bijearsta, Peter Patel-Schneider, and Ulrike Sat-
tler. OWL 2: The next step for OWLJ. of Web Semantic§:309-322, 2008.

[5] Benjamin N. Grosof, lan Horrocks, Raphael Volz, and &tebecker. Description logic programs: com-
bining logic programs with description logic. Proc. 12th Int. Conf. on World Wide Web (WWW'’03)
pages 48-57. ACM, 2003.

[6] Pascal Hitzler, Markus Krétzsch, Bijan Parsia, PetéPdtel-Schneider, and Sebastian Rudolph, editors.
OWL 2 Web Ontology Language: PrimeW3C Recommendation, 27 October 2009. Available at
httpy/www.w3.orgTR/owl2-primey.

[7] Pascal Hitzler, Markus Krétzsch, and Sebastian Rudokgundations of Semantic Web Technologies
Chapman & HaJlCRC, 2009.

[8] lan Horrocks, Oliver Kutz, and Ulrike Sattler. The evem irresistibleSROIQ. In Patrick Doherty,
John Mylopoulos, and Christopher A. Welty, editoPspc. 10th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR'08dges 57-67. AAAI Press, 2006.

[9] Markus Krotzsch. Hicient rule-based inferencing for OWL EL. In Toby Walsh, ediProc. 22nd Int.
Conf. on Atrtificial Intelligence (IJCAI'11)pages 2668-2673. AAAI Pres¥CAlI, 2011.

[10] W3C OWL Working Group.OWL 2 Web Ontology Language: Document Overvig¥8C Recommen-
dation, 27 October 2009. Available at hffpww.w3.orgTR/owl2-overview.

[11] Sebastian Rudolph. Foundations of description logits Axel Polleres, Claudia d’Amato, Marcelo
Arenas, Siegfried Handschuh, Paula Kroner, Sascha Ossaavek Peter F. Patel-Schneider, editors,
Reasoning Web. Semantic Technologies for the Web of Data ltétnational Summer School 2011
volume 6848 oLNCS pages 76—-136. Springer, 2011.

[12] Sebastian Rudolph, Markus Krétzsch, and Pascal Hitzdl elephants are bigger than all mice. In
Franz Baader, Carsten Lutz, and Boris Motik, editétsc. 21st Int. Workshop on Description Logics
(DL’'08), volume 353 ofCEUR Workshop ProceedingSEUR-WS.org, 2008.

[13] Sebastian Rudolph, Markus Krétzsch, and Pascal Hit@laeap Boolean role constructors for descrip-
tion logics. In St&en Holldobler, Carsten Lutz, and Heinrich Wansing, edjtérec. 11th European
Conf. on Logics in Artificial Intelligence (JELIA'0O8yolume 5293 oLNAI, pages 362-374. Springer,
2008.

9A list of reasoners can be found, e.g., at Htgemanticweb.oygiki/Category:Reasoner.

16

http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-overview/
http://semanticweb.org/wiki/Category:Reasoner

