
Safety by Design for the Mariokart System

Simon Richards
scr52@uclive.ac.nz

Coauthors: Wim Looman, Zachary Taylor Henry Jenkins and Dr Andrew Bainbridge-Smith
wgl18@uclive.ac.nz zjt14@uclive.ac.nz hvj10@uclive.ac.nz

andrew.bainbridge-smith@canterbury.ac.nz

Department of Electrical and Computer Engineering
University of Canterbury

Christchurch, New Zealand

Abstract—An electric go-kart is outfitted with a drive-
by-wire system in the first phase of development of an
autonomous vehicle. The safety aspects of the design are
evaluated and analysed using typical project management
techniques. A model of the distributed software required
is developed and proven and the place of modelling in
software engineering is discussed..

I. INTRODUCTION

A. Project Description
The authors’ reports are based on a group project

carried out in the final year of their Bachelor of
Engineering degree at Canterbury University. The
original goal of this project was to take one of
the electric go-karts used by the department for
power electronics projects and convert it into an
autonomous vehicle capable of a simple navigation
task. Due to time restrictions the aim was reduced
to implementing the mechanical and electronic sys-
tems needed to control the kart’s motion over a USB
link.

The authors refer to the project using the moniker
Mariokart and this name may be used throughout
this report in reference to the team, the vehicle or
the project itself.

B. System Design
The overall system design consisted of a laptop,

electronics, a CAN bus, actuators and an interface
to the existing motor driver hardware.

• Electronics: Five PCBs were located around the
kart, each in close proximity to the sub-system

it was responsible for. The PCBs were iden-
tical in layout, specialisation was achieved by
removing components from boards where they
were not needed. For example it was intended
for only one board to communicate directly
with a laptop and so the other boards did not
have USB headers. The decision to distribute
control was made primarily to avoid problems
caused by driving motors and actuators over a
long distance in a high noise environment.

• Actuators: The brake pads were driven by a
linear actuator mounted in place of the brake
pedal. The actuator was mounted to the floor
of the go-kart and its driver board was situ-
ated nearby. The steering column was similarly
controlled by a DC motor mounted in place
of the steering wheel and fixed to the frame.
The DC motor included an encoder so that the
relative angle of the steering column could be
determined. Limit switches at each extreme of
rotation ensures the motor does not turn too
far and allows for the absolute angle to be
measured.

• Controller laptop: To simplify use for future
projects, the entire system is controllable via
commands sent over a USB cable. The com-
munications board is responsible for interfac-
ing with a laptop and distributing the user’s
commands

• Motor interface: Power electronics and a motor
driver had already been implemented as part of

mailto:scr52@uclive.ac.nz
mailto:wgl18@uclive.ac.nz
mailto:zjt14@uclive.ac.nz
mailto:hvj10@uclive.ac.nz
mailto:andrew.bainbridge-smith@canterbury.ac.nz

a student project so the only requirement from
the motor driver board was to interface with
this over the available SPI link.

• The CAN bus: CAN is a multi-master serial bus
with guaranteed sending and message priority.
It was designed by Robert Bosch GmBH for
networking micro-controllers in automobiles
and has also some popularity in industrial au-
tomation. The CAN specification is low-level
only, it does not specify a data protocol or a
method address allocation. There are numerous
similar software stacks built on top of CAN
for various purposes such as the Society of
Automotive Engineers’ J1939 [1] however due
to the simplistic nature of our network we
implemented our own protocol.

For a more detailed description and justifications
see Embedded Hardware Design For Autonomous
Electric Vehicle [2].

C. Risk

As with any vehicle, autonomous or otherwise,
there is always a risk to the user, bystanders and
the go-kart itself if a part of the system mal-
functions in any way. Replacing a human driver
with electromechanical control systems removes the
non-deterministic element of human error from the
system but adds a new set of risks and potential
design mistakes.

In this paper, the sources of these risks will be
listed analysed and techniques for mitigation and
negation will be investigated and evaluated.

II. SAFETY - A METHOD

Risk, according to ISO 31000 [3], is the effect
of uncertainty on objectives. Therefore, in order to
minimise risk we need to minimise uncertainty.

In practical terms this means analysing the system
from the top down, creating a hierarchy of risks
to ensure that all issues are considered. Taking this
approach means that even if the engineer does not
identify every possible cause of failure (which is
very likely), mitigation of the failure modes not
identified may still be achieved via global miti-
gations which are applied to an entire branch of
the taxonomy. When applying a divide and conquer
approach as shown in figure1 we only need to ensure

that each failure set is equal to the union of those
below it.

At the lowest level of figure1 the categories are
colour coded into the following groups:

G Failures that are not a source of risk as they
may be eliminated during testing.

R Failures that are not preventable but may war-
rant mitigation.

B A failure which could happen unpredictably
and could be more severe than loss of power.
Preventing this from occurring is the main
focus of this paper.

A. Preventing Mistakes (Green)
For a detailed look into software and systems

engineering practices see Looman’s Software En-
gineering in the Mariokart System [4]. If standard
design practices such as unit testing are followed
then it is possible to eliminate risk from these
sources.

B. Risk Analysis (Red)
Traditional project management tools for risk

management involve tools like Risk Matrices and
qualitatively assessing the potential consequences
and probabilities of risks. Such tools are popular
mainly for their simplicity and have little backing
in research, taking criticism from researchers such
as Tony Cox [5] for reasons such as their qualitative
nature and reliance on experienced judgement. Cox
even goes as far to suggest that in some cases
using Risk Matrices leads to worse-than-random
decisions.

For this reason and for simplicity’s sake it was de-
cided to lessen the consequences of potential failure
modes with a set of general mitigating techniques.
Hence we have the following set of guidelines and
design decisions:

• Despite the goal of autonomous function, a pas-
senger should always be in the vehicle during
operation so that the vehicle may be shut down
immediately by the provided kill switch.

• All subsystems fall into an error state imme-
diately after communication is lost with any
board. Any board losing then regaining power
will also transition into an error state.

• In the error state each board will perform
whatever is necessary to minimise the potential

Fig. 1. A hierarchy of failures.

harm in case the go-kart is currently mobile.
The important detail here is that both the
brake board and motor will attempt to slow the
vehicle (the motor is capable of regenerative
braking) providing redundancy of the most
critical function.

C. Automated model checking to prevent design
errors (Blue)

While it is a given that a structural engineer
will calculate forces and stress before starting con-
structing and that a mechanical engineer may like-
wise simulate loads on his or her design using a
CAD package. Software engineering has, due to
the relative flexibility of the medium, been exempt
from the expectation that a design must be proven
before it is implemented. This is not necessarily
an advantage, however, as modelling can provide
benefits including but not limited to proof of system
robustness.

SPIN is an automated model checker for ‘the

formal verification of distributed software system.’
[6] The name is an acronym for Simple Promela
INterpretor, where Promela is the language used to
specify a model and its constraints. For more infor-
mation on SPIN and Promela visit spinroot.com but
for the purposes of this paper an in-depth knowledge
is not required.

When modelling a software system, heavy-
handed abstraction is useful and sometimes nec-
essary. This is because accurately modelling the
software to the level of calculations that have no
effect on the system state only serves to increase the
state-space and therefore the amount of computation
required to check the model.

Conversely too much abstraction will limit the
usefulness of a model to being little more than a way
of sketching out the top level design of a distributed
system.

Hence we wish to find an optimal level of detail
which will lie somewhere between the overly naive
and ultimately useless model which assumes too

much; and the result of several years of work
and many hours of computation which simulates a
system down to the instruction set level.

The level of detail which is right for a project is
subject to the law of diminishing returns, where an
increase in the severity of failure or the resources
available to the project will justify a more in depth
model to be developed.

1) The (other) Benefits of Modelling a Dis-
tributed System: The obvious aim of modelling is
model checking, proving that a design is correct.
That is not the only benefit that modelling brings to
a project however.

Writing a model before code provides the author
with a ‘sketched’ version of the code. Unlike a state
diagram sketched on paper however the Promela
sketch can be simulated visually using the iSpin
frontend for spin. iSpin is capable of generating se-
quence diagram-like output showing message trans-
mission and reception between processes as well as
other, more complicated graphical output we won’t
discuss here.

D. Modelling Mariokart

The software for mariokart was modelled with
a focus on the state machine seen in appendix B
and the message passing between boards. Failure
was explicitly allowed as seen in the first part
of appendix A where the client board may non-
deterministically (the :: operator) choose to either
reset itself, discover an error or continue running
as expected. Notice the probabilities of these three
events occurring is not specified as SPIN will ex-
haustively explore all possibilities regardless of their
respective probabilities.

The constraints placed on the model enforce a
consistent state between the boards and ensure that
the system either executes infinitely or all boards
reach an error state and exit. Although the second
option is not desirable in practice, showing that
the boards fail gracefully regardless of the failure
mode is the most important part of the model as it
proves the correctness of an aspect of the system
that would be difficult or maybe even impossible to
test manually.

As previously explained, if the team had more
resources or if the project came with significantly

more danger (for example if the authors were mod-
ifying a space shuttle instead of a go-kart) then a
more in depth model would be justified.

As it stands, however, the time restrictions im-
posed on the project led to the relatively simple
model described above being developed quickly
before being implemented in C.

III. DISCUSSION

A responsible engineer evaluates his or her design
before implementing it and it is the author’s opinion
that this belief is sometimes lacking in software
development. Since a Promela model skips the
details of implementation it is simple to write and
understand and does not bury the top level design
in details. If written before implementation or con-
currently it simplifies writing the actual software as
the design is already specified and proven.

Balancing the cost of developing the model with
the benefits it can bring is an important considera-
tion for any team wishing to travel the same path as
the authors did with mariokart. For groups or indi-
viduals working on projects similar to the authors’
it is recommended to at least explore modelling top
level designs before implementing them. The worst
case outcome is the cost of learning a new language
(and Promela contains few difficult concepts) and
the potential benefits include quicker development
times and the chance to catch a potentially danger-
ous fault before it can manifest itself.

IV. CONCLUSION

The potential for failure in the mariokart system
was analysed. Solutions, mitigations and justifica-
tions for ignoring potential problems were described
along with the costs and benefits of modelling
software.

REFERENCES

[1] SAE, 2011. [Online]. Available: http://www.sae.org/
standardsdev/groundvehicle/j1939.htm

[2] H. V. Jenkins, “Embedded hardware design
for autonomous electric vehicle,” 2011. [Online].
Available: https://raw.github.com/team-ramrod/mariokart/master/
Documentation/ScientificReport/Henry/report.pdf

[3] ISO, 2009. [Online]. Available: http://www.iso.org/iso/
catalogue detail.htm?csnumber=43170

[4] W. G. Looman, “Software engineering prac-
tices in the mariokart system,” 2011. [Online].
Available: https://raw.github.com/team-ramrod/mariokart/master/
Documentation/ScientificReport/Wim/report.pdf

http://www.sae.org/standardsdev/groundvehicle/j1939.htm
http://www.sae.org/standardsdev/groundvehicle/j1939.htm
https://raw.github.com/team-ramrod/mariokart/master/Documentation/ScientificReport/Henry/report.pdf
https://raw.github.com/team-ramrod/mariokart/master/Documentation/ScientificReport/Henry/report.pdf
http://www.iso.org/iso/catalogue_detail.htm?csnumber=43170
http://www.iso.org/iso/catalogue_detail.htm?csnumber=43170
https://raw.github.com/team-ramrod/mariokart/master/Documentation/ScientificReport/Wim/report.pdf
https://raw.github.com/team-ramrod/mariokart/master/Documentation/ScientificReport/Wim/report.pdf

[5] A. Cox Jr et al., “What’s wrong with risk matrices?” Risk
Analysis, vol. 28, no. 2, pp. 497–512, 2008.

[6] (2011) Spin - formal verification. [Online]. Available: http:
//www.spinroot.com/

V. APPENDICES

A. Promela examples

Client Board proctype:

/∗ ∗
∗ A g r e a t l y s i m p l i f i e d v e r s i o n
∗ o f t h e c l i e n t board model .
∗ /

proctype C l i e n t (chan i n p u t) {
S t a r t u p :

i n p u t ? r e q t r a n s i t i o n ;
comms ! a c k t r a n s i t i o n ;

C a l i b r a t i o n :
/ / c a l i b r a t i o n h a n d l i n g
/ / More message p a s s i n g

Running :
do

: : / / Normal r o u t i n e
: : goto S t a r t u p
: : goto E r r o r

od ;
E r r o r :

b r o a d c a s t ! e r r o r
}

Never claim: All boards transition to error state
or remain in running state indefinitely:

/∗ ∗
∗ I f one board goes i n t o
∗ e r r o r s t a t e , t h e y a l l must .
∗ /

never {
do

: : e r r o r c o u n t > 0 −> break
: : t rue −> sk ip

od ;

a c c e p t :
do

: : e r r o r c o u n t != num boards
od ;

}

B. Single board state machine

Fig. 2. The state machine each board follows.

http://www.spinroot.com/
http://www.spinroot.com/

	Introduction
	Project Description
	System Design
	Risk

	Safety - A Method
	Preventing Mistakes (Green)
	Risk Analysis (Red)
	Automated model checking to prevent design errors (Blue)
	The (other) Benefits of Modelling a Distributed System

	Modelling Mariokart

	Discussion
	Conclusion
	References
	Appendices
	Promela examples
	Single board state machine

