
A REST API for the groupware
Kolab with support for different

Media Types

Bachelor Thesis in Computer Science

by

Thomas Koch
(student number: 7250371)

submitted to
the Faculty of Mathematics and Computer Science

of the FernUniversität in Hagen

examiner: Prof. Dr. Bernd Krämer
Chair of Data Processing Technology

writing period: December 15th, 2011 – April 5th, 2012

Ich erkläre hiermit, die folgende Bachelor Arbeit selbständig verfasst zu haben. An-
dere als die angegebenen Quellen und Hilfsmittel habe ich nicht benutzt. Wörtliche und
sinngemäße Zitate sind kenntlich gemacht.

Kreuzlingen, den 5.4.2012

Thomas Koch

Zusammenfassung

Es wird angenommen, dass die verfügbaren groupware APIs CalDAV und CardDAV
unnötig komplex und fehleranfällig seien. Als Alternative wurde eine REST basierte
API entworfen und implementiert mit dem Augenmerk auf Einfachheit aber weiterhin
vielfältigen Anwendungsmöglichkeiten.

Das Vorgeschlagene Konzept basiert auf dem Atom Publishing Protokoll, OpenSearch
und HTTP. Die Implementierung gestalltete sich einfacher als erwartet trotz der Un-
terstützungsmöglichkeit für beliebige Medientypen. Schwierigkeiten dagegen bereitete der
Mangel an Bibliotheken zur Behandlung der einzelnen Medientypen.

Es besteht die Hoffnung, dass die Ergebnisse eine weitere Betrachtung von REST
basierten APIs, besonders dem Atom Publishing Protokoll, motivieren. Solche APIs soll-
ten einfacher zu implementieren und weniger fehleranfällig sein.

Abstract

Current approaches to groupware APIs, especially CalDAV and CardDAV, are argued
to be unnecessary complex and error prone. As an alternative, a RESTful API for a
groupware system has been designed and implemented with the focus on simplicity of the
design while still covering a wide range of use cases.

The proposed design is based on the Atom Publishing Protocol, OpenSearch and HTTP.
The corresponding implementation, supporting arbitrary media types, was found to be
easier then expected. Difficulties were discovered in the insufficient availability of libraries
to handle media types.

It is hoped that the findings motivate further considerations of RESTful API designs,
especially based on the Atom Publishing Protocol. It is expected that such APIs are easier
to implement and less error prone.

iv

Aufgabenstellung

Entwicklung einer REST-konformen Schnittstelle für die Opensource-Groupware Kolab
mit Unterstützung verschiedener Medientypen

Für die Opensource-Groupware Kolab1 gibt es bisher ein PHP-basiertes Web-Frontend.
Als Alternative dazu soll eine REST-konforme Schnittstelle2 für die Kontaktfunktionalität
entwickelt werden. Um die Anbindung an verschiedene Clienten zu unterstützen sollen die
folgenden Medientypen unterstützt werden:

• vCard3: Für die Darstellung von Kontaktdaten eignet sich vCard, auch hier muss
untersucht werden inwiefern die Daten aus Kolab abgebildet werden können.

• Contact Schema von portablecontacts.net4: Dieses JSON-Format, das auf vCard
basiert, findet inzwischen auch in Open Social5 Verwendung.

• XHTML: XHTML eignet sich primär für menschliche Clients und kann beliebige
Daten enthalten. Hierbei soll auch untersucht werden, inwiefern die Daten mit
Hilfe von Microdata angereichert werden können, so dass dieses Format auch für
maschinelle Clienten nutzbar wird.

Bei der Implementierung soll untersucht werden, welche Komponenten des Entwurfs für
die Unterstützung verschiedener Medientypen gemeinsam genutzt bzw. wiederverwendet
werden können. Außerdem soll die Hypermediaunterstützung der verschiedenen Formate
untersucht werden: Wie viel muss ein Client vorher wissen und wie viel kann er durch
Hyperlinks entdecken?

1http://kolab.org
2http://www.ics.uci.edu/˜fielding/pubs/dissertation/top.htm
3http://datatracker.ietf.org/doc/draft-ietf-vcarddav-vcardrev/?include_text=1
4http://portablecontacts.net/draft-spec.html
5http://docs.opensocial.org/display/OS/Home

v

http://kolab.org
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://datatracker.ietf.org/doc/draft-ietf-vcarddav-vcardrev/?include_text=1
http://portablecontacts.net/draft-spec.html
http://docs.opensocial.org/display/OS/Home

CONTENTS

Contents

Contents vi

1 Introduction 1

2 Background and Related Work 2

2.1 REST architectural style . 2

2.2 Kolab . 3

2.3 IMAP as a collection synchronization protocol 3

2.4 vCard, xCard, iCal, xCal . 4

2.5 PortableContacts . 5

2.6 WebDAV, CardDAV, CalDAV . 5

2.7 OpenSocial . 6

2.8 Others . 9

3 Requirements and Analysis 10

3.1 Scope and General Requirements . 10

3.2 Replace Kolab IMAP, CardDAV and OpenSocial 10

3.3 Client Classes and Characteristics . 11

3.4 Data Characteristics . 12

3.5 Operation Environment . 13

3.6 Caching instead of Performance optimization 13

3.7 Excluded WebDAV requirements . 13

4 REST Interactions Design 15

4.1 Discovery of collections . 15

4.2 Personalized Service Documents . 16

4.3 CalAtom and CardAtom . 17

4.4 Synchronizing collections . 17

4.5 Efficient Synchronization with HTTP Delta encoding 19

4.6 Media Entries and the content tag . 21

4.7 Modifying Resources and Offline editing . 21

4.8 Special Reports, Queries, Search . 21

5 Other Design Considerations 24

5.1 Media Type conversion and non-isomorphism 24

5.2 Microformats, Microdata, RDFa . 25

5.3 HTML Forms . 27

5.4 VCard’s (social) network properties . 28

vi

CONTENTS

6 Implementation 30
6.1 Control Flow Overview . 30
6.2 Resource handling . 31
6.3 CollectionStorage . 34
6.4 Dependency injection . 36
6.5 Routing and URI construction . 37
6.6 HTML . 39
6.7 Producing Semantically annotated HTML 39

7 Results and Discussion 42
7.1 Implemented Requirements . 42
7.2 Hypermedia support and prior knowledge of clients 42
7.3 Media type libraries . 43
7.4 Reusable Components . 44
7.5 Future work . 44

8 Conclusions 51

References 52

vii

1 Introduction

Personal information in the following is meant to comprise addresses, calendars, to-do
items and short notes. Most people possess collections of such data and since computers
have become ubiquitous for some time now it is a normal desire to access this information
on different devices and keep it synchronized.

The author’s experience suggests however that this apparently simple task does not yet
have an acceptable solution. Acceptable here means a free software solution, based on
free standards, easy to install and maintain by an experienced computer user on its own
hardware. This issue gets more pressing since many users deliver their own and others’
personal data to the commercial interests of huge companies in return for a convenient
user experience.

New efforts in the area of free solutions are the recent standardization of the CalDAV
and CardDAV groupware protocols and new versions of the related media types vCard
and iCalendar. Independently of this, OpenSocial specifies an alternative personal data
protocol to the offerings of the current monopolist.

Unfortunately the listed protocols do not adhere to the constraints of a RESTful archi-
tecture and are considered in this work to be more complex then necessary. This work
therefore investigates whether a RESTful approach for a groupware API might contribute
a simpler and even unified alternative that could serve the personal data use cases of all
above protocols.

The desired versatility requires such an API to support multiple, different media types,
exemplified by alternative representations of contacts. This work presents a corresponding
design and implementation. It is especially studied, how such an API can use hypermedia
to minimize the necessary prior knowledge of an API client.

Section 2 starts with a very short background about the architectural style called “Rep-
resentational state transfer” (REST) pointing out those properties that make this style
especially interesting for a groupware system. It then introduces the groupware system
Kolab that served as a model in this work for the requirements of this type of applications.
The rest of the section presents related protocols and data types to handle groupware data.

The requirements and analysis section 3 derives the requirements of this work’s API
design from the existing API of Kolab and the popular protocols CalDAV and CardDAV.
The features of the OpenSocial person API are considered as optional additions.

The design part is split in the core interactions of collection synchronization, editing
and querying (section 4) and features that build on top of those (section 5): support
for alternative media types, HTML with semantic annotations and features providing
alternatives to OpenSocial.

The Java implementation described in section 6 is based on the rest framework Jersey
and uses dependency injection provided by Guice. A supposedly new method to handle re-
sources is introduced under the name “resource facades”. The last subsection proposes an
approach to automate the augmentation of HTML with semantic annotations in template
engines.

1

2 Background and Related Work

2 Background and Related Work

This section introduces the existing standards and technologies that were the starting point
for this work. Some of these are meant to be augmented and used in the following sections,
i.e., REST, Kolab, vCard, iCalendar and PortableContacts. For the others, CardDAV,
CalDAV and the IMAP use in Kolab, it is argued why it seems worthwhile to explore an
alternative approach.

2.1 REST architectural style

The API to be designed in this work must respond to the constraints of a REST architec-
ture, especially its four interface constraints[Fie00, sec. 5.1.5]:

• Every resource is referenceable by a unique URI.

• Resources are manipulated by the submission of resource representations.

• All exchanged messages are self-descriptive, which is achieved by using a set of media
types understood by server and client.

• The client only knows the entrance URI of an API beforehand. All other permitted
URIs are discovered in hypermedia documents received from the server. This prin-
ciple is also called “Hypermedia as the Engine of Application State” (HATEOAS).

These constraints are further discussed in subsubsection 2.7.1 when discussing how the
OpenSocial API violates them.

The requirement to obey the constraints of REST should cause the system to have some
characteristics that may be especially advantageous for the use case of a groupware API.
Those characteristics are, according to [Fie00] (cited sections in parentheses):

• Cacheability (sec. 5.1.4) can keep the data available also in offline mode, which
improves performance and scalability.

• Simplicity (sec. 2.3.3) helps to integrate the groupware with other applications, e.g.,
publishing birthdays of employees in an intranet portal.

• Modifiability (sec. 2.3.4) allows to adapt the groupware to changes in the organiza-
tion.

• Reliability (sec. 2.3.7) can be of great importance, if the ability to work depends on
the correct functioning of the groupware system.

• Anarchic scalability (sec. 4.1.4.1) allows a groupware to function with other compo-
nents that are not under the control of the groupware administrator.

2

2.2 Kolab

2.2 Kolab

This work presents an API usable for the groupware system Kolab. “Kolab Groupware” is
the name for a system comprising several independent free (as in speech) software products,
a relatively small amount of Kolab specific “glue code” and a special way of configuring
the involved components. On the server side, Kolab’s main components are the directory
server OpenLDAP, the Mail Transfer Agent Postfix and the IMAP server Cyrus6. Kolab
works with specialized client software (see subsection 2.3) which is officially available as
free extensions to KDE Kontact, Gnome Evolution and the PHP web clients Horde and
Roundcube.

The development of Kolab started 2002, when the Federal Office for Information Security
(Bundesamt für Sicherheit in der Informationstechnik) commissioned the development of
a free alternative to the Microsoft Exchange server. Kolab has been developed by a joint
venture of three companies [Sto04]. Today Kolab is still being developed, supported and
distributed collaboratively by multiple independent companies.

A REST API for Kolab aims to make it easier for clients to connect to the Kolab server.
The REST API should also be implementable by other server solutions and maybe evolve
into a standardized groupware API.

A couple of related terms and concepts exist that all more or less overlap with the
functionality provided by Kolab: groupware, personal information management/manager
(PIM), group information management (GIM), computer-supported cooperative/collabo-
rative work, knowledge management, (enterprise) content management. Especially scien-
tific literature uses the term groupware for other kinds of systems than Kolab[Sto04, sec.
2.1]. For the rest of this work however, a groupware is understood as a software managing
address books, calendars, to-do items, journals and probably more data for a group of
collaborating users.

2.3 IMAP as a collection synchronization protocol

The Kolab groupware server is special in that it uses the Internet Message Access Protocol
(IMAP) as a synchronization protocol for all its data and thus the IMAP server as a
database. Every resource managed by Kolab is attached as an XML document to a
dummy mail message in one of several specially annotated7 IMAP folders. The current
Kolab version 2 still uses its own XML format. Kolab version 3 will use XCard and XCal
where applicable8.

Kolab clients connect to the (Cyrus) IMAP server, filter all folders of a user to find those
managed by Kolab, and fetch all attachments of mails in those folders. Write operations
also use the IMAP protocol.

There are a few appealing advantages to this approach:

6all components with links: http://kolab.org/content/upstream-communities (2012-02-01)
7with the IMAP METADATA Extension (RFC 5464)
8http://blogs.fsfe.org/greve/?p=470 (2012-03-28)

3

http://kolab.org/content/upstream-communities
http://blogs.fsfe.org/greve/?p=470

2 Background and Related Work

• The IMAP infrastructure used for mail can be reused (authentication, backup, quo-
tas, shareable folders).

• Data is stored as file attachment. Thus the probably complicated mapping of group-
ware data items to the needs of a (relational) database is avoided.

• IMAP already supports offline work and later synchronization.

The simplicity of just dropping files in a store used by several concurrent clients however
also has its drawbacks, e.g: there is no moderating logic on the server site that could verify
the correctness of stored data and there are no query or report capabilities.

IMAP in general also comes with its own challenges:

• “The” IMAP standard does not exist. The 108 pages of “core” IMAP specification
[Cri03] have been augmented with around two dozens of other specifications9, of
which every IMAP server and client implements another subset. The METADATA
extension needed for Kolab for example is not (yet) included in the also very popular
IMAP server Dovecot.

• IMAP imposes a folder structure and does not permit alternative structures like
tags, as used by Google’s GMail service.

• Sam Varshavchik, author of the Courier Mail Transfer Agent, argues that IMAP
standard documents are “contradictory” and that implementations define their own
understanding of what IMAP is10.

2.4 vCard, xCard, iCal, xCal

vCard is an IETF standardized media type to “capture and exchange [. . .] information
normally stored within an address book or directory application” [Per11a], e.g., about
individuals, groups, organizations or locations (see the vCard KIND property). Closely
connected by the same format, same standards body (IETF) and usage is iCalendar (short
iCal), for “representing and exchanging calendaring and scheduling information such as
events, to-dos, journal entries, and free/busy information” [Des09]. Both formats together
cover most information usually managed by a groupware system are the base of Kolab’s
internal storage, the underlying format of CardDav and CalDAV and thus of most free
groupware systems (subsection 2.6).

The vCard and iCalendar media types seem a bit archaic, since they are not based on
XML or JSON but on the older Internet Message Format [Res08] (IMF) first defined in
RFC822 in 1982. Version 3 of vCard was published in 1998 [HSD98] only a few months
after the W3C published Version 1.0 of XML [PSMB98] and eight years before JSON
became an official standard [Cro06].

9http://www.apps.ietf.org/rfc/ipoplist.html (2012-3-5)
10http://www.courier-mta.org/fud (2012-3-5)

4

http://www.apps.ietf.org/rfc/ipoplist.html
http://www.courier-mta.org/fud

2.5 PortableContacts

Thus vCard and iCalendar look a lot like email or HTTP headers. Fortunately, the
xCard [Per11b] and xCal [DDL11] standards are now available as alternative serializations,
so that XML tooling can be used. The standards aim for full compatibility between the
XML and IMF formats so that no information is lost when converting in either direction.

2.5 PortableContacts

PortableContacts11 is a specification initiated in 2008 by Joseph Smarr while working for
the Address Book internet service Plaxo.com [Sma08]. It comprises of a JSON schema
for contacts information derived from vCard version 312 and a protocol for authorized
retrieval of contacts. The schema misses many properties of the current vCard version 4
standard [Per11a] and introduces properties inspired by social networks, e.g., describing
social behavior or preferences.

The schema and protocol has been adopted by OpenSocial (see section 2.7) which is
now its main user. The schema part of PortableContacts is thus the most appropriate
format currently available to represent contacts information in JSON and make it easily
consumable by JavaScript browser applications.

2.6 WebDAV, CardDAV, CalDAV

The most widely implemented groupware protocols (in free software) today seem to be
CalDAV [DDD07] for calendaring and CardDAV [Dab11] for contacts13. Both protocols
extend WebDAV [Dus07] and thus inherit its characteristics.

WebDAV extends HTTP to enable “Distributed Authoring and Versioning” (DAV).
For this purpose it introduces additional HTTP methods (PROPFIND, PROPPATCH,
MKCOL, COPY, MOVE, LOCK, UNLOCK) and interprets the URI path component as
a hierarchic file system.

Two characteristics of WebDAV motivate an investigation of alternative approaches.
The first is the protocol’s complexity that complicates correct implementation. Unfortu-
nately complexity is hard to assess. Therefore only some indications are provided at this
point.

Lisa Dusseault, author of a WebDAV book [Dus04] and the standard itself expressed
her dissatisfaction with CalDAV [Dus08]:

“Were I to propose CalDAV today it would probably be CalAtom.”14

The three standards WebDAV (127p), CalDAV (107p) and CardDAV (48p) add up to
282 pages of highly specific standards. This is nearly twice as much text as necessary

11http://portablecontacts.net (2012-03-23)
12http://wiki.portablecontacts.net/w/page/17776141/schema (2012-03-23)
13only full free server implementations: Apple Calendar Server, Bedeworks, DAViCal, eGroupWare, Own-

cloud, SOGo, Tine2.0
14CalAtom is presented in subsection 4.3

5

http://portablecontacts.net
http://wiki.portablecontacts.net/w/page/17776141/schema

2 Background and Related Work

for the standards this work is based on (149 pages)15. In contrast to WebDAV, feeds and
related technologies are also more widely used so that a web developer might already know
the latter standards.

The large amount of specifications for the WebDAV family is also caused by the many
different areas touched, like locking, versioning or authentication. This work deliberately
only focuses on a minimal set of features and delegates additional details to other, special-
ized specifications. The WebDAV requirements excluded from consideration are discussed
in 3.7.

The second, and for this work more important characteristic of WebDAV is, that it is
not RESTful, as explained by Roy Fielding16:

PROP* methods conflict with REST because they prevent important re-
sources from having URIs and effectively double the number of methods for
no good reason. [. . .] It really doesn’t matter how uniform they are because
they break other aspects of the overall model, leading to further complications
in versioning (WebDAV versioning is hopelessly complicated), access control
(WebDAV ACLs are completely wrong for HTTP), and just about every other
extension to WebDAV that has been proposed.

[. . .]

The problem with MOVE is that it is actually an operation on two inde-
pendent namespaces (the source collection and destination collection). The
user must have permission to remove from the source collection and add to the
destination collection, which can be a bit of a problem if they are in different
authentication realms. COPY has a similar problem, but at least in that case
only one namespace is modified. I don’t think either of them map very well to
HTTP.

Given the comprehensiveness of CalDAV and CardDAV one would expect these pro-
tocols to cover all common use cases. However the calconnect consortium additionally
develops two alternative protocols, CalWS-SOAP and CalWS-REST17.

2.7 OpenSocial

OpenSocial [Ope11] specifies how data of social networks can be accessed by clients, es-
pecially Javascript browser widgets. The broad adoption not only by social networks but
also for collaboration software18 demonstrates a variety of use cases for Browser accessible
groupware data. It has also been proposed to implement an OpenSocial system for the
FernUniversität in Hagen [Hü09].

15Atom (43), AtomPub (53), Feed paging (15), OpenSearch (28), Atom Deleted Entry (10)
16http://tech.groups.yahoo.com/group/rest-discuss/message/5874 (2012-3-5)
17http://calconnect.org/CD1012_Intro_Calendaring_V1.1.shtml (2012-3-5)
18wiki, issue tracker (Confluence, Jira both Atlassian), groupware (Lotus from IBM), Content Management

System (Alfresco, Nuxeo)

6

http://tech.groups.yahoo.com/group/rest-discuss/message/5874
http://calconnect.org/CD1012_Intro_Calendaring_V1.1.shtml

2.7 OpenSocial

Unfortunately the so called OpenSocial REST API is a poster child for a non RESTful
API that does not warrant its name. It is rather service oriented, as the specification
truthfully points out[Ope11, Social API Server, sec 2,Services]:

“OpenSocial defines several services for providing access to a container’s data.”

2.7.1 Fielding’s Critique

This section examines a critique of Fielding of OpenSocial [Fie08]19 which helps to further
clarify the characteristics of a RESTful API that must be obeyed in this work and to
justify the proposal of a competing API to an already widely adopted one.

OpenSocial defines a construct called “REST-URI-Fragment” which is criticized by
Fielding because “identification is not separated from interaction”. This URI fragment is
in fact an encoding of query parameters as elements of the URI path component [Ope11,
Core API Server, sec 2.1.1.2.2, REST-URI-Fragment]:

Each service type defines an associated partial URI format. The base URI for
each service is found in the URI element associated with the service in the
discovery document. Each service type accepts parameters via the URL path.
Definitions are of the form:

{a}/{b}/{c}

An even worse misuse of URIs is present in OpenSocial’s service to retrieve multiple
albums. There the “c” parameter from above is actually a slash separated list of albums
to retrieve. The URI standard however makes clear that the path component of an URI
is intended to indicate some kind of hierarchic order[BLFM05, sec 3.3].

The main part of the OpenSocial API describes how to form URIs to access information
or which methods to use on which URIs for different actions. Fielding writes:

A REST API should spend almost all of its descriptive effort in defining the me-
dia type(s) used for representing resources and driving application state[. . .].
[Failure here implies that out-of-band information is driving interaction instead
of hypertext.] A REST API must not define fixed resource names or hierar-
chies[. . .] [Failure here implies that clients are assuming a resource structure
due to out-of band information[. . .]].

The API consequently does not show the kind of simplicity that comes with embedded
hyperlinks, but forces developers to hard code URI construction in client implementations.
Such hard coded clients in turn hinder further evolution of the API, the modifiability
property or a RESTful API[Fie00, sec 2.3].

Table 1 shows a sample of OpenSocial’s hard coded URIs. None of the listed URIs is
discoverable by a client. The table also outlines a minimal set of functionality that will be
considered in section 3.2 as a requirement for a RESTful API suitable as a replacement.

19Fielding referred to a concrete implementation, the “SocialSite REST API”.

7

2 Background and Related Work

URI fragment Description
/people/{User-Id}/@self profile for User-Id
/people/{User-Id}/{Group-Id} list full profiles of group members

POST to Create relationship, target
specified by <entry><id> in body

/people/@supportedFields list of supported person profile fields
/groups/{User-Id}[/{Group-Id}] all groups of a user or just the specified group
/albums/{User-Id}/@self POST to create album
/albums/{User-Id}/ ←↩
↪→ {Group-Id}[/Album-Id]*

GET one or multiple albums

/mediaItems/{User-Id} ←↩
↪→ /{Group-Id}/{Album-Id}/{MediaItem-Id}

GET one mediaitem

/mediaItems/{User-Id}/@self/←↩
↪→ {Album-Id}

POST to create mediaitem

Table 1: URI fragments for people, groups, albums and mediaitems in OpenSocial

2.7.2 Making OpenSocial more RESTful

Fielding mentions in a comment to the same blog post [Fie08] that the OpenSocial API
“could be made so [RESTful] with some relatively small changes” but does not specify
these changes. However some issues can be easily identified.

First, the data structures defined in OpenSocial do not use URIs to refer to other
resources. Instead they use Object-Ids that must then be inserted in the appropriate URI
templates. Examples are the recipients, senderId, collectionIds of messages
and the ownerId of albums. The person structure does not contain fields referencing
other resources. Thus it does not obviously violate REST like the albums and messages.
However it does so even worse since there are hidden references only defined out-of-band
in the specification. One can retrieve the albums, relations or messages of a user by filling
in the userId in one of the specified URI templates. If the person structure would just
contain references to other resources related to a user, the specification could already be
shortened a lot.

Another missed opportunity for a much more intuitive API is the relation of media
items and albums. This seems to be a poster child example for a collection (album) to
collection-element (media item) relation which could have made use of the hierarchical
character of URI paths. OpenSocial however requires the client developer to use two
different URI templates. (Table 1)

A not so small change to OpenSocial would be to either use already standardized and
registered media types where possible or to register new types where necessary. It seems
that there are some already existing media types that could be a good fit for OpenSocial
but only miss a canonical json representation for easy consumption by javascript appli-

8

2.8 Others

cations. These are vCard for persons,20 ATOM entries [NS05] for messages, activities
and media items and ATOM categories, collections or workspaces [Gh07] for albums and
groups. ATOM and vCard both also provide extension mechanism.

OpenSocial even referenced ATOM for some time as a wrapper format for its own
data structures. This was however done in such a way that it only added complexity
and totally ignored ATOM’s own features [hÓ09]. Consequently the newest specification
version deprecates any reference to the ATOM format.

In Jan Algermissen’s “Classification of HTTP-based APIs”21, the OpenSocial REST
API would actually be “HTTP-based Type I” due to the lack of media types and direct
hyperlinks between related resources. Algermissen writes that this level has the lowest
possible initial cost of all HTTP APIs. Or in other words: The OpenSocial specification
authors might not have had to invest a lot to come up with this API specification but
maintenance and evolution cost may be medium or high.

2.8 Others

The Calendar Access Protocol (CAP) [RBM05] was published in December 2005 about one
year before CalDAV and CalAtom. The standard comprises 131 pages. No evidence of any
successful implementation could be found22. Cyrus Daboo, author of some calendaring
standards, attributes the failure of CAP to its complexity23.

CalAtom and CardAtom build on top of the Atom Publishing Protocol and are therefor
discussed in subsection 4.3.

The idea of using Feeds for collection synchronization has also been adapted by Mi-
crosoft’s FeedSync24. FeedSync’s most important contribution according to [Sne07b] was
the concept of a “tombstone” element to indicate the deletion of entries from a collection.
An RFC to standardize the tombstone concept [Sne12] for Atom feeds is currently in the
late stages of the IETF standardization process.

20OpenSocial persons are based on portable contacts which in turn borrowed field names from vCards.
21http://nordsc.com/ext/classification_of_http_based_apis.html (2011-12-08)
22One free implementation project http://opencap.sourceforge.net (2012-3-5) seems inactive since

2005
23http://lists.calconnect.org/pipermail/caldeveloper-l/2012-January/000135.html

(2012-01-04)
24http://feedsyncsamples.codeplex.com (2012-3-8)

9

http://nordsc.com/ext/classification_of_http_based_apis.html
http://opencap.sourceforge.net
http://lists.calconnect.org/pipermail/caldeveloper-l/2012-January/000135.html
http://feedsyncsamples.codeplex.com

3 Requirements and Analysis

3 Requirements and Analysis

The requirements of the Kolab REST API are derived in this section from the way Kolab
uses IMAP, from the characteristics of the managed data set, and the supposed charac-
teristics of typical clients. In addition it is also considered that the API may even be
usable as a RESTful alternative for CardDAV, CalDAV and parts of OpenSocial. The
last subsection explicitly lists why some features of WebDAV are not considered as useful
requirements for a groupware API.

3.1 Scope and General Requirements

The software system designed in this work should provide an HTTP based interface for
most common interactions with a groupware system like Kolab. It must obey the con-
straints of the REST architectural style [Fie00].

Guidelines of the design are:

• The system should be extensible to support different kind of personal information
resources like contacts, events, to-do items, journal items and free-busy informations.

• “CRUD” operations must be supported: Create, Read, Update, Delete.

• The client must be able to synchronize collections of resources for offline read access
and manipulation.

• The design should be considerably “easier” to implement than CalDAV, CardDAV
or IMAP for both the server and the client.

• The design should reuse existing standards where possible.

• The design should support all client types listed in subsection 3.3.

• The design should support different Media Type representations of resources.

It should also be ensured, that the design can easily be extended to expose all function-
ality via an HTML based interface to a regular browser.

3.2 Replace Kolab IMAP, CardDAV and OpenSocial

Personal evaluation25 suggests, that many groupware clients and servers use CardDAV
exclusively to synchronize contacts collections, allowing concurrent modifications of indi-
vidual contacts via optimistic locking (subsubsection 3.7.6). This is in principle also the
way how Kolab uses IMAP.

Thus the principal requirement is to support discovery and synchronization of groupware
collections (Adressbook, Calendar) and CRUD operations on groupware items (Contacts,
Events).

25from using, contributing to or evaluating eGroupware, Horde, Kolab, Kontact, Thunderbird

10

3.3 Client Classes and Characteristics

A RESTful alternative for OpenSocial is not in the scope of this work. However since
PortableContacts is discussed it makes sense to highlight which features of OpenSocial, as
presented in section 2.7.1, are accidentally also supported. The possibility of an unified,
RESTful API for CardDAV and OpenSocial should provide further motivation for the
presented approach. In detail the following minimal requirements should be provided by
a replacement for the person API of OpenSocial:

• Users and groups should be represented with IANA registered media types that are
more specific than plain XML or JSON.

• CRUD functions for users and groups must be supported.

• The API must represent group membership, preferably with hyperlinks between
groups and members.

• The API must represent relations between users with hyperlinks.

• The API must make media collections of a user discoverable with hyperlinks.

OpenSocial is mainly used by short living Javascript browser widgets. A synchronization
protocol may therefore not be seen as adequate on first sight. However a RESTful protocol
enables the proper use of the Browser cache so that synchronization may not need to start
from scratch on every page load and modern browsers can keep additional meta data or
indexes in HTML5 Webstorage [Hic11c].

Nevertheless, the main interaction considered here as an alternative to OpenSocial is
not collection synchronization but the discovery of information related to one person, the
media belonging to a person and the traversal of the “social graph”, i.e., the relations
between persons.

3.3 Client Classes and Characteristics

Different kinds of clients should be able to use the API. Table 2 lists exemplary clients
whose constraints and characteristics should be respected by the design. The choice of
clients and their characteristics is intentionally conservative to cover a wide range of real
world use cases.

Memory Bandwidth pref. format comment

bad HTML5 none 56 kbit/s JSON internet cafe
good HTML5 5 MB 1 Mbit/s JSON workplace
Mobile Device 512 MB 384 kbit/s any Smart Phone, Tabled
Desktop app. 1 GB 10 Mbit/s any PIM suite
Server app. 4 GB 100 Mbit/s any/HTML intranet application

Table 2: Constraints of different API clients

11

3 Requirements and Analysis

The first line in Table 2 “bad HTML5” represents a one time browser session in an
untrusted internet cafe with a very bad connection, expecting the data in JSON format.
This client does not need to be fully supported, but should be considered.

All other clients are expected to be able to cache data from previous sessions and
have a fairly good internet connection at least for an initial synchronization session. The
second table line “good HTML5” should represent the use cases commonly handled by
OpenSocial enhanced collaboration applications. The last line “Server app.” could be an
intranet crawler or public search engine consuming HTML pages with the ability to parse
semantic annotations.

3.4 Data Characteristics

Lacking sources for more accurate numbers, a couple of conservative estimates are made
for the size and number of resources in the scope of this work. This guesswork is not
perfect but it provides a rationale for later design decisions (section 4) and outlines their
applicability for a concrete use case.

Contacts It is believed that humans have regular social contacts to around 150 people26.
So an address book application capable of managing at least 1500 contacts should cover
a large number of use cases.

The average textual data size associated to a contact is expected to be around 840
bytes27. 100 kb are enough for an image file to identify a face.

So a collection with a data size of 1500contacts ∗ 840 bytes
contact ≈ 1MB should be a usable

address book without profile pictures for many users.

Events A very busy person may have 10 events per day. A two years calendar thus
contains 2 ∗ 365 ∗ 10 = 730 events. The core data of an event is estimated to comprise 356
bytes28. So a useful calendar collection has a data size of 730events ∗ 356 bytes

event ≈ 0.25MB

Conclusions The size of full, useful collections of personal information items has the same
order of magnitude then the size of a digital image taken with today’s smart phones. With
the worst case bandwidth from Table 2 the download of a full, uncompressed collection
lasts around 2∗1MB

56kbit/s ≈ 5min29. Even with a drastic data compression of 90% the transfer
would still last over 30 seconds. With the next better bandwidth of the mobile device
however, the transfer duration, even for the uncompressed case, is already under one
minute (≈ 42sec).

26http://en.wikipedia.org/wiki/Dunbar’s_number (2012-2-29)
27estimated average bytes per common fields: id 100, name 30, 2 * address 100, 2 * mail 50, instant

messenger 50, 2 phone numbers 15, comments 30, 3 * url 100
28field sizes: start 8, end 8, title 40, location 100, free text 200
29The factor 2 accounts for field names and syntax elements. Besides other inaccuracies, latency is not

taken into account.

12

http://en.wikipedia.org/wiki/Dunbar's_number

3.5 Operation Environment

For all but the first client the storage capacity is large enough to hold at least a few
collections.

3.5 Operation Environment

The application is expected to be installed in a Java servlet container like Tomcat or Jetty
and to contact a separate storage component. The primarily targeted storage component
is an IMAP server with a Kolab conform set of groupware folders. However the design
should not restrict the extension to a document database like Apache CouchDB, plain
files, relational or XML databases.

3.6 Caching instead of Performance optimization

The system is meant to inherit the benefits of a RESTful architecture, especially cacheabil-
ity. It should therefor be possible to attach separate caching intermediaries for read
requests. Rather then concentrating on the performance of the implementation of read re-
quests it should be taken care that the architecture supports external and internal caching
and thus avoids to serve the same read request multiple times.

3.7 Excluded WebDAV requirements

This section discusses a couple of features that are not considered as requirements for
this work but are features of WebDAV and thus inherited by CardDAV and CalDAV,
increasing at least the complexity of their specifications. It is however doubtable whether
any CardDAV implementation supports all the following features.

3.7.1 Reports, Filters, Projections

CalDAV and CardDAV define elaborate report, filter and projection capabilities. This
work considers reports or search only when an important use case is not implementable
without it and when existing, well known specifications can be reused.

3.7.2 Access Control

WebDAV defines specific access control semantics and thus imposes those also on CalDAV
and CardDAV. This work does not consider access control but relies on HTTP mechanics
to take care of those, especially recent efforts like OpenID and OAuth.

3.7.3 Copying and Moving

WebDAV introduces HTTP verbs to COPY and MOVE resources. The usefulness of such
functionality must of course be compared to the complexity of the implementation and
the drawback of incompatibility to plain HTTP.

It is possible to enhance a RESTful API with copy and move functionality without
extending HTTP. The only requirement is that additional hyperlinks can be included in

13

3 Requirements and Analysis

the resources. Even for resources that can not include such hyperlinks, those can be
attached through web linking [Not10] . Allamaraju [All10, Ch. 11] proposes “controller
resources” that act on POST requests and are linked from the resources they act on.
Custom link relations are used to indicate the semantic of the controller resource.

This work therefor does not include initial support for copy or move.

3.7.4 Versioning

WebDAV and therefor CalDAV and CardDAV support the versioning of resources as an
extension to the HTTP protocol. Versioning is an important feature for a text authoring
system that may have been the main target for the WebDAV protocol. It does however
seem to be of little use for the resources considered here. Individual contacts or events
are mostly created in one session by one user and not modified in several sessions like text
documents.

3.7.5 Make collections

WebDAV introduces the MKCOL HTTP verb to create collections. CardDAV recommends
that implementations support this to allow users to “organize their data better”. An
alternative would be to make use of ATOM categories for grouping [Gh07]. Instead of
creating a new (empty) collection the user would thus create a contact resource with a
new category. An ATOM service document could then link to a new (virtual, read-only)
collection that only contains resources of this category.

The Atom Publishing Protocol does not define how Atom collection resources could be
created. Practitioners recommend a pattern wherein collections of collections exist and
new collections can be created by posting to the former30.

3.7.6 Locking

As with Versioning, this feature of WebDAV is not considered. Instead of locking a
resource, HTTP supports conditional updates and leaves conflict resolution to the client.

[NL99, sec. 1] provides three rules, formulated as questions, to help decide whether a
protocol should support locking. In the present case, all three rules advise against locking:
The content is mergeable. Conflicting changes in vCard and iCal resources can be easily
presented to the user. An unmergeable resource would be for example an image. The
editing is expected to be localized to isolated points in the document, e.g., changing just one
field in a content or event. And it is required that the content can be edited while the user
is offline.

30http://www.imc.org/atom-protocol/mail-archive/msg11565.html (2012-3-7)

14

http://www.imc.org/atom-protocol/mail-archive/msg11565.html

4 REST Interactions Design

This section starts with the presentation of a design corresponding to the requirements
outlined in the previous section, concentrating on discovery and interaction aspects. The
fundamental building blocks for this design are provided by the Atom Syndication Format
[NS05], Atom Publishing Protocol [Gh07] and OpenSearch [Cli].

The design outlined in this section provides the means to discover, synchronize, query
and edit collections and items. Offline editing is identified as a special case of conflict
resolution for concurrent edits. Other design considerations that might also be left optional
are discussed in the following section 5.

4.1 Discovery of collections

An ideal Rest API is accessed by one main URI and all other resources can be discovered
by following links. A useful media type to discover available collections is the Atom Service
Document[Gh07, sec. 8]. Figure 1 shows an example containing a content management
workspace linking to blog post and picture collections and a groupware workspace with
an address book and a calendar.

A groupware client most likely needs to discern the available collections by the contained
resources so as to consume and present them with the appropriate user interfaces, e.g.,for
contacts or events. A first idea could be to use the media types declared in the “accept” tag
of a collection to identify types of collections. However the specification explicitly states
that this tag “specifies a type of representation that can be POSTed to a Collection”[Gh07,
sec. 8.3.4]. If a collection can only be read, then no accept tag should be present and thus
neither be available for interpretation.

A standard conformant approach is demonstrated by Google’s Data Protocol31 and by
an internal project at IBM32. Both use Atom categories[Gh07, sec. 8.3.6] to mark the type
of Atom entries, as shown in the first two elements of Listing 2. James Snell proposed a
standard URI to identify the semantics of categories32, demonstrated by the last two tags
in Listing 2. However no follow-up to this could be found. The use of categories to attach
arbitrary meaning, e.g, “event type (product or promotion), and its status (new, updated,
or cancelled)” to feeds and entries is also recommended in [Web10, p. 200].

To make categories usable for a common groupware API, the server needs to use a
categorization scheme understood by the client. If different clients don’t agree on one
scheme the server could still support several.33

An alternative media type to Service Documents in JSON format could not be found.
The most promising approach seems to list available collections in a application/vnd.

collection+json representation (subsubsection 7.5.3).

31http://code.google.com/apis/gdata/docs/2.0/elements.html (2012-2-28)
32http://www.imc.org/atom-syntax/mail-archive/msg18208.html (2012-2-28)
33As a last resort a client could of course also fetch the feeds and identify the media types of the included

media entries.

15

http://code.google.com/apis/gdata/docs/2.0/elements.html
http://www.imc.org/atom-syntax/mail-archive/msg18208.html

4 REST Interactions Design

<service xmlns="http://www.w3.org/2007/app"
xmlns:a="http://www.w3.org/2005/Atom"
xml:base="http://my.server.com/thkoch" >

<workspace>
<a:title>Content Management</a:title>
<collection href="blog/main" >
<a:title>My Blog Entries</a:title>
<categories href="cms/cats/forMain.categories" />

</collection>
<collection href="gallery" >
<a:title>Pictures</a:title>
<accept>image/png</accept> <accept>image/jpeg</accept>

</collection>
</workspace>
<workspace>
<a:title>Groupware<a:title>
<collection href="gw/collections/contacts" >
<a:title>personal addresses</a:title>
<accept>application/vcard+xml</accept>
<a:category term="private" />

</collection>
<collection href="gw/collections/calendar" >
<a:title>personal calendar</a:title>
<accept>application/calendar+xml</accept>

</collection>
</workspace>

</service>

Listing 1: An Atom Service Document linking to groupware collections

4.2 Personalized Service Documents

For a groupware that manages confidential information it would make sense to provide
personalized Service Documents for authenticated users that list only collections that the
user is authorized to read.34 Personalized Service Documents for different users should
have different URIs to make them cacheable and to acknowledge that each personalized
Service Document is indeed an individual entity. This however conflicts with the previous
goal of using one unique Service Document URI as entrance to the API. A solution would
be to require the user to authenticate when requesting the unique entrance URI and to
answer with a HTTP code “307 Temporary Redirect” to the user’s personalized Service
Document after successful authentication.35

34For this use case it would be convenient if HTTP supported optional authentication,
but it does not or only poorly. http://computerstuff.jdarx.info/content/
optional-http-authentication (2012-2-28)

35Alternatively, all Service Documents could be served under the entrance URI with different HTTP
Content-Location headers[FGM+99, sec. 14.14]. In that case the personalized Service Document must
however also be available at the indicated location.

16

http://computerstuff.jdarx.info/content/optional-http-authentication
http://computerstuff.jdarx.info/content/optional-http-authentication

4.3 CalAtom and CardAtom

<atom:category
scheme="http://schemas.google.com/g/2005#kind"
term="http://schemas.google.com/g/2005#contact" />

<atom:category
scheme="http://ibm.com/oa/type"
term="task" />

<atom:category label="Contact"
scheme="http://www.w3.org/2005/Atom/Entry-Kind"
term="http://schemas.google.com/g/2005#contact" />

<atom:category label="Task"
scheme="http://www.w3.org/2005/Atom/Entry-Kind"
term="http://ibm.com/oa/type#task" />

Listing 2: ATOM categories as used by Google and IBM to mark entry types and a
proposal to use a standard scheme URI for type terms

4.3 CalAtom and CardAtom

The idea to not only use Service Documents but the complete Atom Publishing Protocol
as the foundation for a groupware API is not novel. Rob Yates described this idea under
the titles “CalAtom” and “CardAtom” already in 200636.

The CalAtom [Yat07] proposal introduces a “features” tag and associated IANA registry
to mark collection types and their features. But the examples of category usage above
(subsection 4.1) and the availability of OpenSearch for time range searches (subsection 4.8)
provide confidence that a new tag is not required. The features tag was proposed in 2007
by [Sne07a] but did not become a standard.

The Atom format is also used by the Google Data Protocol to publish contacts, events
and other data types37. Google’s use of Atom however is a bit special. The resource data
is not included in the content tag of an entry. Instead a new namespace is used to put the
data with additional tags directly inside the entry tag38.

Listing 3 shows a minimal Atom feed example containing entry elements for each contact
resource in an address book.

4.4 Synchronizing collections

If a groupware client can synchronize an entire collection to its local memory, then there
is no need for more sophisticated queries that provide only a subset of the collection. The
client can answer all queries from its local copy of the collection.

36http://robubu.com/?cat=2 (2012-3-2)
37http://code.google.com/apis/gdata (2012-3-2)
38http://web.archive.org/web/20081120001246/http://www.snellspace.com/wp/?p=314

(2012-01-05)

17

http://robubu.com/?cat=2
http://code.google.com/apis/gdata
http://web.archive.org/web/20081120001246/http://www.snellspace.com/wp/?p=314

4 REST Interactions Design

<feed xmlns="http://www.w3.org/2005/Atom"
app:xmlns="http://www.w3.org/2007/app"
xml:base="http://my.server.com/thkoch" >

<link rel="next" href="gw/collections/contacts?offset=20" />
<link rel="search" title="full text contacts search"

href="gw/osd/contacts?t=fulltext"
type="application/opensearchdescription+xml" />

<title>personal addresses</title>
<updated>2007-02-123T17:09:02Z</updated>
<author>Thomas Koch</author>
<id>urn:uuid:personal_addresses_0123456</id>

<entry>
<title>Max Carpenter</title>
<id>urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efa6a</id>
<updated>2007-02-123T17:09:02Z</updated>
<app:edited>2007-02-123T17:09:02Z</app:edited>

<summary type="text">
Max Carpenter <m.carpenter@mycompany.com>
Phone: +01-23-4567

</summary>
<content type="application/vcard+xml"

src="gw/media/contacts/1225c695" />
<link rel="edit-media"

href="gw/media/contacts/1225c695" />
<link rel="edit"

src="gw/collections/contacts/1225c695" />
</entry>

<!-- more entry elements ... -->
</feed>

Listing 3: An Atom feed representing an address book collection

In subsection 3.4 it has been shown that the time necessary to synchronize a full col-
lection is under one minute in most cases. This should be acceptable for an initial syn-
chronization that is only done once on rare occasions when a desktop machine or mobile
device is first used. If subsequent synchronizations only transfer a few resources that have
changed since the last synchronization, then such updates are expected to complete fast
enough to not be a usability concern.

All client types, except that of a Web Browser client that is used only once, can profit
from the above scenario. For such a browser, sections 4.8 and 5.4 propose alternative
interactions.

The Atom Publishing Protocol identifies collections of resources as Atom Feeds. Feeds
can also be used to synchronize collections. The necessary ingredients are the link relation
“next” [Not07], the concept of a “deleted entry” [Sne12] and the prerequisite that the

18

4.5 Efficient Synchronization with HTTP Delta encoding

feed entries must “be ordered by their ’app:edited’ property, with the most recently edited
Entries coming first in the document order”[Gh07, sec. 10].

The API server design has the notion of a logical feed that can be split up in multiple real
Atom feeds linked with the relation “next”. Updated or new entries are always inserted as
first element of the first feed since their “app:edited” property is the most recent. Inserting
a new entry at the top of a feed can lead to entries at the end of that feed being pushed to
the subsequent feed. This push needs to be atomic such that a client loading subsequent
feeds may see an entry twice, at the end of a previous feed and the top of the next feed,
but will never miss an entry in this scenario.

In the case of an initial synchronization, the client loads the initial feed and all sub-
sequent feeds linked with the “next” relation. It also loads all resource representations
referenced by the feed entries with “edit-media” typed links and saves those to its local
storage. An entry can include multiple “edit-media” links pointing to representations with
different media types. In that case it is up to the client to select a preferred variant.

At the end of this process, the client memorizes the “app:edited” value of the first
entry of the first feed. This timestamp can be used by the client to stop subsequent
synchronizations at the first entry with an older timestamp.

It is possible that the collection will have been modified during the synchronization.
Therefor the client should directly conclude with an update synchronization. This means
that the client starts again to load the first feed and applies all updates until it sees an entry
with an “app:edited” value older then the one memorized from the last synchronization.
It is possible that the client must follow several “next” links or even load all feeds in the
extreme case.

If the client followed a “next” link during a synchronization then it must make sure
at the end of the synchronization that the first feed has not changed meanwhile, most
probably with a conditional GET request. After this last request indicates no further
changes, the client knows that its local collection is in the state of the server’s collection
at the time of the last GET request.

It is not expected that people’s addresses or calendars change so often to force the
client into multiple repetitions of the above loop. The client must of course stop, if the
above loop does not result in a synchronized collection after some time and should issue
a warning.

4.5 Efficient Synchronization with HTTP Delta encoding

The synchronization method described in subsection 4.4 can be enhanced to reduce the
bandwidth usage and general resource usage of both client and server. The necessary
extension has been described in [Wym04] and is commonly referred to as RFC3229+Feed
since it adds a feed specific Instance Method (IM) to the “Delta encoding in HTTP” stan-
dard [MKD+02]. Unfortunately nobody has yet invested the effort to drive this method
through a formal standardization process39. It is however reported to be widely im-

39http://bob.wyman.us/main/2006/04/microsoft_to_su.html (2012-3-9)

19

http://bob.wyman.us/main/2006/04/microsoft_to_su.html

4 REST Interactions Design

plemented40, even in the popular Microsoft Internet Explorer41 and the author claims
substantial bandwidth saving opportunities 42.

The idea of delta encoding is that a server can respond to conditional GET requests
with only a small, special patch. The client applies the patch to its cached representation
of the requested resource which results in the new version of the resource. However all
currently IANA registered IMs are byte oriented43 and thus don’t add benefit for the case
of synchronization with feeds.44

In the case of the proposed feed IM, the client sends a conditional GET to request the
synchronization feed but indicates in the “A-IM” header that it understands the feed IM,
as shown in Listing 4.

GET /api/collections/contacts HTTP/1.1
Host: bar.example.net
If-None-Match: "3631-@2147483647"
A-IM: feed, gzip

Listing 4: HTTP GET request using feed delta encoding

The server responds with a valid feed including the normal head elements but can use
the etag from the “If-None-Match” header to include only those entries in the response,
that have changed since the time when the etag was valid. This implies of course that
the server is able to match the given etag to a corresponding list of changes45. The server
response uses HTTP code “226 IM Used” [MKD+02] to mark the response as a special
one that is not the regular, cachaable representation.

It may be advisable to also include a “next” link to the subsequent feed to keep compat-
ibility with the synchronization process from subsection 4.4 and prevent the client from
accidentally considering the returned feed to contain the full collection. The “next” link
however would probably cause the client to unnecessarily follow it, since it has not yet
seen an entry with an old enough “app:edited” value. The server could include additional
entries from its database to satisfy the client’s terminating condition. Or the server could
include an artificial, minimal deleted-entry [Sne12] tag with a non-existent ref value and
a “when” value just older then the etag sent by the client:

<at:deleted-entry
xmlns:at="http://purl.org/atompub/tombstones/1.0"
ref="tag:example.org,2005:NONEXISTENT"
when="2005-11-29T12:11:12Z"/>

40http://www.wyman.us/main/2004/09/implementations.html (2012-1-6)
41http://blogs.msdn.com/b/rssteam/archive/2006/04/08/571509.aspx (2012-3-9)
42http://wyman.us/main/2004/10/massive_bandwid.html (2012-3-9)
43http://www.iana.org/assignments/inst-man-values/inst-man-values.xml (2012-3-9)
44Byte oriented IMs might however be very beneficial to serve updates of xCard/xCal resources if only

one or a few fields changed.
45The given example already suggests that the etag itself could include database IDs or timestamps.

20

http://www.wyman.us/main/2004/09/implementations.html
http://blogs.msdn.com/b/rssteam/archive/2006/04/08/571509.aspx
http://wyman.us/main/2004/10/massive_bandwid.html
http://www.iana.org/assignments/inst-man-values/inst-man-values.xml

4.6 Media Entries and the content tag

If more entries have changed than the server is comfortable to include in one response,
then the server is free to respond with a regular feed and the status code 200.

4.6 Media Entries and the content tag

The Atom Feed format provides the opportunity to include a full representation of a
resource in the content tag of an entry[NS05, sec. 4.1.3]. The Atom Publishing Protocol
however mandates, that a “Media Link Entry MUST have an atom:content element with a
’src’ attribute”[Gh07, sec. 9.6]. The latter requirement in turn triggers two requirements
of the Atom Feed format, namely that the entry should have a summary tag and that the
content tag must be empty[NS05, sec. 4.1.1.1,4.1.3.2].

The developer is therefore not free to choice whether or not to include a full repre-
sentation of a managed resource directly inside the feed. The client is required to issue
additional GET requests for each resource instead of just extracting it from the feed. On
the other hand, the client would anyways need to issue a GET request in advance of a
resource modification to acquire the entity tag of the resource.

4.7 Modifying Resources and Offline editing

Editing, updating and deleting of media entries is specified in the Atom Publishing Pro-
tocol and is useful for this work without modifications.

In addition to the normal online workflow, a client should offer the user the possibility
to create, update and delete resources while being offline and to apply these modifications
during the next synchronization, much like the IMAP protocol used by Kolab. This
requirement is trivial to fulfill as long as no concurrent edits happen on the server site. In
that case the client just PUTs the changes the next time it is connected.

In the case of edit conflicts however, the client needs to perform an automated or user
assisted merge of the conflicting resources. Therefor the client should always preserve a
copy of a resource version as last seen from the server to be able to perform a three-way-
merge.

The problem of offline edits and conflicts is thus similar to the case of a failed conditional
PUT request due to a concurrent edit. [NL99] describes this case and resolutions in detail.

4.8 Special Reports, Queries, Search

In few cases it may not be feasible for a client to synchronize a full collection, e.g., due to
low bandwidth or limited memory. This section explores RESTful ways to let the client
request only a subset (selection) of a collection. More specifically the client should be
informed about possible query facilities without relying on out-of-band information.

A promising approach is to use the de-facto standard OpenSearch [Cli]. According
to its homepage, it is implemented by most major browsers, search engines and many
other sites. OpenSearch is also recommended for the link type “search” in the HTML5
standard[Hic11b, sec. 4.12.4.12]. The default format of an OpenSearch result list is an
Atom (or RSS) feed.

21

4 REST Interactions Design

<service xmlns="http://www.w3.org/2007/app"
xmlns:a="http://www.w3.org/2005/Atom"
xml:base="http://my.server.com/thkoch" >

<workspace>
<a:title>Groupware<a:title>
<collection href="gw/collections/contacts" >
<a:title>personal addresses</a:title>
<accept>application/vcard+xml</accept>
<a:category term="private" />

<OpenSearchDescription xmlns="http://a9.com/-/spec/opensearch/1.1/">
<ShortName>Contacts Search</ShortName>
<Description>search in all text elements of contacts</Description>
<Url type="application/atom+xml"
template="http://my.server.com/thkoch/gw/collections/contacts/? ←↩
↪→ q={searchTerms}&pw={startPage?}"/>

</OpenSearchDescription>

</collection>
</workspace>

</service>

Listing 5: An opensearch description document embedded in an Atom service document

OpenSearch defines a search description document with the (not yet IANA registered)
media type application/opensearchdescription+xml. Figure 5 shows an opensearch XML
document embedded in the collection tag of an Atom Service Document.

OpenSearch provides the necessary information for a client to perform queries against
a search service. Since possible search queries are usually unlimited it is not possible
anymore to provide a set of static links. Instead the server provides an “URI Template”
[GFH+12] that instructs the client how to perform an “URI construction”46.

The basic OpenSearch standard defines a simple full text search. Thus a user could
search contacts by name, address or any other field value. Equally events, to-do items or
notes could be searched by keywords.

The next important use case is to show calendar events in a given interval, e.g., to
present the events for a month, week or day. This can be achieved with the OpenSearch
Time extension that provides the temporal start and end parameters. Rob Yates’ CalAtom
[Yat07] proposal included a similar time range search as the only but mandatory special
report.

Probably useful might be the OpenSocial Geo extension. It could allow to search con-
tacts or events in a given geographic region. Even more search types become possible
with the SRU extension that wraps the “Search/Retrieval via URL” standard with its
“Contextual Query Language” (CQL)47. The latter provides the possibility to sort result
sets which might be interesting to present an address book sorted by names.

46OpenSearch is the older standard and referenced as Level 1 URI Templates in [GFH+12].
47http://www.loc.gov/standards/sru (2012-3-1)

22

http://www.loc.gov/standards/sru

4.8 Special Reports, Queries, Search

Search result Atom feeds can make use of semantically annotated HTML (Microdata,
subsection 5.2) in the summaries of entries. Thus the client can still provide a structured
view of the data, like calendar views or a tabular contacts list without the need to transfer
full representations.

The OpenSearch specification suggests that links to the OpenSearch Description Doc-
ument for an Atom feed might be added inside a feed tag. There is however no reason
not to add such a link inside the collection tag of a Service Document or even the full
opensearch description document as shown in figure 5. This allows a client to directly
search a collection without the need to get the feed first.

23

5 Other Design Considerations

5 Other Design Considerations

This section discusses remaining design considerations that are not directly connected to
the interactions of the Atom Publishing Protocol and OpenSearch but rather to the media
types and formats used to represent groupware specific data.

5.1 Media Type conversion and non-isomorphism

Two media types are non isomorphic, if at least one of them can express information which
the other could not express. For example the vCard media type defines many property
parameters that have no equivalent in PortableContacts, like language, altid or sort-as.
So a conversion of a vCard into PortableContacts will most likely lose this data.

This data loss could first be a problem when a client receives a representation. However
since the client negotiated the media type with the server it is most likely that it is satisfied
with only the data representable in that type.

Now if the client uses such a media type in a PUT request to update a resource, it may
not be clear how to deal with the information that the client could not express in the
submitted resource. Should it be deleted or should data from the server be merged with
the new representation?

Different strategies are possible in such scenarios and must be selected for the individual
use case:

1. The server accepts updates only for one media type while serving other media types
in a “read-only” mode.

2. The server accepts PATCH requests [DS10] as a compromise while still not accepting
certain media types for updates (subsubsection 7.5.2).

3. The implementer decides to either merge or delete information not representable in a
received media type and lives with the consequences. In the case of contact informa-
tion this can be a valid strategy since the most essential information is representable
in all media types. The server practically only works with data in the intersection
of all supported media types.

4. Available facilities to extend media types are used to establish isomorphism. VCard
for example allows the addition of arbitrary properties prefixed with “x-”.

5. The server implements version control so that the situation can be resolved manually
later.

The creation of resources can be handled more freely, at least regarding media type
conversion, than updating, since no state on the server exists that could be lost.48

48The problem of “POST once” is orthogonal to that of media type conversion.

24

5.2 Microformats, Microdata, RDFa

5.2 Microformats, Microdata, RDFa

The requirements list in section 3.1 also lists an HTML bases user interface. This subsec-
tion and the following discuss special design issues concerning this requirement.

HTML documents are primarily meant to be rendered by browsers and interpreted by
humans. It is hard for a machine to interpret the meaning of text and data included in
an HTML document. To remedy this, different techniques have evolved to add additional
meta data to HTML thus allowing machines to identify structured data in HTML without
having an impact on the rendering. The most popular ones, Microformats, Microdata and
RDFa, are presented and discussed in [Ten12].

There exists no established term yet to refer to the three different formats. Practition-
ers use “structured data languages” [Spo11], “machine-readable data format” [Hic11a],
“structured data markup” [GG11] or just “structured markup”. Scientific publications
seem to use the term “Semantic annotation” [RGJ05] to refer to HTML with machine
readable semantic data. This work will use the term “Semantic annotation format” to
refer to Microformats, Microdata, RDFa and similar formats.

5.2.1 Use Cases

One major use case for semantic annotations is to help search engines to better index the
annotated site. The Microformats project was started by a blog search engine (Technorati)
[Çe06] and the recent schema.org effort came from the three big search engines Google,
Bing and Yahoo [GG11]. Another use case is demonstrated by the Firefox plugin “Oper-
ator”.49 It allows to extract annotated entities from web pages. A user could thus import
contact or event data from arbitrary web pages in his personal information manager with
one click50. Semantic annotations can also be used to make web content accessible to
disabled people [YSHG07].

Another use case is currently under development as part of the European Union Research
Project “Interactive Knowledge Stack” (IKS) that builds a semantic content management
stack. The sub-project “Vienna IKS Editables” (VIE)51 uses semantic annotations to
make content on a web site editable. It does so by searching the HTML document for
semantically annotated entities and dynamically building editing interfaces for those. A
modified entity can then be sent to the server via AJAX in a format called “json-ld”
that serializes semantic data to JSON.52 For a groupware, this editor could be used to
automatically create HTML forms instead of creating them on the server site.

In the context of this work, semantic annotations could be used inside the summary tag
of Atom entries, as shown in listing 6. A consumer of a feed of contact elements could thus
use the data extracted from the annotated summary data to provide a tabular overview

49https://addons.mozilla.org/en-US/firefox/addon/operator/ (2012-2-20)
50Apparently, Android phones can directly import annotated addresses from web pages too.
51http://www.iks-project.eu/projects/vienna-iks-editables (2012-2-20)
52http://json-ld.org (2012-2-20) the iana registration of the mime type application/ld+json is

currently discussed

25

https://addons.mozilla.org/en-US/firefox/addon/operator/
http://www.iks-project.eu/projects/vienna-iks-editables
http://json-ld.org

5 Other Design Considerations

<summary type="html">
<div itemscope itemtype="http://schema.org/Person">

<div itemprop="name">
Max
Pattern

</div>

<div itemscope

itemtype="http://schema.org/Organization">

Andorian Mining Cooperation

</div>
<div itemprop="email">some@mail.com</div>
<div>

<meta itemprop="birthDate" content="1970-01-02">
DOB: 01/02/1970

</div>
</div>

</summary>

Listing 6: Microdata used in the summary of an ATOM entry summary (markup not
escaped for clarity)

of the entries even without fetching the associated media resource of the entry, which is
especially useful for search results as discussed in subsection 4.8.

5.2.2 Format selection

With at least three different semantic annotation formats, a developer needs to decide
which to implement. It is possible to implement multiple formats in parallel inside the
same HTML document, but this means more markup and a more complex publishing task
[Ten12]. This choice is not a choice of different media types, but a choice inside the scope
of the containing media type text/html (or application/xhtml+xml).

A first consideration has to be the ability of expected consumers to handle the format,
a second consideration the available tooling to produce a particular format. The different
semantic annotation formats impose certain requirements for the used HTML dialect.
Microformats can be used with all versions of HTML, RDFa with XHTML or HTML5
and Microdata introduces special attributes that work only with HTML5 [Ten12].

Microdata is part of HTML5 and a standardization effort of the W3C [Hic11a]. It is also
backed up by the schema.org effort of Google and Microsoft.53 The schema.org vocabulary
in turn has been mapped to the semantic world by researchers working on linked data.54

Thus by using Microdata with the schema.org vocabulary, the data can easily be combined

53http://schema.org/docs/gs.html#microdata_why (2012-2-17)
54http://schema.rdfs.org/about.html (2012-2-17)

26

http://schema.org/docs/gs.html#microdata_why
http://schema.rdfs.org/about.html

5.3 HTML Forms

with other semantic data. The rest of this work therefor concentrates on Microdata. Many
good arguments to also consider RDFa can be found in the blog of Manu Sporny55, chair
of the RDF Web Applications Working Group at the W3C.

5.3 HTML Forms

An HTML based user interface for a groupware today has many means to provide data
editing and submission facilities thanks to powerful Javascript libraries like the VIE Editor
(subsubsection 5.2.1). The traditional, standardized and most compatible way however is
the use of HTML forms. Unfortunately these lack a few features that could improve their
use for RESTful systems.

HTML has no means to send an etag when submitting a form and no support for other
HTTP verbs then GET and POST, most importantly PUT and DELETE. A Discussion
to include these seems to be underway however [Amu11c].

All forms have the same media type of application/x-www-form-urlencoded, although
they may represent totally different kind of resources. In practice this is often not a prob-
lem since the server knows which form to expect and selects its parsing routine accordingly.

In cases where different forms can be expected to be submitted to the same URI, e.g., to
the URI of a collection, the server needs to be informed about the resource type, probably
by a hidden form input element.

The manual creation of HTML forms and associated form parsers and validators is in-
volved and error prone. Therefor many approaches and implementations exist to automate
this task. If a machine can work on an existing data model for the resource, then this can
be used as basis for the automation.

Not yet answered is the question where or under which condition an HTML form should
be submitted to the user. It is certainly not desirable to present HTML forms by default
in every HTML representation of any resource that the user is authorized to modify. And
even then, there would still not be any means for the user to reach an HTML form to
create a new resource.

The edit case can be solved with the IANA registered “edit” link-relation. An HTML
page representing an editable resource could just use a link element for the purpose of
signaling the client the location where it can retrieve an editable resource:

<link rel="edit" href="?edit=true"/>

The above link is a relative Link that just appends a query part to the URI of the
current page (assuming that the page URI does not already contain a query part).

It may be noted here that making different representations of one resource available
under different URIs is no violation of rest principles and even encouraged for similar use
cases by [Ram06].

Unfortunately no link relation is standardized to retrieve an empty form for the creation

55http://manu.sporny.org/category/rdfa/ (2012-2-20)

27

http://manu.sporny.org/category/rdfa/

5 Other Design Considerations

of a new resource.56 So for the time being server and client would need to agree on a custom
link relation for that purpose. The empty form can be regarded as an entity of its own,
linked from the collection where newly created resources are expected to appear.

5.4 VCard’s (social) network properties

This section investigates whether the VCard media type is also usable to represent basic
concepts of a social network (OpenSocial) in a RESTful way.

Important concepts of OpenSocial are persons, their relations, their media and groups of
persons (subsection 2.7). The normal discovery path of OpenSocial starts with a person,
probably the authenticated user.

It is assumed that the client has somehow (e.g., by redirection after authentication)
reached a VCard of a person. At this point the following defined properties of a VCard
can provide useful information for a social network:

• The RELATED property expresses a typed relationship to another entity. The pos-
sible types have been adopted by the “XHTML Friends Network” project57 (contact,
acquaintance, friend, met, co-worker, colleague, co-resident, neighbor, child, parent,
sibling, spouse, kin, muse, crush, date, sweetheart, me) and augmented with agent
and emergency.

• PHOTO contains or links to a photo of the person.

• IMPP provides a reference to contact the person via instant messenger. No website
built-in chat (Facebook) is required.

• URL is an untyped reference to any website associated with the VCard, intended
for “personal web sites, blogs, and social networking site identifiers”.

• [GLLM11] proposes additional VCard properties explicitly for social network infor-
mation58. It includes an ALBUM property to link to a collection of media items
belonging to the person.

VCards can not only represent persons but also groups. A VCard with the KIND prop-
erty set to “group” may include a MEMBER property listing URIs for its members. Thus
group VCards with dereferenceable MEMBER URIs could be used to list the members of
an OpenSocial group. The client would however still need to load every member’s VCard
to display the names or photos of the group members.

Unfortunately the VCard type does not define an inverse link relation “GROUP” to
link to a group that a person is a member of. VCard does not even have a universal link
property like HTML or ATOM which could be used for that purpose.

56The Collection+JSON media type solves this issue by providing templates for new items inside the
collection representation (subsubsection 7.5.3).

57http://gmpg.org/xfn/11 (2012-03-29)
58The draft has been abandoned in March 2012 due to lack of interest from social network sites. http:

//www.ietf.org/mail-archive/web/vcarddav/current/msg02509.html (2012-03-29)

28

http://gmpg.org/xfn/11
http://www.ietf.org/mail-archive/web/vcarddav/current/msg02509.html
http://www.ietf.org/mail-archive/web/vcarddav/current/msg02509.html

5.4 VCard’s (social) network properties

The recent Web Linking standard [Not10] can help in this situation. It allows the
inclusion of links as HTTP headers explicitly for media types without the ability to include
links. The link relation type collection [Amu12] can then be used to link to all group
VCards related to a person.

It would of course be preferable if VCard would be augmented with a property to link
to the groups of a person, maybe as part of the social network extension draft [GLLM11].
This situation however also shows a limitation of the way how the type of hyperlinks is
indicated in VCard. VCard contains a lot of properties that can contain URIs. The type of
those URIs then depends of the containing property type like PHOTO, IMPP, RELATED,
etc.

VCard however lacks a universal LINK property that could refer to the IANA link
relation registry59 to indicate its type and thus directly benefit from the semantic stan-
dardization efforts underlying this registry.

PortableContacts also contains fields equivalent to RELATED, PHOTO, IMPP, URL,
also misses an ALBUM field but it can not represent a group.

In conclusion, VCard seems to be a viable option to represent social network proper-
ties and structure if header links are used or with the help of two not yet standardized
properties ALBUM and GROUP.

59http://www.iana.org/assignments/link-relations (2012-03-29)

29

http://www.iana.org/assignments/link-relations

6 Implementation

6 Implementation

Based on the requirements and design considerations of the previous sections, this section
presents a Java based implementation of a RESTful groupware API supporting different
media types. The solution is based on the JAX-RS 1.1 [HS09] implementation Jersey60,
relies on dependency injection provided by Guice61, and introduces a new concept tenta-
tively called “Resource Facades”. The latter abstracts from different possible represen-
tations of a resource and thus applies a RESTful principle from the network layer in the
implementation layer.

Four different resource categories make up the API’s core. Three of them are part
of the Atom Publishing Protocol: The service document, collection feed and collection
entry. These are available only as their corresponding Atom XML media type. The fourth
resource category corresponds to the resources managed by the API called media entries
in Atom. in the case of the groupware API these are mainly contacts and events. The
latter are available in multiple, alternative representations.

6.1 Control Flow Overview

Figure 1 outlines the most important classes for the control flow. Jersey routes calls to
the four different “Jersey Resources” classes, representing Atom Service Documents, Atom
Collections, Atom Entries and Media Resources of different media types.

The Jersey Reader/Writer providers are called by Jersey to transform in- and output for
the Resource classes. The AbderaWriterJerseyProvider just uses the Abdera library. The
other two providers are special because they read or write the universal Resource class
or the related UnparsedResource class instead of more media type specific classes. The
former classes represent the concept of resources that can be represented with different
media types. They are discussed in detail in subsection 6.2.

One instance of the CollectionStorage interface is responsible for the administration
of one collection of Resources. The first four methods implement CRUD functionality
and the listUpdates method provides a partial, time ordered list of updated resources,
including special Resources to indicate deletions. This list can be directly transformed in
a corresponding AtomPub feed.

Like the other classes, the CollectionStorage deals with the universal Resource class. The
Precond(itions) parameter is a wrapper class around the corresponding HTTP headers62.
It provides shouldPerform(etag, updated):boolean methods that the storage must call
with the resource’s etag, last update timestamp or both. The CollectionStorage indicates
with each methods return value whether it actually performed any action. The GetResult
and ResultList classes are simple tuple classes wrapping one or multiple Resource instances
in case the preconditions failed or otherwise an indication that a “304 Not Modified”
response should be returned.

60http://jersey.java.net (2012-04-02)
61http://code.google.com/p/google-guice (2012-04-02)
62If-Match, If-None-Match, If-Modified-Since, If-Unmodified-Since

30

http://jersey.java.net
http://code.google.com/p/google-guice

6.2 Resource handling

Jersey Resources

Service

+ get(): AtomServiceDoc

Collection

+ get(): AtomFeed
+ post(UnparsedResource)

Entry

+ get(): AtomEntry
+ delete()

MediaEntry

+ get(): Resource
+ put(UnparsedResource)
+ delete()

«interface»
CollectionStorage

+ post(Resource): Id
+ condGet(Id, Precond): GetResult
+ condPut(Resource, Precond): bool
+ condDelete(Id, Precond): bool
+ listUpdates(Range, Precond): ResultList

«use»

«use»

«use»

AbderaWriterJerseyProvider

+ writeTo(AtomDocument, OutStream)

ResourceReaderJerseyProvider

+ availableReaders

+ readFrom(InStream): UnparsedResource

ResourceWriterJerseyProvider

+ writeTo(Resource, OutStream)

Dashed lines connect the methods whose
in- or output is handled by the Providers

Jersey Reader/Writer Providers

Figure 1: main classes controlling the execution flow

6.2 Resource handling

The Resource class is the generalization of a RESTful HTTP resource without a binding
to a specific media type. This corresponds to the distinction between a resource and
its representations in Fielding’s Dissertation[Fie00, sec. 5.2.1.1]. A representation in a
certain format is a property “selected dynamically based on the capabilities or desires of
the recipient and the nature of the resource”[Fie00, p. 87].

6.2.1 Resource properties

The interface of the Resource class marks the border between code that handles the control
flow of an HTTP request, as outlined in Figure 1, and code that provides information about
properties of a resource (subsubsection 6.2.3). In the context of this work, four different
kind of properties of resources are distinguished:

• essential administration properties: unique ID, last update time, HTTP entity tag

• generic meta properties: title, summary, author

• a media type independent interface corresponding to the concept represented by the
resource, e.g., a person, location, event, product, . . .

31

6 Implementation

• a media type specific serialization (representation) of the resource

The ID and update time are required for the synchronization protocol outlined in sec-
tion 4. They do not depend on the nature or content of the resource and are attached to
the resource by code outside of the Resource class. The entity tag must differ for each new
version of a resource. The code to produce and check a resource’s entity tag should be
adjusted carefully with the concrete CollectionStorage implementation to ensure efficient
processing of conditional HTTP requests.

The generic meta properties of the resource can be used to fill the corresponding tags of
an Atom entry. They can either be extracted from a meaningful property of the resource
or be provided to the resource. E.g., the author property could be extracted from the
meta data of an image file (EXIF) or set to the organizer of an ical event. The title of a
contact resource in the implementation is set to its full name and email. The summary
also contains the address and phone number.

One use of two mediatype independent interfaces or “facades” or a resource is exempli-
fied in Figure 2. The Contact interface is implemented by two classes that can extract the
necessary information from either a VCard or a PortableContact instance. An implemen-
tation of Contact in turn is used by an implementation of the TitleAndSummary interface.
The PlainTextTitleAndSummary class in comparison does not work on an intermediary
interface but directly on the original data structure.

The above mechanism is exposed by the getFacade(Interface) method of the Resource

class and used to retrieve a TitleAndSummary facade in order to build an Atom Entry. The
code using the facade does not need any further knowledge about the type of resource it
is working with.

The serialization property is exposed by the asMediaType(MediaType, OutputStream)
method of the Resource class. Internally this method also uses the getFacade() mech-
anism to request an instance of a Writer interface with the additional constraint that
the writer must produce the requested media type (subsubsection 6.2.3). Accordingly the
ResourceWriterJerseyProvider of Figure 1 is trivially simple: It just calls the asMedi-
aType method of the provided resource. The Resource is responsible for providing a media
type specific representation of itself.

The Resource class outlined in this section does not correspond to the equally named
resource class concept in JAX-RS [HS09]. The latter kind of resource classes are found
in the “Jersey Resources” package of Figure 1. However such JAX-RS resource classes do
not really represent REST resources but rather the binding of resources to URIs and their
processing logic.

6.2.2 Resource life cycle

Resource classes in this work have a four staged life cycle. The first stage is represented by
the UnparsedResource class, instantiated by the ResourceReaderJerseyProvider class for
post or put requests. In this stage, the resource has already been assigned an appropriate
Reader implementation according to the Content-Type request header but it has not yet
received an ID and update timestamp.

32

6.2 Resource handling

VCard

PortableContact

PlainText

«interface»
Contact

+ getFirstName()
+ getLastName()
+ getEmail()
+ getPhone()
+ getAddress()

VCardContact

+ vcard

PortableContactContact

+ portableContact

ContactTitleAndSummary

+ Contact

PlainTextTitleAndSummary

+ PlainText

«use»

«interface»
TitleAndSummary

+ getTitle()
+ getSummary()

Figure 2: Dependency of facades of resources to provide the TitleAndSummary interface

The Resource class represents the second stage, a parsed request body with an ID and
update timestamp. Only in this stage the getFacade() method can be used.

Once a resource has been deleted, it does not vanish entirely, but enters stage three.
Only the associated data originally submitted in the request body is discarded but the
ID and update timestamp (now referring to the time of deletion) is preserved. Such a
“deleted resource” is used to generate a corresponding “deleted-entry” tombstone in the
AtomPub feed (subsection 4.4).

Deleted resources don’t need to be preserved eternally. A deleted resource with the
oldest timestamp of all resources managed by a particular CollectionStorage can be safely
purged completely (stage four). A client that synchronizes the collection can still infer
that the resource has been deleted since it is no longer included anywhere in the list of
updates. Repeated application of the above rule makes sure that the last element of the
updates list points to a “living” Resource of the second stage.

6.2.3 Resource Facades

Subsection 6.2.1 introduced and motivated the concept of Resource Facades. This section
explains the inner workings of the classes providing this mechanism as drafted in Figure 3.

The Resource class does not hold any attribute that directly corresponds to its “main”
or “body” data. Instead it holds a FacadeProvider instance to request a specific data

33

6 Implementation

facade to access data. Facades are primarily referenced by Java interfaces.
A FacadeProvider in turn is instantiated with a FacadeRegistry of available FacadeFac-

tories and one or more “seed” facades, making up the initial content of the resolvedFacades
attribute. An instance of FacadeFactory is capable of building one specific facade object
and has a set of dependencies needed for that purpose. Therefor the concrete FacadeFac-
tory used to build a facade and thus the resulting implementation of the facade interface
depends on the facades already available in the resolvedFacades attribute of the Facade-
Provider.

In the example of Figure 2, the TitleAndSummary interface is implemented by two dif-
ferent classes. The factory responsible for the PlainTextTitleAndSummary would declare
a dependency on a PlainText facade. The factory producing the ContactTitleAndSum-
mary declares a dependency on a Contact facade, which can again be produced by two
different factories with their dependencies finally pointing to the “root” facades.

Facades already resolved are added to the resolvedFacades attribute of the Facade-
Provider to speed up future facade requests. This is possible since facades are required
to only provide read access to the data. Any manipulation of the Resource should result
in a new Resource instance thus reflecting the REST characteristic that Resources are
manipulated by the submission of new Representations.

Requests for facades can be further parameterized with a Predicate. The Predicate
has one apply(FacadeFactory):boolean method which is called only for FacadeFactories
producing the desired interface. This mechanism is used in the implementation to check
an isWriteable(MediaType) method on factories producing Writer instances and thus to
select the correct Writer according to the media type accepted by the client. Future work
could considerably enhance this rather brittle mechanism, e.g., to check for annotations
on the class produced by the factory.

The Resource Facades concept is implemented only as a proof of concept. subsubsec-
tion 7.5.5 outlines a lot of future work that might be worth consideration in this direction.

6.3 CollectionStorage

The CollectionStorage interface63 is intended to be implementable for a variety of per-
sistency providers like relational databases, the file system, document databases like
CouchDB, MongoDB, eXist. In this context the IMAP folders used by Kolab are just
a kind of document store.

A CollectionStorage is instantiated with the knowledge of the collection for which it
is responsible. Each collection managed by the application corresponds to a separate
CollectionStorage instance. Several CollectionStorage instances might however share the
same underlying connection to a persistency provider.

The only uncommon requirement for the persistency provider is to provide the time
ordered list of updates. This list could be thought of as just another kind of search or
report like the full text and time range search defined by OpenSearch (subsection 4.8). A

63The interface may be further broken down in a read-only and a write part which has been avoided for
this overview.

34

6.3 CollectionStorage

Resource

+ FacadesProvider
+ Id
+ UpdateTimeStamp

+ getFacade(Interface)
+ hasFacade(Interface)
+ asMediaType(MediaType, OutputStream)

FacadeProvider

+ FacadeRegistry
+ resolvedFacades

+ getFacade(Interface, Predicate)
+ hasFacade(Interface, Predicate)

FacadeRegistry

+ availableFacadeFactories

+ getFacadeFactories(Interface)

«interface»
FacadeFactory<T>

+ build(FacadeProvider): T
+ getDependencies()
+ check(Predicate): bool

«use»

Figure 3: The API of the Resource Facades mechanism

search index library like Apache Lucene64 can provide indexes for full text search on text
fields, time range on events or a list of all documents ordered by an “updated” field.

The IMAP based persistency of Kolab does not provide the described indexes65. Those
must therefor be implemented by a separate component.

The CollectionStorage does not expose any support for transactions. This should make
the interface easier to implement and also corresponds to the REST characteristics of
statelessness and transfer of full representations. As a consequence, the check for HTTP
preconditions must be made inside the CollectionStorage. Otherwise an update could be
lost as demonstrated in Listing 7 from the JAX-RS specification[HS09, p. 28]. In this
example a concurrent update by a separate HTTP request that would happen between
the etag check and the doUpdate call would be overwritten.

ResponseBuilder rb = request.evaluatePreconditions(etag);
if (rb == null) return doUpdate(foo);

Listing 7: Potential lost-update problem with JAX-RS

https://groups.google.com/d/msg/portablecontacts/57R9gGyoqt0/-P0fF4zRjaoJ

64http://lucene.apache.org (2012-03-26)
65The IMAP SEARCH command[Cri03, sec 6.4.4] searches only the message body and headers but not

attachments.

35

http://lucene.apache.org

6 Implementation

@Get public Response get(
@QueryParam("query") String query,
@QueryParam("sort-by") String sortBy,
@QueryParam("offset") int offset,
@QueryParam("limit") int limit) {

Listing 8: Verbosity of parsing Requests with JAX-RS

6.4 Dependency injection

Dependency injection describes a programming technique that isolates the instantiation
of objects and their dependencies from the code using these objects. Despite the general
usefulness of this technique that is not the scope of this work, it has been extremely helpful
to extract repetitive request parsing aspects from the main part of the request processing
logic, as shown in the following.

6.4.1 Preparsed Request Components with Dependency Injection

It seems like an obvious fact that could not be further deduced that any response action to
a request must be preluded by a parsing of the request. In the case of a REST application
this parsing could be further divided in two steps:

1. Parse URI, Accept Header and HTTP verb to select the Resource method

2. Resource method specific parsing defined by JAX-RS parameter annotations or per-
formed in the Resource method

JAX-RS defines only rudimentary support for the second step by means of inflexible
annotations. Listing 8 shows as an example the verbosity of parsing a set of standard
query parameters for a search interface.

The implementation for this work instead uses value objects66 and dependency injection
to isolate request parsing. This can be seen for example in the PaginationRange class which
should just hold the values of the URI query parameters limit and offset. The provider
function in Listing 9 is invoked by Guice when this class is required. It depends in turn on
UriInfo, extracts the necessary information and returns a simple value object of the type
PaginationRange.

Other similar value objects in the implementation provide injectable access to the parsed
path parameters (PathParam) or conditional request HTTP headers (Preconditions). The
main advantages of this approach are supposed to be:

• Classes that parse commonly used query parameters can be reused, even across
unrelated applications.

66The “value object” design pattern describes immutable objects representing values. The equality of
value objects depends only on represented value but not on object identity [Fow02, p. 486].

36

6.5 Routing and URI construction

@RequestScoped @Provides
def paginationRange(uriInfo:UriInfo):PaginationRange = {

val queryParams = uriInfo getQueryParameters
val offset = intQueryParam(queryParams, "offset", 0)
val limit = intQueryParam(queryParams, "limit", 20)
return new PaginationRange(offset, limit)

}

Listing 9: Scala Dependency Injection provider for the PaginationRange class;
intQueryParam extracts a named query parameter or returns the provided
default value

• The request method declaration becomes much easier to read.

• Sophisticated validation can be applied without obfuscating the request method.

• Value classes are the right place for additional logic related to the wrapped values.
The Preconditions class for example contains the logic to check the If-* headers of a
conditional request against the current entity tag or update time of a resource.

• Default values for unspecified input could depend on information only available at
runtime instead of being provided as static value to the applications source code.

6.4.2 Driving Dependency Injection further

The use of dependency injection can be extended to comprise several levels of dependen-
cies and thus to build processing pipelines. The information from the above Pagination-
Range class is in the implementation just forwarded to the CollectionStorage’s listUpdates
method to receive a ResultList instance.

Consequently the resource method could as well use dependency injection to directly
request the required ResultList instance. Figure 4 visualizes the resulting, hypothetic
dependency graph of this approach.

The figure shows how the CollectionStorage relevant for the request is identified by the
URI path. It depends of course on some kind of database. The dependency injection is
configured to produce a ResultList class by calling the listUpdates method of Collection-
Storage with instances of PaginationRange and Preconditions.

The idea might be an alternative implementation of processing pipelines to the one
proposed in [DM11], which uses XProc, An XML Pipeline Language. One advantage of
the dependency injection approach would be that the processing pipeline can be defined
and configured in the same language then the rest of the application.

6.5 Routing and URI construction

The normal way to bind JAX-RS resource classes to URI paths is provided by means of
the @Path annotation. This has however several disadvantages. First it hinders reuse of

37

6 Implementation

UriInfoHTTPHeaders

Preconditions PaginationRange

PathParams Database

CollectionStorage

ResultList

Figure 4: Building a processing pipeline with Dependency Injection

the resource classes in applications with different URI paths. Furthermore it hinders the
dynamic binding of new paths to resources at runtime or the binding of methods from
different classes to the same path, e.g., to add additional HTTP method handlers. Finally
all definitions of paths are scattered throughout the code.

The implementation used the “subresources” feature of JAX-RS, which can help at
least to centralize the definition of URI paths in a Routes class. Methods of this class have
@Path annotations but no HTTP method annotations. They don’t handle the requests
but instead instantiate and return the appropriate JAX-RS resource classes which in turn
have methods with annotations for the supported HTTP methods.

The path templates themselves are static string members of the Routes class and thus
also available for a LinkBuilder subclass of Routes. The latter can be requested via
dependency injection and provides methods to construct links to all resources managed
by the system.

The centralization of routing and link building has one very important advantage for
REST applications. If such a central interface exists, than no other place in the code,
nor the public documentation should know which URIs are matched and build by the
interface. This would hopefully hinder all involved parties to expect or document static
URI patterns and instead force anybody to follow hyperlinks.

The handling of URIs could have been implemented much more elegant by building
path templates dynamically at runtime. Unfortunately Jersey does only support the static
definition of paths at compile time thus only static strings could be used for the definition.
The upcoming version Jersey 2 however should provide dynamic path construction67.
Other frameworks, e.g. Restlet68 and Apache Wink69 already have such a feature.

67http://java.net/jira/browse/JERSEY-842 (2012-2-6)
68http://wiki.restlet.org/docs_2.1/13-restlet/27-restlet/326-restlet.html (2012-

2-6)
69called “Dynamic Resources” http://incubator.apache.org/wink/1.1/html/5.

1RegistrationandConfiguration.html (2012-2-7)

38

http://java.net/jira/browse/JERSEY-842
http://wiki.restlet.org/docs_2.1/13-restlet/27-restlet/326-restlet.html
http://incubator.apache.org/wink/1.1/html/5.1 Registration and Configuration.html
http://incubator.apache.org/wink/1.1/html/5.1 Registration and Configuration.html

6.6 HTML

public Interface ViewProcessor<T> {
T resolve(String path);
void writeTo(T resolvedTemplate, Viewable viewable, OutputStream out)

throws IOException;
}

Listing 10: Jersey interface to integrate template engines

@GET @Produces("text/html,application/xhtml+xml")
public Viewable get(...) {

...
return new Viewable("index", contentObject);

}

Listing 11: Jersey resource method explicitly returning a Viewable

6.6 HTML

A common way to produce HTML is by using a template engine. The jersey framework
provides a convenient integration mechanism for this purpose called “implicit” or “explicit
views” which is unfortunately not documented in the user guide70 but only in a blog post
by one of the developers [San08].

Both mechanisms rely on a provisioned ViewProcessor implementation (Listing 10) that
integrates an arbitrary template engine. The Viewable instance in the listing can either
wrap an instance of a jersey resource class in which case it is called an “implicit view” or
be explicitly returned by a resource handler method in which case the developer provides
an arbitrary object to be wrapped inside the Viewable as in Listing 11.

The latter case is of interest for this work since the jersey resource classes as designed
in this implementation don’t actually represent the resources and their data.

The combination of the above mechanism with the earlier presented resource facades
however is a bit more complicate. The resource facades mechanism on the one hand
provides objects of arbitrary type and the template engine integration also accepts objects
of arbitrary type. But at one point, a decision must be made, which facade should be used
and which template should be rendered. Different strategies can be easily identified to
solve this problem but it was not possible anymore to include an implementation in this
work.

6.7 Producing Semantically annotated HTML

A recent discussion of possibilities to produce semantically annotated HTML can be found
in [CDDM09, sec. 9.1.3]. The authors describe a method developed as part of a larger
“Web Semantics Design Method” (WSDM), which consists of two mappings. The first one
is the “data source mapping (DSM), which describes exactly how the reference ontology

70http://jersey.java.net/nonav/documentation/latest/user-guide.html (2012-04-04)

39

http://jersey.java.net/nonav/documentation/latest/user-guide.html

6 Implementation

-@ var vcard: VCard

div(itemscope itemtype="http://schema.org/Person"
itemid=#{vcard.getProperty("uid")})

span(itemprop="name")
#{vcard.getProperty("fn")}

span(itemprop="telephone")
#{vcard.getProperty("tel")}

Listing 12: Defining all Microdata attributes manually in an HTML template

-@ var md: MicroData

= md.scope
div

= md.prop("name")
span(style="color:red")

= md.prop("telephone")
= md.prop("email")

Listing 13: Using a Microdata-aware data structure in a template

maps to the actual data source.” The second mapping links HTML tags to elements of
the reference ontology from the first mapping. Neither the book nor referenced papers
however go into any more detail about the final step of generating the annotated HTML
tags.

One important point can be learned from the WSDM description. The production of
semantically annotated HTML can become a lot easier if the entity is already available
represented with the targeted vocabulary. A very naive approach to produce annotated
HTML would be to just manually write the necessary attributes in the template and fill
them with values from an arbitrary data object, as demonstrated in listing 12. Even with
the conciseness of the used template language Jade71, the developer still has a lot to type.

Compared to the above listing 13 shows a template using a data structure that is aware
of the used Microdata vocabulary and wraps an instance of a typed Microdata item with
its properties. The scope method of the Microdata interface will add the itemscope

, itemtype and itemid attributes to the nested div element. The prop method either
augments a nested element as shown for the name property or creates the correct nested
element. The method adds the itemprop attribute and puts the value for this property
inside the element.

An implementation of this approach must take care of a few peculiarities [Hic11a]. Some
properties don’t necessarily use simple span elements, e.g., dates can be better expressed
with time elements or URI values most likely appear in an a, img, link or object element.

71http://scalate.fusesource.org/documentation/jade-syntax.html (2012-2-22) Jade is the
most concise among several supported template languages of the Scalate Template Engine.

40

http://scalate.fusesource.org/documentation/jade-syntax.html

6.7 Producing Semantically annotated HTML

Property values could also be put in a content attribute while the element’s nested text
content is optimized for human consumption. Items can be nested, e.g., an item of type
PostalAddress could be nested inside a Person item.

The proposed approach can be implemented on any template engine as long as it per-
mits to capture and manipulate nested HTML elements and to call methods of passed in
objects.72

72https://github.com/Paxa/green_monkey (2012-3-7) provides helpers to produce microdata in
rails but is not as automated as the design proposed here.

41

https://github.com/Paxa/green_monkey

7 Results and Discussion

7 Results and Discussion

This section presents findings made while designing and implementing the presented REST
API, outlines which proposed goals have been achieved and why others were not achieved,
and proposes future work.

7.1 Implemented Requirements

The implementation covers the provision of Atom Service Documents, Collections, Entries
and managed Media Entry Resources of arbitrary media types. Resources can be created,
read, updated and deleted with support for conditional requests. The Atom Collections
support the described synchronization mechanism.

The Resource Facades component provides a framework to process and serve arbitrary
media types if the necessary interfaces are implemented. The implementation of those
interfaces can usually be done in a few lines of code, if an appropriate library for the
parsing and serialization of the media type is available.

Unfortunately no evidence of the existence of the necessary libraries could be found.
The only active and usable iCalendar and vCard library iCal4J73 does not yet support the
newest versions of those standards, especially not their XML variants. For PortableCon-
tacts, two Java library projects were found, JPoco74 and asmx-poco75, but both have not
produced a release yet and appear abandoned since at least 2010.

The situation for Microdata support is even worse. A web developer seems to have
no other choice today then to manually write and fill the necessary HTML attributes in
an HTML template engine. An alternative, automated approach has been proposed in
subsection 6.7 but the implementation of a corresponding Java library was not possible in
the scope of this work.

7.2 Hypermedia support and prior knowledge of clients

A main question of this work was, how a groupware API could be designed that requires
minimal prior knowledge by the client. Especially all resources should be discoverable by
following links with the exception of one initial service URI.

Figure 5 outlines the resources and their discovery paths as discussed in this work. It can
be seen, that all of them are reachable following links from the Atom Service Document.
Collections link to the next partial collection, to their entries and are reachable from the
Service document. The OpenSearch Description document includes an URI template to
construct a link to a search result in Atom format containing links to collection entries.
Additional links are defined as part of the specific media types managed by the collections,
e.g., a link pointing to the calendar of an xCard or another to a participant of an event. The

73http://wiki.modularity.net.au/ical4j (2012-04-03)
74http://code.google.com/p/jpoco (2012-03-30)
75http://code.google.com/p/asmx-poco (2012-03-30)

42

http://wiki.modularity.net.au/ical4j
http://code.google.com/p/jpoco
http://code.google.com/p/asmx-poco

7.3 Media type libraries

ServiceDoc

Contacts
Collection

next
Calendar
Collection

OpenSearch Desc. Doc

Entry (xCard)

1..n
personal
calendar

related xCards Entry (xCal event)

1..n

participants

Search
results

xCard group
media album

Figure 5: Hypermedia links providing discovery paths from the Service Document to in-
dividual groupware resources

edges pointing to xCard group and media album are dashed, because the corresponding
link relations are not yet officially registered as discussed in section 5.4.

All the above assumes, that the client has a built in understanding of the used me-
dia types, i.e., Atom related types including the not yet standardized deleted-entry, the
OpenSearch Description Document and the types of the media entries in this case xCard
and xCal. Media entries may be available in alternative representation enabling the client
to negotiate the media type.

If semantic annotation (section 5.2) should be used then the client also needs to under-
stand the schema used for the annotations.

Necessary client knowledge that is not yet standardized but also not application specific
is:

• a link relation to the HTML form to create new entries (see section 5.3)

• a schema providing atom categories to identify types of groupware collections (see
section 4.1)

7.3 Media type libraries

The support of REST for different media types has been blamed to potentially “compli-
cate and hinder the interoperability of a RESTful Web service” [PZL08, sec. 7.2]. The
experience made in this work could not find any support for this assumption. It would
of course be preferable if all users of an API could be served and satisfied with the same
media type, but an API author may not be in such an advantageous situation. The pro-
tocol related code in the server implementation however did not become complicated even
while serving and accepting arbitrary media types.

An area of immense complexity however is the parsing, serialization and conversion
of media types. This complexity exists every time when two communication partners use
different internal representations and must be solved at some point between those partners.
The REST API in this work imposes this complexity on the server.

43

7 Results and Discussion

A symptom of the complexity involved with the handling of different media types is
the lack of stable or usable libraries. Contrasting to this there are dozens of stable REST
frameworks and libraries to choose from. It seems that the development and maintenance
of media type libraries is a neglected area.

In those libraries that exist and were used, some common shortcomings could be ob-
served that translate in the following advice for media type libraries:

• Unknown fields or properties should be preserved to support vendor extensions or
updates in the specification.

• Data structures should be immutable. The construction of the data structures should
be delegated to separate, mutable Builders.

• The scheme should not be hard coded in classes and their properties, but dynamically
assembled at runtime. Cal4J, JPoco, asmx-poco or the OpenSocial implementation
Apache Shindig all have one Java class for every known field. This requires many
lines of unnecessary similar code and hinders extensibility and updates.

7.4 Reusable Components

The main contribution of this work in terms of reusable components is the concept and
prototypical implementation of the Resource Facades. The proposed design to support
Microdata in template engines is also considered to be reusable and beneficial for many
use cases.

Surprisingly, the API of JAX-RS (or Jersey) was not as helpful as should be expected
from its official status. A couple of smaller classes were written for this work to wrap
Jersey’s functionality and those should be reusable in arbitrary REST projects. Some of
those have been presented in subsubsection 6.4.1: Preconditions, PathParams or Pagina-
tionRange. In addition to this, a separate Routes (subsection 6.5) class centralized the
mapping from URI paths to resource classes, a LinkBuilder (ibid.) centralized construc-
tion of URIs and the reader and writer provider classes delegated their work to the resource
facades framework. It seems advisable for further REST projects to evaluate frameworks
offering alternative concepts than JAX-RS.

7.5 Future work

A couple of interesting questions came up during research and implementation for this
work which could not be included. The following subsection lists some of these questions,
explain their relation to the scope of this work and provide some initial thoughts and
findings.

7.5.1 Browser Caches as collection stores

The example of OpenSocial shows how important the browser has become as an application
platform. However browsers also restrict the options of developers, especially in terms of

44

7.5 Future work

available Webstorage (subsection 3.3).
Clever use of the Browser cache could raise this limit. The average available cache size

is unknown but expected to exceed the web-storage size by several orders of magnitude.
One interesting caching strategy in combination with collections is the use of time

based caching headers (expires or Cache-Control with the max-age directive) with long
expiration times. The long expiration time should keep the resource available even when
the browser is offline.

If the resource is updated, the long expiration time would normally prevent the browser
from updating it. However since the server controls the collection feed linking to the
resource, it can use a slightly different URI to link to the resource on every update, thus
forcing the client to do a reload. In this case the client must have other means to keep
track of the resource identiy: either the ID element of the Atom Entry or a property of
the resource itself, like the UID property of vCard or iCal.

It would or course be even better, if Javascript code running in a browser could somehow
force a reload of a resource once it has learned from the collection feed that the resource
has been updated. In this context the exact caching behavior of popular browsers is of
interest, especially in combination with Content-Location headers or the only-if-cached
directive.

7.5.2 Patching Resources

subsection 4.5 introduced Delta Encoding [MKD+02] and mentioned that it would also
be useful to efficiently respond to GET requests on resources that only slightly changed
(e.g., by one property field) compared to the resource cached by the client.

The same argument applies for the other direction, if a client updates a large resource.
The HTTP PATCH method [DS10] has been especially standardized for this case in March
2010. Support for the PATCH method can be advertised in the “Allow” header of server
responses and the “Accept-Patch” header specifies the media types of accepted patch
formats.

However until today no patch format media types are listed in the official IANA reg-
istry76 and a draft for a JSON patch format has expired77.

More critical for this work is that no means have been foreseen to specify the exact
representation of a resource to which a PATCH should apply. So given a server that can
represent contacts in vCard, xCard and PortableContacts under the same URI depending
on the media type accepted by the client and a byte oriented patch media type like the
output of the unix diff -e command78. How should the server know against which format
the patch should be applied?

At least three solutions may be possible:

• A different patch media type is used that is defined to apply to a specific represen-
tation. (This is recommended in [All10, ch. 11.9].)

76http://www.iana.org/assignments/media-types/index.html (2012-03-24)
77https://datatracker.ietf.org/doc/draft-pbryan-json-patch (2012-03-24)
78http://www.iana.org/assignments/inst-man-values (2012-03-24)

45

http://www.iana.org/assignments/media-types/index.html
https://datatracker.ietf.org/doc/draft-pbryan-json-patch
http://www.iana.org/assignments/inst-man-values

7 Results and Discussion

• The server uses separate URIs for different media type representations as suggested
by [Ram06] and accepts PATCH request only against those URIs.

• The server uses different entity tags for different representations that it can later
use to parse the original resource media type from the etag supplied in the If-MAtch
header of the PATCH request.

A further discussion of patch requests should also consider, whether this request type still
conforms to the REST interface constraint “manipulation of resources through representations”[Fie00,
sec. 5.1.5].

7.5.3 JSON based media types for collections

This work examined an API that can serve contact information in different media types
based on XML, JSON and RFC822. However it only considered one XML based format
for the discovery of those. It would be desirable to be able to provide an API variant ex-
clusively based on JSON. Therefor a JSON alternative for the ATOM Publishing Protocol
is needed.

Collection+JSON The Collection+JSON Mimetype (IANA registered in July 2011) by
Mike Amundsen [Amu11b][Amu11a, ch. 3] looks like a promising candidate for a JSON
alternative. The author even states that is has been explicitly designed after the model of
the Atom Publishing Protocol79.

The media type defines a JSON structure which contains:

• query templates for the construction of query URIs

• an array of collection items

• one write template to create or edit items

• meta data about the collection

Unfortunately, Collection+JSON in its current state is not yet fully usable to implement
the interactions described in 4.

Collection+JSON does not enforce an order of the elements in a collection or at least
the notion that collections can be paginated with a next link-relation and that consecutive
feeds respect an ordering. The proposed synchronization interaction however is based on
the assumption that the collection feed is ordered by the time of the last modification.
Consequently, there is also no equivalent to an ATOM “deleted-entry” [Sne12], which
enables the use of an updates feed for synchronization.

The facility to include full item representations directly in the collection (the “data”
property) is restricted to simple key/value pairs. This excludes more complex data struc-
tures, like PortableContacts. It would still be possible to omit the optional data property
and only fill the href property with a link to the full representation.

79http://amundsen.com/media-types/collection (2012-03-22)

46

http://amundsen.com/media-types/collection

7.5 Future work

An AtomPub collection declares its accepted media types and assumes that the client
knows how to produce those. The Collection+JSON media type instead provides a write
template which the client must fill in order to create new items. The write template only
supports basic key value pairs in accordance to the data property. More complex schemes
can not be expressed80.

A Collection+JSON document is furthermore restricted to contain only one write tem-
plate. This excludes mixed collections of different types.

Collection+JSON provides query templates but those come without a defined semantic.
A mapping from OpenSearch to JSON would be helpful to reuse the semantic definitions.
Also the URI template part should be updated to reuse the specification of the new URI
templates standard [GFH+12].

Pagination link relations for feeds [Not07] could be reused to express paginated JSON
collections as encouraged by the format documentation[Amu11b, sec. 5.5].

Direct Mapping of ATOM XML to JSON James Snell described a mapping of ATOM
XML to JSON that should not loose any information [Sne08]81. However the attempt to
map every feature of ATOM and the inherited extensibility and expressiveness of XML
results in a very complex and deeply nested JSON structure. In detail, Snell identifies a
couple of problems that need to be dealt with in such a mapping [Sne08]:

• JSON has no equivalent for the xml:lang attribute.

• Dereferencable IRIs must be transformed to URIs.

• URIs relative to an xml:base attribute must be resolved, also inside XHTML content
elements.

• Repeatable elements must be converted to arrays.

• The ATOM date format (RFC 3339) differs from the JavaScript Date serialization.

• ATOM content elements are versatile but should be represented more meaningful in
JSON then just a plain String.

• ATOM supports arbitrary extensions via namespaces.

Considering all the problems, it is understandable that no effort could be found since
2008 to formalize the outlined mapping in an IANA registered media type.

80It would make sense to rely on JSON schemas to define valid item structures: http://json-schema.
org (2012-03-22)

81also implemented in Apache Abdera https://cwiki.apache.org/ABDERA/
json-serialization.html (2012-1-7)

47

http://json-schema.org
http://json-schema.org
https://cwiki.apache.org/ABDERA/json-serialization.html
https://cwiki.apache.org/ABDERA/json-serialization.html

7 Results and Discussion

Conclusion Other related formats considered are the “Hypertext Application Language”
(HAL) [Kel11] and Microsoft’s OData82. HAL is a simple container format that only
standardizes linking and embedding of resources and is rather meant as a building block
or foundation for more specialized formats. Collection+JSON as the more specialized
format is therefor preferable here.

OData shares many similarities with the Atom Publishing Protocol and also provides a
JSON variant of it. However, despite announcements in March 201083, Microsoft has not
taken any steps so far to make OData an open standard that could be safely used for free
software projects.

In summary, the most promising approach for a JSON variant of ATOM seems to
enhance Collection+JSON in the following points:

• an indication, that a collection is ordered by modification time

• means to indicate deletion of items

• means to indicate accepted media types as an alternative to the write template

• development and adoption of a JSON variant of OpenSearch

7.5.4 Push notifications

This work does not include any means to actively notify (push) a client about changes
happening on the server. The client needs to initiate a request (pull) to the server to look
for changes. However separate solutions exist84 to enable a push workflow on top of a
feed based application [WM09]. It may therefor not be seen as a disadvantage that push
notifications have been omitted as a requirement.85

7.5.5 Resource Facades

The idea for the Resource Facades concept was triggered by the use of the JavaBeans
Activation Framework (JAF)[CS06] in the JAX-RS specification. In this framework the
DataHandler interface provides access to available commands for a specific MediaType
via the getCommand method. The framework however was designed with the needs of a
Desktop clipboard in mind. Since JAF has been released for Java version 1.4 it also does
neither support Generics nor uses the advantages of immutability.

[PO08] presents an approach and implementation in Scala to attach roles to arbitrary
objects. The work achieves type safe roles without extending the underlying language.
Using this library has been considered but it was discovered too late to be included.
Open questions are how the declared media type of a Resource could be considered in the

82http://www.odata.org (2012-03-23)
83http://web.archive.org/web/20110103120930/http://www.odata.org/blog/2010/3/

16/welcome-to-the-new-odataorg! (2012-03-23)
84most notable PubSubHubBub [FSA10]
85[Dab11, sec. 1] explicitly mentions missing “change notifications” as a “key disadvantage” of CardDAV.

48

http://www.odata.org
http://web.archive.org/web/20110103120930/http://www.odata.org/blog/2010/3/16/welcome-to-the-new-odataorg!
http://web.archive.org/web/20110103120930/http://www.odata.org/blog/2010/3/16/welcome-to-the-new-odataorg!

7.5 Future work

selection of a role implementation and how roles could depend on other roles. Another
challenge would be to preserve role instances and thus to avoid recreating them for every
invocation. If is furthermore required that roles implement a given interface. The Resource
Facade approach presented here is slightly different in that creation of the facades is
implemented independently from the facades themselves by the factory classes.

The resource facades concept shows similarities with Dependency Injection since de-
pendencies of a facade are also provided by an external component. It may be possible
that the concept could even be implemented on top of an existing Dependency Injection
framework.86 Some aspects however may require extra care:

• Resolving the dependencies of Facade factories must be parameterizable, e.g., to
request a Writer instance for a specific media type.

• The scope of an instance is bound to the ResourceHandler which in most cases may
be equivalent to the Request scope, but this can’t be guaranteed.

• Each ResourceHandler manages its own view of available Facades.

The Apache Wink Rest Framework implements a concept called “Assets”.87 Assets are
containers for the resource data injected in or returned from resource methods. Assets
provide methods annotated with @Produces or @Consumes to handle different Media types.
In contrast to Resource Facades, the set of supported media types of assets can only be
extended by extending the asset classes. It is also not possible like in Figure 2 to provide
generic Facades for a TitleAndSummary or Contact.

Scala’s type system The proposed resource facades implementation has the disadvantage
that the availability of a facade can not be checked at compilation time. It seems however
that a more advanced type system could help in this regard.

Listing 14 demonstrates features of the Scala type system [Ode11] that could be of
interest here. In the example a post method handler has the requirement to access the
posted data through the facades VCard and TextSummary. Additionally the data should be
forwarded to an implementation of the trait Storage which has its own requirement for a
facade.

Scala’s “compound types” feature is used in line 9 to combine these requirements into
an anonymous type. The “type alias” feature allows it to assign the identifier MessageBody
to this anonymous type and thus to keep the declaration of the post method short and
readable.

This example and the mentioned work on Scala roles shows that an advanced type
systems may be able to considerably improve the presented facades approach.

86Scala can provide Dependency Injection solely with language features via the so called Cake Pattern
[War11] [OZ05].

87https://cwiki.apache.org/WINK/59-assets.html (2012-2-28)

49

https://cwiki.apache.org/WINK/59-assets.html

7 Results and Discussion

1 trait Storage[ReqFacade] {
2 def create(id: String,
3 body: ResourceHandler
4 with FacadeFactory[ReqFacade])
5 }
6

7 class PostToCollection[StorageReqFacade]
8 (storage: Storage[StorageReqFacade]) {
9 type MessageBody = ResourceHandler

10 with FacadeFactory[VCard]
11 with FacadeFactory[TextSummary]
12 with FacadeFactory[StorageReqFacade]
13

14 def post(body:MessageBody) : Response = {
15 ...
16 storage.create("id", body)
17 ...
18 }
19 }

Listing 14: Implementing the facades approach with Scala’s type system

50

8 Conclusions

It has been shown in this work that a rather uncomplicated, RESTful groupware API can
serve as a usable alternative for more complex solutions like CardDAV or OpenSocial. It
even seems possible to cover the use cases of both protocols, different classes of clients and
different media type preference with the same, unified, RESTful approach.

Most of the code necessary for the implementation is not even specific to a groupware
API but usable for other applications that offer a RESTful HTTP API and might consume
or produce multiple media types.

A great source of simplifcation and serendipitous reuse (e.g., VCards for social network
information, subsection 5.4) is caused by the hypermedia support of the involved media
types. The inclusion of complete, dereferenceable URIs makes the need for verbose API
documentations obsolete (like Opensocial, subsection 2.7). The absence of hypermedia
support, like missing links to groups or albums in vCards, can directly constrain the
possible use cases of a media type.

Quite a few tremendously useful features of HTTP or the examined media types were
discovered during the research for this work, like HTTP delta encoding, Atom’s support
for collection synchronization and categories or the versatility of OpenSearch. Those were
previously unknown to the author despite several years of professional experience in web
development. This supports the assumption that lack of education might be a primary
reason for the lack of REST adoption.

This work encountered complexities and lack of tooling in other areas then expected.
The initial research was spent on evaluating different platforms to implement RESTful
HTTP interactions. This area however proved to be rather easy and well supported
compared to the immense shortcomings or even lack of media type libraries. This makes
one wonder whether an expert group like CalConnect should really work on additional
protocols or rather on the problem of lacking media type libraries.

51

REFERENCES

References

[All10] Allamaraju, Subbu: RESTful Web Services Cookbook. O’Reilly, 2010. – 314
S.

[Amu11a] Amundsen, Mike: Building Hypermedia APIs with HTML5 and Node.
O’Reilly, 2011

[Amu11b] Amundsen, Mike: Collection+JSON - Document Format. July 2011. –
available online at http://amundsen.com/media-types/collection/
format; accessed on March 22nd, 2012

[Amu11c] Amundsen, Mike: Supporting PUT and DELETE with HTML FORMS. De-
cember 2011. – available online at http://amundsen.com/examples/
put-delete-forms; accessed on March 8th, 2012

[Amu12] Amundsen, Mike: The Item and Collection Link Relations / IETF
Secretariat. 2012 (draft-amundsen-item-and-collection-link-relations-05). –
Internet-Draft. – available online at https://datatracker.ietf.org/
doc/draft-amundsen-item-and-collection-link-relations/;
accessed on March 28th, 2012

[BLFM05] Berners-Lee, Tim ; Fielding, Roy T. ; Masinter, Larry: Uniform Re-
source Identifier (URI): Generic Syntax. RFC Editor, January 2005 (3986). –
RFC

[CDDM09] Casteleyn, Sven ; Daniel, Florian ; Dolog, Peter ; Matera, Maristella:
Engineering Web Applications. Springer, 2009. – I–XIII, 1–349 S. – ISBN
978–3–540–92200–1

[Cli] Clinton, DeWitt: OpenSearch Specification 1.1 Draft 5. – available online
at http://opensearch.org; accessed on March 1st, 2012

[Cri03] Crispin, Mark R.: Internet Message Access Protocol - VERSION 4rev1. RFC
Editor, March 2003 (3501). – RFC

[Cro06] Crockford, Douglas: The application/json Media Type for JavaScript Ob-
ject Notation (JSON). RFC Editor, July 2006 (4627). – RFC

[CS06] Calder, Bart ; Shannon, Bill: JavaBeans Activation Framework Spec-
ification Version 1.1. April 2006. – available online at http://www.
oracle.com/technetwork/java/jaf-1-150219.pdf; visited Febru-
ary 24th, 2012

[Dab11] Daboo, Cyrus: CardDAV: vCard Extensions to Web Distributed Authoring
and Versioning (WebDAV). RFC Editor, August 2011 (6352). – RFC

52

http://amundsen.com/media-types/collection/format
http://amundsen.com/media-types/collection/format
http://amundsen.com/examples/put-delete-forms
http://amundsen.com/examples/put-delete-forms
https://datatracker.ietf.org/doc/draft-amundsen-item-and-collection-link-relations/
https://datatracker.ietf.org/doc/draft-amundsen-item-and-collection-link-relations/
http://opensearch.org
http://www.oracle.com/technetwork/java/jaf-1-150219.pdf
http://www.oracle.com/technetwork/java/jaf-1-150219.pdf

REFERENCES

[DDD07] Daboo, Cyrus ; Desruisseaux, Bernard ; Dusseault, Lisa: Calendaring
Extensions to WebDAV (CalDAV). RFC Editor, March 2007 (4791). – RFC

[DDL11] Daboo, Cyrus ; Douglass, Mike ; Lees, Steven: xCal: The XML Format
for iCalendar. RFC Editor, August 2011 (6321). – RFC

[Des09] Desruisseaux, Bernard: Internet Calendaring and Scheduling Core Object
Specification (iCalendar). RFC Editor, September 2009 (5545). – RFC

[DM11] Davis, Cornelia ; Maguire, Tom: XML technologies for RESTful services de-
velopment. In: Proceedings of the Second International Workshop on RESTful
Design. New York, NY, USA : ACM, 2011 (WS-REST ’11). – ISBN 978–1–
4503–0623–2, S. 26–32

[DS10] Dusseault, Lisa ; Snell, James M.: PATCH Method for HTTP. RFC
Editor, March 2010 (5789). – RFC

[Dus04] Dusseault, Lisa: WebDav: next generation collaborative Web authoring.
Prentice Hall PTR, 2004

[Dus07] Dusseault, Lisa: HTTP Extensions for Web Distributed Authoring and
Versioning (WebDAV). RFC Editor, June 2007 (4918). – RFC

[Dus08] Dusseault, Lisa: Nearly two years ago, I made a prediction. Febru-
ary 2008. – available online at http://nih.blogspot.com/2008/02/
nearly-two-years-ago-i-made-prediction.html; visited on April
2nd, 2012

[FGM+99] Fielding, Roy T. ; Gettys, James ; Mogul, Jeffrey C. ; Nielsen, Hen-
rik F. ; Masinter, Larry ; Leach, Paul J. ; Berners-Lee, Tim: Hypertext
Transfer Protocol – HTTP/1.1. RFC Editor, June 1999 (2616). – RFC

[Fie00] Fielding, Roy T.: REST: Architectural Styles and the Design of Network-
based Software Architectures, University of California, Irvine, Doctoral disser-
tation, 2000

[Fie08] Fielding, Roy T.: REST APIs must be hypertext-driven. October
2008. – available online at http://roy.gbiv.com/untangled/2008/
rest-apis-must-be-hypertext-driven; accessed on March 8th, 2012

[Fow02] Fowler, Martin: Patterns of Enterprise Application Architecture. Boston,
MA, USA : Addison-Wesley, 2002

[FSA10] Fitzpatrick, Brad ; Slatkin, Brett ; Atkins, Martin: Pub-
SubHubbub Core 0.3 – Working Draft. February 2010. – avail-
able online at http://pubsubhubbub.googlecode.com/svn/trunk/
pubsubhubbub-core-0.3.html; visited on April 3rd, 2012

53

http://nih.blogspot.com/2008/02/nearly-two-years-ago-i-made-prediction.html
http://nih.blogspot.com/2008/02/nearly-two-years-ago-i-made-prediction.html
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://pubsubhubbub.googlecode.com/svn/trunk/pubsubhubbub-core-0.3.html
http://pubsubhubbub.googlecode.com/svn/trunk/pubsubhubbub-core-0.3.html

REFERENCES

[GFH+12] Gregorio, Joe ; Fielding, Roy T. ; Hadley, Marc ; Nottingham, Mark ;
Orchard, David: URI Template. RFC Editor, March 2012 (6570). – RFC

[GG11] Goel, Kavi ; Gupta, Pravir: Introducing schema.org: Search en-
gines come together for a richer. June 2011. – available on-
line at http://googlewebmastercentral.blogspot.com/2011/06/
introducing-schemaorg-search-engines.html accessed on March
7th, 2012

[Gh07] Gregorio, Joe ; hOra, Bill de: The Atom Publishing Protocol. RFC Editor,
October 2007 (5023). – RFC

[GLLM11] George, Robins ; Leiba, Barry ; Li, Kapeng ; Melnikov, Alexey: vCard
Format Extension: To Represent the Social Network Information of an
Individual / IETF Secretariat. 2011 (draft-ietf-vcarddav-social-networks-
00). – Internet-Draft. – available online at http://datatracker.
ietf.org/doc/draft-ietf-vcarddav-social-networks; accessed
on March 28th, 2012

[Hic11a] Hickson, Ian: HTML Microdata / W3C. 2011. – W3C Working Draft.
– available online at http://www.w3.org/TR/microdata/; accessed on
February 17th, 2012

[Hic11b] Hickson, Ian: HTML5. A vocabulary and associated APIs for HTML and
XHTML / W3C. 2011. – W3C Working Draft. – available online at http:
//www.w3.org/TR/html5; accessed on March 1st, 2012

[Hic11c] Hickson, Ian: Web Storage / W3C. 2011. – W3C Candidate Recommenda-
tion. – available online at http://www.w3.org/TR/webstorage; accessed
on March 24th, 2012

[HS09] Hadley, Marc ; Sandoz, Paul: JSR 311: JAX-RS: The Java API for
RESTful Web Services Version 1.1. September 2009 available online at
http://www.jcp.org/en/jsr/detail?id=311; accessed on March 7th,
2012

[HSD98] Howes, Tim ; Smith, Mark ; Dawson, Frank: A MIME Content-Type for
Directory Information. RFC Editor, September 1998 (2425). – RFC

[hÓ09] hÓra, Bill de: Extensions v Envelopes. November 2009. –
available online at http://www.dehora.net/journal/2009/11/28/
extensions-v-envelopes; accessed on March 24th, 2012

[Hü09] Hübner, Harry: Implementierung der OpenSocial-API in der Commu-
nityumgebung für das Fernstudium, Fernuniversität Hagen, Lehrgebiet In-
formationssysteme und Datenbanken, Bachelor thesis, 6 2009. – avail-

54

http://googlewebmastercentral.blogspot.com/2011/06/introducing-schemaorg-search-engines.html
http://googlewebmastercentral.blogspot.com/2011/06/introducing-schemaorg-search-engines.html
http://datatracker.ietf.org/doc/draft-ietf-vcarddav-social-networks
http://datatracker.ietf.org/doc/draft-ietf-vcarddav-social-networks
http://www.w3.org/TR/microdata/
http://www.w3.org/TR/html5
http://www.w3.org/TR/html5
http://www.w3.org/TR/webstorage
http://www.jcp.org/en/jsr/detail?id=311
http://www.dehora.net/journal/2009/11/28/extensions-v-envelopes
http://www.dehora.net/journal/2009/11/28/extensions-v-envelopes

REFERENCES

able online at http://harry011.files.wordpress.com/2009/06/
opensocial_containerimpl.pdf; visited on April 2nd, 2012

[Kel11] Kelly, Mike: HAL - Hypertext Application Language. A lean hypermedia type
for RESTful APIs. October 2011. – available online at http://stateless.
co/hal_specification.html; visited on April 3rd, 2012

[MKD+02] Mogul, Jeffrey C. ; Krishnamurthy, Belachander ; Douglis, Fred ; Feld-
mann, Anja ; Goland, Yaron Y. ; Hoff, Arthur van ; Hellerstein,
Daniel M.: Delta encoding in HTTP. RFC Editor, January 2002 (3229).
– RFC

[NL99] Nielsen, Henrik F. ; LaLiberte, Daniel: Editing the Web. Detecting the
Lost Update Problem Using Unreserved Checkout / W3C. 1999. – W3C Note.
– available online at http://www.w3.org/1999/04/Editing; accessed
on March 1st, 2012

[Not07] Nottingham, Mark: Feed Paging and Archiving. RFC Editor, September
2007 (5005). – RFC

[Not10] Nottingham, Mark: Web Linking. RFC Editor, October 2010 (5988). –
RFC

[NS05] Nottingham, Mark ; Sayre, Robert: The Atom Syndication Format. RFC
Editor, December 2005 (4287). – RFC

[Ode11] Odersky, Martin: The Scala Language Specification Version
2.9. website scala-lang.org, section Documentation/Manuals/S-
cala Language Specification, May 2011. – available online at
http://www.scala-lang.org/sites/default/files/linuxsoft_
archives/docu/files/ScalaReference.pdf accessed on February
14th, 2012

[Ope11] OpenSocial and Gadgets Specification Group: OpenSocial Spec-
ification Version 2.0.1. mailto:opensocial-and-gadgets-spec@
googlegroups.com, 11 2011. – available online at http://docs.
opensocial.org/display/OSD/Specs; accessed on January 10th, 2012

[OZ05] Odersky, Martin ; Zenger, Matthias: Scalable component abstractions. In:
SIGPLAN Not. 40 (2005), Oktober, Nr. 10, S. 41–57

[Per11a] Perreault, Simon: vCard Format Specification. RFC Editor, August 2011
(6350). – RFC

[Per11b] Perreault, Simon: xCard: vCard XML Representation. RFC Editor, Au-
gust 2011 (6351). – RFC

55

http://harry011.files.wordpress.com/2009/06/opensocial_containerimpl.pdf
http://harry011.files.wordpress.com/2009/06/opensocial_containerimpl.pdf
http://stateless.co/hal_specification.html
http://stateless.co/hal_specification.html
http://www.w3.org/1999/04/Editing
http://www.scala-lang.org/sites/default/files/linuxsoft_archives/docu/files/ScalaReference.pdf
http://www.scala-lang.org/sites/default/files/linuxsoft_archives/docu/files/ScalaReference.pdf
mailto:opensocial-and-gadgets-spec@googlegroups.com
mailto:opensocial-and-gadgets-spec@googlegroups.com
http://docs.opensocial.org/display/OSD/Specs
http://docs.opensocial.org/display/OSD/Specs

REFERENCES

[PO08] Pradel, Michael ; Odersky, Martin: Scala Roles - A Lightweight Approach
towards Reusable Collaborations. In: International Conference on Software
and Data Technologies (ICSOFT ’08), 2008

[PSMB98] Paoli, Jean ; Sperberg-McQueen, C. M. ; Bray, Tim: XML 1.0
Recommendation / W3C. 1998. – first Edition of a Recommendation. –
http://www.w3.org/TR/1998/REC-xml-19980210

[PZL08] Pautasso, Cesare ; Zimmermann, Olaf ; Leymann, Frank: Restful web
services vs. ”big”’ web services: making the right architectural decision. In:
Proceedings of the 17th international conference on World Wide Web. New
York, NY, USA : ACM, 2008 (WWW ’08). – ISBN 978–1–60558–085–2, S.
805–814

[Ram06] Raman, T. V.: On Linking Alternative Representations To Enable Discovery
And Publishing / W3C. 2006. – W3C TAG Finding. – available online
at http://www.w3.org/2001/tag/doc/alternatives-discovery.
html; accessed on March 2nd, 2012

[RBM05] Royer, Doug ; Babics, George ; Mansour, Steve: Calendar Access Protocol
(CAP). RFC Editor, December 2005 (4324). – RFC

[Res08] Resnick, Peter W.: Internet Message Format. RFC Editor, October 2008
(5322). – RFC

[RGJ05] Reif, Gerald ; Gall, Harald C. ; Jazayeri, Mehdi: WEESA - Web Engineer-
ing for Semanitc Web Applications. In: Proceedings of the 14th International
World Wide Web Conference. Chiba, Japan, May 2005, S. 722–729

[San08] Sandoz, Paul: MVCJ. Or Model, View, Controller and Jer-
sey. May 2008. – available online only as archived webpage,
e.g., at http://web.archive.org/web/20090326090158/http://
blogs.sun.com/sandoz/entry/mvcj; visited on February 24th, 2012

[Sma08] Smarr, Joseph: Portable Contacts: The (Half) Year in Review. De-
cember 2008. – available online at http://josephsmarr.com/2008/
12/31/portable-contacts-the-half-year-in-review; visited on
April 2nd, 2012

[Sne07a] Snell, James: Atom Publishing Protocol Feature Discovery /
IETF Secretariat. 2007 (draft-snell-atompub-feature-12). – Internet-
Draft. – available online at http://tools.ietf.org/id/
draft-snell-atompub-feature-12.txt; accessed on March 2nd,
2012

56

http://www.w3.org/2001/tag/doc/alternatives-discovery.html
http://www.w3.org/2001/tag/doc/alternatives-discovery.html
http://web.archive.org/web/20090326090158/http://blogs.sun.com/sandoz/entry/mvcj
http://web.archive.org/web/20090326090158/http://blogs.sun.com/sandoz/entry/mvcj
http://josephsmarr.com/2008/12/31/portable-contacts-the-half-year-in-review
http://josephsmarr.com/2008/12/31/portable-contacts-the-half-year-in-review
http://tools.ietf.org/id/draft-snell-atompub-feature-12.txt
http://tools.ietf.org/id/draft-snell-atompub-feature-12.txt

REFERENCES

[Sne07b] Snell, James: Sync! December 2007. – available on-
line at http://web.archive.org/web/20081114142152/http://
www.snellspace.com/wp/?p=818; accessed on March 8th, 2012

[Sne08] Snell, James: Convert Atom documents to JSON. IBM developer-
Works, January 2008. – Available online at http://www.ibm.com/
developerworks/library/x-atom2json/index.html; accessed on
January 7th, 2012

[Sne12] Snell, James: The Atom ”deleted-entry” Element / IETF Sec-
retariat. 2012 (draft-snell-atompub-tombstones-14). – Internet-
Draft. – available online at http://tools.ietf.org/id/
draft-snell-atompub-tombstones-14.txt; accessed on Febru-
ary 28th, 2012

[Spo11] Sporny, Manu: An Uber-comparison of RDFa, Microdata and Microfor-
mats. June 2011. – available online at http://manu.sporny.org/2011/
uber-comparison-rdfa-md-uf/ accessed on March 7th, 2012

[Sto04] Stoermer, Magnus: Open Source Groupware am Beispiel Kolab, FOM
Fachhochschule für Oekonomie & Management Essen / Neuss, Diplomarbeit,
October 2004. – available online at http://ftp.kolab.org/contrib/
diplom_thetis_stoermer/OSS_Groupware_Kolab.pdf; accessed on
March 27th, 2012

[Ten12] Tennison, Jeni: HTML Data Guide - Working Draft / W3C. 2012. –
W3C Working Draft. – available online at http://www.w3.org/TR/2012/
WD-html-data-guide-20120112/; accessed on February 16th, 2012

[War11] Warski, Adam: DI in Scala: Cake Pattern pros & cons. April
2011. – available online at http://www.warski.org/blog/2011/04/
di-in-scala-cake-pattern-pros-cons; visited on February 24th,
2012

[Web10] Webber, Jim: REST in Practice: Hypermedia and Systems Architecture.
O’Reilly, 2010. – ISBN 978–0–596–80582–1

[WM09] Wilde, Erik ; Marinos, Alexandros: Feed Querying as a Proxy for Querying
the Web. In: Proceedings of the 8th International Conference on Flexible
Query Answering Systems. Berlin, Heidelberg : Springer-Verlag, 2009 (FQAS
’09). – ISBN 978–3–642–04956–9, S. 663–674

[Wym04] Wyman, Bob: Using RFC3229 with Feeds. September 2004. – available
online at http://bob.wyman.us/main/2004/09/using_rfc3229_w.
html; accessed on March 9th, 2012

57

http://web.archive.org/web/20081114142152/http://www.snellspace.com/wp/?p=818
http://web.archive.org/web/20081114142152/http://www.snellspace.com/wp/?p=818
http://www.ibm.com/developerworks/library/x-atom2json/index.html
http://www.ibm.com/developerworks/library/x-atom2json/index.html
http://tools.ietf.org/id/draft-snell-atompub-tombstones-14.txt
http://tools.ietf.org/id/draft-snell-atompub-tombstones-14.txt
http://manu.sporny.org/2011/uber-comparison-rdfa-md-uf/
http://manu.sporny.org/2011/uber-comparison-rdfa-md-uf/
http://ftp.kolab.org/contrib/diplom_thetis_stoermer/OSS_Groupware_Kolab.pdf
http://ftp.kolab.org/contrib/diplom_thetis_stoermer/OSS_Groupware_Kolab.pdf
http://www.w3.org/TR/2012/WD-html-data-guide-20120112/
http://www.w3.org/TR/2012/WD-html-data-guide-20120112/
http://www.warski.org/blog/2011/04/di-in-scala-cake-pattern-pros-cons
http://www.warski.org/blog/2011/04/di-in-scala-cake-pattern-pros-cons
http://bob.wyman.us/main/2004/09/using_rfc3229_w.html
http://bob.wyman.us/main/2004/09/using_rfc3229_w.html

REFERENCES

[Yat07] Yates, Rob: CalAtom. April 2007. – available online at http://robubu.
com/CalAtom/calatom-draft-00.txt; accessed on March 7th, 2012

[YSHG07] Yesilada, Yeliz ; Stevens, Robert ; Harper, Simon ; Goble, Carole: Eval-
uating DANTE: Semantic transcoding for visually disabled users. In: ACM
Transactions on Computer-Human Interaction 14 (2007), September

[Çe06] Çelik, Tantek: Introducing Microformats Search and Pingerati. May 2006.
– available online at http://tantek.com/log/2006/05.html; accessed
on March 7th, 2012

58

http://robubu.com/CalAtom/calatom-draft-00.txt
http://robubu.com/CalAtom/calatom-draft-00.txt
http://tantek.com/log/2006/05.html

	Contents
	Introduction
	Background and Related Work
	REST architectural style
	Kolab
	IMAP as a collection synchronization protocol
	vCard, xCard, iCal, xCal
	PortableContacts
	WebDAV, CardDAV, CalDAV
	OpenSocial
	Others

	Requirements and Analysis
	Scope and General Requirements
	Replace Kolab IMAP, CardDAV and OpenSocial
	Client Classes and Characteristics
	Data Characteristics
	Operation Environment
	Caching instead of Performance optimization
	Excluded WebDAV requirements

	REST Interactions Design
	Discovery of collections
	Personalized Service Documents
	CalAtom and CardAtom
	Synchronizing collections
	Efficient Synchronization with HTTP Delta encoding
	Media Entries and the content tag
	Modifying Resources and Offline editing
	Special Reports, Queries, Search

	Other Design Considerations
	Media Type conversion and non-isomorphism
	Microformats, Microdata, RDFa
	HTML Forms
	VCard's (social) network properties

	Implementation
	Control Flow Overview
	Resource handling
	CollectionStorage
	Dependency injection
	Routing and URI construction
	HTML
	Producing Semantically annotated HTML

	Results and Discussion
	Implemented Requirements
	Hypermedia support and prior knowledge of clients
	Media type libraries
	Reusable Components
	Future work

	Conclusions
	References

