
Linux Kernel GDB
tracepoint module

(KGTP)

Update in 2014-05-09

1

TOC
About this document...6
What is KGTP..7
Quick config and start KGTP...8
Get help or report issues..10
Table of different between GDB debug normal program and KGTP.................11
Howto use GDB control KGTP trace and debug Linux kernel..........................14

Direct access the current value in normal mode..14
The memory of Linux kernel..14
the trace state variables..16

GDB tracepoint..17
set tracepoint...18

Howto handle the function is there but set tracepoint on it got fail.....19
How to set tracepoint condition..20

How to handle error "Unsupported operator (null) (52) in expression."
...21

actions [num]...22
collect expr1, expr2, ...23
teval expr1, expr2, ..24
while-stepping n...25

Start and stop the tracepoint..26
Enable and disable the tracepoint...27
Use tfind select the entry inside the trace frame info...............................28

How to handle error "No such file or directory."...................................29
Save the trace frame info to a file...30
Show and save the tracepoint...31
Delete tracepoint...32
Use tracepoint get register info from a point of kernel............................33
Use tracepoint get the value of variable from a point of kernel...............35
Show all the traced data of current frame..36
Get status of tracepoint...37
Set the trace buffer into a circular buffer...38
Do not stop tracepoint when the GDB disconnects...................................39
kprobes-optimization and the execution speed of tracepoint...................39

How to use trace state variables...40
Simple trace state variables..41
Per_cpu trace state variables..43

How to define...44
Local CPU variables...44
CPU id variables...44

Example 1..45
Example 2..46

Special trace state variables $current_task, $current_task_pid,
$current_thread_info, $cpu_id, $dump_stack, $printk_level,
$printk_format, $printk_tmp ,$clock, $hardirq_count, $softirq_count and
$irq_count..47
Special trace state variable $self_trace..50

2

Trace the function return with $kret...51
Use $ignore_error and $last_errno to ignore the error of tstart..............52
Use $cooked_clock and $cooked_rdtsc the time without KGTP used.......53
Use $xtime_sec and $xtime_nsec get the timespec..................................54

Howto backtrace (stack dump)...55
Collect stack with $bt and use GDB command "backtrace"......................56
Collect stack of current function's caller with $_ret.................................59
Use $dump_stack to output stack dump through printk...........................61

Howto let tracepoint output value directly...63
Switch collect to output the value directly..63

Howto use watch tracepoint control hardware breakpoints to record
memory access..65

Trace state variables of watch tracepoint...65
Static watch tracepoint...68
Dynamic watch tracepoint...69

Use while-stepping let Linux kernel do single step......................................70
Howto use while-stepping...70
Read the traceframe of while-stepping...71

Howto show a variable whose value has been optimized away....................73
Update your GCC...73
Get the way that access the variable that has been out through parse
ASM code...74

How to get the function pointer point to..77
If the debug info of the function pointer is not optimized out..................77
If the debug info of the function pointer is optimized out........................78

/sys/kernel/debug/gtpframe and offline debug...79
How to use /sys/kernel/debug/gtpframe_pipe...81

Get the frame info with GDB...82
Get the frame info with cat..83
Get the frame info with getframe..84
Use $pipe_trace...85

Use KGTP with user applications..86
Let GDB connect KGTP for user applications...86
Read memory of user applications directly...87
Trace user applications...88
collect stack (for backtrace) of system from Linux kernel to user
applications in tracepoint..90
How to use add-ons/hotcode.py...93

How to add plugin in C..94
API...94
Example...96
How to use...97

How to use performance counters..98
Define a perf event trace state variable..99
Define a per_cpu perf event trace state variable....................................100
The perf event type and config..101
Enable and disable all the perf event in a CPU with $p_pe_en...............103
GDB scripts to help with set and get the perf event trace state variables

3

...104
Appendix A Preparatory work before use KGTP...107

Linux kernel..107
If your system use the Linux kernel that is built by yourself..................107
If use with Linux kernel of Android...108
If your system use the Linux kernel from distribution............................109

Ubuntu...109
The standard method of install the Linux kernel debug image.......109
The second method of install the Linux kernel debug image..........110
Install the Linux kernel headers..110
Install the Linux kernel source..110

New way...110
Old way...110

Fedora..111
Install the Linux kernel debug image..111
Install the Linux kernel devel package..111

Make sure current Linux kernel debug image is right............................112
Where is the current Linux kernel debug image.................................112
Use /proc/kallsyms...113
Use linux_banner...114

Handle the issue that Linux kernel debug image's address info is not
same with Linux kernel when it running...115

Get KGTP...116
Get KGTP through http..116
Get KGTP through git..117
Mirrors...118

Config KGTP..119
Compile KGTP...120

Normal compile...120
Compile KGTP with some special config...121

Install and uninstall KGTP...122
Use KGTP with DKMS...123
Use KGTP patch for Linux kernel..124
Install GDB for KGTP..125

Appendix B How to let GDB connect to KGTP..126
Normal Linux...126

Insmod the KGTP module..126
Handle the issue that cannot find "/sys/kernel/debug/gtp".....................127
Make GDB connect to gtp...128

Load Linux kernel debug image to GDB..128
GDB on the current machine...129
GDB on remote machine..130

Android..131
Insmod the KGTP module..131
Handle the issue that cannot find "/sys/kernel/debug/gtp".....................132
GDB connect to the KGTP...133

Appendix C Add module symbols to GDB...134
How to use getmod...134

4

How to use getmod.py...136

5

About this document
http://teawater.github.io/kgtp/kgtp.html is the the last version of this document in HTML
format.

https://raw.github.com/teawater/kgtp/master/kgtp.pdf is the the last version of this
document in PDF format.

https://raw.github.com/teawater/kgtp/release/kgtp.pdf is the the last release version of this
document in PDF format.

6

https://raw.github.com/teawater/kgtp/release/kgtp.pdf
https://raw.github.com/teawater/kgtp/master/kgtp.pdf
http://teawater.github.io/kgtp/kgtp.html

What is KGTP
KGTP is a comprehensive dynamic tracer for analysing Linux kernel and
application (including Android) problems on production systems in real time.

To use it, you don't need patch or rebuild the Linux kernel. Just build KGTP
module and insmod it is OK.

It makes Linux Kernel supply a GDB remote debug interface. Then GDB in
current machine or remote machine can debug and trace Linux kernel and
user space program through GDB tracepoint and some other functions without
stopping the Linux Kernel.

And even if the board doesn't have GDB on it and doesn't have interface for
remote debug. It can debug the Linux Kernel using offline debug (See
/sys/kernel/debug/gtpframe and offline debug).

http://www.youtube.com/watch?v=7nfGAbNsEZY or
http://www.tudou.com/programs/view/fPu_koiKo38/ is the video that
introduced KGTP in English.

http://www.infoq.com/cn/presentations/gdb-sharp-knife-kgtp-linux-kernel is the
video that introduced KGTP in Chinese.

KGTP supports X86-32, X86-64, MIPS and ARM.

KGTP supports most versions of Linux kernel (from 2.6.18 to upstream).

Please go to UPDATE to get more info about KGTP update.

7

https://github.com/teawater/kgtp/blob/master/UPDATE
http://www.infoq.com/cn/presentations/gdb-sharp-knife-kgtp-linux-kernel
http://www.tudou.com/programs/view/fPu_koiKo38/
http://www.youtube.com/watch?v=7nfGAbNsEZY

Quick config and start
KGTP

#kgtp.py will auto setup and start KGTP and GDB in current
machine.
#The first time you use this script needs to wait for a while because
there are some packages to download.
wget
https://raw.githubusercontent.com/teawater/kgtp/master/kgtp.py
sudo python kgtp.py
#Access memory of Linux kernel.
(gdb) p jiffies_64
$2 = 5081634360
#Set tracepoint in function vfs_read to collect its backtrace.
(gdb) trace vfs_read
Tracepoint 1 at 0xffffffff811b8c70: file fs/read_write.c, line 382.
(gdb) actions
Enter actions for tracepoint 1, one per line.
End with a line saying just "end".
>collect $bt
>end
(gdb) tstart
(gdb) tstop
(gdb) tfind
Found trace frame 0, tracepoint 1
#0 vfs_read (file=file@entry=0xffff88022017b000,
 buf=buf@entry=0x7fff0fdd80f0 <Address 0x7fff0fdd80f0 out of
bounds>,
 count=count@entry=16, pos=pos@entry=0xffff8800626aff50) at
fs/read_write.c:382
382 {
(gdb) bt
#0 vfs_read (file=file@entry=0xffff88022017b000,
 buf=buf@entry=0x7fff0fdd80f0 <Address 0x7fff0fdd80f0 out of
bounds>,
 count=count@entry=16, pos=pos@entry=0xffff8800626aff50) at
fs/read_write.c:382
#1 0xffffffff811b9819 in SYSC_read (count=16,
 buf=0x7fff0fdd80f0 <Address 0x7fff0fdd80f0 out of bounds>,
fd=<optimized out>)
 at fs/read_write.c:506

Please read Appendix A Preparatory work before use KGTP and Appendix B

8

How to let GDB connect to KGTP if you want to use KGTP in remore machine
or android.

9

Get help or report issues
Please post issues to to https://github.com/teawater/kgtp/issues.

Or mail them to mailto:teawater@gmail.com?Subject=Report%20an%20issue
%20of%20KGTP.

Or report it to QQ group 317654748.

The KGTP team will try our best to help you.

Please goto https://code.google.com/p/kgtp/issues/list access the old issues
list.

10

https://code.google.com/p/kgtp/issues/list
mailto:teawater@gmail.com?Subject=Report%20an%20issue%20of%20KGTP
mailto:teawater@gmail.com?Subject=Report%20an%20issue%20of%20KGTP
https://github.com/teawater/kgtp/issues

Table of different between
GDB debug normal
program and KGTP

This table is for the people that have experience using GDB debug normal
program. It will help you understand and remember the function of KGTP.

Function GDB debug normal program GDB control KGTP
debug Linux kernel

Preparatory work Have a GDB installed in your
system. Program built with "-g".

Quick config and start
KGTP

Attach Use command "gdb -p pid" or
GDB command "attach pid" can
attach a program that running
in the system.

Breakpoints GDB command "b
place_will_stop", let program
execute after this command.
Then programe will stop in the
place that setup a breakpoint.

KGTP doesn't support
breakpoints but it
support tracepoints.
Tracepoints can be
considered as a special
kind of breakpoints. It
can be setup in some
place of Linux kernel and
define some commands
that you want to do in its
actions. When
tracepoints start, they
will execute these
commands when Linux
kernel execute to these
place. When tracepoint
stop, you can use some
GDB commands parse
the data that get by
tracepoints like what you
do when program stop
by breakpoints.
Difference is
breakpoints will stop the
program But the

11

tracepoints of KGTP not.
Please goto GDB
tracepoint get howto use
it.

Memory read After GDB stop the
program(maybe doesn't need), it
can read memory of program
with GDB command "print", "x"
and so on.

You can set special
actions to collect
memory to traceframe in
tracepoints, and get the
its value when tracepoint
stop.collect expr1, expr2,
... Use tfind select the
entry inside the trace
frame info
Or you can read memory
directly when Linux
kernel or program is
running.Direct access
the current value in
normal mode

Step and
continue

GDB can continue program
execution with command
"continue" and stop it with
CTRL-C.

KGTP never stop the
Linux kernel. But
tracepoint can be start
and stop.Start and stop
the tracepoint
Or use while-stepping
tracepoint record Linux
kernel with some times
single step and Let KGTP
switch to replay mode.
Then it support
execution commands
(continue, step) and
reverse-execute
commands (reverse-
continue, reverse-step).
Use while-stepping let
Linux kernel do single
step

Backtrace GDB can print backtrace of all
stack frames with command
"backtrace".

KGTP can do it
too.Howto backtrace
(stack dump)

Watchpoint GDB can let programe stop
when some memory access
happen with watchpoint.

KGTP can record the
memory access with
watch tracepoint. Howto
use watch tracepoint
control hardware

12

breakpoints to record
memory access

Call function GDB can call function of
program with command "call
function(xx,xx)".

KGTP can call function of
Linux kernel with
plugin.How to add plugin
in C

13

Howto use GDB control
KGTP trace and debug
Linux kernel

Direct access the current value in
normal mode
After GDB connect to KGTP, if it doesn't select any a entry of trace frame
bufffer with GDB command "tfind", GDB in the normal mode. Then you can
direct access the current value of memory (Linux kernel or the user space
program) and the trace state variables without stop anything.

If you have selected a trace frame entry, use GDB command "tfind -1" to
return to normal mode. Please goto Use tfind select the entry inside the trace
frame info info about GDB command "tfind".

The memory of Linux kernel
For example, you can access to "jiffies_64" with following command:

(gdb) p jiffies_64

Or you can access to the first entry of "static LIST_HEAD(modules)" with
following command:

(gdb) p *((struct module *)((char *)modules->next - ((size_t)
&(((struct module *)0)->list))))

Or you can access to the CPU0 memory info of "DEFINE_PER_CPU(struct
device *, mce_device);":

p *(struct device *)(__per_cpu_offset[0]+(uint64_t)(&mce_device))

If you want show more than one variables with one GDB command, please use
following example:

(gdb) printf "%4d %4d %4d %4d %4d %4d %18d %lu\n", this_rq-
>cpu, this_rq->nr_running, this_rq->nr_uninterruptible, nr_active,
calc_load_tasks->counter, this_rq->calc_load_active, delta, this_rq-

14

>calc_load_update
2 1 0 0 0 0 673538312 717077240

15

the trace state variables
You can access value of TSV with the command that same with access
memory.

Please goto How to use trace state variables get more info about TSV.

16

GDB tracepoint
Tracepoint is that GDB define some addresses and some actions and put them
to the target (KGTP). After tracepoint start, , KGTP will do these actions
(Some of them will collect data and save them to tracepoint frame buffer)
when Linux kernel execution to there addresses. After that, Linux kernel will
keep execution.

KGTP supply some interfaces that GDB or other programe can take the data of
tracepoint frame buffer out to parse.

About these interfaces, this doc have introduced "/sys/kernel/debug/gtp". And
will introduce "/sys/kernel/debug/gtpframe" and
"/sys/kernel/debug/gtpframe_pipe" later.

Doc of GDB tracepoint in
http://sourceware.org/gdb/current/onlinedocs/gdb/Tracepoints.html.

17

set tracepoint
The trace command is very similar to the break command. Its argument
location can be a source line, a function name, or an address in the target
program. The trace command defines a tracepoint, which is a address or some
addresses that KGTP do some actions in it.

Here are some examples of using the trace command:

(gdb) trace foo.c:121 // a source file and line number

(gdb) trace +2 // 2 lines forward

(gdb) trace my_function // first source line of function

(gdb) trace *my_function // EXACT start address of function

(gdb) trace *0x2117c4 // an address

18

Howto handle the function is there but set tracepoint on
it got fail

GCC will inline some static function to increase the performance. You cannot
set tracepoint on the function name because object file doesn't have symbol of
inline function.

You can use "trace filename:line" to set tracepoint on it.

19

How to set tracepoint condition
http://sourceware.org/gdb/current/onlinedocs/gdb/Tracepoint-Conditions.html

Like breakpoints, we can set conditions on tracepoints. The speed of
tracepoints is faster than breakpoints because KGTP can do all the condition
checks.

For example:

(gdb) trace handle_irq if (irq == 47)
This action of tracepoint 1 will work only when irq number is 47.

And you can use GDB command "condition" to specify the condition of a
tracepoint. GDB command "condition N COND" will specify tracepoint number
N to trace only if COND is true.

For example:

(gdb) trace handle_irq
(gdb) condition 1 (irq == 47)

GDB command "info tracepoint" will show the ID of the tracepoint.

Value of $bpnum is the last ID of GDB tracepoint. Then you can use GDB
command "condtion" set the condition of last tracepoint without get its ID. For
example:

(gdb) trace handle_irq
(gdb) condition $bpnum (irq == 47)

20

How to handle error "Unsupported operator (null) (52)
in expression."

If you use condition about string, you will got this error when you call "tstart".

To handle it, you can convent the char to int to handle this issue, for example:

(gdb) p/x 'A'
$4 = 0x41
(gdb) condition 1 (buf[0] == 0x41)

21

actions [num]
This command will prompt for a list of actions to be taken when the tracepoint
is hit. If the tracepoint number num is not specified, this command sets the
actions for the one that was most recently defined (so that you can define a
tracepoint and then say actions without bothering about its number). You
specify the actions themselves on the following lines, one action at a time, and
terminate the actions list with a line containing just end. So far, the only
defined actions are collect, teval, and while-stepping.

22

collect expr1, expr2, ...
Collect values of the given expressions when the tracepoint is hit. This
command accepts a comma-separated list of any valid expressions. In addition
to global, static, or local variables, the following special arguments are
supported:

$regs Collect all registers.
$args Collect all function arguments.
$locals Collect all local variables.

Please note that collect an pointer (collect ptr) will just collect the address of
this pointer. Add a * before ptr will make action collect the data that pointer
point to(collect *ptr).

23

teval expr1, expr2, ...
Evaluate the given expressions when the tracepoint is hit. This command
accepts a comma-separated list of expressions. The results are discarded, so
this is mainly useful for assigning values to trace state variables (see Simple
trace state variables) without adding those values to the trace buffer, as would
be the case if the collect action were used.

24

while-stepping n
Please goto Use while-stepping let Linux kernel do single step see howto use
it.

25

Start and stop the tracepoint
Tracepoint will exec actions only when it is starting use this GDB command:

(gdb) tstart

It will stop by this GDB command:

(gdb) tstop

26

Enable and disable the tracepoint
Like breakpoint, tracepoint can be control by GDB commands "enable" and
"disable". But please note that it only useful when tracepoint stop.

27

Use tfind select the entry inside the trace
frame info
GDB command "tfind" is used to select a entry of trace frame bufffer when
tracepoint stop.

When GDB inside "tfind" mode, it will just show the values of this entry that
the tracepoint action collect. So it will output some error when print some
values that action doesn't collect for example the argument of function. That is
not a bug, please don't worry about it.

Use "tfind" again will select next entry. "tfind id" will select entry id.

To return to normal mode(Direct access the current value in normal mode),
please use GDB command "tfind -1". Please goto
http://sourceware.org/gdb/current/onlinedocs/gdb/tfind.html get more info
about it.

28

How to handle error "No such file or directory."
When GDB cannot find the source code of Linux kernel, it will show this error
message. For example:

(gdb) tfind
Found trace frame 1, tracepoint 1
#0 vfs_read (file=0xffff8801c36e6400, buf=0x7fff51a8f110
<Address 0x7fff51a8f110 out of bounds>, count=16,
 pos=0xffff8801761dff48) at /build/buildd/linux-
3.2.0/fs/read_write.c:365
365 /build/buildd/linux-3.2.0/fs/read_write.c: No such file or
directory.

You can use GDB command "set substitute-path" to handle it. The prev
example, the Linux kernel source is in "/build/buildd/test/linux-3.2.0/". But
vmlinux let GDB find Linux kernel source in "/build/buildd/linux-3.2.0/". You
can handle it with:

(gdb) set substitute-path /build/buildd/linux-3.2.0/
/build/buildd/test/linux-3.2.0/
(gdb) tfind
Found trace frame 1, tracepoint 1
#0 vfs_read (file=0xffff8801c36e6400, buf=0x7fff51a8f110
<Address 0x7fff51a8f110 out of bounds>, count=16,
 pos=0xffff8801761dff48) at /build/buildd/linux-
3.2.0/fs/read_write.c:365
365 {

GDB have some other commands to handle the source code issue. Please goto
http://sourceware.org/gdb/current/onlinedocs/gdb/Source-Path.html get the
introduce about them.

29

Save the trace frame info to a file
/sys/kernel/debug/gtpframe supplies trace frame in tfile format (GDB can
parse it) when KGTP is stop.

Please note that some "cp" cannot handle it very well, please use "cat
/sys/kernel/debug/gtpframe > ./gtpframe" to copy it.

You can open file gtpframe when you want:

(gdb) target tfile ./gtpframe
Tracepoint 1 at 0xffffffff8114f3dc: file /home/teawater/kernel/linux-
2.6/fs/readdir.c, line 24.
Created tracepoint 1 for target's tracepoint 1 at 0xffffffff8114f3c0.
(gdb) tfind
Found trace frame 0, tracepoint 1
#0 vfs_readdir (file=0xffff880036e8f300, filler=0xffffffff8114f240
<filldir>, buf=0xffff880001e5bf38)
 at /home/teawater/kernel/linux-2.6/fs/readdir.c:24
24 {

30

Show and save the tracepoint
You can use GDB command "info tracepoints" to show all the tracepoints.

You can use GDB command "save tracepoints filename" to save the commands
that setup the tracepoints and actions into file filename. Then you use use
GDB commands "source filename" to setup this tracepints again.

31

Delete tracepoint
GDB command "delete id" will delete tracepoint id. If "delete" without
argument, it will delete all the tracepoint.

32

Use tracepoint get register info from a point of
kernel
The following is an example that records the value of all registers when
"vfs_readdir" is called.

(gdb) target remote /sys/kernel/debug/gtp
(gdb) trace vfs_readdir
Tracepoint 1 at 0xc01a1ac0: file
/home/teawater/kernel/linux-2.6/fs/readdir.c, line 23.
(gdb) actions
Enter actions for tracepoint 1, one per line.
End with a line saying just "end".
>collect $reg
>end
(gdb) tstart
(gdb) shell ls
(gdb) tstop
(gdb) tfind
Found trace frame 0, tracepoint 1
#0 0xc01a1ac1 in vfs_readdir (file=0xc5528d00, filler=0xc01a1900
<filldir64>,
 buf=0xc0d09f90) at /home/teawater/kernel/linux-
2.6/fs/readdir.c:23
23 /home/teawater/kernel/linux-2.6/fs/readdir.c: No such file or
directory.
 in /home/teawater/kernel/linux-2.6/fs/readdir.c
(gdb) info reg
eax 0xc5528d00 -984445696
ecx 0xc0d09f90 -1060069488
edx 0xc01a1900 -1072031488
ebx 0xfffffff7 -9
esp 0xc0d09f8c 0xc0d09f8c
ebp 0x0 0x0
esi 0x8061480 134616192
edi 0xc5528d00 -984445696
eip 0xc01a1ac1 0xc01a1ac1 <vfs_readdir+1>
eflags 0x286 [PF SF IF]
cs 0x60 96
ss 0x8061480 134616192
ds 0x7b 123
es 0x7b 123
fs 0x0 0
gs 0x0 0
(gdb) tfind

33

Found trace frame 1, tracepoint 1
0xc01a1ac1 23 in /home/teawater/kernel/linux-2.6/fs/readdir.c
(gdb) info reg
eax 0xc5528d00 -984445696
ecx 0xc0d09f90 -1060069488
edx 0xc01a1900 -1072031488
ebx 0xfffffff7 -9
esp 0xc0d09f8c 0xc0d09f8c
ebp 0x0 0x0
esi 0x8061480 134616192
edi 0xc5528d00 -984445696
eip 0xc01a1ac1 0xc01a1ac1 <vfs_readdir+1>
eflags 0x286 [PF SF IF]
cs 0x60 96
ss 0x8061480 134616192
ds 0x7b 123
es 0x7b 123
fs 0x0 0
gs 0x0 0

34

Use tracepoint get the value of variable from a
point of kernel
The following is an example that records the value of "jiffies_64" when the
function "vfs_readdir" is called:

(gdb) target remote /sys/kernel/debug/gtp
(gdb) trace vfs_readdir
Tracepoint 1 at 0xc01ed740: file /home/teawater/kernel/linux-
2.6/fs/readdir.c, line 24.
(gdb) actions
Enter actions for tracepoint 1, one per line.
End with a line saying just "end".
>collect jiffies_64
>collect file->f_path.dentry->d_iname
>end
(gdb) tstart
(gdb) shell ls
arch drivers include kernel mm Module.symvers
security System.map virt
block firmware init lib modules.builtin net sound t
vmlinux
crypto fs ipc Makefile modules.order scripts source
usr vmlinux.o
(gdb) tstop
(gdb) tfind
Found trace frame 0, tracepoint 1
#0 0xc01ed741 in vfs_readdir (file=0xf4063000, filler=0xc01ed580
<filldir64>, buf=0xd6dfdf90)
 at /home/teawater/kernel/linux-2.6/fs/readdir.c:24
24 {
(gdb) p jiffies_64
$1 = 4297248706
(gdb) p file->f_path.dentry->d_iname
$1 = "b26", '\000' <repeats 28 times>

35

Show all the traced data of current frame
After use "tfind" select an entry, you can use "tdump" to do it.

(gdb) tdump
Data collected at tracepoint 1, trace frame 0:
$cr = void
file->f_path.dentry->d_iname =
"gtp\000.google.chrome.g05ZYO\000\235\337\000\000\000\000\200\
067k\364\200\067", <incomplete sequence \364>
jiffies_64 = 4319751455

36

Get status of tracepoint
Please use GDB command "tstatus".

37

Set the trace buffer into a circular buffer
http://sourceware.org/gdb/current/onlinedocs/gdb/Starting-and-Stopping-
Trace-Experiments.html

The frame buffer is not a circular buffer by default. When the buffer is full, the
tracepoint will stop.

Following command will set frame buffer to a circular buffer. When the buffer
is full, it will auto discard traceframes (oldest first) and keep trace.

(gdb) set circular-trace-buffer on

38

Do not stop tracepoint when the GDB
disconnects
http://sourceware.org/gdb/current/onlinedocs/gdb/Starting-and-Stopping-
Trace-Experiments.html

KGTP will stop tracepoint and delete the trace frame when GDB disconnects
with it by default.

Following command will open the KGTP disconnect-trace. After that, when
GDB disconnects with KGTP, KGTP will not stop tracepoint. And after GDB
reconnects to KGTP, it can keep control of KGTP like nothing happened.

(gdb) set disconnected-tracing on

kprobes-optimization and the execution speed
of tracepoint
The tracepoint is execution together with Linux kernel. So it speed will affect
the speed the system.

The KGTP tracepoint base on Linux kernel kprobe. Because the normal kprobe
base on breakpoint instruction, so it is not very fast.

But if arch of kernel is X86_64 or X86_32 and kernel config didn't open
"Preemptible Kernel" (PREEMPT), the kprobe is speed up by kprobes-
optimization (CONFIG_OPTPROBES) that make kprobe very fast.

To make sure about that, you can use following command in terminal:

sysctl -A | grep kprobe
debug.kprobes-optimization = 1

That means that your kernel support kprobes-optimization.

Please note that some KGTP functions will make this tracepoint use simple
kprobe even if this Kernel support kprobes-optimization. This doc will add
note when introduce these functions. Please avoid using them when you really
care about the tracepoint speed.

39

How to use trace state variables
http://sourceware.org/gdb/current/onlinedocs/gdb/Trace-State-Variables.html

Trace state variable is referred to as the TSV.

TSV can be accessed in tracepoint action and condition or direct access by
GDB command.

Please note that just GDB 7.2.1 and later versions support use trace state
variables directly, the old version of GDB can show the value of trace state
variables through command "info tvariables".

40

Simple trace state variables
Define a trace state variable $c.

(gdb) tvariable $c

Trace state variable $c is created with initial value 0. The following action
uses $c to count how many irqs happened in the kernel.

(gdb) target remote /sys/kernel/debug/gtp
(gdb) trace handle_irq
(gdb) actions
Enter actions for tracepoint 3, one per line.
End with a line saying just "end".
>collect $c #Save current value of $c to the trace frame buffer.
>teval $c=$c+1 #Increase the $c.
>end

Also, you can set a value of variable to trace state variable, but don't forget
covert variable to "uint64_t".

>teval $c=(uint64_t)a

You can get the current value of $c while the trace is running or stopped.

(gdb) tstart
(gdb) info tvariables
$c 0 31554
(gdb) p $c
$5 = 33652
(gdb) tstop
(gdb) p $c
$9 = 105559

When using tfind, you can parse the trace frame buffer. If the value of a trace
state variable is collected, you can parse it out.

(gdb) tstop
(gdb) tfind
(gdb) info tvariables
$c 0 0
(gdb) p $c
$6 = 0
(gdb) tfind 100
(gdb) p $c
$7 = 100

If need, the tracepoint action that access the simple trace state variables will
auto lock a spin lock for trace state variables. So it can handle race condition
issue about trace state variables.

41

The following example is OK even if it running a machine that have more than
one CPU.

>teval $c=$c+1

42

Per_cpu trace state variables
Per_cpu trace state variables are special simple trace state variables.

When tracepoint action access to it, it will access to this CPU special trace
state variables.

It have 2 advantages:

1. The tracepoint actions that access to per_cpu trace state variables don't
have the race conditon issue. So it don't need lock the spin lock for trace state
variables. It is faster than simple trace state variables on multi-core machine.

2. Write the action that count some CPU special thing with it is easier than
simple trace state variables.

43

How to define
Per_cpu trace state variables have two types:

Local CPU variables

"per_cpu_"+string
or

"p_"+string

For example:

(gdb) tvariable $p_count

When access this trace state variable in tracepoint actions, it will return the
variable's value of CPU that this tracepoint actions running on.

CPU id variables

"per_cpu_"+string+CPU_id
or

"p_"+string+CPU_id

For example:

(gdb) tvariable $p_count0
(gdb) tvariable $p_count1
(gdb) tvariable $p_count2
(gdb) tvariable $p_count3

When access this trace state variable in tracepoint actions or GDB command
line, it will return the variable's value of CPU CPU_id.

Follow example can auto define a CPU id variables for each CPU of this
machine. (Please note that need let GDB connect to KGTP before use these
commands.)

(gdb) set $tmp=0
(gdb) while $tmp<$cpu_number
 >eval "tvariable $p_count%d",$tmp
 >set $tmp=$tmp+1
 >end

44

Example 1
This example define a tracepoint that count the times that call vfs_read of
each CPU.

tvariable $p_count
set $tmp=0
while $tmp<$cpu_number
 eval "tvariable $p_count%d",$tmp
 set $tmp=$tmp+1
 end
trace vfs_read
actions
 teval $p_count=$p_count+1
 end

Then you can show how many vfs_read in each CPU after "tstart":

(gdb) p $p_count0
$3 = 44802
(gdb) p $p_count1
$4 = 55272
(gdb) p $p_count2
$5 = 102085
(gdb) p $p_count3

45

Example 2
This example record stack dump of the function that close IRQ longest time of
each CPU.

set pagination off

tvariable $bt=1024
tvariable $p_count
tvariable $p_cc
set $tmp=0
while $tmp<$cpu_number
eval "tvariable $p_cc%d",$tmp
set $tmp=$tmp+1
end

tvariable $ignore_error=1

trace arch_local_irq_disable
 commands
 teval $p_count=$clock
 end
trace arch_local_irq_enable if ($p_count && $p_cc < $clock -
$p_count)
 commands
 teval $p_cc = $clock - $p_count
 collect $bt
 collect $p_cc
 teval $p_count=0
 end

enable
set pagination on

46

Special trace state variables $current_task,
$current_task_pid, $current_thread_info,
$cpu_id, $dump_stack, $printk_level,
$printk_format, $printk_tmp ,$clock,
$hardirq_count, $softirq_count and $irq_count
KGTP special trace state variables $current_task, $current_thread_info,
$cpu_id and $clock can very easy to access to some special value. You can see
them when GDB connects to the KGTP. You can use them in tracepoint
conditions or actions.

Access $current_task in tracepoint condition and action will get that returns
of get_current().

Access $current_task_pid in tracepoint condition and action will get that
returns of get_current()->pid.

Access $current_thread_info in tracepoint condition and action will get that
returns of current_thread_info().

Access $cpu_id in tracepoint condition and action will get that returns of
smp_processor_id().

Access $clock in tracepoint condition and action will get that returns of
local_clock() that return the timestamp in nanoseconds.

$rdtsc is only available on X86 and X86_64 architecture. Access it in anytime
will get current value of TSC with instruction RDTSC.

Access $hardirq_count in tracepoint condition and action will get that returns
of hardirq_count().

Access $softirq_count in tracepoint condition and action will get that returns
of softirq_count().

Access $irq_count in tracepoint condition and action will get that returns of
irq_count().

And KGTP has other special trace state variables $dump_stack, $printk_level,
$printk_format and $printk_tmp. All of them output their values directly, as
can be seen in Howto let tracepoint output value directly.

The following example counts in $c how many vfs_read calls that process
16663 does and collects the struct thread_info of current task:

(gdb) target remote /sys/kernel/debug/gtp
(gdb) trace vfs_read if (((struct task_struct *)$current_task)->pid ==
16663)
(gdb) tvariable $c

47

(gdb) actions
Enter actions for tracepoint 4, one per line.
End with a line saying just "end".
>teval $c=$c+1
>collect (*(struct thread_info *)$current_thread_info)
>end
(gdb) tstart
(gdb) info tvariables
Name Initial Current
$c 0 184
$current_task 0 <unknown>
$current_thread_info 0 <unknown>
$cpu_id 0 <unknown>
(gdb) tstop
(gdb) tfind
(gdb) p *(struct thread_info *)$current_thread_info
$10 = {task = 0xf0ac6580, exec_domain = 0xc07b1400, flags = 0,
status = 0, cpu = 1, preempt_count = 2, addr_limit = {
 seg = 4294967295}, restart_block = {fn = 0xc0159fb0
<do_no_restart_syscall>, {{arg0 = 138300720, arg1 = 11,
 arg2 = 1, arg3 = 78}, futex = {uaddr = 0x83e4d30, val = 11,
flags = 1, bitset = 78, time = 977063750,
 uaddr2 = 0x0}, nanosleep = {index = 138300720, rmtp = 0xb,
expires = 335007449089}, poll = {
 ufds = 0x83e4d30, nfds = 11, has_timeout = 1, tv_sec = 78,
tv_nsec = 977063750}}},
 sysenter_return = 0xb77ce424, previous_esp = 0, supervisor_stack
= 0xef340044 "", uaccess_err = 0}

Another example shows how much sys_read() executes in each CPU.

(gdb) tvariable $c0
(gdb) tvariable $c1
(gdb) trace sys_read
(gdb) condition $bpnum ($cpu_id == 0)
(gdb) actions
>teval $c0=$c0+1
>end
(gdb) trace sys_read
(gdb) condition $bpnum ($cpu_id == 1)
(gdb) actions
>teval $c1=$c1+1
>end
(gdb) info tvariables
Name Initial Current
$current_task 0 <unknown>
$cpu_id 0 <unknown>
$c0 0 3255

48

$c1 0 1904
sys_read() execute 3255 times in cpu0 and 1904 times in cpu1. Please note
that this example just to howto use $cpu_id. Actially, this example use per_cpu
trace state variables is better.

49

Special trace state variable $self_trace
$self_trace is different with the special trace state variables in the previous
section. It is used to control the behavior of tracepoint.

In default, when tracepoint is triggered, the actions will not execute if the
current_task is the a KGTP self process (GDB, netcat, getframe or some others
process that access to the interface of KGTP).

If you want tracepoint actions execute with any task, please include a
command access to the $self_trace in the actions i.e. add following command
to the actions:

>teval $self_trace=0

50

Trace the function return with $kret
Sometime, set the tracepoint to the end of function is hard because the Kernel
is compiled with optimization. At this time, you can get help from $kret.

$kret is a special trace state variable like $self_trace. When you set value of it
inside the action of tracepoint, this tracepoint be set with kretprobe instead of
kprobe. Then it can trace the end of this function.

Please note that this tracepoint must set in the first address of the function in
format "function_name".

Following part is an example:

#"*(function_name)" format can make certain that GDB send the
first address of function to KGTP.
(gdb) trace *vfs_read
(gdb) actions
>teval $kret=0
#Following part you can set commands that you want.

51

Use $ignore_error and $last_errno to ignore
the error of tstart
If KGTP got any error of tstart, this command will get fail.

But sometime we need ignore this error and let KGTP keep work. For
example: If you set tracepoint on the inline function spin_lock. This tracepoint
will be set to a lot of addresses that some of them cannot be set kprobe. It will
make tstart get fail. You can use "$ignore_error" ignore this error.

And the last error number will available in "$last_errno".

(gdb) tvariable $ignore_error=1
This command will open ignore.

(gdb) tvariable $ignore_error=0
This command will close ignore.

52

Use $cooked_clock and $cooked_rdtsc the time
without KGTP used
Access these two trace state variables can get the time without KGTP used.
Then we can get more close to really time that a part of code used even if the
actions of tracepoint is very complex. They will be introduce in Cookbook
(coming soon).

53

Use $xtime_sec and $xtime_nsec get the
timespec
Access these two trace state variables will return the time of day in a timespec
that use getnstimeofday.

$xtime_sec will access to the second part of a timespec.

$xtime_nsec will access to the nanosecond part of a timespec.

54

Howto backtrace (stack dump)
Each time your program performs a function call, information about the call is
generated. That information includes the location of the call in your program,
the arguments of the call, and the local variables of the function being called.
The information is saved in a block of data called a stack frame. The stack
frames are allocated in a region of memory called the call stack.

55

Collect stack with $bt and use GDB command
"backtrace"
Because this way is faster (just collect the stack when trace) and parse out
most of info inside the call stack (it can show all the stack info that I
introduce). So I suggest you use this way to do the stack dump.

First we need add the collect the stack command to the tracepoint action.

The general collect the stack command in GDB tracepoint is: In x86_32,
following command will collect 512 bytes of stack.

>collect *(unsigned char *)$esp@512

In x86_64, following command will collect 512 bytes of stack.

>collect *(unsigned char *)$rsp@512

In MIPS or ARM, following command will collect 512 bytes of stack.

>collect *(unsigned char *)$sp@512

These commands is so hard to remember, and the different arch need different
command.

KGTP have an special tracepoint trace state variable $bt. If tracepoint action
access it, KGTP will auto collect the $bt size (default value is 512) stack. For
example, this command will collect 512 bytes stack memory:

>collect $bt

If you want to change size of $bt, you can use following GDB command before
"tstart":

(gdb) tvariable $bt=1024

Following part is an example about howto collect stack and howto use GDB
parse it:

(gdb) target remote /sys/kernel/debug/gtp
(gdb) trace vfs_readdir
Tracepoint 1 at 0xffffffff8118c300: file
/home/teawater/kernel2/linux/fs/readdir.c, line 24.
(gdb) actions
Enter actions for tracepoint 1, one per line.
End with a line saying just "end".
>collect $bt
>end
(gdb) tstart
(gdb) shell ls
1 crypto fs include kernel mm
Module.symvers security System.map vmlinux
arch drivers hotcode.html init lib modules.builtin net

56

sound usr vmlinux.o
block firmware hotcode.html~ ipc Makefile modules.order
scripts source virt
(gdb) tstop
(gdb) tfind
Found trace frame 0, tracepoint 1
#0 vfs_readdir (file=0xffff8800c5556d00, filler=0xffffffff8118c4b0
<filldir>, buf=0xffff880108709f40)
 at /home/teawater/kernel2/linux/fs/readdir.c:24
24 {
(gdb) bt
#0 vfs_readdir (file=0xffff8800c5556d00, filler=0xffffffff8118c4b0
<filldir>, buf=0xffff880108709f40)
 at /home/teawater/kernel2/linux/fs/readdir.c:24
#1 0xffffffff8118c689 in sys_getdents (fd=<optimized out>,
dirent=0x1398c58, count=32768) at
/home/teawater/kernel2/linux/fs/readdir.c:214
#2 <signal handler called>
#3 0x00007f00253848a5 in ?? ()
#4 0x00003efd32cddfc9 in ?? ()
#5 0x00002c15b7d04101 in ?? ()
#6 0x000019c0c5704bf1 in ?? ()
#7 0x0000000900000000 in ?? ()
#8 0x000009988cc8d269 in ?? ()
#9 0x000009988cc9b8d1 in ?? ()
#10 0x0000000000000000 in ?? ()
(gdb) up
#1 0xffffffff8118c689 in sys_getdents (fd=<optimized out>,
dirent=0x1398c58, count=32768) at
/home/teawater/kernel2/linux/fs/readdir.c:214
214 error = vfs_readdir(file, filldir, &buf);
(gdb) p buf
$1 = {current_dir = 0x1398c58, previous = 0x0, count = 32768,
error = 0}
(gdb) p error
$3 = -9
(gdb) frame 0
#0 vfs_readdir (file=0xffff8800c5556d00, filler=0xffffffff8118c4b0
<filldir>, buf=0xffff880108709f40)
 at /home/teawater/kernel2/linux/fs/readdir.c:24
24 {

From this example, we can see some GDB commands that parse the the call
stack:

• bt is the alias of GDB commands backtrace that print a backtrace of the
entire stack: one line per frame for all frames in the stack.

• up n is move n frames up the stack. For positive numbers n, this

57

advances toward the outermost frame, to higher frame numbers, to
frames that have existed longer. n defaults to one.

• down n is move n frames down the stack. For positive numbers n, this
advances toward the innermost frame, to lower frame numbers, to
frames that were created more recently. n defaults to one. You may
abbreviate down as do.

• frame n is select frame number n. Recall that frame zero is the
innermost (currently executing) frame, frame one is the frame that
called the innermost one, and so on. The highest-numbered frame is the
one for main.

You can see that when you use up, down or frame to the different calll stack
frame, you can output the value of the arguments and local variables of
different call stack frame.

To get the more info about howto use GDB parse the call stack, please see
http://sourceware.org/gdb/current/onlinedocs/gdb/Stack.html

58

Collect stack of current function's caller with
$_ret
If you just want to collect stack of current function's caller, please use $_ret.

Please note that set the tracepoint that collect $_ret cannot in the first
address of function.

For example:

(gdb) list vfs_read
360 }
361
362 EXPORT_SYMBOL(do_sync_read);
363
364 ssize_t vfs_read(struct file *file, char __user *buf, size_t count,
loff_t *pos)
365 {
366 ssize_t ret;
367
368 if (!(file->f_mode & FMODE_READ))
369 return -EBADF;
(gdb) trace 368
Tracepoint 2 at 0xffffffff8117a244: file
/home/teawater/kernel2/linux/fs/read_write.c, line 368.
(gdb) actions
Enter actions for tracepoint 2, one per line.
End with a line saying just "end".
>collect $_ret
>end
(gdb) tstart
(gdb) tstop
(gdb) tfind
Found trace frame 0, tracepoint 2
#0 vfs_read (file=0xffff880141c46000, buf=0x359bda0 <Address
0x359bda0 out of bounds>, count=8192, pos=0xffff88012fa49f48)
 at /home/teawater/kernel2/linux/fs/read_write.c:368
368 if (!(file->f_mode & FMODE_READ))
(gdb) bt
#0 vfs_read (file=0xffff880141c46000, buf=0x359bda0 <Address
0x359bda0 out of bounds>, count=8192, pos=0xffff88012fa49f48)
 at /home/teawater/kernel2/linux/fs/read_write.c:368
#1 0xffffffff8117a3ea in sys_read (fd=<optimized out>,
buf=<unavailable>, count=<unavailable>)
 at /home/teawater/kernel2/linux/fs/read_write.c:469
Backtrace stopped: not enough registers or memory available to
unwind further
(gdb) up

59

#1 0xffffffff8117a3ea in sys_read (fd=<optimized out>,
buf=<unavailable>, count=<unavailable>)
 at /home/teawater/kernel2/linux/fs/read_write.c:469
469 ret = vfs_read(file, buf, count, &pos);
(gdb) p ret
$2 = -9

You see that the caller of function vfs_read is sys_read. And the local variable
ret of sys_read is -9.

60

Use $dump_stack to output stack dump
through printk
Because this way need parse the stack when tracing and call printk inside, so
it will be slow, unsafe, unclear and cannot access a lot of info of call stack. So I
suggest you use the prev way to do stack dump.

KGTP has special trace state variable $dump_stack, "collect" it will let Linux
Kernel output stack dump through printk.

Following example lets Linux Kernel show the stack dump of vfs_readdir:

target remote /sys/kernel/debug/gtp
trace vfs_readdir
 commands
 collect $dump_stack
 end

Then your kernel will printk like:

[22779.208064] gtp 1:Pid: 441, comm: python Not tainted 2.6.39-
rc3+ #46
[22779.208068] Call Trace:
[22779.208072] [<fe653cca>] gtp_get_var+0x4a/0xa0 [gtp]
[22779.208076] [<fe653d79>] gtp_collect_var+0x59/0xa0 [gtp]
[22779.208080] [<fe655974>] gtp_action_x+0x1bb4/0x1dc0 [gtp]
[22779.208084] [<c05b6408>] ? _raw_spin_unlock+0x18/0x40
[22779.208088] [<c023f152>] ? __find_get_block_slow+0xd2/0x160
[22779.208091] [<c01a8c56>] ? delayacct_end+0x96/0xb0
[22779.208100] [<c023f404>] ? __find_get_block+0x84/0x1d0
[22779.208103] [<c05b6408>] ? _raw_spin_unlock+0x18/0x40
[22779.208106] [<c02e0838>] ? find_revoke_record+0xa8/0xc0
[22779.208109] [<c02e0c45>] ?
jbd2_journal_cancel_revoke+0xd5/0xe0
[22779.208112] [<c02db51f>] ?
__jbd2_journal_temp_unlink_buffer+0x2f/0x110
[22779.208115] [<fe655c4c>] gtp_kp_pre_handler+0xcc/0x1c0
[gtp]
[22779.208118] [<c05b8a88>]
kprobe_exceptions_notify+0x3d8/0x440
[22779.208121] [<c05b7d54>] ?
hw_breakpoint_exceptions_notify+0x14/0x180
[22779.208124] [<c05b95eb>] ? sub_preempt_count+0x7b/0xb0
[22779.208126] [<c0227ac5>] ? vfs_readdir+0x15/0xb0
[22779.208128] [<c0227ac4>] ? vfs_readdir+0x14/0xb0
[22779.208131] [<c05b9743>] notifier_call_chain+0x43/0x60
[22779.208134] [<c05b9798>]
__atomic_notifier_call_chain+0x38/0x50
[22779.208137] [<c05b97cf>] atomic_notifier_call_chain+0x1f/0x30

61

[22779.208140] [<c05b980d>] notify_die+0x2d/0x30
[22779.208142] [<c05b71c5>] do_int3+0x35/0xa0

62

Howto let tracepoint output value
directly
In the previous parts, you may understand that to get a value from Linux
kernel, you need to use a tracepoint "collect" action to save the value to the
tracepoint frame and use the GDB command "tfind" to parse the value from
the frame data.

But we want get the value directly sometimes, so KGTP supports two ways to
output values directly.

Switch collect to output the value directly
KGTP has special trace state variables $printk_level, $printk_format and
$printk_tmp to support this function.

$printk_level: if its value is 8 (this is the default value), "collect" action will
save value to the tracepoint frame in the simple behavior.

If its value is 0-7, "collect" will output the value through "printk" directly, and
value will be the level of printk. The level is:

0 KERN_EMERG system is unusable
1 KERN_ALERT action must be taken immediately
2 KERN_CRIT critical conditions
3 KERN_ERR error conditions
4 KERN_WARNING warning conditions
5 KERN_NOTICE normal but significant condition
6 KERN_INFO informational
7 KERN_DEBUG debug-level messages

$printk_format, collect printk will output value in the format that is set by it.
The format is:

0 This is the default value.
 If the size of collect value is 1, 2, 4 or 8, it will be output as an
unsigned decimal.
 If not, it will be output as a hexadecimal string.
1 Output value in signed decimal.
2 Output value in unsigned decimal.
3 Output value in unsigned hexadecimal.
4 Output value as a string.
5 Output value as a hexadecimal string.

$printk_tmp, to output the value of global variable need set to it first.

Following example shows a count number, pid, jiffies_64 and the file name that

63

call vfs_readdir:

(gdb) target remote /sys/kernel/debug/gtp
(gdb) tvariable $c
(gdb) trace vfs_readdir
(gdb) actions
>teval $printk_level=0
>collect $c=$c+1
>collect ((struct task_struct *)$current_task)->pid
>collect $printk_tmp=jiffies_64
>teval $printk_format=4
>collect file->f_path.dentry->d_iname
>end

Then your kernel will printk like:

gtp 1:$c=$c+1=41
gtp 1:((struct task_struct *)$current_task)->pid=12085
gtp 1:$printk_tmp=jiffies_64=4322021438
gtp 1:file->f_path.dentry->d_iname=b26
gtp 1:$c=$c+1=42
gtp 1:((struct task_struct *)$current_task)->pid=12085
gtp 1:$printk_tmp=jiffies_64=4322021438
gtp 1:file->f_path.dentry->d_iname=b26

"gtp 1" means that it was output by tracepoint 1.

64

Howto use watch tracepoint
control hardware breakpoints to
record memory access
Watch tracepoint can control hardware breakpoints to record the memory
access through set some special trace state variables in its action.

Please note that watch tracepoint is just support by X86 and X86_64 now. And
dynamic watch tracepoint just can work OK in Linux 2.6.27 and newer version
because Linux 2.6.26 and older version have some IPI issues on smp support.

Trace state variables of watch tracepoint

65

Name Written by normal
tracepoint

Read by
normal
tracepoint

Written by
static
watch
tracepoint

Read by static
watch
tracepoint

Written by
dynamic watch
tracepoint

Read by
dynamic
watch
tracepoint

$watch_static Not support Not support If "teval
$watch_stat
ic=1", then
this
tracepoint
is static
watch
tracepoint.

Not support If "teval
$watch_static=1"
, then this
tracepoint is
static watch
tracepoint.

Not support

$watch_set_id When this tracepoint
want to setup a
dynamic watch
tracepoint, set a id of
a dynamic watch
tracepoint to
$watch_set_id to
point out which
dynamic watch
tracepoint you wan to
setup.

Not support Not support Not support Not support Not support

$watch_set_addr When this tracepoint
want to setup a
dynamic watch
tracepoint, set the
address of a dynamic
watch tracepoint to
$watch_set_addr to
point out which
dynamic watch
tracepoint you wan to
setup.

Not support Not support Not support Not support Not support

$watch_type When this tracepoint
want to setup a
dynamic watch
tracepoint, set the
watch type of this
dynamic watch
tracepoint to
$watch_type.
0 is exec. 1 is write. 2
is read or write.

Get the value
that this
tracepoint set
to $watch_type

Set the type
of this
watch
tracepoint.

Get the type of
this watch
tracepoint.

Set the default
type of this watch
tracepoint.

Get the type of
this watch
tracepoint
when it really
exec.

$watch_size When this tracepoint
want to setup a
dynamic watch
tracepoint, set the
watch size of this
dynamic watch
tracepoint to
$watch_size.
The size should be 1,
2, 4, 8.

Get the value
that this
tracepoint set
to $watch_size.

Set the size
of this
watch
tracepoint.

Get the size of
this watch
tracepoint.

Set the default
size of this watch
tracepoint.

Get the size of
this watch
tracepoint
when it really
exec.

$watch_start Set the address to a
dynamic watch
tracepoint(set by
$watch_set_addr or
$watch_set_id) and
let it try to start

Get the result
of this start. (It
will fail
becasue X86
just have 4
hardware

Not support Not support Not support Not support

66

work. breakpoints.)
Get 0 if
success. If < 0
is the error id.

$watch_stop Set a address to
$watch_stop will let a
dynamic watch
tracepoint that watch
in this address stop.

Get the result
of this stop.

Not support Not support Not support Not support

$watch_trace_num Not support Not support Not support Not support Not support The tracepoint
number that
setup this
dynamic watch
tracepoint.

$watch_trace_addr Not support Not support Not support Not support Not support The tracepoint
address that
setup this
dynamic watch
tracepoint.

$watch_addr Not support Not support Not support The address that
this watch
tracepoint is
watching.

Not support The address
that this watch
tracepoint is
watching.

$watch_val Not support Not support Not support The current value
of the memory
that this watch
tracepoint is
watching.

Not support The current
value of the
memory that
this watch
tracepoint is
watching.

$watch_prev_val Not support Not support Not support The previous
value of the
memory that this
watch tracepoint
is watching.

Not support The previous
value of the
memory that
this watch
tracepoint is
watching.

$watch_count Not support Not support Not support Not support Not support A special count
for this watch
tracepoint
session.

67

Static watch tracepoint
You can use static watch tracepoint when you want watch value of a global
variable or some memory that you can get its address directly. Following
example is watch jiffies_64's write:

#Static watch tracepoint get watch address from tracepoint address.
trace *&jiffies_64
 actions
 #Set this watch tracepoint to static
 teval $watch_static=1
 #Watch memory write
 teval $watch_type=1
 teval $watch_size=8
 collect $watch_val
 collect $watch_prev_val
 collect $bt
 end

68

Dynamic watch tracepoint
If you want to watch value of a local variable or some memory that you just
get get its address inside the function, you can use dynamic watch tracepoint.
Following example is watch write of f->f_pos and f->f_op inside function
get_empty_filp:

trace *1
 commands
 teval $watch_static=0
 teval $watch_type=1
 teval $watch_size=8
 collect $bt
 collect $watch_addr
 collect $watch_val
 collect $watch_prev_val
 end

Define a dynamic watch tracepoint. The address "1" of it is not the address of
memory that it will watch. It just help tracepoint that setup this dynamic
watch tracepoint can find it.

list get_empty_filp
trace 133
 commands
 teval $watch_set_addr=1
 teval $watch_size=4
 teval $watch_start=&(f->f_pos)
 teval $watch_size=8
 teval $watch_start=&(f->f_op)
 end

Define a normal tracepoint that start to watch f->f_pos and f->f_op inside
function get_empty_filp.

trace file_sb_list_del
 commands
 teval $watch_stop=&(file->f_pos)
 teval $watch_stop=&(file->f_op)
 end

Define a normal tracepoint that stop the tracepoint that watch file->f_pos and
file->f_op.

69

Use while-stepping let Linux kernel
do single step
Please note that while-stepping is just support by X86 and X86_64 now.

Video about howto use while-stepping http://www.codepark.us/a/13.

Howto use while-stepping
while-stepping is a special tracepoint action that include some actions with it.

When tracepoints that its actions include "while-stepping n" execute, it will do
n times single steps and executes the actions of while-stepping. For example:

trace vfs_read
#Because single step will make system slow, so use passcount or
condition to limit the execution times of tracepoint is better.
passcount 1
 commands
 collect $bt
 collect $step_count
 #do 2000 times single steps.
 while-stepping 2000
 #Following part is actions of "while-stepping 2000".
 #Because step maybe execute to other functions, so does not
access local variables is better.
 collect $bt
 collect $step_count
 end
 end

Please note that tracepoint will disable the interrupt of current CPU when it
do single step. Access $step_count in actions will get the count of this step
that begin with 1.

70

Read the traceframe of while-stepping
The data of different step that is recorded by while-stepping actions will be
saved in different traceframe that you can use tfind (Use tfind select the entry
inside the trace frame info) to select them.

Or you can switch KGTP to replay mode to select all the traceframe of a while-
stepping tracepoint with GDB execution and reverse-execution commands. For
example:

Use tfind select one the traceframe of a while-stepping tracepoint.

(gdb) tfind
Found trace frame 0, tracepoint 1
#0 vfs_read (file=0xffff8801f7bd4c00, buf=0x7fff74e4edb0
<Address 0x7fff74e4edb0 out of bounds>, count=16,
 pos=0xffff8801f4b45f48) at /build/buildd/linux-
3.2.0/fs/read_write.c:365
365 {

Following commands will swith KGTP to replay mode.

(gdb) monitor replay
(gdb) tfind -1
No longer looking at any trace frame
#0 vfs_read (file=0xffff8801f7bd4c00, buf=0x7fff74e4edb0
<Address 0x7fff74e4edb0 out of bounds>, count=16,
 pos=0xffff8801f4b45f48) at /build/buildd/linux-
3.2.0/fs/read_write.c:365
365 {

Then you can use execution commands.

(gdb) n
368 if (!(file->f_mode & FMODE_READ))
(gdb) p file->f_mode
$5 = 3

Set breakpoints (Just valid in replay mode, will not affect Linux kernel
execution).

(gdb) b 375
Breakpoint 2 at 0xffffffff81179b75: file /build/buildd/linux-
3.2.0/fs/read_write.c, line 375.
(gdb) c
Continuing.

Breakpoint 2, vfs_read (file=0xffff8801f7bd4c00,
buf=0x7fff74e4edb0 <Address 0x7fff74e4edb0 out of bounds>,
count=16,
 pos=0xffff8801f4b45f48) at /build/buildd/linux-
3.2.0/fs/read_write.c:375

71

375 ret = rw_verify_area(READ, file, pos, count);
(gdb) s
rw_verify_area (read_write=0, file=0xffff8801f7bd4c00,
ppos=0xffff8801f4b45f48, count=16)
 at /build/buildd/linux-3.2.0/fs/read_write.c:300
300 inode = file->f_path.dentry->d_inode;

Use reverse-execution commands.

(gdb) rs

Breakpoint 2, vfs_read (file=0xffff8801f7bd4c00,
buf=0x7fff74e4edb0 <Address 0x7fff74e4edb0 out of bounds>,
count=16,
 pos=0xffff8801f4b45f48) at /build/buildd/linux-
3.2.0/fs/read_write.c:375
375 ret = rw_verify_area(READ, file, pos, count);
(gdb) rn
372 if (unlikely(!access_ok(VERIFY_WRITE, buf, count)))

GDB commands tstart, tfind or quit can auto close the replay mode.

72

Howto show a variable whose value
has been optimized away
Sometimes, GDB will output some value like:

inode has been optimized out of existence.
res has been optimized out of existence.

That is because value of inode and res is optimized. Linux Kernel is built with
-O2 so you will get this trouble sometimes.

There are 2 ways to handle it:

Update your GCC
The VTA branch http://gcc.gnu.org/wiki/Var_Tracking_Assignments was
merged for GCC 4.5. This helps a lot with generating dwarf for previously
"optimized out" values.

73

Get the way that access the variable that has
been out through parse ASM code
Even if update the GCC to the newer version, you will still meet the issue. The
main reason is the data is inside the registers but GCC doesn't put it to debug
info. Then GDB just can output this variable has been optimized away.

But you can get where is the variable from ASM code and access it inside the
tracepoint actions.

Following is a example that find variable "f" of function get_empty_filp and use
it in tracepoint actions:

We want collect the value of "f" but looks it has been optimized away.

(gdb) list get_empty_filp
...
...
...
137 INIT_LIST_HEAD(&f->f_u.fu_list);
138 atomic_long_set(&f->f_count, 1);
139 rwlock_init(&f->f_owner.lock);
140 spin_lock_init(&f->f_lock);
141 eventpoll_init_file(f);
(gdb)
142 /* f->f_version: 0 */
143 return f;
(gdb) trace 143
Tracepoint 1 at 0xffffffff8119b30e: file fs/file_table.c, line 143.
(gdb) actions
Enter actions for tracepoint 1, one per line.
End with a line saying just "end".
>collect f
`f' is optimized away and cannot be collected.

Now use "disassemble /m" command get the ASM code and source line that
have relation with "f" and parse them.

(gdb) disassemble /m get_empty_filp
...
...
...
125 f = kmem_cache_zalloc(filp_cachep, GFP_KERNEL);
126 if (unlikely(!f))
 0xffffffff8119b28c <+92>: test %rax,%rax
 0xffffffff8119b292 <+98>: je 0xffffffff8119b362
<get_empty_filp+306>

127 return ERR_PTR(-ENOMEM);

74

 0xffffffff8119b362 <+306>: mov $0xfffffffffffffff4,%rax
 0xffffffff8119b369 <+313>: jmp 0xffffffff8119b311
<get_empty_filp+225>

Code from "+98" to "+132" is not show in this part because they belong to
other inline function. But you can get them with GDB command "disassemble
get_empty_filp".

 0xffffffff8119b287 <+87>: callq 0xffffffff81181cb0
<kmem_cache_alloc>
 0xffffffff8119b28c <+92>: test %rax,%rax
 0xffffffff8119b28f <+95>: mov %rax,%rbx
 0xffffffff8119b292 <+98>: je 0xffffffff8119b362
<get_empty_filp+306>
 0xffffffff8119b298 <+104>: mov 0xb4d406(%rip),%edx #
0xffffffff81ce86a4 <percpu_counter_batch>
 0xffffffff8119b29e <+110>: mov $0x1,%esi
 0xffffffff8119b2a3 <+115>: mov $0xffffffff81c05340,%rdi
---Type <return> to continue, or q <return> to quit---
 0xffffffff8119b2aa <+122>: callq 0xffffffff8130dd20
<__percpu_counter_add>

According to the ASM code you can see that return value of
kmem_cache_alloc is inside $rax and its value is set to $rbx.

Looks $rbx has the value of "f". Let's check other ASM code.

128
129 percpu_counter_inc(&nr_files);
130 f->f_cred = get_cred(cred);
 0xffffffff8119b2b4 <+132>: mov %r12,0x70(%rbx)

Set a value to element of f, the ASM code is set value of $r12 to a address that
base address is $rbx. It also looks like $rbx is "f".

131 error = security_file_alloc(f);
 0xffffffff8119b2b8 <+136>: mov %rbx,%rdi
 0xffffffff8119b2bb <+139>: callq 0xffffffff8128ee30
<security_file_alloc>

132 if (unlikely(error)) {
 0xffffffff8119b2c0 <+144>: test %eax,%eax
 0xffffffff8119b2c2 <+146>: jne 0xffffffff8119b36b
<get_empty_filp+315>
---Type <return> to continue, or q <return> to quit---

133 file_free(f);
134 return ERR_PTR(error);

75

 0xffffffff8119b393 <+355>: movslq -0x14(%rbp),%rax
 0xffffffff8119b397 <+359>: jmpq 0xffffffff8119b311
<get_empty_filp+225>

135 }
136
137 INIT_LIST_HEAD(&f->f_u.fu_list);
138 atomic_long_set(&f->f_count, 1);
139 rwlock_init(&f->f_owner.lock);
 0xffffffff8119b2e4 <+180>: movl $0x100000,0x50(%rbx)

140 spin_lock_init(&f->f_lock);
 0xffffffff8119b2c8 <+152>: xor %eax,%eax
 0xffffffff8119b2d1 <+161>: mov %ax,0x30(%rbx)

141 eventpoll_init_file(f);
142 /* f->f_version: 0 */
143 return f;
 0xffffffff8119b30e <+222>: mov %rbx,%rax

And after check other ASM code. You can make sure that $rbx is "f".

Then you can access "f" through access $rbx in tracepoint actions, for
example:

(gdb) trace 143
Tracepoint 1 at 0xffffffff8119b30e: file fs/file_table.c, line 143.
(gdb) actions
Enter actions for tracepoint 1, one per line.
End with a line saying just "end".
#collect f
>collect $rbx
#collect *f
>collect *((struct file *)$rbx)
#collect f->f_op
>collect ((struct file *)$rbx)->f_op
>end

76

How to get the function pointer
point to

If the debug info of the function pointer is not
optimized out
You can collect it directly and print what it point to. For example:

377 count = ret;
378 if (file->f_op->read)
379 ret = file->f_op->read(file, buf, count, pos);
(gdb)
(gdb) trace 379
Tracepoint 1 at 0xffffffff81173ba5: file
/home/teawater/kernel/linux/fs/read_write.c, line 379.
(gdb) actions
Enter actions for tracepoint 1, one per line.
End with a line saying just "end".
>collect file->f_op->read
>end
(gdb) tstart
(gdb) tstop
(gdb) tfind
(gdb) p file->f_op->read
$5 = (ssize_t (*)(struct file *, char *, size_t, loff_t *))
0xffffffff81173190 <do_sync_read>
#Then you know file->f_op->read point to do_sync_read.

77

If the debug info of the function pointer is
optimized out
You can use tracepoint step to handle it. For example:

#Find out which instrunction that it is called.
(gdb) disassemble /rm vfs_read
379 ret = file->f_op->read(file, buf, count, pos);
 0xffffffff81173ba5 <+181>: 48 89 da mov %rbx,%rdx
 0xffffffff81173ba8 <+184>: 4c 89 e9 mov %r13,%rcx
 0xffffffff81173bab <+187>: 4c 89 e6 mov %r12,%rsi
 0xffffffff81173bae <+190>: 4c 89 f7 mov %r14,%rdi
 0xffffffff81173bb1 <+193>: ff d0 callq *%rax
 0xffffffff81173bb3 <+195>: 48 89 c3 mov %rax,%rbx
(gdb) trace *0xffffffff81173bb1
Tracepoint 1 at 0xffffffff81173bb1: file
/home/teawater/kernel/linux/fs/read_write.c, line 379.
(gdb) actions
Enter actions for tracepoint 1, one per line.
End with a line saying just "end".
>while-stepping 1
 >collect $reg
 >end
>end
(gdb) tstart
(gdb) tstop
(gdb) tfind
#0 tty_read (file=0xffff88006ca74900, buf=0xb6b7dc <Address
0xb6b7dc out of bounds>, count=8176,
 ppos=0xffff88006e197f48) at
/home/teawater/kernel/linux/drivers/tty/tty_io.c:960
960 {
#Then you know file->f_op->read point to tty_read.

Please note that while-stepping will make tracepoint cannot use kprobes-
optimization.

78

/sys/kernel/debug/gtpframe and
offline debug
/sys/kernel/debug/gtpframe supplies trace frame in tfile format (GDB can
parse it) when KGTP is stop.

In the PC that can run the GDB:

Change the "target remote XXXX" to

(gdb) target remote | perl ./getgtprsp.pl

After that, set tracepoint and start it as usual:

(gdb) trace vfs_readdir
Tracepoint 1 at 0xffffffff8114f3c0: file /home/teawater/kernel/linux-
2.6/fs/readdir.c, line 24.
(gdb) actions
Enter actions for tracepoint 1, one per line.
End with a line saying just "end".
#If your GDB support tracepoint "printf" (see "Howto use tracepoint
printf"), use it to show the value directly is better.
>collect $reg
>end
(gdb) tstart
(gdb) stop
(gdb) quit

Then you can find files gtpstart and gtpstop in current directory. Copy it to the
machine that you want to debug.

In the debugged machine, copy the program "putgtprsp" and "gtp.ko" in the
KGTP directory to this machine first. After insmod the gtp.ko:

Start the tracepoint:

./putgtprsp ./gtpstart

Stop the tracepoint:

./putgtprsp ./gtpstop

You can let Linux Kernel show the value directly, please see Howto let
tracepoint output value directly.

If you want to save the value to the trace frame and parse later, you can use
file "/sys/kernel/debug/gtpframe" that has the trace frame. Copy it to the PC

79

that has GDB.

Please note that some "cp" cannot handle it very well, please use "cat
/sys/kernel/debug/gtpframe > ./gtpframe" to copy it.

In the PC that can run the GDB:

(gdb) target tfile ./gtpframe
Tracepoint 1 at 0xffffffff8114f3dc: file /home/teawater/kernel/linux-
2.6/fs/readdir.c, line 24.
Created tracepoint 1 for target's tracepoint 1 at 0xffffffff8114f3c0.
(gdb) tfind
Found trace frame 0, tracepoint 1
#0 vfs_readdir (file=0xffff880036e8f300, filler=0xffffffff8114f240
<filldir>, buf=0xffff880001e5bf38)
 at /home/teawater/kernel/linux-2.6/fs/readdir.c:24
24 {

Please note that if you want connect KGTP from GDB in remote machine after
use offline debug, you need "rmmod gtp" and "insmod gtp.ko" before call "nc".

80

How to use
/sys/kernel/debug/gtpframe_pipe
This interface supplies same format trace frame with "gtpframe". But it can
work when KGTP is running. After data is read, it will auto deleted from trace
frame like "trace_pipe" of ftrace.

81

Get the frame info with GDB
#connect to the interface
(gdb) target tfile /sys/kernel/debug/gtpframe_pipe
#Get one trace frame entry
(gdb) tfind 0
Found trace frame 0, tracepoint 1
#Get the next one
(gdb) tfind
Target failed to find requested trace frame.
(gdb) tfind 0
Found trace frame 0, tracepoint 1

This way is better to work with python to parse Kernel. add-ons/hotcode.py is
an example of python script.

82

Get the frame info with cat
sudo cat /sys/kernel/debug/gtpframe_pipe > g

Then all the trace frame will be saved in file "g".

83

Get the frame info with getframe
KGTP package include a program "getframe" can help you save the trace
frame to files.

Following part is the help of it:

getframe -h
Get the trace frame of KGTP and save them in current
directory with tfile format.
Usage: ./getframe [option]

 -g n Set the minimum free size limit to n G.
 When free size of current disk is smaller than n G,
 ./getframe will exit (-q) or wait some seconds (-w).
 The default value of it is 2 G.

 -q Quit when current disk is smaller than
 minimum free size limit (-g).

 -w n Wait n seconds when current disk is smaller
 than minimum free size limit (-g).

 -e n Set the entry number of each tfile to n.
 The default value of it is 1000.

 -h Display this information.

84

Use $pipe_trace
For the lock safe, KGTP will ignore the task that read the
/sys/kernel/debug/gtpframe_pipe in default.

If you really need trace this task, and be sure that is safe. You can use
following command before call "tstart":

(gdb) tvariable $pipe_trace=1
Then KGTP will not ignore the task that read /sys/kernel/debug/gtpframe_pipe.

85

Use KGTP with user applications
KGTP can access the memory and trace user applications without stop it.

Let GDB connect KGTP for user applications
1) Open GDB without load any user applications.

2) If user applications is running on the current machine, use GDB command
"target extended-remote /sys/kernel/debug/gtp" connect to KGTP. If user
applications is running on the remote machine, use netcat like GDB on remote
machine but replace "target remote" to "target extended-remote".

3) Load user applications (it must be built with GCC option "-g" to make it has
debug information) with GDB command "file".

4) Use GDB command "attach pid" to attach the task's pid.

Then let GDB connect KGTP for user applications should be:

sudo gdb-release
(gdb) target extended-remote /sys/kernel/debug/gtp
Remote debugging using /sys/kernel/debug/gtp
0x00000000 in ?? ()
(gdb) file a.out
A program is being debugged already.
Are you sure you want to change the file? (y or n) y
Reading symbols from /home/teawater/kernel/kgtp/a.out...done.
(gdb) attach 15412
A program is being debugged already. Kill it? (y or n) y
Attaching to program: /home/teawater/kernel/kgtp/a.out, Remote
target
Some version of GDB will output internal-error, please answer "n"
to ignore it.

86

Read memory of user applications directly
After GDB attach the user applications success, you can access the memory of
this task with GDB commands "p" and "x". You can get help of these
commands with GDB commands "help p" and "help x". For example:

(gdb) p c
$19 = 4460
(gdb) p &c
$21 = (int *) 0x601048 <c>
(gdb) x 0x601048
0x601048 <c>: 0x00001181

87

Trace user applications
KGTP use uprobes function of Linux kernel trace user applications, just Linux
kernel 3.9 and later version support this function.

The build config of most Linux distributions's Linux kernel (3.9 and later) has
opened uprobes.

For the Linux kernel that built by yourself:

Kernel hacking --->
 [*] Tracers --->
 [*] Enable uprobes-based dynamic events

If current Linux kernel uprobes is opened, you can set tracepoint according
to GDB tracepoint after GDB attach the user applications success. For
example:

(gdb) trace 14
Tracepoint 1 at 0x400662: file /home/teawater/kernel/kgtp-
misc/test.c, line 14.
(gdb) actions
Enter actions for tracepoint 1, one per line.
End with a line saying just "end".
>collect $bt
>collect c
>end
(gdb) tstart
(gdb) tstatus
Trace is running on the target.
Collected 5 trace frames.
Trace buffer has 20824428 bytes of 20828160 bytes free (0% full).
Trace will stop if GDB disconnects.
Not looking at any trace frame.
(gdb) tstop
(gdb) tfind
Found trace frame 0, tracepoint 1
#0 main (argc=1, argv=0x7fff5e878368, envp=0x7fff5e878378)
at /home/teawater/kernel/kgtp-misc/test.c:14
14 c += 1;
(gdb) bt
#0 main (argc=1, argv=0x7fff5e878368, envp=0x7fff5e878378)
at /home/teawater/kernel/kgtp-misc/test.c:14
(gdb) p c
$7 = 36

Please note that even if you just attch one of these tasks, user applications's
tracepoint will be triggered by all tasks of a user application. (I think this is a
very interesting feature of uprobe, so I didn't limit it in KGTP tracepoint.)

88

You can add $current_task_pid check to conditions of tracepoint to make
tracepoint just be triggered by one of this task. Following example is set a
tracepoint that just for task 985:

(gdb) trace 14
Tracepoint 1 at 0x400662: file /home/teawater/kernel/kgtp-
misc/test.c, line 14.
(gdb) condition $bpnum ($current_task_pid == 985)

And you can "collect $current_task_pid" in tracepoint actions to make sure
which task triggers the tracepint. For example:

(gdb) trace 14
Tracepoint 2 at 0x400662: file /home/teawater/kernel/kgtp-
misc/test.c, line 14.
(gdb) actions
Enter actions for tracepoint 2, one per line.
End with a line saying just "end".
>collect $current_task_pid
>collect c
>end
(gdb) tstart
(gdb) tstatus
Trace is running on the target.
Collected 6 trace frames.
Trace buffer has 20827776 bytes of 20828160 bytes free (0% full).
Trace will stop if GDB disconnects.
Not looking at any trace frame.
(gdb) tstop
(gdb) tfind
Found trace frame 0, tracepoint 2
#0 main (argc=<unavailable>, argv=<unavailable>,
envp=<unavailable>) at /home/teawater/kernel/kgtp-misc/test.c:14
14 c += 1;
(gdb) p $current_task_pid
$2 = 9983
(gdb) tfind
Found trace frame 1, tracepoint 2
14 c += 1;
(gdb) p $current_task_pid
$3 = 9982
(gdb)

89

collect stack (for backtrace) of system from
Linux kernel to user applications in tracepoint
$current is a special trace state variable that if the action of an tracepoint
access it, this tracepint will access the values of the registers and the memory
of current task instead of Linux kernel.

In general, the tracepoint will get the registers value of current task from
task_pt_regs. Then collect $current in tracepoint actions will let this
tracepoint access values of current task. For example:

(gdb) actions
Enter actions for tracepoint 1, one per line.
End with a line saying just "end".
>collect $current
>collect $bt
>end

In addition, for some special function that its arguments include the pointer to
the registers(for example: do_IRQ function of X86), tracepoint need get the
registers from the arguments of fuction. Then set the pointer to $current will
let this tracepoint get it. For example:

(gdb) actions
Enter actions for tracepoint 1, one per line.
End with a line saying just "end".
>teval $current=(uint64_t)regs
>collect $bt
>end

$current_task_user is a special trace state variable that it is value will be
true when current task is in user mode.

With these two trace state variables, you can use KGTP collect the
stack(backtrace) of current task.

Following example show how we do backtrace(stack dump) from user space to
Linux kernel:

#Connect to KGTP(same with prev section)
(gdb) target extended-remote /sys/kernel/debug/gtp
#Setup an tracepoint that collect the user space stack of task 18776.
(gdb) trace vfs_read
Tracepoint 1 at 0xffffffff8117a3d0: file
/home/teawater/kernel/linux/fs/read_write.c, line 365.
(gdb) condition 1 ($current_task_user && $current_task_pid ==
18776)
(gdb) actions
Enter actions for tracepoint 1, one per line.

90

End with a line saying just "end".
>collect $current
>collect $bt
>end
#Setup a tracepoint that collect kernel space stack of task 18776.
(gdb) trace vfs_read
Note: breakpoint 1 also set at pc 0xffffffff8117a3d0.
Tracepoint 2 at 0xffffffff8117a3d0: file
/home/teawater/kernel/linux/fs/read_write.c, line 365.
(gdb) condition 2 ($current_task_user && $current_task_pid ==
18776)
(gdb) actions
Enter actions for tracepoint 2, one per line.
End with a line saying just "end".
>collect $bt
>end
(gdb) tstart
(gdb) tstop
#Following part is same with prev section, add a new inferior to
parse info of the user space program.
(gdb) add-inferior
Added inferior 2
(gdb) inferior 2
[Switching to inferior 2 [<null>] (<noexec>)]
(gdb) file gdb
Reading symbols from /usr/local/bin/gdb...done.
(gdb) attach 18776
#tracepoint 1 collect the user space stack.
(gdb) tfind
Found trace frame 0, tracepoint 1
#0 0x00007f77331d7d0f in __read_nocancel () from /lib/x86_64-
linux-gnu/libpthread.so.0
#This is the user space backtrace of task 18776.
(gdb) bt
#0 0x00007f77331d7d0f in __read_nocancel () from /lib/x86_64-
linux-gnu/libpthread.so.0
#1 0x000000000078e145 in rl_callback_read_char () at
../../src/readline/callback.c:201
#2 0x000000000069de79 in rl_callback_read_char_wrapper
(client_data=<optimized out>) at ../../src/gdb/event-top.c:169
#3 0x000000000069ccf8 in process_event () at ../../src/gdb/event-
loop.c:401
#4 process_event () at ../../src/gdb/event-loop.c:351
#5 0x000000000069d448 in gdb_do_one_event () at
../../src/gdb/event-loop.c:465
#6 0x000000000069d5d5 in start_event_loop () at
../../src/gdb/event-loop.c:490
#7 0x0000000000697083 in captured_command_loop

91

(data=<optimized out>) at ../../src/gdb/main.c:226
#8 0x0000000000695d8b in catch_errors (func=0x697070
<captured_command_loop>, func_args=0x0, errstring=0x14df99e
"",
 mask=6) at ../../src/gdb/exceptions.c:546
#9 0x00000000006979e6 in captured_main (data=<optimized
out>) at ../../src/gdb/main.c:1001
#10 0x0000000000695d8b in catch_errors (func=0x697360
<captured_main>,
 func@entry=<error reading variable: PC not available>,
func_args=0x7fff08afd5b0,
 func_args@entry=<error reading variable: PC not available>,
errstring=<unavailable>,
 errstring@entry=<error reading variable: PC not available>,
mask=<unavailable>,
 mask@entry=<error reading variable: PC not available>) at
../../src/gdb/exceptions.c:546
#11 <unavailable> in ?? ()
Backtrace stopped: not enough registers or memory available to
unwind further
#The tracepoint 2 collect the kernel space stack. So swith to
inferior 1 that load the kernel debug info.
(gdb) tfind
Found trace frame 1, tracepoint 2
#0 0xffffffff8117a3d0 in ?? ()
(gdb) inferior 1
[Switching to inferior 1 [Remote target]
(/home/teawater/kernel/b/vmlinux)]
[Switching to thread 1 (Remote target)]
#0 vfs_read (file=0xffff88021a559500, buf=0x7fff08afd31f
<Address 0x7fff08afd31f out of bounds>, count=1,
 pos=0xffff8800c47e1f48) at
/home/teawater/kernel/linux/fs/read_write.c:365
365 {
#This is the backtrace of kernel stack.
(gdb) bt
#0 vfs_read (file=0xffff88021a559500, buf=0x7fff08afd31f
<Address 0x7fff08afd31f out of bounds>, count=1,
 pos=0xffff8800c47e1f48) at
/home/teawater/kernel/linux/fs/read_write.c:365
#1 0xffffffff8117a59a in sys_read (fd=<optimized out>,
buf=0x7fff08afd31f <Address 0x7fff08afd31f out of bounds>,
 count=1) at /home/teawater/kernel/linux/fs/read_write.c:469
#2 <signal handler called>
#3 0x00007f77331d7d10 in ?? ()
#4 0x0000000000000000 in ?? ()

92

How to use add-ons/hotcode.py
This script can show the hottest code line in the Linux kernel or user space
program through parse and record the pc address in the interrupt handler.

Please goto http://code.google.com/p/kgtp/wiki/hotcode see howto use it.

93

How to add plugin in C
KGTP support plugin that write in C. The plugin will be built as LKM

API
#include "gtp.h"

This header file include the API that plugin need.

extern int gtp_plugin_mod_register(struct module *mod);
extern int gtp_plugin_mod_unregister(struct module *mod);

These two functions register and unregister the plugin module. Then when
KGTP will add module usage count when it access the resource of the plugin
module.

extern struct gtp_var *gtp_plugin_var_add(char *name, int64_t val,
 struct gtp_var_hooks *hooks);

This function add special trace state variable to the KGTP.

• name is the name of special trace state variable.

• val is initialization value of special trace state variable.

• hooks is the function pointers. The function pointers can be set to
NULL if this function doesn't support.

• Return the gtp_var pointer if success. Get error will return error code
that IS_ERR and PTR_ERR can handle.

struct gtp_var_hooks {
 int (*gdb_set_val)(struct gtp_trace_s *unused, struct gtp_var
*var,
 int64_t val);
 int (*gdb_get_val)(struct gtp_trace_s *unused, struct gtp_var
*var,
 int64_t *val);
 int (*agent_set_val)(struct gtp_trace_s *gts, struct gtp_var
*var,
 int64_t val);
 int (*agent_get_val)(struct gtp_trace_s *gts, struct gtp_var
*var,
 int64_t *val);
};

• gdb_set_val will be called when GDB set the value of TSV. Please note
that TSV just can be set by GDB command "tvariable $xxx=1" and the

94

value just be sent to KGTP when GDB command "tstart".

◦ unused is unused. Just to make this pointer can share function with
agent_set_val.

◦ var is the pointer that point to the gtp_var pointer. Then function of
plugin can use it to figure out which TSV is accessed when TSVs
share the function.

◦ val is the value that GDB set.

◦ Return return -1 if error. return 0 if success.

• gdb_get_val will be called when GDB get the value of TSV. Please note
that TSV get is different with TSV set. It can be gotten from KGTP
anytime. And get its value just like get the value of GDB internal value.
For example: "p $xxx".

◦ unused is same with gdb_set_val.

◦ var is same with gdb_set_val.

◦ val is the pointer that use to return value.

◦ Return is same with gdb_set_val.

• agent_set_val will be called when tracepoint action(teval expr1,
expr2, ...) set the value of TSV.

◦ gts is pointer to the tracepoint session struct.

◦ var is same with gdb_set_val.

◦ val is the value the action set.

◦ Return is same with gdb_set_val.

• agent_get_val will be called when tracepoint action(collect expr1,
expr2, ... or teval expr1, expr2, ...) get the value of TSV.

◦ gts is same with agent_set_val.

◦ var is same with gdb_set_val.

◦ val is same with gdb_get_val.

◦ Return is same with gdb_set_val.

extern int gtp_plugin_var_del(struct gtp_var *var);
When rmmod the plugin module, use this function remove the TSV that
gtp_plugin_var_add add.

95

Example
plugin_example.c that in the KGTP directory is the example for KGTP plugin.
You can use "make P=1" build it. It add 4 TSV to KGTP.

• $test1 support nothing.

• $test2 support be get and set by GDB or tracepoint action.

• $test3 just support tracepoint action set. When set a value to it, it will
look up a kernel symbol of this value and print it. For example "teval
$test3=(int64_t)$rip".

• $test4 just support tracepoint action set. When set a value to it, it will
look up a kernel symbol of current tracepoint address and print it.

96

How to use
• insmod KGTP module according to Insmod the KGTP module.

• insmod plugin_example.ko

• Use GDB connect to KGTP and use it.

• Disconnect GDB. If option in Do not stop tracepoint when the GDB
disconnects set to on, set it to off.

• rmmod plugin_example.ko

Please note that KGTP support add more than one plugin.

97

How to use performance counters
Performance counters are special hardware registers available on most
modern CPUs. These registers count the number of certain types of hw
events: such as instructions executed, cachemisses suffered, or branches mis-
predicted - without slowing down the kernel or applications. These registers
can also trigger interrupts when a threshold number of events have passed -
and can thus be used to profile the code that runs on that CPU.

The Linux Performance Counter subsystem called perf event can get the value
of performance counter. You can access it through KGTP perf event trace state
variables.

Please goto read the file tools/perf/design.txt in Linux Kernel to get more info
about perf event.

98

Define a perf event trace state variable
Access an performance counter need define following trace state variable:

"pe_cpu_"+tv_name Define the the CPU id of the performance
counter.
"pe_type_"+tv_name Define the the type of the performance
counter.
"pe_config_"+tv_name Define the the config of the performance
counter.
"pe_en_"+tv_name This the switch to enable or disable the
performance counter.
 The performance counter is disable in default.
"pe_val_"+tv_name Access this variable can get the value of the
performance counter.

99

Define a per_cpu perf event trace state variable
Define a per_cpu perf event trace state variable is same with define Per_cpu
trace state variables.

"p_pe_"+perf_event type+string+CPU_id
Please note that if you define a per_cpu perf event trace state variable, you
will not need define the cpu id("pe_cpu") because KGTP already get it.

100

The perf event type and config
The type of perf event can be:

0 PERF_TYPE_HARDWARE
1 PERF_TYPE_SOFTWARE
2 PERF_TYPE_TRACEPOINT
3 PERF_TYPE_HW_CACHE
4 PERF_TYPE_RAW
5 PERF_TYPE_BREAKPOINT

If the type is 0(PERF_TYPE_HARDWARE), the config can be:

0 PERF_COUNT_HW_CPU_CYCLES
1 PERF_COUNT_HW_INSTRUCTIONS
2 PERF_COUNT_HW_CACHE_REFERENCES
3 PERF_COUNT_HW_CACHE_MISSES
4 PERF_COUNT_HW_BRANCH_INSTRUCTIONS
5 PERF_COUNT_HW_BRANCH_MISSES
6 PERF_COUNT_HW_BUS_CYCLES
7 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
8 PERF_COUNT_HW_STALLED_CYCLES_BACKEND

If the type is 3(PERF_TYPE_HW_CACHE), the config need to divide to 3 parts:
First one is cache id, it need be << 0 before set to config:

0 PERF_COUNT_HW_CACHE_L1D
1 PERF_COUNT_HW_CACHE_L1I
2 PERF_COUNT_HW_CACHE_LL
3 PERF_COUNT_HW_CACHE_DTLB
4 PERF_COUNT_HW_CACHE_ITLB
5 PERF_COUNT_HW_CACHE_BPU

Second one is cache op id, it need be << 8 before set to config:

0 PERF_COUNT_HW_CACHE_OP_READ
1 PERF_COUNT_HW_CACHE_OP_WRITE
2 PERF_COUNT_HW_CACHE_OP_PREFETCH

Last one is cache op result id, it need be << 16 before set to config:

0 PERF_COUNT_HW_CACHE_RESULT_ACCESS
1 PERF_COUNT_HW_CACHE_RESULT_MISS

If you want get the perf count of PERF_COUNT_HW_CACHE_L1I(1),
PERF_COUNT_HW_CACHE_OP_WRITE(1) and
PERF_COUNT_HW_CACHE_RESULT_MISS(1), you can use:

101

(gdb) tvariable $pe_config_cache=1 | (1 << 8) | (1 << 16)
tools/perf/design.txt in Linux Kernel have more info about type and config of
perf event.

102

Enable and disable all the perf event in a CPU
with $p_pe_en
I think the best way that count a part of code with performance counters is
enable all the count in the begin of the code and disable all of them in the end.
You can do it with "pe_en". But if you have a lot of perf event trace state
variables. That will make the tracepoint action very big. $p_pe_en is for this
issue. You can enable all the perf event trace state variables in current CPU
with following action:

>teval $p_pe_en=1

Disable them with set $p_pe_en to 0.

>teval $p_pe_en=0

103

GDB scripts to help with set and get the perf
event trace state variables
Following is a GDB script define two commands dpe and spe to help define
and show the perf event trace state variables.

You can put it to the ~/.gdbinit or your tracepoint script. Then you can use
this two commands in GDB directly.

define dpe
 if ($argc < 2)
 printf "Usage: dpe pe_type pe_config [enable]\n"
 end
 if ($argc >= 2)
 eval "tvariable $p_pe_val_%d%d_c",$arg0, $arg1
 eval "tvariable $p_pe_en_%d%d_c",$arg0, $arg1
 set $tmp=0
 while $tmp<$cpu_number
 eval "tvariable $p_pe_type_%d%d_c%d=%d",$arg0, $arg1, $tmp,
$arg0
 eval "tvariable $p_pe_config_%d%d_c%d=%d",$arg0, $arg1,
$tmp, $arg1
 eval "tvariable $p_pe_val_%d%d_c%d=0",$arg0, $arg1, $tmp
 if ($argc >= 3)
 eval "tvariable $p_pe_en_%d%d_c%d=%d",$arg0, $arg1, $tmp,
$arg2
 end
 set $tmp=$tmp+1
 end
 end
end

document dpe
Usage: dpe pe_type pe_config [enable]
end

define spe
 if ($argc != 2 && $argc != 3)
 printf "Usage: spe pe_type pe_config [cpu_id]\n"
 end
 if ($argc == 2)
 set $tmp=0
 while $tmp<$cpu_number
 eval "printf \"$p_pe_val_%%d%%d_c%%d=%%ld\\n\",$arg0,
$arg1, $tmp, $p_pe_val_%d%d_c%d", $arg0, $arg1, $tmp
 set $tmp=$tmp+1
 end

104

 end
 if ($argc == 3)
 eval "printf \"$p_pe_val_%%d%%d_c%%d=%%ld\\n\",$arg0, $arg1,
$tmp, $p_pe_val_%d%d_c%d", $arg0, $arg1, $arg2
 end
end

document spe
Usage: spe pe_type pe_config [cpu_id]
end

Following is an example to use it get the performance counters of function
tcp_v4_rcv:

#Connect to KGTP
(gdb) target remote /sys/kernel/debug/gtp
#Define 3 pe tvs for PERF_COUNT_HW_CPU_CYCLES,
PERF_COUNT_HW_CACHE_MISSES and
PERF_COUNT_HW_BRANCH_MISSES.
(gdb) dpe 0 0
(gdb) dpe 0 3
(gdb) dpe 0 5
#enable the performance counters of this CPU in the begin of this
function.
(gdb) trace tcp_v4_rcv
(gdb) action
>teval $p_pe_en=1
>end
#$kret make this hanler the end of function tcp_v4_rcv.
(gdb) trace *(tcp_v4_rcv)
(gdb) action
>teval $kret=0
#disable all performance counters of this CPU
>teval $p_pe_en=0
#Access the per cpu perf event tv will access to the current cpu pe
tv.
>collect $p_pe_val_00_0
>collect $p_pe_val_03_0
>collect $p_pe_val_05_0
#Set all the pe tv to 0
>teval $p_pe_val_00_0=0
>teval $p_pe_val_03_0=0
>teval $p_pe_val_05_0=0
>end
tstart
#Wait some time that current pc receive some tcp package.
(gdb) tstop
(gdb) tfind

105

(gdb) spe 0 0 $cpu_id
$p_pe_val_00_2=12676
(gdb) spe 0 3 $cpu_id
$p_pe_val_03_2=7
(gdb) spe 0 5 $cpu_id
$p_pe_val_05_2=97

106

Appendix A Preparatory
work before use KGTP

Linux kernel

If your system use the Linux kernel that is built
by yourself
To use KGTP, your Linux kernel need open following options:

General setup --->
 [*] Kprobes

[*] Enable loadable module support --->

Kernel hacking --->
 [*] Debug Filesystem
 [*] Compile the kernel with debug info

Please rebuild your Linux kernel if you change any options of the config.

107

If use with Linux kernel of Android
The default Linux kernel config of Android should not support KGTP. To use
KGTP, Linux kernel of Android need open following options:

[*] Enable loadable module support --->
General setup --->
 [*] Prompt for development and/or incomplete code/drivers
 [*] Kprobes
Kernel hacking --->
 [*] Debug Filesystem
 [*] Compile the kernel with debug info

Please rebuild your Linux kernel if you change any options of the Linux kernel
config.

108

If your system use the Linux kernel from
distribution
You need install some Linux kernel package.

Ubuntu

The standard method of install the Linux kernel debug
image

1) Add debug source to the sources list of Ubuntu.

Create an /etc/apt/sources.list.d/ddebs.list by running the following line at a
terminal:

echo "deb http://ddebs.ubuntu.com $(lsb_release -cs) main restricted
universe multiverse" | \
sudo tee -a /etc/apt/sources.list.d/ddebs.list

Stable releases (not alphas and betas) require three more lines adding to the
same file, which is done by the following terminal command:

echo "deb http://ddebs.ubuntu.com $(lsb_release -cs)-updates main
restricted universe multiverse
deb http://ddebs.ubuntu.com $(lsb_release -cs)-security main
restricted universe multiverse
deb http://ddebs.ubuntu.com $(lsb_release -cs)-proposed main
restricted universe multiverse" | \
sudo tee -a /etc/apt/sources.list.d/ddebs.list

Import the debug symbol archive signing key:

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys
428D7C01

Then run:

sudo apt-get update

2) Get Linux kernel debug image

sudo apt-get install linux-image-$(uname -r)-dbgsym

Then you can find Linux kernel debug image in "/usr/lib/debug/boot/vmlinux-$
(uname -r)".

Please note that this step Get Linux kernel debug image need do again
when Linux kernel update.

109

The second method of install the Linux kernel debug image

If you got some trouble with the standard method, please use following
commands to install the Linux kernel debug image.

wget http://ddebs.ubuntu.com/pool/main/l/linux/linux-image-$(uname
-r)-dbgsym_$(dpkg -s linux-image-$(uname -r) | grep ^Version: | sed
's/Version: //')_$(uname -i | sed 's/x86_64/amd64/').ddeb
sudo dpkg -i linux-image-$(uname -r)-dbgsym_$(dpkg -s linux-image-
$(uname -r) | grep ^Version: | sed 's/Version: //')_$(uname -i | sed
's/x86_64/amd64/').ddeb

Please note that this method need do again when Linux kernel update.

Install the Linux kernel headers

sudo apt-get install linux-headers-generic

Install the Linux kernel source

New way

Install package that we need:

sudo apt-get install dpkg-dev

Get the Linux kernel source:

apt-get source linux-image-$(uname -r)
Then you can find Linux kernel directory in current directory.

Move this directory to "/build/buildd/".

Old way

Install the source package:

sudo apt-get install linux-source

Uncompress the source package:

sudo mkdir -p /build/buildd/
sudo tar vxjf /usr/src/linux-source-$(uname -r | sed 's/-.*//').tar.bz2
-C /build/buildd/
sudo rm -rf /build/buildd/linux-$(uname -r | sed 's/-.*//')
sudo mv /build/buildd/linux-source-$(uname -r | sed 's/-.*//')
/build/buildd/linux-$(uname -r | sed 's/-.*//')

Please note that this step Install the Linux kernel source need do again
when Linux kernel update.

110

Fedora

Install the Linux kernel debug image

Use following command:

sudo debuginfo-install kernel

Or:

sudo yum --enablerepo=fedora-debuginfo install kernel-debuginfo

Then you can find Linux kernel debug image in "/usr/lib/debug/lib/modules/$
(uname -r)/vmlinux".

Install the Linux kernel devel package

sudo yum install kernel-devel-$(uname -r)

Please note that after update the Linux kernel package, you may need to call
this command.

111

Make sure current Linux kernel debug image is
right
GDB open the right Linux kernel debug image is an very important because
GDB will get the debug info and address info from it. So before you use KGTP,
please do the check to make sure about it.

There are 2 ways to do the check, what I suggest is do both of them to make
sure Linux kernel debug image is right.

Please note that if you determine you use the right Linux kernel debug image,
but cannot pass these ways. Please see Handle the issue that Linux kernel
debug image's address info is not same with Linux kernel when it running.

Where is the current Linux kernel debug image
In UBUNTU, you can find it in "/usr/lib/debug/boot/vmlinux-$(uname -r)".

In Fedora, you can find it in "/usr/lib/debug/lib/modules/$(uname -r)/vmlinux".

If you build Linux kernel with yourself, file "vmlinux" in the Linux kernel build
directory is the debug image.

112

Use /proc/kallsyms
In the system that its Linux kernel is what you want to trace, use following
command to get the address of sys_read and sys_write:

sudo cat /proc/kallsyms | grep sys_read
ffffffff8117a520 T sys_read
sudo cat /proc/kallsyms | grep sys_write
ffffffff8117a5b0 T sys_write

Then we can get that the address of sys_read is 0xffffffff8117a520 and the
address of sys_write is 0xffffffff8117a5b0.

After that use GDB get address of sys_read and sys_write from Linux kernel
debug image:

gdb ./vmlinux
(gdb) p sys_read
$1 = {long int (unsigned int, char *, size_t)} 0xffffffff8117a520
<sys_read>
(gdb) p sys_write
$2 = {long int (unsigned int, const char *, size_t)} 0xffffffff8117a5b0
<sys_write>

The address of sys_read and sys_write is same, so the Linux kernel debug
image is right.

113

Use linux_banner
sudo gdb ./vmlinux
(gdb) p linux_banner
$1 = "Linux version 3.4.0-rc4+ (teawater@teawater-
Precision-M4600) (gcc version 4.6.3 (GCC)) #3 SMP Tue Apr
24 13:29:05 CST 2012\n"

This linux_banner is the kernel info inside the Linux kernel debug image.

After that, connect to KGTP following the way in Make GDB connect to gtp
connect to KGTP and print linux_banner again.

(gdb) target remote /sys/kernel/debug/gtp
Remote debugging using /sys/kernel/debug/gtp
0x0000000000000000 in irq_stack_union ()
(gdb) p linux_banner
$2 = "Linux version 3.4.0-rc4+ (teawater@teawater-Precision-
M4600) (gcc version 4.6.3 (GCC)) #3 SMP Tue Apr 24 13:29:05 CST
2012\n"

This linux_banner is the kernel info that Linux kernel that KGTP is tracing. If it
is same with the prev kernel info, the Linux kernel debug image is right.

114

Handle the issue that Linux kernel debug
image's address info is not same with Linux
kernel when it running
In X86_32, you will found that the Linux kernel debug image's address info is
not same with Linux kernel when it running through the ways in Make sure
current Linux kernel debug image is right. And you determine the Linux
kernel debug image is right.

This issue is because:

Processor type and features --->
 (0x1000000) Physical address where the kernel is loaded
 (0x100000) Alignment value to which kernel should be aligned

The values of these two options are different. Please note that the "Physical
address where the kernel is loaded" is not showed in config sometimes. You
can get its value through search "PHYSICAL_START".

You can handle this issue through change "Alignment value to which kernel
should be aligned" same with "Physical address where the kernel is loaded".

This issue doesn't affect X86_64.

115

Get KGTP

Get KGTP through http
Please goto https://github.com/teawater/kgtp/archive/master.zip get the
upstream version of KGTP.

Please goto https://github.com/teawater/kgtp/archive/release.zip get the last
release of KGTP.

116

https://github.com/teawater/kgtp/archive/release.zip
https://github.com/teawater/kgtp/archive/master.zip

Get KGTP through git
Following command will get the upstream version of KGTP:

git clone https://github.com/teawater/kgtp.git

Following command will get the last release version of KGTP:

git clone https://github.com/teawater/kgtp.git -b release

117

Mirrors
https://code.csdn.net/teawater/kgtp

https://www.gitshell.com/teawater/kgtp/

https://git.oschina.net/teawater/kgtp

118

https://git.oschina.net/teawater/kgtp
https://www.gitshell.com/teawater/kgtp/
https://code.csdn.net/teawater/kgtp

Config KGTP
Following part is the default config of KGTP inside the Makefile. With this
config, KGTP will build together with current kernel that running on this
machine.

KERNELDIR := /lib/modules/`uname -r`/build
CROSS_COMPILE :=

KERELDIR is set to the directory which holds the kernel you want to build for.
By default, it is set to the kernel that you are running.

Please note that this directory should be Linux kernel build directory or linux-
headers directory but not the source directory but not the Linux kernel source
directory. And the Linux kernel build directory should be used after build
successful.

CROSS_COMPILE is set to the prefix name of compiler that you want to build
KGTP. Empty to compile with your default compiler.

ARCH is the architecture.

Or you can choose which kernel you want build with and which compiler you
want use by change Makefile.

For example:

KERNELDIR := /home/teawater/kernel/bamd64
CROSS_COMPILE :=x86_64-glibc_std-
ARCH := x86_64

KERNELDIR is set to /home/teawater/kernel/bamd64. Compiler will use
x86_64-glibc_std-gcc.

119

Compile KGTP

Normal compile
cd kgtp/
make

In some build environment (for example Android) will get some error with
user space program getmod or getframe. Please ignore this error and use the
gtp.ko in this directory.

If you get error message "/usr/bin/ld: cannot find -lc" in Fedora, please use
following command handle it.

sudo yum install glibc-static

120

Compile KGTP with some special config
Most of time, KGTP can auto select right options to build with Various versions
of Linux kernel.

But if you want config special options with yourself, you can read following
part:

With this option, KGTP will not auto select any build options.

make AUTO=0

With this option, KGTP will use simple frame instead of KGTP ring buffer.

The simple frame doesn't support gtpframe_pipe. It just for debug KGTP.

make AUTO=0 FRAME_SIMPLE=1

With this option, $clock will return rdtsc value instead of local_clock.

make AUTO=0 CLOCK_CYCLE=1

With this option, KGTP will use procfs instead of debugfs.

make AUTO=0 USE_PROC=1

The options can use together, for example:

make AUTO=0 FRAME_SIMPLE=1 CLOCK_CYCLE=1

121

Install and uninstall KGTP
KGTP don't need to be install because it can insmod directly inside its
directory (See Insmod the KGTP module). But if you need, you can install it to
your system.

Install:

cd kgtp/
sudo make install

Uninstall:

cd kgtp/
sudo make uninstall

122

Use KGTP with DKMS
You can use KGTP with DKMS if you want it.

Following commands will copy the files of KGTP to the directory that DKMS
need.

cd kgtp/
sudo make dkms

Then you can use DKMS commands to control KGTP. Please goto
http://linux.dell.com/dkms/manpage.html to see how to use DKMS.

123

Use KGTP patch for Linux kernel
Most of time, you don't need KGTP patch because KGTP can build as a LKM
and very easy to use. But to help some people include KGTP to them special
Linux Kernel tree, KGTP supply patches for Linux kernel.

In the KGTP directory:

• gtp_3.7_to_upstream.patch is the patch for Linux kernel from 3.7 to
upstream.

• gtp_3.0_to_3.6.patch is the patch for Linux kernel from 3.0 to 3.6.

• gtp_2.6.39.patch is the patch for Linux kernel 2.6.39.

• gtp_2.6.33_to_2.6.38.patch is the patch for Linux kernel from 2.6.33
to 2.6.38.

• gtp_2.6.20_to_2.6.32.patch is the patch for Linux kernel from 2.6.20
to 2.6.32.

• gtp_older_to_2.6.19.patch is the patch for Linux kernel 2.6.19 and
older version.

124

Install GDB for KGTP
The GDB that older than 7.6 have some bugs of tracepoint. And some
functions of GDB are not very well.

So if your GDB is older than 7.6 please go to https://code.google.com/p/gdbt/
to get howto install GDB for KGTP. It supplies sources of UBUBTU, CentOS,
Fedora, Mandriva, RHEL, SLE, openSUSE. Also have static binary for others.

If you have issue about GDB please get help according to Get help or report
issues about KGTP.

125

Appendix B How to let
GDB connect to KGTP

To use KGTP function need let GDB connect to KGTP first.

Normal Linux

Insmod the KGTP module
If you have installed KGTP in your system, you can:

sudo modprobe gtp

Or you can use the kgtp module in the directory.

cd kgtp/
sudo insmod gtp.ko

126

Handle the issue that cannot find
"/sys/kernel/debug/gtp"
If you got this issue, please make sure "Debug Filesystem" is opened in your
kernel config first. Please goto If your system use the Linux kernel that is
built by yourself see how to open it.

If it is opened, please use following command mount sysfs.

sudo mount -t sysfs none /sys/

Maybe you will got some error for examle "sysfs is already mounted on /sys".
Please ignore it.

please use following command mount debugfs.

mount -t debugfs none /sys/kernel/debug/

Then you can find "/sys/kernel/debug/gtp".

127

Make GDB connect to gtp

Load Linux kernel debug image to GDB
You can open GDB with following command to load image:

gdb kernel_debug_image_file
Or after you open GDB, use following GDB command to load image:

file kernel_debug_image_file
According to “Where is the current Linux kernel debug image”, You can find
Linux kernel debug image (kernel_debug_image_file).

Please note that let GDB open a right vmlinux file is very important for KGTP.
Please goto “Make sure current Linux kernel debug image is right” get how to
do it.

128

GDB on the current machine
sudo gdb ./vmlinux
(gdb) target remote /sys/kernel/debug/gtp
Remote debugging using /sys/kernel/debug/gtp
0x0000000000000000 in ?? ()

After that, you can begin to use GDB command trace and debug the Linux
Kernel.

129

GDB on remote machine
Use nc map the KGTP interface to port 1024.

sudo su
nc -l 1234 </sys/kernel/debug/gtp >/sys/kernel/debug/gtp
#(nc -l -p 1234 </sys/kernel/debug/gtp >/sys/kernel/debug/gtp for
old version netcat.)

After that, nc will hang there to wait connection.

Let gdb connect to the port 1234.
gdb-release ./vmlinux
(gdb) target remote xxx.xxx.xxx.xxx:1234

After that, you can begin to use GDB command trace and debug the Linux
Kernel.

130

Android
This video introduces use GDB connect to the KGTP in the Android, Please
goto http://youtu.be/_UGN2j8Ctg0 or
http://www.tudou.com/programs/view/FjkQ6HhPnfE/ to see it.

Insmod the KGTP module
First, make sure ADB has connected with Android.

Second, copy KGTP module to Android.

sudo adb push gtp.ko /
Directory "/" may be read-only. You can choice other directory or use
command "sudo adb shell mount -o rw,remount /" remount the directory to can
write.

Third, insmod the module.

adb shell insmod /gtp.ko

131

Handle the issue that cannot find
"/sys/kernel/debug/gtp"
If you got this issue, please make sure "Debug Filesystem" is opened in your
kernel config first. Please goto
If_your_system_use_the_Linux_kernel_that_is_built_by_yourself see howto “If
use with Linux kernel of Android” see howto open it.

If it is opened, please use following command mount sysfs.

sudo adb shell mount -t sysfs none /sys/
Maybe you will got some error for examle "Device or resource busy". Please
ignore it.

please use following command mount debugfs.

sudo adb shell mount -t debugfs none /sys/kernel/debug/

Then you can find "/sys/kernel/debug/gtp".

132

GDB connect to the KGTP
Use nc map the KGTP interface to port 1024.

adb forward tcp:1234 tcp:1234
adb shell "nc -l -p 1234 </sys/kernel/debug/gtp
>/sys/kernel/debug/gtp"
#(adb shell "nc -l 1234 </sys/kernel/debug/gtp
>/sys/kernel/debug/gtp" for new version netcat.)

After that, nc will hang there to wait connection.

Let gdb connect to the port 1234.

gdb-release ./vmlinux
(gdb) target remote :1234

After that, you can begin to use GDB command trace and debug the Linux
Kernel.

133

Appendix C Add
module symbols to
GDB

Sometimes you need to add a Linux kernel module's symbols to GDB to debug
it.

Add symbols with hand is not very easy, so KGTP package include an GDB
python script "getmod.py" and a program "getmod" can help you.

How to use getmod
"getmod" is written by C so you can use it anywhere even if in an embedded
environment.

For example:

#Following command save Linux Kernel module info to the file
/tmp/mi in GDB
#command format.
sudo getmod >/tmp/mi
#in gdb part:
(gdb) source /tmp/mi
add symbol table from file "/lib/modules/2.6.39-
rc5+/kernel/fs/nls/nls_iso8859-1.ko" at
 .text_addr = 0xf80de000
 .note.gnu.build-id_addr = 0xf80de088
 .exit.text_addr = 0xf80de074
 .init.text_addr = 0xf8118000
 .rodata.str1.1_addr = 0xf80de0ac
 .rodata_addr = 0xf80de0c0
 __mcount_loc_addr = 0xf80de9c0
 .data_addr = 0xf80de9e0
 .gnu.linkonce.this_module_addr = 0xf80dea00
#After this GDB command, all the Linux Kernel module info is loaded
into GDB.

If you use remote debug or offline debug, maybe you need change the base
directory. Following example is for it.

#/lib/modules/2.6.39-rc5+/kernel is replaced to sudo ./getmod -r
/home/teawater/kernel/b26

134

sudo ./getmod -r /home/teawater/kernel/b26 >~/tmp/mi

135

How to use getmod.py
Please note that static build GDB that download from
https://code.google.com/p/gdbt/ cannot use getmod.py.

Connect to KGTP before use the getmod.py.

(gdb) source ~/kgtp/getmod.py

Then this script will auto load the Linux kernel module's symbols to GDB.

136

	About this document
	What is KGTP
	Quick config and start KGTP
	Get help or report issues
	Table of different between GDB debug normal program and KGTP
	Howto use GDB control KGTP trace and debug Linux kernel
	Direct access the current value in normal mode
	The memory of Linux kernel
	the trace state variables

	GDB tracepoint
	set tracepoint
	Howto handle the function is there but set tracepoint on it got fail

	How to set tracepoint condition
	How to handle error "Unsupported operator (null) (52) in expression."

	actions [num]
	collect expr1, expr2, ...
	teval expr1, expr2, ...
	while-stepping n

	Start and stop the tracepoint
	Enable and disable the tracepoint
	Use tfind select the entry inside the trace frame info
	How to handle error "No such file or directory."

	Save the trace frame info to a file
	Show and save the tracepoint
	Delete tracepoint
	Use tracepoint get register info from a point of kernel
	Use tracepoint get the value of variable from a point of kernel
	Show all the traced data of current frame
	Get status of tracepoint
	Set the trace buffer into a circular buffer
	Do not stop tracepoint when the GDB disconnects
	kprobes-optimization and the execution speed of tracepoint

	How to use trace state variables
	Simple trace state variables
	Per_cpu trace state variables
	How to define
	Local CPU variables
	CPU id variables

	Example 1
	Example 2

	Special trace state variables $current_task, $current_task_pid, $current_thread_info, $cpu_id, $dump_stack, $printk_level, $printk_format, $printk_tmp ,$clock, $hardirq_count, $softirq_count and $irq_count
	Special trace state variable $self_trace
	Trace the function return with $kret
	Use $ignore_error and $last_errno to ignore the error of tstart
	Use $cooked_clock and $cooked_rdtsc the time without KGTP used
	Use $xtime_sec and $xtime_nsec get the timespec

	Howto backtrace (stack dump)
	Collect stack with $bt and use GDB command "backtrace"
	Collect stack of current function's caller with $_ret
	Use $dump_stack to output stack dump through printk

	Howto let tracepoint output value directly
	Switch collect to output the value directly

	Howto use watch tracepoint control hardware breakpoints to record memory access
	Trace state variables of watch tracepoint
	Static watch tracepoint
	Dynamic watch tracepoint

	Use while-stepping let Linux kernel do single step
	Howto use while-stepping
	Read the traceframe of while-stepping

	Howto show a variable whose value has been optimized away
	Update your GCC
	Get the way that access the variable that has been out through parse ASM code

	How to get the function pointer point to
	If the debug info of the function pointer is not optimized out
	If the debug info of the function pointer is optimized out

	/sys/kernel/debug/gtpframe and offline debug
	How to use /sys/kernel/debug/gtpframe_pipe
	Get the frame info with GDB
	Get the frame info with cat
	Get the frame info with getframe
	Use $pipe_trace

	Use KGTP with user applications
	Let GDB connect KGTP for user applications
	Read memory of user applications directly
	Trace user applications
	collect stack (for backtrace) of system from Linux kernel to user applications in tracepoint
	How to use add-ons/hotcode.py

	How to add plugin in C
	API
	Example
	How to use

	How to use performance counters
	Define a perf event trace state variable
	Define a per_cpu perf event trace state variable
	The perf event type and config
	Enable and disable all the perf event in a CPU with $p_pe_en
	GDB scripts to help with set and get the perf event trace state variables

	Appendix A Preparatory work before use KGTP
	Linux kernel
	If your system use the Linux kernel that is built by yourself
	If use with Linux kernel of Android
	If your system use the Linux kernel from distribution
	Ubuntu
	The standard method of install the Linux kernel debug image
	The second method of install the Linux kernel debug image
	Install the Linux kernel headers
	Install the Linux kernel source
	New way
	Old way

	Fedora
	Install the Linux kernel debug image
	Install the Linux kernel devel package

	Make sure current Linux kernel debug image is right
	Where is the current Linux kernel debug image
	Use /proc/kallsyms
	Use linux_banner

	Handle the issue that Linux kernel debug image's address info is not same with Linux kernel when it running

	Get KGTP
	Get KGTP through http
	Get KGTP through git
	Mirrors

	Config KGTP
	Compile KGTP
	Normal compile
	Compile KGTP with some special config

	Install and uninstall KGTP
	Use KGTP with DKMS
	Use KGTP patch for Linux kernel
	Install GDB for KGTP

	Appendix B How to let GDB connect to KGTP
	Normal Linux
	Insmod the KGTP module
	Handle the issue that cannot find "/sys/kernel/debug/gtp"
	Make GDB connect to gtp
	Load Linux kernel debug image to GDB
	GDB on the current machine
	GDB on remote machine

	Android
	Insmod the KGTP module
	Handle the issue that cannot find "/sys/kernel/debug/gtp"
	GDB connect to the KGTP

	Appendix C Add module symbols to GDB
	How to use getmod
	How to use getmod.py

