
Software Engineering Practices
in the Mariokart System

Wim Looman
wgl18@uclive.ac.nz

Coauthors: Simon Richards, Zachary Taylor, Henry Jenkins and Dr. Andrew Bainbridge-Smith.
scr52@uclive.ac.nz zjt14@uclive.ac.nz hvj10@uclive.ac.nz

andrew.bainbridge-smith@canterbury.ac.nz

Department of Electrical and Computer Engineering
University of Canterbury

Christchurch, New Zealand

Abstract—This report details a variety of software engineering
practices followed today in the world of traditional software
development. It then explores why these should be adopted by
all engineers, and how they can help embedded development
speciVcally. This is all explored in the context of an autonomous
go-kart system developed at the University of Canterbury.

I. Introduction

A. Software Engineering

Since this report is aimed at an engineering audience most
of you will believe that a description of Software Engineering
is not really required. Unfortunately, true Software Engineer-
ing is relatively unknown, especially in programming courses
run in Electrical departments around the world. That is not
to say that Computer Science departments do a better job of
teaching it — they don’t [1] and in fact Software Engineering
really should be taught as a subset of Engineering [2] — just
that the style of programming taught to Electrical students
is generally light on following the engineering practices that
the rest of their courses rely on.

So, what is Software Engineering? It is simply the appli-
cation of standard Engineering practice to the development
of software. However, because of the nature of software as
a much more Wuid abstract thing than the normal circuits
designed by Electrical Engineers the precise method of ap-
plication has to be changed [3].

At the same time as being more abstract than a circuit,
software is also much more concrete; there are no (or at
least very few) annoying real world eUects directly on the
software. Assuming the circuit a microprocessor is in has
been designed well the Software Engineer can take it for
granted that the digital I/O used by something like a Inter-
IC (I2C) connection is basically a perfect connection straight
to the internals of another device. Internally if there are no
weird defects in the microcontroller you can assume that a
function like the one shown in Listing 1 will always return
exactly 3. Not 2 when the batteries start running low, not 4
when it is a particularly hot day, always exactly 3.

This exactness of software enables the use of a few tech-
niques that are not normally available to most engineering

professions. For example it is possible to perform exhaustive
testing and/or modelling of the system within acceptable
time.
The major components of software engineering that will

be discussed in this report are: version control, unit testing
and continuous integration. Version control is probably the
aspect of software engineering that is best applied by current
engineers, however most still use an old system such as Sub-
version despite there being much better alternatives like Git
and Mercurial available [4], [5]. Unit testing is a developmen-
tal practice that has been seeing a major increase in use for
traditional software development during recent years. This
is largely because of development processes such as Test-
Driven and Behaviour-Driven Development evangelised by
the Agile Software Development proponents [6]. Continuous
integration is another major aspect of these newer software
development methods involving continuous application of
quality control to the system while under development,
normally utilising unit testing as the main quality assurance
system [7].
A lot of this is standard practice in software develop-

ment shops. Unfortunately despite the large amount of code
written by other engineering disciplines the same level of
engineering practice they apply in designing their circuit
board, concrete Woor or ethanol extractor doesn’t get applied
to the code they develop in pursuit of these goals. This is
most relevant to embedded development where the entire
range of software engineering practices can be applied; some
take a bit more eUort because of the lower abstraction level,
but they are all applicable in some way. However parts of
this are also relevant for the other engineering disciplines;
Matlab may not be a real programming language, but when
developing simulations in it proper software engineering
practices should still be followed.

B. Mariokart

The system on which this report will base most of the
examples was codenamed Mariokart. This was a Vnal year
project for the University of Canterbury’s Bachelor of En-

mailto:wgl18@uclive.ac.nz
mailto:scr52@uclive.ac.nz
mailto:zjt14@uclive.ac.nz
mailto:hvj10@uclive.ac.nz
mailto:andrew.bainbridge-smith@canterbury.ac.nz

Listing 1. Small function example.

i n t r e t u r n _ t h r e e () {
i n t t h r e e = 3 ;
re turn t h r e e ;

}

gineering degree carried out by the authors. The aim of
the project was to take one of the electric go-karts the
department had and retroVt a drive-by-wire system on to it,
with an overall goal of having the kart autonomously drive
around the campus. For the purposes of this report the main
details of the system developed are:

• The overall design is a distributed system with 5 boards:

◦ One for communication with a host laptop.
◦ One for steering.
◦ One for braking.
◦ One to interface to the motor controller.
◦ One for collecting data from a variety of sensors.

• Each board is running an Atmel SAM7XC microproces-
sor.

• Communication between boards is carried over a Con-
troller Area Network (CAN) bus.

For more details of the system development see Embedded
Hardware Design For Autonomous Electric Vehicle by Henry
Jenkins [8] and for the autonomous goal see Development of
a Marker Tracking System for use in the Mariokart System by
Zachary Taylor [9].

II. Background

A. Version Control

Out of all Software Engineering practices Version Con-
trol is deVnitely the most widely used by all engineering
profession. Unfortunately it is still not used as much as it
should be. For example, you have just Vnished looking at
a new power regulation system that you want to switch to
for your next PCB revision; now you need to write a quick
report to describe why it is so much better than the current
system – enough better that it makes sense to spend the time
to change the design. What’s the Vrst thing you should do,
open a new Microsoft Word document? Load up your LATEX
editor? No, you should initialise a new repository or ensure
you have the projects documentation repository available and
updated. Anything and everything that is more than a few
lines long, or will ever be shared with a team member should
be under version control. Even if it is just a todo list you
wrote for yourself and one other team member, it should be
under version control.

This is very important for a multitude of reasons. Firstly
it provides you with a time line of development activity. If
you need to revisit a decision months later you can identify
exactly when the initial review was made and when any
revisions happened.

Secondly it provides you with a safety net. The following
anecdote is a very good example of why this safety net is
important.

“ A younger programmer asked an elder about his
code and his coding style, and how the older
programmer would do certain things. The older
programmer said ‘Let’s take a look at your code’, so
the younger took out his laptop, opened his editor,
and showed him.

The older programmer looked at the code, thought
about it for a bit, and then started editing it.
He deleted the class internals, leaving only the
structure, and then rearranged the structure, saying
‘Here’s how I would do it to make it more eXcient
and readable’. After he was done, he saved the Vle
and gave it back to the younger programmer, who
was ashen-faced.

‘That... My code is gone!’ said the younger pro-
grammer. ‘But you have it in version control some-
where, right?’ asked the elder. ‘N.... no.’ was the re-
ply. ‘Well then,’ said the older, ‘now you’ve learned
two lessons.’

— Dan Udey [10]. ”
Having this safety net is also a very good incentive to

experiment. As mentioned in the anecdote the older program-
mer, assuming that the younger was using version control,
felt free to delete most of the code and rearrange what
remained. If the younger had been using version control then
they could have simply committed this major change on a
separate branch and checked out their prior work to compare
the two.

The main Version Control System (VCS) used by engineers
is likely to be Subversion, this has been around a long
time and is one of the best open source centralised VCSs.
However a new generation of VCSs are coming out known
as Distributed Version Control Systems (DVCS), these oUer
a completely diUerent way of looking at version control.

1) Centralised VCS: Centralised VCS is still deVnitely the
most widely used type of VCS, with Subversion one of the
most widely used Centralised VCSs. The centralised VCS
paradigm is centered around having a single server that
stores the entire history of the project. When a developer
checks a revision out of this server the content of the Vles
at that revision is transmitted to him. The developer then
changes the Vles and checks it back in to the server. As long
as no one else has changed the Vles during this time the
check in succeeds and the server stores the new versions
of the Vles in a new revision. If someone else has changed
one of the Vles then the check in fails and the developer is
notiVed. They then have to update their working copy, this
will pull down the latest versions of the Vles and leave the

Fig. 1. Local and Remote operations in Git. [11]

Vles that have changed in both places in a conWicted state.
The developer will then need to merge the two Vles and
check the updated version containing both sets of changes
in to the central server.

This merging of the two sets of Vles in the developers
working copy is one of the major downsides of a centralised
VCS, at this point the developers changes have not been
committed. If they screw something up when attempting to
merge they have no safety net beneath them to fall back on.

2) Distributed VCS: DVCS are rapidly gaining acceptance
in the software development community. The two most
common DVCS are Git and Mercurial (Hg), there are a few
others that are used quite a bit as well like Bazaar and
Bitkeeper, however Git and Hg are deVnitely the most used.

a) Git: Git was originally created by Linus Torvalds for
use in the Linux Kernel project. The major design goals for
it were:

• Take CVS as an example of what not to do; if in doubt,
make the exact opposite decision.

• Support a distributed, BitKeeper-like workWow.
• Very strong safeguards against corruption, either acci-

dental or malicious.
• Very high performance.

(CVS was one of the original Centralised VCSs, pre-SVN).
b) Mercurial: Mercurial was created by Matt Mackall at

around the same time as Git with the same planned usage,
namely the Linux Kernel project. It wasn’t chosen for this,
but is still widely used for a lot of software projects.

The major diUerence between DVCS and traditional VCS
is the lack of a central server. Every clone of the code is a
full repository by itself. Figure 1 shows which Git operations
are local to the developers machine and which are remote.
All committing, checking out and merging are happening
locally, the only remote operations that happen are passing
changesets between diUerent repositories. This provides a
few major beneVts:

• Fast access to old revisions. Since the repository is
hosted locally it is only hard drive access time slowing
it down instead of network access times.

• Always accessible. Even if you don’t have internet or
the central server is down you can always commit to
your own repository.

Generally in an organizational context a central server will
still be used with the DVCS system. This way everyone has
a single source so they can keep their code tightly integrated
and reduce the headaches introduced if their repositories
diverge too much.
Comparing the workWow mentioned above on a DVCS it

would go as follows: The developer updates their clone of
the repository to the latest version. They then do the changes
to implement whatever feature they are working on. These
changes are committed to their local repository, this always
succeeds since they are the only ones with access to it. They
then attempt to push this changeset up to the central server.
If no-one else has pushed this succeeds and the central server
will be at the same version as their repository. If someone
else has pushed to the central server then they will have to
pull the changeset and merge it into their repository. One of
the key diUerences at this point is that their change has been
committed and can trivially be recovered if something goes
wrong. Once they resolve the merge they create a new merge
commit that has both their change and the other change that
was pushed to the server as parents. They can then push this
change up to the central server (assuming no one else has
pushed during this time).

B. Unit Testing

As mentioned earlier Unit Testing is currently seeing a ma-
jor increase in use in forward-thinking software development
companies, mainly because of evangelical Agile development
proponents (especially from the Ruby on Rails community).
Unfortunately despite this increase for traditional software
development, the uptake in embedded development projects
has been a lot slower.
The basic premise of unit testing is that if you verify that

all parts of your system work as intended, then the system
as a whole will work as intended. To do the veriVcation you
write a lot of small unit tests to verify minimal sections of
your code. By ensuring that all code you write is tested
by multiple unit tests you can be conVdent that the code
performs as you expect.
Of course this isn’t the same thing as being right, unit tests

only verify that the code does what the test says it should.
To ensure the code does what it should do you need to
validate your tests. This is most commonly done informally,
the test developers know the intended outcome and write
the tests with the codes Vnal purpose in mind. For more
critical systems an external validation can be performed using
a method such as modelling. Our attempts at modelling one
of the critical sections of our system can be read about in
Safety by Design for the Mariokart System by Simon Richards
[12].

The big problem with unit testing an embedded system
is the very low level of abstraction. One of the big reasons
it is so popular in the Ruby on Rails community is because
of how easy it is to write tests for Ruby thanks to its very
high level of abstraction. For embedded development you are
likely going to want to run a few diUerent testing layers; one
testing the very low level libraries to ensure the registers are
being accessed correctly, one testing mid level libraries such
as character or LCD displays to make sure they’re calling
the low level libraries properly and one testing the actual
application code.

C. Continuous Integration

Continuous Integration (CI) is another software devel-
opment practice highly pushed in the Agile development
community. The main goal behind CI is to minimize the
time between an error being introduced in the code base
and the error being detected and Vxed [13]. This is achieved
by having developers continuously integrating their changes
and verifying the integrated code via an automatic test. To
ensure this is happening a few key steps have to be taken;
testing the code has to be almost painless, it must be easy
for the developers to merge their work back into the master
development branch and if a bug is ever introduced the
developer responsible is not allowed to ignore it.

Ensuring that testing the code is almost painless can
sometimes be a big task. Especially if this was not a priority
at the beginning of development, build times and test suites
have a tendency to expand out of control very quickly. This is
absolutely necessary for CI to work well though. To keep the
error detection time as small as possible you really want all
developers to be running the test suite after every change, so
a maximum run time of two to three minutes is required. For
large systems this can be achieved by splitting the test suite
up, you just need to be careful to ensure all tests relating to
any change will be run as part of that section of test suite.

Continuously integrating developers code requires having
a single master development branch. Whenever a developer
decides to do some work they will grab the latest version
of this branch and start their work form there. Because
their team is performing Continuous Integration they can
be conVdent that the master branch will be in a working
state, or if not that whoever broke it knows and will have
a Vx pushed up to it within a few minutes. They will then
write a test for the feature they are going to be implementing,
followed by the code to make the feature work. This will be
repeated until they have Vnished implementing the feature.
If for some reason this is a very large feature that is going
to take more than a day or two they will try and aim for
a few checkpoints consisting of just a few hours work. At
each of these checkpoints they will merge in any changes
that have happened to the master branch and ensure that
none of them introduce any problems with the feature they’re
currently implementing. It is this integration of the work
other developers are doing multiple times through the day
that gives Continuous Integration its name. Once the feature

is Vnished it is merged back into the master development
branch and pushed out for other developers to use.
Once a feature has been merged into master other devel-

opers will be pulling it down and integrating it into their
current work. If there is a bug in it then it is going to aUect
a lot of people. For this reason most teams using CI use a
Continuous Integration server. This is simply a server set up
to continuously pull any change to the master branch, build
it, test it, and notify the developers if it fails. In this way
if someone accidentally commits broken code the CI server
will detect it and inform them within a few minutes. At this
point the developer has to make getting a Vx out their highest
priority, if they can’t see some way to Vx it straight away
they should revert their merge and spend time working out
what broke it.

III. Application

This section will explore the application of the aforemen-
tioned software engineering techniques to the development
of the software used for Mariokart.

A. Version Control

The version control system used for this project was Git.
The reasons for choosing this over something else like SVN
or Hg were:
• DVCS are the way of the future. There is almost nothing

that SVN does better than Git or Hg, the few things it
does are niche features such as being able to checkout
just a sub folder in the repository.

• Two of the developers on the project had previously
used Git and were using it daily for many other projects.

• GitHub provided us with many very useful features
such as a Wiki to use for documentation and project
management.

This turned out to be a very good choice, some of the
major positives were:
• The wiki, throughout the project we recorded details on

our decisions on the wiki. This has proven invaluable
now when looking back we have to Vgure out details
such as why exactly we chose the SAM7XC.

• Painless branching and merging. This was very helpful
at a few points during the development; at one point
it was decided that the Atmel CAN library was un-
trustworthy and would require a rewrite. While that
was going on in a diUerent branch the rest of the
development could continue on in the main branch.
Once the module was re-written it was simple to merge
it back in and change the few cases where the interface
had changed. Also, when we were coming up to give
a demonstration it was easy enough for each member
to branch oU and write their demo code in their own
branch, this ensured that any changes they had to make
to ensure the demo went smoothly could be segregated.

• CI Joe integration, this will be detailed more later, but
the combination of Git and GitHub made it extremely
simple to set up CI Joe.

Fig. 2. CI Joe’s website interface.

Fig. 3. Dashboard set up to show multiple CI Joes statuses.

B. Unit Testing

Unfortunately this was not implemented in our project.
The possibility of implementing it was explored, but the lack
of time prevented it from continuing.

C. Continuous Integration

Continuous integration was implemented using a piece of
software known as CI Joe. This is a continuous integration
server designed to be as simple as possible to setup [14]. You
provide CI Joe with a git repository and a command to use
to test the project and you are done. In our case since we did
not have the time to set up a unit testing system we just had
CI Joe building the project to detect any compilation errors
or warnings.

Once the basics of CI Joe were set up a few more complex
things could very easily be done with it. The trigger to tell
it to update and attempt a new build was a simple HTTP
POST, GitHub supported POST-hooks to notify services when
someone pushed code to the repository, so we could easily
add a link to CI Joe with that. This meant that every time
somebody changed anything CI Joe would run.

The next step was getting the output from Joe, the basic
interface was via a website as shown in Figure 2. Additionally
to this we were able to set up a build-hook that would be
run when the build was Vnished. This was setup to push the
status of the build to a dashboard so we could utilise multiple
instances of CI Joe for diUerent projects (shown in Figure 3)
along with sending an email out to the group mailing list
when a failure occurred (shown in Figure 4).

Fig. 4. Build failure email from CI Joe.

References

[1] T. Shepard, M. Lamb, and D. Kelly, “More testing should be taught,”
Commun. ACM, vol. 44, pp. 103–108, June 2001. [Online]. Available:
http://doi.acm.org/10.1145/376134.376180

[2] D. L. Parnas, “Software engineering programs are not computer
science programs,” IEEE Software, vol. 16, no. 6, pp. 19–30, 1999.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=805469

[3] H. van Vliet, Software engineering (2nd ed.): principles and practice. New
York, NY, USA: John Wiley & Sons, Inc., 2000.

[4] L. Glassy, “Using version control to observe student software
development processes,” J. Comput. Small Coll., vol. 21, pp. 99–106,
February 2006. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1089182.1089195

[5] V. K. Gurbani, A. Garvert, and J. D. Herbsleb, “A case study of open
source tools and practices in a commercial setting,” in Proceedings of
the Vfth workshop on Open source software engineering, ser. 5-WOSSE.
New York, NY, USA: ACM, 2005, pp. 1–6. [Online]. Available:
http://doi.acm.org/10.1145/1082983.1083264

[6] M. M. Müller and W. F. Tichy, “Case study: extreme programming
in a university environment,” in Proceedings of the 23rd International
Conference on Software Engineering, ser. ICSE ’01. Washington, DC,
USA: IEEE Computer Society, 2001, pp. 537–544. [Online]. Available:
http://dl.acm.org/citation.cfm?id=381473.381536

[7] J. Holck and N. Jørgensen, “Continuous integration and quality
assurance: a case study of two open source projects,” Australasian
Journal of Information Systems, vol. 11, no. 1, 2003. [Online]. Available:
http://journals.sfu.ca/acs/index.php/ajis/article/view/145/125

[8] H. V. Jenkins, “Embedded hardware design for autonomous electric ve-
hicle,” 2011. [Online]. Available: https://raw.github.com/team-ramrod/
mariokart/master/Documentation/ScientiVcReport/Henry/report.pdf

[9] Z. Taylor, “Development of a marker tracking sys-
tem for use in the mariokart system,” 2011. [On-
line]. Available: https://raw.github.com/team-ramrod/mariokart/
master/Documentation/ScientiVcReport/Zac/report.pdf

[10] Dan Udey, 2008. [Online]. Available: http://stackoverWow.com/
questions/132520/good-excuses-not-to-use-version-control/135002#
135002

[11] Scott Chacon, 2008, used under permission of MIT license. [Online].
Available: http://whygitisbetterthanx.com/

[12] S. Richards, “Safety by design for the mariokart system,” 2011.
[Online]. Available: https://raw.github.com/team-ramrod/mariokart/
master/Documentation/ScientiVcReport/Simon/report.pdf

[13] M. Fowler, “Continuous integration,” May 2006. [Online]. Available:
http://www.martinfowler.com/articles/continuousIntegration.html

[14] T. Preston-Werner (defunkt), “CI Joe Readme,” 2011. [Online]. Available:
https://github.com/defunkt/cijoe

http://doi.acm.org/10.1145/376134.376180
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=805469
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=805469
http://dl.acm.org/citation.cfm?id=1089182.1089195
http://dl.acm.org/citation.cfm?id=1089182.1089195
http://doi.acm.org/10.1145/1082983.1083264
http://dl.acm.org/citation.cfm?id=381473.381536
http://journals.sfu.ca/acs/index.php/ajis/article/view/145/125
https://raw.github.com/team-ramrod/mariokart/master/Documentation/ScientificReport/Henry/report.pdf
https://raw.github.com/team-ramrod/mariokart/master/Documentation/ScientificReport/Henry/report.pdf
https://raw.github.com/team-ramrod/mariokart/master/Documentation/ScientificReport/Zac/report.pdf
https://raw.github.com/team-ramrod/mariokart/master/Documentation/ScientificReport/Zac/report.pdf
http://stackoverflow.com/users/21450/dan-udey
http://stackoverflow.com/questions/132520/good-excuses-not-to-use-version-control/135002#135002
http://stackoverflow.com/questions/132520/good-excuses-not-to-use-version-control/135002#135002
http://stackoverflow.com/questions/132520/good-excuses-not-to-use-version-control/135002#135002
http://github.com/schacon
http://whygitisbetterthanx.com/
https://raw.github.com/team-ramrod/mariokart/master/Documentation/ScientificReport/Simon/report.pdf
https://raw.github.com/team-ramrod/mariokart/master/Documentation/ScientificReport/Simon/report.pdf
http://www.martinfowler.com/articles/continuousIntegration.html
https://github.com/defunkt
https://github.com/defunkt/cijoe

	Introduction
	Software Engineering
	Mariokart

	Background
	Version Control
	Centralised VCS
	Distributed VCS

	Unit Testing
	Continuous Integration

	Application
	Version Control
	Unit Testing
	Continuous Integration

	References

