/* * Copyright (c) 1996, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * Portions Copyright (c) 1995 Colin Plumb. All rights reserved. */ package java.math; import java.io.IOException; import java.io.ObjectInputStream; import java.io.ObjectOutputStream; import java.io.ObjectStreamField; import java.util.ArrayList; import java.util.Arrays; import java.util.Random; import sun.misc.DoubleConsts; import sun.misc.FloatConsts; /** * Immutable arbitrary-precision integers. All operations behave as if * BigIntegers were represented in two's-complement notation (like Java's * primitive integer types). BigInteger provides analogues to all of Java's * primitive integer operators, and all relevant methods from java.lang.Math. * Additionally, BigInteger provides operations for modular arithmetic, GCD * calculation, primality testing, prime generation, bit manipulation, * and a few other miscellaneous operations. * *

Semantics of arithmetic operations exactly mimic those of Java's integer * arithmetic operators, as defined in The Java Language Specification. * For example, division by zero throws an {@code ArithmeticException}, and * division of a negative by a positive yields a negative (or zero) remainder. * All of the details in the Spec concerning overflow are ignored, as * BigIntegers are made as large as necessary to accommodate the results of an * operation. * *

Semantics of shift operations extend those of Java's shift operators * to allow for negative shift distances. A right-shift with a negative * shift distance results in a left shift, and vice-versa. The unsigned * right shift operator ({@code >>>}) is omitted, as this operation makes * little sense in combination with the "infinite word size" abstraction * provided by this class. * *

Semantics of bitwise logical operations exactly mimic those of Java's * bitwise integer operators. The binary operators ({@code and}, * {@code or}, {@code xor}) implicitly perform sign extension on the shorter * of the two operands prior to performing the operation. * *

Comparison operations perform signed integer comparisons, analogous to * those performed by Java's relational and equality operators. * *

Modular arithmetic operations are provided to compute residues, perform * exponentiation, and compute multiplicative inverses. These methods always * return a non-negative result, between {@code 0} and {@code (modulus - 1)}, * inclusive. * *

Bit operations operate on a single bit of the two's-complement * representation of their operand. If necessary, the operand is sign- * extended so that it contains the designated bit. None of the single-bit * operations can produce a BigInteger with a different sign from the * BigInteger being operated on, as they affect only a single bit, and the * "infinite word size" abstraction provided by this class ensures that there * are infinitely many "virtual sign bits" preceding each BigInteger. * *

For the sake of brevity and clarity, pseudo-code is used throughout the * descriptions of BigInteger methods. The pseudo-code expression * {@code (i + j)} is shorthand for "a BigInteger whose value is * that of the BigInteger {@code i} plus that of the BigInteger {@code j}." * The pseudo-code expression {@code (i == j)} is shorthand for * "{@code true} if and only if the BigInteger {@code i} represents the same * value as the BigInteger {@code j}." Other pseudo-code expressions are * interpreted similarly. * *

All methods and constructors in this class throw * {@code NullPointerException} when passed * a null object reference for any input parameter. * * @see BigDecimal * @author Josh Bloch * @author Michael McCloskey * @author Alan Eliasen * @author Timothy Buktu * @since JDK1.1 */ public class BigInteger extends Number implements Comparable { /** * The signum of this BigInteger: -1 for negative, 0 for zero, or * 1 for positive. Note that the BigInteger zero must have * a signum of 0. This is necessary to ensures that there is exactly one * representation for each BigInteger value. * * @serial */ final int signum; /** * The magnitude of this BigInteger, in big-endian order: the * zeroth element of this array is the most-significant int of the * magnitude. The magnitude must be "minimal" in that the most-significant * int ({@code mag[0]}) must be non-zero. This is necessary to * ensure that there is exactly one representation for each BigInteger * value. Note that this implies that the BigInteger zero has a * zero-length mag array. */ final int[] mag; // These "redundant fields" are initialized with recognizable nonsense // values, and cached the first time they are needed (or never, if they // aren't needed). /** * One plus the bitCount of this BigInteger. Zeros means unitialized. * * @serial * @see #bitCount * @deprecated Deprecated since logical value is offset from stored * value and correction factor is applied in accessor method. */ @Deprecated private int bitCount; /** * One plus the bitLength of this BigInteger. Zeros means unitialized. * (either value is acceptable). * * @serial * @see #bitLength() * @deprecated Deprecated since logical value is offset from stored * value and correction factor is applied in accessor method. */ @Deprecated private int bitLength; /** * Two plus the lowest set bit of this BigInteger, as returned by * getLowestSetBit(). * * @serial * @see #getLowestSetBit * @deprecated Deprecated since logical value is offset from stored * value and correction factor is applied in accessor method. */ @Deprecated private int lowestSetBit; /** * Two plus the index of the lowest-order int in the magnitude of this * BigInteger that contains a nonzero int, or -2 (either value is acceptable). * The least significant int has int-number 0, the next int in order of * increasing significance has int-number 1, and so forth. * @deprecated Deprecated since logical value is offset from stored * value and correction factor is applied in accessor method. */ @Deprecated private int firstNonzeroIntNum; /** * This mask is used to obtain the value of an int as if it were unsigned. */ final static long LONG_MASK = 0xffffffffL; /** * The threshold value for using Karatsuba multiplication. If the number * of ints in both mag arrays are greater than this number, then * Karatsuba multiplication will be used. This value is found * experimentally to work well. */ private static final int KARATSUBA_THRESHOLD = 50; /** * The threshold value for using 3-way Toom-Cook multiplication. * If the number of ints in each mag array is greater than the * Karatsuba threshold, and the number of ints in at least one of * the mag arrays is greater than this threshold, then Toom-Cook * multiplication will be used. */ private static final int TOOM_COOK_THRESHOLD = 75; /** * The threshold value for using Karatsuba squaring. If the number * of ints in the number are larger than this value, * Karatsuba squaring will be used. This value is found * experimentally to work well. */ private static final int KARATSUBA_SQUARE_THRESHOLD = 90; /** * The threshold value for using Toom-Cook squaring. If the number * of ints in the number are larger than this value, * Toom-Cook squaring will be used. This value is found * experimentally to work well. */ private static final int TOOM_COOK_SQUARE_THRESHOLD = 140; /** * The threshold value for using Burnikel-Ziegler division. If the number * of ints in the number are larger than this value, * Burnikel-Ziegler division will be used. This value is found * experimentally to work well. */ static final int BURNIKEL_ZIEGLER_THRESHOLD = 50; /** * The threshold value, in bits, for using Newton iteration when * computing the reciprocal of a number. */ private static final int NEWTON_THRESHOLD = 100; /** * The threshold value for using Schoenhage recursive base conversion. If * the number of ints in the number are larger than this value, * the Schoenhage algorithm will be used. In practice, it appears that the * Schoenhage routine is faster for any threshold down to 2, and is * relatively flat for thresholds between 2-25, so this choice may be * varied within this range for very small effect. */ private static final int SCHOENHAGE_BASE_CONVERSION_THRESHOLD = 8; /** * Whether we're running on a 64-bit JVM. */ private static final boolean IS64BIT = "64".equals(System.getProperty("sun.arch.data.model")); //Constructors /** * Translates a byte array containing the two's-complement binary * representation of a BigInteger into a BigInteger. The input array is * assumed to be in big-endian byte-order: the most significant * byte is in the zeroth element. * * @param val big-endian two's-complement binary representation of * BigInteger. * @throws NumberFormatException {@code val} is zero bytes long. */ public BigInteger(byte[] val) { if (val.length == 0) throw new NumberFormatException("Zero length BigInteger"); if (val[0] < 0) { mag = makePositive(val); signum = -1; } else { mag = stripLeadingZeroBytes(val); signum = (mag.length == 0 ? 0 : 1); } } /** * This private constructor translates an int array containing the * two's-complement binary representation of a BigInteger into a * BigInteger. The input array is assumed to be in big-endian * int-order: the most significant int is in the zeroth element. */ private BigInteger(int[] val) { if (val.length == 0) throw new NumberFormatException("Zero length BigInteger"); if (val[0] < 0) { mag = makePositive(val); signum = -1; } else { mag = trustedStripLeadingZeroInts(val); signum = (mag.length == 0 ? 0 : 1); } } /** * Translates the sign-magnitude representation of a BigInteger into a * BigInteger. The sign is represented as an integer signum value: -1 for * negative, 0 for zero, or 1 for positive. The magnitude is a byte array * in big-endian byte-order: the most significant byte is in the * zeroth element. A zero-length magnitude array is permissible, and will * result in a BigInteger value of 0, whether signum is -1, 0 or 1. * * @param signum signum of the number (-1 for negative, 0 for zero, 1 * for positive). * @param magnitude big-endian binary representation of the magnitude of * the number. * @throws NumberFormatException {@code signum} is not one of the three * legal values (-1, 0, and 1), or {@code signum} is 0 and * {@code magnitude} contains one or more non-zero bytes. */ public BigInteger(int signum, byte[] magnitude) { this.mag = stripLeadingZeroBytes(magnitude); if (signum < -1 || signum > 1) throw(new NumberFormatException("Invalid signum value")); if (this.mag.length==0) { this.signum = 0; } else { if (signum == 0) throw(new NumberFormatException("signum-magnitude mismatch")); this.signum = signum; } } /** * A constructor for internal use that translates the sign-magnitude * representation of a BigInteger into a BigInteger. It checks the * arguments and copies the magnitude so this constructor would be * safe for external use. */ private BigInteger(int signum, int[] magnitude) { this.mag = stripLeadingZeroInts(magnitude); if (signum < -1 || signum > 1) throw(new NumberFormatException("Invalid signum value")); if (this.mag.length==0) { this.signum = 0; } else { if (signum == 0) throw(new NumberFormatException("signum-magnitude mismatch")); this.signum = signum; } } /** * Translates the String representation of a BigInteger in the * specified radix into a BigInteger. The String representation * consists of an optional minus or plus sign followed by a * sequence of one or more digits in the specified radix. The * character-to-digit mapping is provided by {@code * Character.digit}. The String may not contain any extraneous * characters (whitespace, for example). * * @param val String representation of BigInteger. * @param radix radix to be used in interpreting {@code val}. * @throws NumberFormatException {@code val} is not a valid representation * of a BigInteger in the specified radix, or {@code radix} is * outside the range from {@link Character#MIN_RADIX} to * {@link Character#MAX_RADIX}, inclusive. * @see Character#digit */ public BigInteger(String val, int radix) { int cursor = 0, numDigits; final int len = val.length(); if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) throw new NumberFormatException("Radix out of range"); if (len == 0) throw new NumberFormatException("Zero length BigInteger"); // Check for at most one leading sign int sign = 1; int index1 = val.lastIndexOf('-'); int index2 = val.lastIndexOf('+'); if ((index1 + index2) <= -1) { // No leading sign character or at most one leading sign character if (index1 == 0 || index2 == 0) { cursor = 1; if (len == 1) throw new NumberFormatException("Zero length BigInteger"); } if (index1 == 0) sign = -1; } else throw new NumberFormatException("Illegal embedded sign character"); // Skip leading zeros and compute number of digits in magnitude while (cursor < len && Character.digit(val.charAt(cursor), radix) == 0) cursor++; if (cursor == len) { signum = 0; mag = ZERO.mag; return; } numDigits = len - cursor; signum = sign; // Pre-allocate array of expected size. May be too large but can // never be too small. Typically exact. int numBits = (int)(((numDigits * bitsPerDigit[radix]) >>> 10) + 1); int numWords = (numBits + 31) >>> 5; int[] magnitude = new int[numWords]; // Process first (potentially short) digit group int firstGroupLen = numDigits % digitsPerInt[radix]; if (firstGroupLen == 0) firstGroupLen = digitsPerInt[radix]; String group = val.substring(cursor, cursor += firstGroupLen); magnitude[numWords - 1] = Integer.parseInt(group, radix); if (magnitude[numWords - 1] < 0) throw new NumberFormatException("Illegal digit"); // Process remaining digit groups int superRadix = intRadix[radix]; int groupVal = 0; while (cursor < len) { group = val.substring(cursor, cursor += digitsPerInt[radix]); groupVal = Integer.parseInt(group, radix); if (groupVal < 0) throw new NumberFormatException("Illegal digit"); destructiveMulAdd(magnitude, superRadix, groupVal); } // Required for cases where the array was overallocated. mag = trustedStripLeadingZeroInts(magnitude); } /* * Constructs a new BigInteger using a char array with radix=10. * Sign is precalculated outside and not allowed in the val. */ BigInteger(char[] val, int sign, int len) { int cursor = 0, numDigits; // Skip leading zeros and compute number of digits in magnitude while (cursor < len && Character.digit(val[cursor], 10) == 0) { cursor++; } if (cursor == len) { signum = 0; mag = ZERO.mag; return; } numDigits = len - cursor; signum = sign; // Pre-allocate array of expected size int numWords; if (len < 10) { numWords = 1; } else { int numBits = (int)(((numDigits * bitsPerDigit[10]) >>> 10) + 1); numWords = (numBits + 31) >>> 5; } int[] magnitude = new int[numWords]; // Process first (potentially short) digit group int firstGroupLen = numDigits % digitsPerInt[10]; if (firstGroupLen == 0) firstGroupLen = digitsPerInt[10]; magnitude[numWords - 1] = parseInt(val, cursor, cursor += firstGroupLen); // Process remaining digit groups while (cursor < len) { int groupVal = parseInt(val, cursor, cursor += digitsPerInt[10]); destructiveMulAdd(magnitude, intRadix[10], groupVal); } mag = trustedStripLeadingZeroInts(magnitude); } // Create an integer with the digits between the two indexes // Assumes start < end. The result may be negative, but it // is to be treated as an unsigned value. private int parseInt(char[] source, int start, int end) { int result = Character.digit(source[start++], 10); if (result == -1) throw new NumberFormatException(new String(source)); for (int index = start; index= 0; i--) { product = ylong * (x[i] & LONG_MASK) + carry; x[i] = (int)product; carry = product >>> 32; } // Perform the addition long sum = (x[len-1] & LONG_MASK) + zlong; x[len-1] = (int)sum; carry = sum >>> 32; for (int i = len-2; i >= 0; i--) { sum = (x[i] & LONG_MASK) + carry; x[i] = (int)sum; carry = sum >>> 32; } } /** * Translates the decimal String representation of a BigInteger into a * BigInteger. The String representation consists of an optional minus * sign followed by a sequence of one or more decimal digits. The * character-to-digit mapping is provided by {@code Character.digit}. * The String may not contain any extraneous characters (whitespace, for * example). * * @param val decimal String representation of BigInteger. * @throws NumberFormatException {@code val} is not a valid representation * of a BigInteger. * @see Character#digit */ public BigInteger(String val) { this(val, 10); } /** * Constructs a randomly generated BigInteger, uniformly distributed over * the range 0 to (2{@code numBits} - 1), inclusive. * The uniformity of the distribution assumes that a fair source of random * bits is provided in {@code rnd}. Note that this constructor always * constructs a non-negative BigInteger. * * @param numBits maximum bitLength of the new BigInteger. * @param rnd source of randomness to be used in computing the new * BigInteger. * @throws IllegalArgumentException {@code numBits} is negative. * @see #bitLength() */ public BigInteger(int numBits, Random rnd) { this(1, randomBits(numBits, rnd)); } private static byte[] randomBits(int numBits, Random rnd) { if (numBits < 0) throw new IllegalArgumentException("numBits must be non-negative"); int numBytes = (int)(((long)numBits+7)/8); // avoid overflow byte[] randomBits = new byte[numBytes]; // Generate random bytes and mask out any excess bits if (numBytes > 0) { rnd.nextBytes(randomBits); int excessBits = 8*numBytes - numBits; randomBits[0] &= (1 << (8-excessBits)) - 1; } return randomBits; } /** * Constructs a randomly generated positive BigInteger that is probably * prime, with the specified bitLength. * *

It is recommended that the {@link #probablePrime probablePrime} * method be used in preference to this constructor unless there * is a compelling need to specify a certainty. * * @param bitLength bitLength of the returned BigInteger. * @param certainty a measure of the uncertainty that the caller is * willing to tolerate. The probability that the new BigInteger * represents a prime number will exceed * (1 - 1/2{@code certainty}). The execution time of * this constructor is proportional to the value of this parameter. * @param rnd source of random bits used to select candidates to be * tested for primality. * @throws ArithmeticException {@code bitLength < 2}. * @see #bitLength() */ public BigInteger(int bitLength, int certainty, Random rnd) { BigInteger prime; if (bitLength < 2) throw new ArithmeticException("bitLength < 2"); prime = (bitLength < SMALL_PRIME_THRESHOLD ? smallPrime(bitLength, certainty, rnd) : largePrime(bitLength, certainty, rnd)); signum = 1; mag = prime.mag; } // Minimum size in bits that the requested prime number has // before we use the large prime number generating algorithms. // The cutoff of 95 was chosen empirically for best performance. private static final int SMALL_PRIME_THRESHOLD = 95; // Certainty required to meet the spec of probablePrime private static final int DEFAULT_PRIME_CERTAINTY = 100; /** * Returns a positive BigInteger that is probably prime, with the * specified bitLength. The probability that a BigInteger returned * by this method is composite does not exceed 2-100. * * @param bitLength bitLength of the returned BigInteger. * @param rnd source of random bits used to select candidates to be * tested for primality. * @return a BigInteger of {@code bitLength} bits that is probably prime * @throws ArithmeticException {@code bitLength < 2}. * @see #bitLength() * @since 1.4 */ public static BigInteger probablePrime(int bitLength, Random rnd) { if (bitLength < 2) throw new ArithmeticException("bitLength < 2"); return (bitLength < SMALL_PRIME_THRESHOLD ? smallPrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd) : largePrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd)); } /** * Find a random number of the specified bitLength that is probably prime. * This method is used for smaller primes, its performance degrades on * larger bitlengths. * * This method assumes bitLength > 1. */ private static BigInteger smallPrime(int bitLength, int certainty, Random rnd) { int magLen = (bitLength + 31) >>> 5; int temp[] = new int[magLen]; int highBit = 1 << ((bitLength+31) & 0x1f); // High bit of high int int highMask = (highBit << 1) - 1; // Bits to keep in high int while(true) { // Construct a candidate for (int i=0; i 2) temp[magLen-1] |= 1; // Make odd if bitlen > 2 BigInteger p = new BigInteger(temp, 1); // Do cheap "pre-test" if applicable if (bitLength > 6) { long r = p.remainder(SMALL_PRIME_PRODUCT).longValue(); if ((r%3==0) || (r%5==0) || (r%7==0) || (r%11==0) || (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) || (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0)) continue; // Candidate is composite; try another } // All candidates of bitLength 2 and 3 are prime by this point if (bitLength < 4) return p; // Do expensive test if we survive pre-test (or it's inapplicable) if (p.primeToCertainty(certainty, rnd)) return p; } } private static final BigInteger SMALL_PRIME_PRODUCT = valueOf(3L*5*7*11*13*17*19*23*29*31*37*41); /** * Find a random number of the specified bitLength that is probably prime. * This method is more appropriate for larger bitlengths since it uses * a sieve to eliminate most composites before using a more expensive * test. */ private static BigInteger largePrime(int bitLength, int certainty, Random rnd) { BigInteger p; p = new BigInteger(bitLength, rnd).setBit(bitLength-1); p.mag[p.mag.length-1] &= 0xfffffffe; // Use a sieve length likely to contain the next prime number int searchLen = (bitLength / 20) * 64; BitSieve searchSieve = new BitSieve(p, searchLen); BigInteger candidate = searchSieve.retrieve(p, certainty, rnd); while ((candidate == null) || (candidate.bitLength() != bitLength)) { p = p.add(BigInteger.valueOf(2*searchLen)); if (p.bitLength() != bitLength) p = new BigInteger(bitLength, rnd).setBit(bitLength-1); p.mag[p.mag.length-1] &= 0xfffffffe; searchSieve = new BitSieve(p, searchLen); candidate = searchSieve.retrieve(p, certainty, rnd); } return candidate; } /** * Returns the first integer greater than this {@code BigInteger} that * is probably prime. The probability that the number returned by this * method is composite does not exceed 2-100. This method will * never skip over a prime when searching: if it returns {@code p}, there * is no prime {@code q} such that {@code this < q < p}. * * @return the first integer greater than this {@code BigInteger} that * is probably prime. * @throws ArithmeticException {@code this < 0}. * @since 1.5 */ public BigInteger nextProbablePrime() { if (this.signum < 0) throw new ArithmeticException("start < 0: " + this); // Handle trivial cases if ((this.signum == 0) || this.equals(ONE)) return TWO; BigInteger result = this.add(ONE); // Fastpath for small numbers if (result.bitLength() < SMALL_PRIME_THRESHOLD) { // Ensure an odd number if (!result.testBit(0)) result = result.add(ONE); while(true) { // Do cheap "pre-test" if applicable if (result.bitLength() > 6) { long r = result.remainder(SMALL_PRIME_PRODUCT).longValue(); if ((r%3==0) || (r%5==0) || (r%7==0) || (r%11==0) || (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) || (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0)) { result = result.add(TWO); continue; // Candidate is composite; try another } } // All candidates of bitLength 2 and 3 are prime by this point if (result.bitLength() < 4) return result; // The expensive test if (result.primeToCertainty(DEFAULT_PRIME_CERTAINTY, null)) return result; result = result.add(TWO); } } // Start at previous even number if (result.testBit(0)) result = result.subtract(ONE); // Looking for the next large prime int searchLen = (result.bitLength() / 20) * 64; while(true) { BitSieve searchSieve = new BitSieve(result, searchLen); BigInteger candidate = searchSieve.retrieve(result, DEFAULT_PRIME_CERTAINTY, null); if (candidate != null) return candidate; result = result.add(BigInteger.valueOf(2 * searchLen)); } } /** * Returns {@code true} if this BigInteger is probably prime, * {@code false} if it's definitely composite. * * This method assumes bitLength > 2. * * @param certainty a measure of the uncertainty that the caller is * willing to tolerate: if the call returns {@code true} * the probability that this BigInteger is prime exceeds * {@code (1 - 1/2certainty)}. The execution time of * this method is proportional to the value of this parameter. * @return {@code true} if this BigInteger is probably prime, * {@code false} if it's definitely composite. */ boolean primeToCertainty(int certainty, Random random) { int rounds = 0; int n = (Math.min(certainty, Integer.MAX_VALUE-1)+1)/2; // The relationship between the certainty and the number of rounds // we perform is given in the draft standard ANSI X9.80, "PRIME // NUMBER GENERATION, PRIMALITY TESTING, AND PRIMALITY CERTIFICATES". int sizeInBits = this.bitLength(); if (sizeInBits < 100) { rounds = 50; rounds = n < rounds ? n : rounds; return passesMillerRabin(rounds, random); } if (sizeInBits < 256) { rounds = 27; } else if (sizeInBits < 512) { rounds = 15; } else if (sizeInBits < 768) { rounds = 8; } else if (sizeInBits < 1024) { rounds = 4; } else { rounds = 2; } rounds = n < rounds ? n : rounds; return passesMillerRabin(rounds, random) && passesLucasLehmer(); } /** * Returns true iff this BigInteger is a Lucas-Lehmer probable prime. * * The following assumptions are made: * This BigInteger is a positive, odd number. */ private boolean passesLucasLehmer() { BigInteger thisPlusOne = this.add(ONE); // Step 1 int d = 5; while (jacobiSymbol(d, this) != -1) { // 5, -7, 9, -11, ... d = (d<0) ? Math.abs(d)+2 : -(d+2); } // Step 2 BigInteger u = lucasLehmerSequence(d, thisPlusOne, this); // Step 3 return u.mod(this).equals(ZERO); } /** * Computes Jacobi(p,n). * Assumes n positive, odd, n>=3. */ private static int jacobiSymbol(int p, BigInteger n) { if (p == 0) return 0; // Algorithm and comments adapted from Colin Plumb's C library. int j = 1; int u = n.mag[n.mag.length-1]; // Make p positive if (p < 0) { p = -p; int n8 = u & 7; if ((n8 == 3) || (n8 == 7)) j = -j; // 3 (011) or 7 (111) mod 8 } // Get rid of factors of 2 in p while ((p & 3) == 0) p >>= 2; if ((p & 1) == 0) { p >>= 1; if (((u ^ (u>>1)) & 2) != 0) j = -j; // 3 (011) or 5 (101) mod 8 } if (p == 1) return j; // Then, apply quadratic reciprocity if ((p & u & 2) != 0) // p = u = 3 (mod 4)? j = -j; // And reduce u mod p u = n.mod(BigInteger.valueOf(p)).intValue(); // Now compute Jacobi(u,p), u < p while (u != 0) { while ((u & 3) == 0) u >>= 2; if ((u & 1) == 0) { u >>= 1; if (((p ^ (p>>1)) & 2) != 0) j = -j; // 3 (011) or 5 (101) mod 8 } if (u == 1) return j; // Now both u and p are odd, so use quadratic reciprocity assert (u < p); int t = u; u = p; p = t; if ((u & p & 2) != 0) // u = p = 3 (mod 4)? j = -j; // Now u >= p, so it can be reduced u %= p; } return 0; } private static BigInteger lucasLehmerSequence(int z, BigInteger k, BigInteger n) { BigInteger d = BigInteger.valueOf(z); BigInteger u = ONE; BigInteger u2; BigInteger v = ONE; BigInteger v2; for (int i=k.bitLength()-2; i>=0; i--) { u2 = u.multiply(v).mod(n); v2 = v.square().add(d.multiply(u.square())).mod(n); if (v2.testBit(0)) v2 = v2.subtract(n); v2 = v2.shiftRight(1); u = u2; v = v2; if (k.testBit(i)) { u2 = u.add(v).mod(n); if (u2.testBit(0)) u2 = u2.subtract(n); u2 = u2.shiftRight(1); v2 = v.add(d.multiply(u)).mod(n); if (v2.testBit(0)) v2 = v2.subtract(n); v2 = v2.shiftRight(1); u = u2; v = v2; } } return u; } private static volatile Random staticRandom; private static Random getSecureRandom() { if (staticRandom == null) { staticRandom = new java.security.SecureRandom(); } return staticRandom; } /** * Returns true iff this BigInteger passes the specified number of * Miller-Rabin tests. This test is taken from the DSA spec (NIST FIPS * 186-2). * * The following assumptions are made: * This BigInteger is a positive, odd number greater than 2. * iterations<=50. */ private boolean passesMillerRabin(int iterations, Random rnd) { // Find a and m such that m is odd and this == 1 + 2**a * m BigInteger thisMinusOne = this.subtract(ONE); BigInteger m = thisMinusOne; int a = m.getLowestSetBit(); m = m.shiftRight(a); // Do the tests if (rnd == null) { rnd = getSecureRandom(); } for (int i=0; i= 0); int j = 0; BigInteger z = b.modPow(m, this); while(!((j==0 && z.equals(ONE)) || z.equals(thisMinusOne))) { if (j>0 && z.equals(ONE) || ++j==a) return false; z = z.modPow(TWO, this); } } return true; } /** * This internal constructor differs from its public cousin * with the arguments reversed in two ways: it assumes that its * arguments are correct, and it doesn't copy the magnitude array. */ BigInteger(int[] magnitude, int signum) { this.signum = (magnitude.length==0 ? 0 : signum); this.mag = magnitude; } /** * This private constructor is for internal use and assumes that its * arguments are correct. */ private BigInteger(byte[] magnitude, int signum) { this.signum = (magnitude.length==0 ? 0 : signum); this.mag = stripLeadingZeroBytes(magnitude); } //Static Factory Methods /** * Returns a BigInteger whose value is equal to that of the * specified {@code long}. This "static factory method" is * provided in preference to a ({@code long}) constructor * because it allows for reuse of frequently used BigIntegers. * * @param val value of the BigInteger to return. * @return a BigInteger with the specified value. */ public static BigInteger valueOf(long val) { // If -MAX_CONSTANT < val < MAX_CONSTANT, return stashed constant if (val == 0) return ZERO; if (val > 0 && val <= MAX_CONSTANT) return posConst[(int) val]; else if (val < 0 && val >= -MAX_CONSTANT) return negConst[(int) -val]; return new BigInteger(val); } /** * Constructs a BigInteger with the specified value, which may not be zero. */ private BigInteger(long val) { if (val < 0) { val = -val; signum = -1; } else { signum = 1; } int highWord = (int)(val >>> 32); if (highWord==0) { mag = new int[1]; mag[0] = (int)val; } else { mag = new int[2]; mag[0] = highWord; mag[1] = (int)val; } } /** * Returns a BigInteger with the given two's complement representation. * Assumes that the input array will not be modified (the returned * BigInteger will reference the input array if feasible). */ private static BigInteger valueOf(int val[]) { return (val[0]>0 ? new BigInteger(val, 1) : new BigInteger(val)); } // Constants /** * Initialize static constant array when class is loaded. */ private final static int MAX_CONSTANT = 16; private static BigInteger posConst[] = new BigInteger[MAX_CONSTANT+1]; private static BigInteger negConst[] = new BigInteger[MAX_CONSTANT+1]; /** * The cache of powers of each radix. This allows us to not have to * recalculate powers of radix^(2^n) more than once. This speeds * Schoenhage recursive base conversion significantly. */ private static ArrayList[] powerCache; /** The cache of logarithms of radices for base conversion. */ private static final double[] logCache; /** The natural log of 2. This is used in computing cache indices. */ private static final double LOG_TWO = Math.log(2.0); static { for (int i = 1; i <= MAX_CONSTANT; i++) { int[] magnitude = new int[1]; magnitude[0] = i; posConst[i] = new BigInteger(magnitude, 1); negConst[i] = new BigInteger(magnitude, -1); } /* * Initialize the cache of radix^(2^x) values used for base conversion * with just the very first value. Additional values will be created * on demand. */ powerCache = (ArrayList[]) new ArrayList[Character.MAX_RADIX+1]; logCache = new double[Character.MAX_RADIX+1]; for (int i=Character.MIN_RADIX; i<=Character.MAX_RADIX; i++) { powerCache[i] = new ArrayList(1); powerCache[i].add(BigInteger.valueOf(i)); logCache[i] = Math.log(i); } } /** * The BigInteger constant zero. * * @since 1.2 */ public static final BigInteger ZERO = new BigInteger(new int[0], 0); /** * The BigInteger constant one. * * @since 1.2 */ public static final BigInteger ONE = valueOf(1); /** * The BigInteger constant two. (Not exported.) */ private static final BigInteger TWO = valueOf(2); /** * The BigInteger constant -1. (Not exported.) */ private static final BigInteger NEGATIVE_ONE = valueOf(-1); /** * The BigInteger constant ten. * * @since 1.5 */ public static final BigInteger TEN = valueOf(10); // Arithmetic Operations /** * Returns a BigInteger whose value is {@code (this + val)}. * * @param val value to be added to this BigInteger. * @return {@code this + val} */ public BigInteger add(BigInteger val) { if (val.signum == 0) return this; if (signum == 0) return val; if (val.signum == signum) return new BigInteger(add(mag, val.mag), signum); int cmp = compareMagnitude(val); if (cmp == 0) return ZERO; int[] resultMag = (cmp > 0 ? subtract(mag, val.mag) : subtract(val.mag, mag)); resultMag = trustedStripLeadingZeroInts(resultMag); return new BigInteger(resultMag, cmp == signum ? 1 : -1); } /** * Package private methods used by BigDecimal code to add a BigInteger * with a long. Assumes val is not equal to INFLATED. */ BigInteger add(long val) { if (val == 0) return this; if (signum == 0) return valueOf(val); if (Long.signum(val) == signum) return new BigInteger(add(mag, Math.abs(val)), signum); int cmp = compareMagnitude(val); if (cmp == 0) return ZERO; int[] resultMag = (cmp > 0 ? subtract(mag, Math.abs(val)) : subtract(Math.abs(val), mag)); resultMag = trustedStripLeadingZeroInts(resultMag); return new BigInteger(resultMag, cmp == signum ? 1 : -1); } /** * Adds the contents of the int array x and long value val. This * method allocates a new int array to hold the answer and returns * a reference to that array. Assumes x.length > 0 and val is * non-negative */ private static int[] add(int[] x, long val) { int[] y; long sum = 0; int xIndex = x.length; int[] result; int highWord = (int)(val >>> 32); if (highWord==0) { result = new int[xIndex]; sum = (x[--xIndex] & LONG_MASK) + val; result[xIndex] = (int)sum; } else { if (xIndex == 1) { result = new int[2]; sum = val + (x[0] & LONG_MASK); result[1] = (int)sum; result[0] = (int)(sum >>> 32); return result; } else { result = new int[xIndex]; sum = (x[--xIndex] & LONG_MASK) + (val & LONG_MASK); result[xIndex] = (int)sum; sum = (x[--xIndex] & LONG_MASK) + (highWord & LONG_MASK) + (sum >>> 32); result[xIndex] = (int)sum; } } // Copy remainder of longer number while carry propagation is required boolean carry = (sum >>> 32 != 0); while (xIndex > 0 && carry) carry = ((result[--xIndex] = x[xIndex] + 1) == 0); // Copy remainder of longer number while (xIndex > 0) result[--xIndex] = x[xIndex]; // Grow result if necessary if (carry) { int bigger[] = new int[result.length + 1]; System.arraycopy(result, 0, bigger, 1, result.length); bigger[0] = 0x01; return bigger; } return result; } /** * Adds the contents of the int arrays x and y. This method allocates * a new int array to hold the answer and returns a reference to that * array. */ private static int[] add(int[] x, int[] y) { // If x is shorter, swap the two arrays if (x.length < y.length) { int[] tmp = x; x = y; y = tmp; } int xIndex = x.length; int yIndex = y.length; int result[] = new int[xIndex]; long sum = 0; if(yIndex==1) { sum = (x[--xIndex] & LONG_MASK) + (y[0] & LONG_MASK) ; result[xIndex] = (int)sum; } else { // Add common parts of both numbers while(yIndex > 0) { sum = (x[--xIndex] & LONG_MASK) + (y[--yIndex] & LONG_MASK) + (sum >>> 32); result[xIndex] = (int)sum; } } // Copy remainder of longer number while carry propagation is required boolean carry = (sum >>> 32 != 0); while (xIndex > 0 && carry) carry = ((result[--xIndex] = x[xIndex] + 1) == 0); // Copy remainder of longer number while (xIndex > 0) result[--xIndex] = x[xIndex]; // Grow result if necessary if (carry) { int bigger[] = new int[result.length + 1]; System.arraycopy(result, 0, bigger, 1, result.length); bigger[0] = 0x01; return bigger; } return result; } private static int[] subtract(long val, int[] little) { int highWord = (int)(val >>> 32); if (highWord==0) { int result[] = new int[1]; result[0] = (int)(val - (little[0] & LONG_MASK)); return result; } else { int result[] = new int[2]; if(little.length==1) { long difference = ((int)val & LONG_MASK) - (little[0] & LONG_MASK); result[1] = (int)difference; // Subtract remainder of longer number while borrow propagates boolean borrow = (difference >> 32 != 0); if(borrow) { result[0] = highWord - 1; } else { // Copy remainder of longer number result[0] = highWord; } return result; } else { // little.length==2 long difference = ((int)val & LONG_MASK) - (little[1] & LONG_MASK); result[1] = (int)difference; difference = (highWord & LONG_MASK) - (little[0] & LONG_MASK) + (difference >> 32); result[0] = (int)difference; return result; } } } /** * Subtracts the contents of the second argument (val) from the * first (big). The first int array (big) must represent a larger number * than the second. This method allocates the space necessary to hold the * answer. * assumes val >= 0 */ private static int[] subtract(int[] big, long val) { int highWord = (int)(val >>> 32); int bigIndex = big.length; int result[] = new int[bigIndex]; long difference = 0; if (highWord==0) { difference = (big[--bigIndex] & LONG_MASK) - val; result[bigIndex] = (int)difference; } else { difference = (big[--bigIndex] & LONG_MASK) - (val & LONG_MASK); result[bigIndex] = (int)difference; difference = (big[--bigIndex] & LONG_MASK) - (highWord & LONG_MASK) + (difference >> 32); result[bigIndex] = (int)difference; } // Subtract remainder of longer number while borrow propagates boolean borrow = (difference >> 32 != 0); while (bigIndex > 0 && borrow) borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1); // Copy remainder of longer number while (bigIndex > 0) result[--bigIndex] = big[bigIndex]; return result; } /** * Returns a BigInteger whose value is {@code (this - val)}. * * @param val value to be subtracted from this BigInteger. * @return {@code this - val} */ public BigInteger subtract(BigInteger val) { if (val.signum == 0) return this; if (signum == 0) return val.negate(); if (val.signum != signum) return new BigInteger(add(mag, val.mag), signum); int cmp = compareMagnitude(val); if (cmp == 0) return ZERO; int[] resultMag = (cmp > 0 ? subtract(mag, val.mag) : subtract(val.mag, mag)); resultMag = trustedStripLeadingZeroInts(resultMag); return new BigInteger(resultMag, cmp == signum ? 1 : -1); } /** * Subtracts the contents of the second int arrays (little) from the * first (big). The first int array (big) must represent a larger number * than the second. This method allocates the space necessary to hold the * answer. */ private static int[] subtract(int[] big, int[] little) { int bigIndex = big.length; int result[] = new int[bigIndex]; int littleIndex = little.length; long difference = 0; // Subtract common parts of both numbers while(littleIndex > 0) { difference = (big[--bigIndex] & LONG_MASK) - (little[--littleIndex] & LONG_MASK) + (difference >> 32); result[bigIndex] = (int)difference; } // Subtract remainder of longer number while borrow propagates boolean borrow = (difference >> 32 != 0); while (bigIndex > 0 && borrow) borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1); // Copy remainder of longer number while (bigIndex > 0) result[--bigIndex] = big[bigIndex]; return result; } /** * Returns a BigInteger whose value is {@code (this * val)}. * * @param val value to be multiplied by this BigInteger. * @return {@code this * val} */ public BigInteger multiply(BigInteger val) { if (val.signum == 0 || signum == 0) return ZERO; int xlen = mag.length; int ylen = val.mag.length; if ((xlen < KARATSUBA_THRESHOLD) || (ylen < KARATSUBA_THRESHOLD)) { int resultSign = signum == val.signum ? 1 : -1; if (val.mag.length == 1) { return multiplyByInt(mag,val.mag[0], resultSign); } if(mag.length == 1) { return multiplyByInt(val.mag,mag[0], resultSign); } int[] result = multiplyToLen(mag, xlen, val.mag, ylen, null); result = trustedStripLeadingZeroInts(result); return new BigInteger(result, resultSign); } else if ((xlen < TOOM_COOK_THRESHOLD) && (ylen < TOOM_COOK_THRESHOLD)) return multiplyKaratsuba(this, val); else if (!shouldMultiplySchoenhageStrassen(xlen) || !shouldMultiplySchoenhageStrassen(ylen)) return multiplyToomCook3(this, val); else return multiplySchoenhageStrassen(this, val); } private static BigInteger multiplyByInt(int[] x, int y, int sign) { if(Integer.bitCount(y)==1) { return new BigInteger(shiftLeft(x,Integer.numberOfTrailingZeros(y)), sign); } int xlen = x.length; int[] rmag = new int[xlen + 1]; long carry = 0; long yl = y & LONG_MASK; int rstart = rmag.length - 1; for (int i = xlen - 1; i >= 0; i--) { long product = (x[i] & LONG_MASK) * yl + carry; rmag[rstart--] = (int)product; carry = product >>> 32; } if (carry == 0L) { rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length); } else { rmag[rstart] = (int)carry; } return new BigInteger(rmag, sign); } /** * Package private methods used by BigDecimal code to multiply a BigInteger * with a long. Assumes v is not equal to INFLATED. */ BigInteger multiply(long v) { if (v == 0 || signum == 0) return ZERO; if (v == BigDecimal.INFLATED) return multiply(BigInteger.valueOf(v)); int rsign = (v > 0 ? signum : -signum); if (v < 0) v = -v; long dh = v >>> 32; // higher order bits long dl = v & LONG_MASK; // lower order bits int xlen = mag.length; int[] value = mag; int[] rmag = (dh == 0L) ? (new int[xlen + 1]) : (new int[xlen + 2]); long carry = 0; int rstart = rmag.length - 1; for (int i = xlen - 1; i >= 0; i--) { long product = (value[i] & LONG_MASK) * dl + carry; rmag[rstart--] = (int)product; carry = product >>> 32; } rmag[rstart] = (int)carry; if (dh != 0L) { carry = 0; rstart = rmag.length - 2; for (int i = xlen - 1; i >= 0; i--) { long product = (value[i] & LONG_MASK) * dh + (rmag[rstart] & LONG_MASK) + carry; rmag[rstart--] = (int)product; carry = product >>> 32; } rmag[0] = (int)carry; } if (carry == 0L) rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length); return new BigInteger(rmag, rsign); } /** * Multiplies int arrays x and y to the specified lengths and places * the result into z. There will be no leading zeros in the resultant array. */ private int[] multiplyToLen(int[] x, int xlen, int[] y, int ylen, int[] z) { int xstart = xlen - 1; int ystart = ylen - 1; if (z == null || z.length < (xlen+ ylen)) z = new int[xlen+ylen]; long carry = 0; for (int j=ystart, k=ystart+1+xstart; j>=0; j--, k--) { long product = (y[j] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; z[k] = (int)product; carry = product >>> 32; } z[xstart] = (int)carry; for (int i = xstart-1; i >= 0; i--) { carry = 0; for (int j=ystart, k=ystart+1+i; j>=0; j--, k--) { long product = (y[j] & LONG_MASK) * (x[i] & LONG_MASK) + (z[k] & LONG_MASK) + carry; z[k] = (int)product; carry = product >>> 32; } z[i] = (int)carry; } return z; } /** * Multiplies two BigIntegers using the Karatsuba multiplication * algorithm. This is a recursive divide-and-conquer algorithm which is * more efficient for large numbers than what is commonly called the * "grade-school" algorithm used in multiplyToLen. If the numbers to be * multiplied have length n, the "grade-school" algorithm has an * asymptotic complexity of O(n^2). In contrast, the Karatsuba algorithm * has complexity of O(n^(log2(3))), or O(n^1.585). It achieves this * increased performance by doing 3 multiplies instead of 4 when * evaluating the product. As it has some overhead, should be used when * both numbers are larger than a certain threshold (found * experimentally). * * See: http://en.wikipedia.org/wiki/Karatsuba_algorithm */ private static BigInteger multiplyKaratsuba(BigInteger x, BigInteger y) { int xlen = x.mag.length; int ylen = y.mag.length; // The number of ints in each half of the number. int half = (Math.max(xlen, ylen)+1) / 2; // xl and yl are the lower halves of x and y respectively, // xh and yh are the upper halves. BigInteger xl = x.getLower(half); BigInteger xh = x.getUpper(half); BigInteger yl = y.getLower(half); BigInteger yh = y.getUpper(half); BigInteger p1 = xh.multiply(yh); // p1 = xh*yh BigInteger p2 = xl.multiply(yl); // p2 = xl*yl // p3=(xh+xl)*(yh+yl) BigInteger p3 = xh.add(xl).multiply(yh.add(yl)); // result = p1 * 2^(32*2*half) + (p3 - p1 - p2) * 2^(32*half) + p2 BigInteger result = p1.shiftLeft(32*half).add(p3.subtract(p1).subtract(p2)).shiftLeft(32*half).add(p2); if (x.signum != y.signum) return result.negate(); else return result; } /** * Multiplies two BigIntegers using a 3-way Toom-Cook multiplication * algorithm. This is a recursive divide-and-conquer algorithm which is * more efficient for large numbers than what is commonly called the * "grade-school" algorithm used in multiplyToLen. If the numbers to be * multiplied have length n, the "grade-school" algorithm has an * asymptotic complexity of O(n^2). In contrast, 3-way Toom-Cook has a * complexity of about O(n^1.465). It achieves this increased asymptotic * performance by breaking each number into three parts and by doing 5 * multiplies instead of 9 when evaluating the product. Due to overhead * (additions, shifts, and one division) in the Toom-Cook algorithm, it * should only be used when both numbers are larger than a certain * threshold (found experimentally). This threshold is generally larger * than that for Karatsuba multiplication, so this algorithm is generally * only used when numbers become significantly larger. * * The algorithm used is the "optimal" 3-way Toom-Cook algorithm outlined * by Marco Bodrato. * * See: http://bodrato.it/toom-cook/ * http://bodrato.it/papers/#WAIFI2007 * * "Towards Optimal Toom-Cook Multiplication for Univariate and * Multivariate Polynomials in Characteristic 2 and 0." by Marco BODRATO; * In C.Carlet and B.Sunar, Eds., "WAIFI'07 proceedings", p. 116-133, * LNCS #4547. Springer, Madrid, Spain, June 21-22, 2007. * */ private static BigInteger multiplyToomCook3(BigInteger a, BigInteger b) { int alen = a.mag.length; int blen = b.mag.length; int largest = Math.max(alen, blen); // k is the size (in ints) of the lower-order slices. int k = (largest+2)/3; // Equal to ceil(largest/3) // r is the size (in ints) of the highest-order slice. int r = largest - 2*k; // Obtain slices of the numbers. a2 and b2 are the most significant // bits of the numbers a and b, and a0 and b0 the least significant. BigInteger a0, a1, a2, b0, b1, b2; a2 = a.getToomSlice(k, r, 0, largest); a1 = a.getToomSlice(k, r, 1, largest); a0 = a.getToomSlice(k, r, 2, largest); b2 = b.getToomSlice(k, r, 0, largest); b1 = b.getToomSlice(k, r, 1, largest); b0 = b.getToomSlice(k, r, 2, largest); BigInteger v0, v1, v2, vm1, vinf, t1, t2, tm1, da1, db1; v0 = a0.multiply(b0); da1 = a2.add(a0); db1 = b2.add(b0); vm1 = da1.subtract(a1).multiply(db1.subtract(b1)); da1 = da1.add(a1); db1 = db1.add(b1); v1 = da1.multiply(db1); v2 = da1.add(a2).shiftLeft(1).subtract(a0).multiply( db1.add(b2).shiftLeft(1).subtract(b0)); vinf = a2.multiply(b2); /* The algorithm requires two divisions by 2 and one by 3. All divisions are known to be exact, that is, they do not produce remainders, and all results are positive. The divisions by 2 are implemented as right shifts which are relatively efficient, leaving only an exact division by 3, which is done by a specialized linear-time algorithm. */ t2 = v2.subtract(vm1).exactDivideBy3(); tm1 = v1.subtract(vm1).shiftRight(1); t1 = v1.subtract(v0); t2 = t2.subtract(t1).shiftRight(1); t1 = t1.subtract(tm1).subtract(vinf); t2 = t2.subtract(vinf.shiftLeft(1)); tm1 = tm1.subtract(t2); // Number of bits to shift left. int ss = k*32; BigInteger result = vinf.shiftLeft(ss).add(t2).shiftLeft(ss).add(t1).shiftLeft(ss).add(tm1).shiftLeft(ss).add(v0); if (a.signum != b.signum) return result.negate(); else return result; } /** * Returns a slice of a BigInteger for use in Toom-Cook multiplication. * * @param lowerSize The size of the lower-order bit slices. * @param upperSize The size of the higher-order bit slices. * @param slice The index of which slice is requested, which must be a * number from 0 to size-1. Slice 0 is the highest-order bits, and slice * size-1 are the lowest-order bits. Slice 0 may be of different size than * the other slices. * @param fullsize The size of the larger integer array, used to align * slices to the appropriate position when multiplying different-sized * numbers. */ private BigInteger getToomSlice(int lowerSize, int upperSize, int slice, int fullsize) { int start, end, sliceSize, len, offset; len = mag.length; offset = fullsize - len; if (slice == 0) { start = 0 - offset; end = upperSize - 1 - offset; } else { start = upperSize + (slice-1)*lowerSize - offset; end = start + lowerSize - 1; } if (start < 0) start = 0; if (end < 0) return ZERO; sliceSize = (end-start) + 1; if (sliceSize <= 0) return ZERO; // While performing Toom-Cook, all slices are positive and // the sign is adjusted when the final number is composed. if (start==0 && sliceSize >= len) return this.abs(); int intSlice[] = new int[sliceSize]; System.arraycopy(mag, start, intSlice, 0, sliceSize); return new BigInteger(trustedStripLeadingZeroInts(intSlice), 1); } /** * Does an exact division (that is, the remainder is known to be zero) * of the specified number by 3. This is used in Toom-Cook * multiplication. This is an efficient algorithm that runs in linear * time. If the argument is not exactly divisible by 3, results are * undefined. Note that this is expected to be called with positive * arguments only. */ private BigInteger exactDivideBy3() { int len = mag.length; int[] result = new int[len]; long x, w, q, borrow; borrow = 0L; for (int i=len-1; i>=0; i--) { x = (mag[i] & LONG_MASK); w = x - borrow; if (borrow > x) // Did we make the number go negative? borrow = 1L; else borrow = 0L; // 0xAAAAAAAB is the modular inverse of 3 (mod 2^32). Thus, // the effect of this is to divide by 3 (mod 2^32). // This is much faster than division on most architectures. q = (w * 0xAAAAAAABL) & LONG_MASK; result[i] = (int) q; // Now check the borrow. The second check can of course be // eliminated if the first fails. if (q >= 0x55555556L) { borrow++; if (q >= 0xAAAAAAABL) borrow++; } } result = trustedStripLeadingZeroInts(result); return new BigInteger(result, signum); } /** * Returns a new BigInteger representing n lower ints of the number. * This is used by Karatsuba multiplication and Karatsuba squaring. */ private BigInteger getLower(int n) { int len = mag.length; if (len <= n) return this; int lowerInts[] = new int[n]; System.arraycopy(mag, len-n, lowerInts, 0, n); return new BigInteger(trustedStripLeadingZeroInts(lowerInts), 1); } /** * Returns a new BigInteger representing mag.length-n upper * ints of the number. This is used by Karatsuba multiplication and * Karatsuba squaring. */ private BigInteger getUpper(int n) { int len = mag.length; if (len <= n) return ZERO; int upperLen = len - n; int upperInts[] = new int[upperLen]; System.arraycopy(mag, 0, upperInts, 0, upperLen); return new BigInteger(trustedStripLeadingZeroInts(upperInts), 1); } // Schoenhage-Strassen /** * Multiplies two {@link BigInteger}s using the * * Schoenhage-Strassen algorithm algorithm. * @param a * @param b * @return a BigInteger equal to a.multiply(b) */ private static BigInteger multiplySchoenhageStrassen(BigInteger a, BigInteger b) { // remove any minus signs, multiply, then fix sign int signum = a.signum() * b.signum(); if (a.signum() < 0) a = a.negate(); if (b.signum() < 0) b = b.negate(); int[] cArr = multiplySchoenhageStrassen(a.mag, b.mag); BigInteger c = new BigInteger(1, cArr); if (signum < 0) c = c.negate(); return c; } /** * Squares this number using the * * Schoenhage-Strassen algorithm. * @return a BigInteger equal to this.multiply(this) */ private BigInteger squareSchoenhageStrassen() { // remove any minus sign int[] aArr = signum()>=0 ? mag : negate().mag; int[] cArr = squareSchoenhageStrassen(aArr); BigInteger c = new BigInteger(1, cArr); return c; } /** * This is the core Schoenhage-Strassen method. It multiplies two positive numbers of length * aBitLen and bBitLen that are represented as int arrays, i.e. in base * 232. * Positive means an int is always interpreted as an unsigned number, regardless of the sign bit.
* The arrays must be ordered most significant to least significant, so the most significant digit * must be at index 0. *

* The Schoenhage-Strassen algorithm algorithm works as follows: *

    *
  1. Given numbers a and b, split both numbers into pieces of length 2n-1 bits. * See the code for how n is calculated.
  2. *
  3. Take the low n+2 bits of each piece of a, zero-pad them to 3n+5 bits, * and concatenate them to a new number u.
  4. *
  5. Do the same for b to obtain v.
  6. *
  7. Calculate all pieces of gamma by multiplying u and v (using Schoenhage-Strassen or another * algorithm).
  8. *
  9. Split gamma into pieces of 3n+5 bits.
  10. *
  11. Calculate z'i = gammai + gammai+2*2n - * gammai+2n - gammai+3*2n and reduce modulo * 2n+2.
    * z'i will be the i-th piece of a*b mod 2n+2.
  12. *
  13. Pad the pieces of a and b from step 1 to 2n+1 bits.
  14. *
  15. Perform a * * Discrete Fourier Transform (DFT) on the padded pieces.
  16. *
  17. Calculate all pieces of z" by multiplying the i-th piece of a by the i-th piece of b.
  18. *
  19. Perform an Inverse Discrete Fourier Transform (IDFT) on z". z" will contain all pieces of * a*b mod Fn where Fn=22n+1.
  20. *
  21. Calculate all pieces of z such that each piece is congruent to z' modulo n+2 and congruent to * z" modulo Fn. This is done using the * Chinese remainder theorem.
  22. *
  23. Calculate c by adding zi * 2i*2n-1 for all i, where zi is the * i-th piece of z.
  24. *
  25. Return c reduced modulo 22m+1. See the code for how m is calculated.
  26. *
* * References: *
    *
  1. * Wikipedia article *
  2. * Arnold Schoenhage und Volker Strassen: Schnelle Multiplikation grosser Zahlen, Computing 7, 1971, * Springer-Verlag, S. 281-292
  3. *
  4. Eine verstaendliche Beschreibung des * Schoenhage-Strassen-Algorithmus
  5. *
* @param a * @param b * @return a*b */ private static int[] multiplySchoenhageStrassen(int[] a, int[] b) { // set M to the number of binary digits in a or b, whichever is greater int M = Math.max(a.length*32, b.length*32); // find the lowest m such that m>=log2(2M) int m = 32 - Integer.numberOfLeadingZeros(2*M-1-1); int n = m/2 + 1; // split a and b into pieces 1<<(n-1) bits long; assume n>=6 so pieces start and end at int boundaries boolean even = m%2 == 0; int numPieces = even ? 1<=zi.length ? new int[(n+2+31)/32] : zi[i]; // zi = delta = (zi-c[i]) % 2^(n+2) subModPow2(eta, c[i], n+2); // z += zr<=6 addShifted(z, c[i], shift); addShifted(z, eta, shift); addShifted(z, eta, shift+(1<<(n-5))); } modFn(z); // assume m>=5 return z; } /** * Squares a positive number of length aBitLen that is represented as an int * array, i.e. in base 232. * @param a * @return a2 * @see #multiplySchoenhageStrassen(int[], int, int[], int) */ private int[] squareSchoenhageStrassen(int[] a) { // set M to the number of binary digits in a int M = a.length * 32; // find the lowest m such that m>=log2(2M) int m = 32 - Integer.numberOfLeadingZeros(2*M-1-1); int n = m/2 + 1; // split a into pieces 1<<(n-1) bits long; assume n>=6 so pieces start and end at int boundaries boolean even = m%2 == 0; int numPieces = even ? 1<=zi.length ? new int[(n+2+31)/32] : zi[i]; // zi = delta = (zi-c[i]) % 2^(n+2) subModPow2(eta, c[i], n+2); // z += zr<=6 addShifted(z, c[i], shift); addShifted(z, eta, shift); addShifted(z, eta, shift+(1<<(n-5))); } modFn(z); // assume m>=5 return z; } /** * Estimates whether SS will be more efficient than the other methods when multiplying two numbers * of a given length in bits. * @param length the number of ints in each of the two factors * @return true if SS is more efficient, false if Toom-Cook is more efficient */ private boolean shouldMultiplySchoenhageStrassen(int length) { if (IS64BIT) { // The following values were determined experimentally on a 64-bit JVM. // SS is slower than Toom-Cook below ~15,500 ints (~149,000 decimal digits) // and faster above ~73,200 ints (~705,000 decimal digits). // Between those values, it changes several times. if (length < 15500) return false; if (length < 16384) // 2^14 return true; if (length < 26300) return false; if (length < 32768) // 2^15 return true; if (length < 44000) return false; if (length < 65536) // 2^16 return true; if (length < 73200) return false; return true; } else { // The following values were determined experimentally on a 32-bit JVM. // SS is slower than Toom-Cook below ~6,300 ints (~60,700 decimal digits) // and faster above ~34,000 ints (~327,500 decimal digits). // Between those values, it changes several times. if (length < 6300) return false; if (length < 16384) // 2^14 return true; if (length < 19300) return false; if (length < 32768) // 2^15 return true; if (length < 34000) return false; return true; } } /** * Estimates whether SS will be more efficient than the other methods when squaring a number * of a given length in bits. * @param bitLength the number of ints in the number to be squared * @return true if SS is more efficient, false if Toom-Cook is more efficient * @see #shouldMultiplySchoenhageStrassen(int) */ private boolean shouldSquareSchoenhageStrassen(int length) { if (IS64BIT) { if (length < 15000) return false; if (length < 16384) // 2^14 return true; if (length < 27100) return false; if (length < 32768) // 2^15 return true; if (length < 43600) return false; if (length < 65536) // 2^16 return true; if (length < 76300) return false; if (length < 131072) // 2^17 return true; if (length < 133800) return false; return true; } else { if (length < 7100) return false; if (length < 8192) // 2^13 return true; if (length < 14200) return false; if (length < 16384) // 2^14 return true; if (length < 24100) return false; if (length < 32768) // 2^15 return true; if (length < 42800) return false; if (length < 65536) // 2^16 return true; if (length < 73000) return false; return true; } } /** * Performs a modified * * Fermat Number Transform on an array whose elements are int arrays.
* The modification is that the first step is omitted because only the lower half of the result is needed.
* A is assumed to be the lower half of the full array and the upper half is assumed to be all zeros. * The number of subarrays in A must be 2n if m is even and 2n+1 if m is odd.
* Each subarray must be ceil(2n-1) bits in length.
* n must be equal to m/2-1. * @param A * @param m * @param n */ private static void dft(int[][] A, int m, int n) { boolean even = m%2 == 0; int len = A.length; int v = 1; int[] d = new int[A[0].length]; for (int slen=len/2; slen>0; slen/=2) { // slen = #consecutive coefficients for which the sign (add/sub) and x are constant for (int j=0; j=0; k--) { cyclicShiftLeftBits(A[idx+slen], x, d); System.arraycopy(A[idx], 0, A[idx+slen], 0, A[idx].length); // copy A[idx] into A[idx+slen] addModFn(A[idx], d); subModFn(A[idx+slen], d); idx++; } } v++; } } /** * Returns the power to which to raise omega in a DFT.
* Omega itself is either 2 or 4 depending on m, but when omega=4 this method * doubles the exponent so omega can be assumed always to be 2 in a DFT. * @param n * @param v * @param idx * @param even * @return */ private static int getDftExponent(int n, int v, int idx, boolean even) { // take bits n-v..n-1 of idx, reverse them, shift left by n-v-1 int x = Integer.reverse(idx) << (n-v) >>> (31-n); // if m is even, divide by two if (even) x >>>= 1; return x; } /** * Performs a modified * * Inverse Fermat Number Transform on an array whose elements are int arrays. * The modification is that the last step (the one where the upper half is subtracted from the lower half) * is omitted.
* A is assumed to be the upper half of the full array and the upper half is assumed to be all zeros. * The number of subarrays in A must be 2n if m is even and 2n+1 if m is odd.
* Each subarray must be ceil(2n-1) bits in length.
* n must be equal to m/2-1. * @param A * @param m * @param n */ private static void idft(int[][] A, int m, int n) { boolean even = m%2 == 0; int len = A.length; int v = n - 1; int[] c = new int[A[0].length]; for (int slen=1; slen<=len/2; slen*=2) { // slen = #consecutive coefficients for which the sign (add/sub) and x are constant for (int j=0; j=0; k--) { System.arraycopy(A[idx], 0, c, 0, c.length); // copy A[idx] into c addModFn(A[idx], A[idx2]); cyclicShiftRightBits(A[idx], 1, A[idx]); subModFn(c, A[idx2]); cyclicShiftRightBits(c, x, A[idx2]); idx++; idx2++; } } v--; } } /** * Returns the power to which to raise omega in an IDFT.
* Omega itself is either 2 or 4 depending on m, but when omega=4 this method * doubles the exponent so omega can be assumed always to be 2 in a IDFT. * @param n * @param v * @param idx * @param even * @return */ private static int getIdftExponent(int n, int v, int idx, boolean even) { int x = Integer.reverse(idx) << (n-v) >>> (32-n); x += even ? 1<<(n-v) : 1<<(n-1-v); return x + 1; } /** * Adds two positive numbers (meaning they are interpreted as unsigned) modulo 22n+1, * where n is a.length*32/2; in other words, n is half the number of bits in * a.
* Both input values are given as int arrays; they must be the same length. * The result is returned in the first argument. * @param a a number in base 232 starting with the highest digit; the array's length must be a power of 2 * @param b a number in base 232 starting with the highest digit; must be the same length as a */ private static void addModFn(int[] a, int[] b) { boolean carry = false; for (int i=a.length-1; i>=0; i--) { int sum = a[i] + b[i]; if (carry) sum++; carry = ((sum>>>31) < (a[i]>>>31)+(b[i]>>>31)); // carry if signBit(sum) < signBit(a)+signBit(b) a[i] = sum; } // take a mod Fn by adding any remaining carry bit to the lowest bit; // since Fn is congruent to 1 (mod 2^n), it suffices to add 1 int i = a.length - 1; while (carry) { int sum = a[i] + 1; a[i] = sum; carry = sum == 0; i--; if (i < 0) i = a.length; } } /** * Subtracts two positive numbers (meaning they are interpreted as unsigned) modulo 22n+1, * where n is a.length*32/2; in other words, n is half the number of bits in * a.
* Both input values are given as int arrays; they must be the same length. * The result is returned in the first argument. * @param a a number in base 232 starting with the highest digit; the array's length must be a power of 2 * @param b a number in base 232 starting with the highest digit; must be the same length as a */ private static void subModFn(int[] a, int[] b) { // subtraction works by shifting b by b.length/2, then adding a and b boolean carry = false; int bIdx = b.length/2 - 1; for (int i=a.length-1; i>=a.length/2; i--) { int sum = a[i] + b[bIdx]; if (carry) sum++; carry = ((sum>>>31) < (a[i]>>>31)+(b[bIdx]>>>31)); // carry if signBit(sum) < signBit(a)+signBit(b) a[i] = sum; bIdx--; } bIdx = b.length - 1; for (int i=a.length/2-1; i>=0; i--) { int sum = a[i] + b[bIdx]; if (carry) sum++; carry = ((sum>>>31) < (a[i]>>>31)+(b[bIdx]>>>31)); // carry if signBit(sum) < signBit(a)+signBit(b) a[i] = sum; bIdx--; } // take a mod Fn by adding any remaining carry bit to the lowest bit; // since Fn is congruent to 1 (mod 2^n), it suffices to add 1 int i = a.length - 1; while (carry) { int sum = a[i] + 1; a[i] = sum; carry = sum == 0; i--; if (i < 0) i = a.length; } } /** * Multiplies two positive numbers (meaning they are interpreted as unsigned) modulo 2n+1, * and returns the result in a new array.
* a and b are assumed to be reduced mod 2n+1, i.e. 0≤a<2n+1 * and 0≤b<2n+1, where n is a.length*32/2; in other words, n is half the number * of bits in a.
* Both input values are given as int arrays; they must be the same length. * @param a a number in base 232 starting with the highest digit; the array's length must be a power of 2 * @param b a number in base 232 starting with the highest digit; must be the same length as a */ private static int[] multModFn(int[] a, int[] b) { int n = a.length / 2; // The upper halves of a and b can only be 0 or 1 because a and b are reduced mod 2^n+1, // so multiply just the lower halves of a and b. Handle the 3 special cases where one or // both upper halves equal 1 (i.e., a[n-1]=1 and/or b[n-1]=1). The upper half of a number // reduced modulo 2^n+1 equals 1 iff the number=2^n. if (a[n-1] == 1) { // if a=b=2^n, a*b=1 (mod 2^n+1) if (b[n-1] == 1) { int[] c = new int[a.length]; c[c.length-1] = 1; return c; } // if a=2^n and b!=2^n+1, a*b=-b (mod 2^n+1) else { int[] b0pad = new int[a.length]; System.arraycopy(b, n, b0pad, n, n); int[] c = new int[a.length]; subModFn(c, b0pad); return c; } } // if a!=2^n and b=2^n, a*b=-a (mod 2^n+1) else if (b[n-1] == 1) { int[] a0pad = new int[b.length]; System.arraycopy(a, n, a0pad, n, n); int[] c = new int[b.length]; subModFn(c, a0pad); return c; } // if a!=2^n and b!=2^n, a*b=a0*b0 else { int[] a0 = Arrays.copyOfRange(a, n, a.length); int[] b0 = Arrays.copyOfRange(b, n, b.length); BigInteger aBigInt = new BigInteger(1, a0); BigInteger bBigInt = new BigInteger(1, b0); int[] c = aBigInt.multiply(bBigInt).mag; // make sure c is the same length as a and b int[] cpad = new int[a.length]; System.arraycopy(c, 0, cpad, a.length-c.length, c.length); return cpad; } } /** @see #multModFn(int[], int[]) */ private static int[] squareModFn(int[] a) { // if a=Fn-1, a^2=1 (mod Fn) if (a[a.length/2-1] == 1) { int[] c = new int[a.length]; c[c.length-1] = 1; return c; } int[] a0 = Arrays.copyOfRange(a, a.length/2, a.length); BigInteger aBigInt = new BigInteger(1, a0); int[] c = aBigInt.square().mag; // make sure c is the same length as a int[] cpad = new int[a.length]; System.arraycopy(c, 0, cpad, a.length-c.length, c.length); return cpad; } /** * Reduces a number modulo Fn. The value of n is determined from the array's length. * @param a a number in base 232 starting with the highest digit; the array's length must be a power of 2 */ private static void modFn(int[] a) { // Reduction modulo Fn is done by subtracting the upper half from the lower half int len = a.length; boolean carry = false; for (int i=len-1; i>=len/2; i--) { int bi = a[i-len/2]; int diff = a[i] - bi; if (carry) diff--; carry = ((diff>>>31) > (a[i]>>>31)-(bi>>>31)); // carry if signBit(diff) > signBit(a)-signBit(b) a[i] = diff; } for (int i=len/2-1; i>=0; i--) a[i] = 0; // if result is negative, add Fn; since Fn is congruent to 1 (mod 2^n), it suffices to add 1 if (carry) { int j = len - 1; do { int sum = a[j] + 1; a[j] = sum; carry = sum == 0; j--; if (j <= 0) j = len; } while (carry); } } /** * Reduces all subarrays modulo 22n+1 where n=a[i].length*32/2 for all i; * in other words, n is half the number of bits in the subarray. * @param a int arrays whose length is a power of 2 */ private static void modFn(int[][] a) { for (int i=0; i2n+1, where n is * a.length*32/2; in other words, n is half the number of bits in a.
* "Right" means towards the lower array indices and the lower bits; this is equivalent to * a multiplication by 2-numBits modulo 22n+1.
* The result is returned in the third argument. * @param a a number in base 232 starting with the highest digit; the array's length must be a power of 2 * @param numBits the shift amount in bits * @param b the return value; must be at least as long as a */ private static void cyclicShiftRightBits(int[] a, int numBits, int[] b) { int numElements = numBits / 32; System.arraycopy(a, 0, b, numElements, a.length-numElements); System.arraycopy(a, a.length-numElements, b, 0, numElements); numBits = numBits % 32; if (numBits != 0) { int bhi = b[b.length-1]; b[b.length-1] = b[b.length-1] >>> numBits; for (int i=b.length-1; i>0; i--) { b[i] |= b[i-1] << (32-numBits); b[i-1] = b[i-1] >>> numBits; } b[0] |= bhi << (32-numBits); } } /** * Cyclicly shifts a number to the left modulo 22n+1, where n is * a.length*32/2; in other words, n is half the number of bits in a.
* "Left" means towards the lower array indices and the lower bits; this is equivalent to * a multiplication by 2numBits modulo 22n+1.
* The result is returned in the third argument. * @param a a number in base 232 starting with the highest digit; the array's length must be a power of 2 * @param numBits the shift amount in bits * @param b the return value; must be at least as long as a */ private static void cyclicShiftLeftBits(int[] a, int numBits, int[] b) { int numElements = numBits / 32; System.arraycopy(a, numElements, b, 0, a.length-numElements); System.arraycopy(a, 0, b, a.length-numElements, numElements); numBits = numBits % 32; if (numBits != 0) { int b0 = b[0]; b[0] <<= numBits; for (int i=1; i>> (32-numBits); b[i] <<= numBits; } b[b.length-1] |= b0 >>> (32-numBits); } } /** * Adds two numbers, a and b, after shifting b by * numElements elements.
* Both numbers are given as int arrays and must be positive numbers * (meaning they are interpreted as unsigned).
* The result is returned in the first argument. * If any elements of b are shifted outside the valid range for a, they are dropped. * @param a a number in base 232 starting with the highest digit * @param b a number in base 232 starting with the highest digit * @param numElements */ private static void addShifted(int[] a, int[] b, int numElements) { boolean carry = false; int aIdx = a.length - 1 - numElements; int bIdx = b.length - 1; int i = Math.min(aIdx, bIdx); while (i >= 0) { int ai = a[aIdx]; int sum = ai + b[bIdx]; if (carry) sum++; carry = ((sum>>>31) < (ai>>>31)+(b[bIdx]>>>31)); // carry if signBit(sum) < signBit(a)+signBit(b) a[aIdx] = sum; i--; aIdx--; bIdx--; } while (carry && aIdx>=0) { a[aIdx]++; carry = a[aIdx] == 0; aIdx--; } } /** * Adds two positive numbers (meaning they are interpreted as unsigned) modulo 2numBits. * Both input values are given as int arrays. * The result is returned in the first argument. * @param a a number in base 232 starting with the highest digit * @param b a number in base 232 starting with the highest digit */ private static void addModPow2(int[] a, int[] b, int numBits) { int numElements = (numBits+31) / 32; boolean carry = false; int i; int aIdx = a.length - 1; int bIdx = b.length - 1; for (i=numElements-1; i>=0; i--) { int sum = a[aIdx] + b[bIdx]; if (carry) sum++; carry = ((sum>>>31) < (a[aIdx]>>>31)+(b[bIdx]>>>31)); // carry if signBit(sum) < signBit(a)+signBit(b) a[aIdx] = sum; aIdx--; bIdx--; } if (numElements > 0) a[aIdx+1] &= -1 >>> (32-(numBits%32)); for (; aIdx>=0; aIdx--) a[aIdx] = 0; } /** * Subtracts two positive numbers (meaning they are interpreted as unsigned) modulo 2numBits. * Both input values are given as int arrays. * The result is returned in the first argument. * @param a a number in base 232 starting with the highest digit * @param b a number in base 232 starting with the highest digit */ private static void subModPow2(int[] a, int[] b, int numBits) { int numElements = (numBits+31) / 32; boolean carry = false; int i; int aIdx = a.length - 1; int bIdx = b.length - 1; for (i=numElements-1; i>=0; i--) { int diff = a[aIdx] - b[bIdx]; if (carry) diff--; carry = ((diff>>>31) > (a[aIdx]>>>31)-(b[bIdx]>>>31)); // carry if signBit(diff) > signBit(a)-signBit(b) a[aIdx] = diff; aIdx--; bIdx--; } if (numElements > 0) a[aIdx+1] &= -1 >>> (32-(numBits%32)); for (; aIdx>=0; aIdx--) a[aIdx] = 0; } /** * Reads bBitLength bits from b, starting at array index * bStart, and copies them into a, starting at bit * aBitLength. The result is returned in a. * @param a * @param aBitLength * @param b * @param bStart * @param bBitLength */ private static void appendBits(int[] a, int aBitLength, int[] b, int bStart, int bBitLength) { int aIdx = a.length - 1 - aBitLength/32; int bit32 = aBitLength % 32; int bIdx = b.length - 1 - bStart; int bIdxStop = bIdx - bBitLength/32; while (bIdx > bIdxStop) { if (bit32 > 0) { a[aIdx] |= b[bIdx] << bit32; aIdx--; a[aIdx] = b[bIdx] >>> (32-bit32); } else { a[aIdx] = b[bIdx]; aIdx--; } bIdx--; } if (bBitLength%32 > 0) { int bi = b[bIdx]; bi &= -1 >>> (32-bBitLength%32); a[aIdx] |= bi << bit32; if (bit32+(bBitLength%32) > 32) a[aIdx-1] = bi >>> (32-bit32); } } /** * Divides an int array into pieces bitLength bits long. * @param a * @param bitLength * @return a new array containing bitLength bits from a in each subarray */ private static int[][] splitBits(int[] a, int bitLength) { int aIntIdx = a.length - 1; int aBitIdx = 0; int numPieces = (a.length*32+bitLength-1) / bitLength; int pieceLength = (bitLength+31) / 32; // in ints int[][] b = new int[numPieces][pieceLength]; for (int i=0; i 0) { int bitsToCopy = Math.min(32-aBitIdx, 32-bBitIdx); bitsToCopy = Math.min(bitsRemaining, bitsToCopy); int mask = a[aIntIdx] >>> aBitIdx; mask &= -1 >>> (32-bitsToCopy); mask <<= bBitIdx; b[i][bIntIdx] |= mask; bitsRemaining -= bitsToCopy; aBitIdx += bitsToCopy; if (aBitIdx >= 32) { aBitIdx -= 32; aIntIdx--; } bBitIdx += bitsToCopy; if (bBitIdx >= 32) { bBitIdx -= 32; bIntIdx--; } } } return b; } /** * Splits an int array into pieces of pieceSize ints each, and * pads each piece to targetPieceSize ints. * @param a the input array * @param numPieces the number of pieces to split the array into * @param pieceSize the size of each piece in the input array in ints * @param targetPieceSize the size of each piece in the output array in ints * @return an array of length numPieces containing subarrays of length targetPieceSize */ private static int[][] splitInts(int[] a, int numPieces, int pieceSize, int targetPieceSize) { int[][] ai = new int[numPieces][targetPieceSize]; int aIdx = a.length - pieceSize; int pieceIdx = 0; while (aIdx >= 0) { System.arraycopy(a, aIdx, ai[pieceIdx], targetPieceSize-pieceSize, pieceSize); aIdx -= pieceSize; pieceIdx++; } System.arraycopy(a, 0, ai[a.length/pieceSize], targetPieceSize-(a.length%pieceSize), a.length%pieceSize); return ai; } // Squaring /** * Returns a BigInteger whose value is {@code (this2)}. * * @return {@code this2} */ private BigInteger square() { if (signum == 0) return ZERO; int len = mag.length; if (len < KARATSUBA_SQUARE_THRESHOLD) { int[] z = squareToLen(mag, len, null); return new BigInteger(trustedStripLeadingZeroInts(z), 1); } else if (len < TOOM_COOK_SQUARE_THRESHOLD) return squareKaratsuba(); else if (!shouldSquareSchoenhageStrassen(len)) return squareToomCook3(); else return squareSchoenhageStrassen(); } /** * Squares the contents of the int array x. The result is placed into the * int array z. The contents of x are not changed. */ private static final int[] squareToLen(int[] x, int len, int[] z) { /* * The algorithm used here is adapted from Colin Plumb's C library. * Technique: Consider the partial products in the multiplication * of "abcde" by itself: * * a b c d e * * a b c d e * ================== * ae be ce de ee * ad bd cd dd de * ac bc cc cd ce * ab bb bc bd be * aa ab ac ad ae * * Note that everything above the main diagonal: * ae be ce de = (abcd) * e * ad bd cd = (abc) * d * ac bc = (ab) * c * ab = (a) * b * * is a copy of everything below the main diagonal: * de * cd ce * bc bd be * ab ac ad ae * * Thus, the sum is 2 * (off the diagonal) + diagonal. * * This is accumulated beginning with the diagonal (which * consist of the squares of the digits of the input), which is then * divided by two, the off-diagonal added, and multiplied by two * again. The low bit is simply a copy of the low bit of the * input, so it doesn't need special care. */ int zlen = len << 1; if (z == null || z.length < zlen) z = new int[zlen]; // Store the squares, right shifted one bit (i.e., divided by 2) int lastProductLowWord = 0; for (int j=0, i=0; j>> 33); z[i++] = (int)(product >>> 1); lastProductLowWord = (int)product; } // Add in off-diagonal sums for (int i=len, offset=1; i>0; i--, offset+=2) { int t = x[i-1]; t = mulAdd(z, x, offset, i-1, t); addOne(z, offset-1, i, t); } // Shift back up and set low bit primitiveLeftShift(z, zlen, 1); z[zlen-1] |= x[len-1] & 1; return z; } /** * Squares a BigInteger using the Karatsuba squaring algorithm. It should * be used when both numbers are larger than a certain threshold (found * experimentally). It is a recursive divide-and-conquer algorithm that * has better asymptotic performance than the algorithm used in * squareToLen. */ private BigInteger squareKaratsuba() { int half = (mag.length+1) / 2; BigInteger xl = getLower(half); BigInteger xh = getUpper(half); BigInteger xhs = xh.square(); // xhs = xh^2 BigInteger xls = xl.square(); // xls = xl^2 // xh^2 << 64 + (((xl+xh)^2 - (xh^2 + xl^2)) << 32) + xl^2 return xhs.shiftLeft(half*32).add(xl.add(xh).square().subtract(xhs.add(xls))).shiftLeft(half*32).add(xls); } /** * Squares a BigInteger using the 3-way Toom-Cook squaring algorithm. It * should be used when both numbers are larger than a certain threshold * (found experimentally). It is a recursive divide-and-conquer algorithm * that has better asymptotic performance than the algorithm used in * squareToLen or squareKaratsuba. */ private BigInteger squareToomCook3() { int len = mag.length; // k is the size (in ints) of the lower-order slices. int k = (len+2)/3; // Equal to ceil(largest/3) // r is the size (in ints) of the highest-order slice. int r = len - 2*k; // Obtain slices of the numbers. a2 is the most significant // bits of the number, and a0 the least significant. BigInteger a0, a1, a2; a2 = getToomSlice(k, r, 0, len); a1 = getToomSlice(k, r, 1, len); a0 = getToomSlice(k, r, 2, len); BigInteger v0, v1, v2, vm1, vinf, t1, t2, tm1, da1; v0 = a0.square(); da1 = a2.add(a0); vm1 = da1.subtract(a1).square(); da1 = da1.add(a1); v1 = da1.square(); vinf = a2.square(); v2 = da1.add(a2).shiftLeft(1).subtract(a0).square(); /* The algorithm requires two divisions by 2 and one by 3. All divisions are known to be exact, that is, they do not produce remainders, and all results are positive. The divisions by 2 are implemented as right shifts which are relatively efficient, leaving only a division by 3. The division by 3 is done by an optimized algorithm for this case. */ t2 = v2.subtract(vm1).exactDivideBy3(); tm1 = v1.subtract(vm1).shiftRight(1); t1 = v1.subtract(v0); t2 = t2.subtract(t1).shiftRight(1); t1 = t1.subtract(tm1).subtract(vinf); t2 = t2.subtract(vinf.shiftLeft(1)); tm1 = tm1.subtract(t2); // Number of bits to shift left. int ss = k*32; return vinf.shiftLeft(ss).add(t2).shiftLeft(ss).add(t1).shiftLeft(ss).add(tm1).shiftLeft(ss).add(v0); } // Division /** * Returns a BigInteger whose value is {@code (this / val)}. * * @param val value by which this BigInteger is to be divided. * @return {@code this / val} * @throws ArithmeticException if {@code val} is zero. */ public BigInteger divide(BigInteger val) { if (mag.lengthtrue if Barrett is more efficient, false if Burnikel-Ziegler is more efficient */ static boolean shouldDivideBarrett(int length) { if (IS64BIT) { // The following values were determined experimentally on a 64-bit JVM. if (length < 123000) return false; if (length < 131072) // 2^17 return true; if (length < 206000) return false; if (length < 262144) // 2^18 return true; if (length < 345000) return false; if (length < 524288) // 2^19 return true; if (length < 595000) return false; return true; } else { // The following values were determined experimentally on a 32-bit JVM. if (length < 101000) return false; if (length < 131072) // 2^17 return true; if (length < 177000) return false; return true; } } /** Long division */ private BigInteger[] divideAndRemainderKnuth(BigInteger val) { BigInteger[] result = new BigInteger[2]; MutableBigInteger q = new MutableBigInteger(), a = new MutableBigInteger(this.mag), b = new MutableBigInteger(val.mag); MutableBigInteger r = a.divideKnuth(b, q); result[0] = q.toBigInteger(this.signum == val.signum ? 1 : -1); result[1] = r.toBigInteger(this.signum); return result; } /** * Returns a BigInteger whose value is {@code (this % val)}. * * @param val value by which this BigInteger is to be divided, and the * remainder computed. * @return {@code this % val} * @throws ArithmeticException if {@code val} is zero. */ public BigInteger remainder(BigInteger val) { if (mag.lengththis / val using the Burnikel-Ziegler algorithm. * @param val the divisor * @return this / val */ private BigInteger divideBurnikelZiegler(BigInteger val) { return divideAndRemainderBurnikelZiegler(val)[0]; } /** * Calculates this % val using the Burnikel-Ziegler algorithm. * @param val the divisor * @return this % val */ private BigInteger remainderBurnikelZiegler(BigInteger val) { return divideAndRemainderBurnikelZiegler(val)[1]; } /** * Computes this / val and this % val using the * Burnikel-Ziegler algorithm. * @param val the divisor * @return an array containing the quotient and remainder */ private BigInteger[] divideAndRemainderBurnikelZiegler(BigInteger val) { MutableBigInteger q = new MutableBigInteger(); MutableBigInteger r = new MutableBigInteger(this).divideAndRemainderBurnikelZiegler(new MutableBigInteger(val), q); BigInteger qBigInt = q.isZero() ? ZERO : q.toBigInteger(signum*val.signum); BigInteger rBigInt = r.isZero() ? ZERO : r.toBigInteger(signum); return new BigInteger[] {qBigInt, rBigInt}; } /** Barrett division */ private BigInteger divideBarrett(BigInteger val) { return divideAndRemainderBarrett(val)[0]; } /** Barrett division */ private BigInteger remainderBarrett(BigInteger val) { return divideAndRemainderBarrett(val)[1]; } /** * Computes this/val and this%val using Barrett division. * @param val the divisor * @return an array containing the quotient and remainder */ private BigInteger[] divideAndRemainderBarrett(BigInteger val) { BigInteger[] c = abs().divideAndRemainderBarrettPositive(val.abs()); if (signum*val.signum < 0) c[0] = c[0].negate(); if (signum < 0) c[1] = c[1].negate(); return c; } /** * Computes this/val and this%val using Barrett division. * val must be positive. * @param val the divisor * @return an array containing the quotient and remainder */ private BigInteger[] divideAndRemainderBarrettPositive(BigInteger val) { int m = bitLength(); int n = val.bitLength(); if (m < n) return new BigInteger[] {ZERO, this}; else if (m <= 2*n) { // this case is handled by Barrett directly BigInteger mu = val.inverse(m-n); return barrettBase(val, mu); } else { // treat each n-bit piece of a as a digit and do long division by val // (which is also n bits), reusing the inverse BigInteger mu2n = val.inverse(n); int startBit = m / n * n; // the bit at which the current n-bit piece starts BigInteger quotient = ZERO; BigInteger remainder = shiftRight(startBit); BigInteger mask = ONE.shiftLeft(n).subtract(ONE); // n ones while (startBit > 0) { startBit -= n; BigInteger ai = shiftRight(startBit).and(mask); remainder = remainder.shiftLeft(n).add(ai); BigInteger mu = mu2n.shiftRightRounded(2*n-remainder.bitLength()); // mu = 2^(remainder.length-n)/val BigInteger[] c = remainder.barrettBase(val, mu); quotient = quotient.shiftLeft(n).add(c[0]); remainder = c[1]; } return new BigInteger[] {quotient, remainder}; } } /** * Computes this/b and this%b. * The binary representation of b must be at least half as * long, and no longer than, the binary representation of a.
* This method uses the Barrett algorithm as described in * * Fast Division of Large Integers, pg 17. * @param b * @param mu 2n/b where n is the number of binary digits of this * @return an array containing the quotient and remainder */ private BigInteger[] barrettBase(BigInteger b, BigInteger mu) { int m = bitLength(); int n = b.bitLength(); BigInteger a1 = shiftRight(n-1); BigInteger q = a1.multiply(mu).shiftRight(m-n+1); BigInteger r = subtract(b.multiply(q)); while (r.signum()<0 || r.compareTo(b)>=0) if (r.signum() < 0) { r = r.add(b); q = q.subtract(ONE); } else { r = r.subtract(b); q = q.add(ONE); } return new BigInteger[] {q, r}; } /** * Computes 2bitLength()+n/this.
* Uses the * * Newton algorithm as described in * * Fast Division of Large Integers, pg 23. * @param n precision in bits * @return 1/this, shifted to the left by bitLength()+n bits */ private BigInteger inverse(int n) { int m = bitLength(); if (n <= NEWTON_THRESHOLD) return ONE.shiftLeft(n*2).divideKnuth(shiftRightRounded(m-n)); // let numSteps = ceil(log2(n/NEWTON_THRESHOLD)) and initialize k int numSteps = bitLengthForInt((n+NEWTON_THRESHOLD-1)/NEWTON_THRESHOLD); int[] k = new int[numSteps]; int ki = n; for (int i=numSteps-1; i>=0; i--) { ki = (ki+1) / 2; k[i] = ki 2ki+1 BigInteger w = z.add(z); // exponent = ki w = w.shiftLeft(3*ki+3); // increase #fraction digits to 4ki+3 to match u z = w.subtract(u); // exponent = 4ki+3 if (i < numSteps-1) z = z.shiftRightRounded(4*ki+3-k[i+1]); // reduce #fraction digits to k[i+1] else z = z.shiftRightRounded(4*ki+3-n); // final step: reduce #fraction digits to n } return z; } /** * Same as {@link BigInteger#shiftRight(int)} but rounds to the * nearest integer. * @param n shift distance, in bits. * @return round(this*2-n) */ private BigInteger shiftRightRounded(int n) { BigInteger b = shiftRight(n); if (n>0 && testBit(n-1)) b = b.add(ONE); return b; } /** * Returns a BigInteger whose value is (thisexponent). * Note that {@code exponent} is an integer rather than a BigInteger. * * @param exponent exponent to which this BigInteger is to be raised. * @return thisexponent * @throws ArithmeticException {@code exponent} is negative. (This would * cause the operation to yield a non-integer value.) */ public BigInteger pow(int exponent) { if (exponent < 0) throw new ArithmeticException("Negative exponent"); if (signum==0) return (exponent==0 ? ONE : this); BigInteger partToSquare = this.abs(); // Factor out powers of two from the base, as the exponentiation of // these can be done by left shifts only. // The remaining part can then be exponentiated faster. The // powers of two will be multiplied back at the end. int powersOfTwo = partToSquare.getLowestSetBit(); int remainingBits; // Factor the powers of two out quickly by shifting right, if needed. if (powersOfTwo > 0) { partToSquare = partToSquare.shiftRight(powersOfTwo); remainingBits = partToSquare.bitLength(); if (remainingBits == 1) // Nothing left but +/- 1? if (signum<0 && (exponent&1)==1) return NEGATIVE_ONE.shiftLeft(powersOfTwo*exponent); else return ONE.shiftLeft(powersOfTwo*exponent); } else { remainingBits = partToSquare.bitLength(); if (remainingBits == 1) // Nothing left but +/- 1? if (signum<0 && (exponent&1)==1) return NEGATIVE_ONE; else return ONE; } // This is a quick way to approximate the size of the result, // similar to doing log2[n] * exponent. This will give an upper bound // of how big the result can be, and which algorithm to use. int scaleFactor = remainingBits * exponent; // Use slightly different algorithms for small and large operands. // See if the result will safely fit into a long. (Largest 2^63-1) if (partToSquare.mag.length==1 && scaleFactor <= 62) { // Small number algorithm. Everything fits into a long. int newSign = (signum<0 && (exponent&1)==1 ? -1 : 1); long result = 1; long baseToPow2 = partToSquare.mag[0] & LONG_MASK; int workingExponent = exponent; // Perform exponentiation using repeated squaring trick while (workingExponent != 0) { if ((workingExponent & 1)==1) result = result * baseToPow2; if ((workingExponent >>>= 1) != 0) baseToPow2 = baseToPow2 * baseToPow2; } // Multiply back the powers of two (quickly, by shifting left) if (powersOfTwo > 0) { int bitsToShift = powersOfTwo*exponent; if (bitsToShift + scaleFactor <= 62) // Fits in long? return valueOf((result << bitsToShift) * newSign); else return valueOf(result*newSign).shiftLeft(bitsToShift); } else return valueOf(result*newSign); } else { // Large number algorithm. This is basically identical to // the algorithm above, but calls multiply() and square() // which may use more efficient algorithms for large numbers. BigInteger answer = ONE; int workingExponent = exponent; // Perform exponentiation using repeated squaring trick while (workingExponent != 0) { if ((workingExponent & 1)==1) answer = answer.multiply(partToSquare); if ((workingExponent >>>= 1) != 0) partToSquare = partToSquare.square(); } // Multiply back the (exponentiated) powers of two (quickly, // by shifting left) if (powersOfTwo > 0) answer = answer.shiftLeft(powersOfTwo*exponent); if (signum<0 && (exponent&1)==1) return answer.negate(); else return answer; } } /** * Returns a BigInteger whose value is the greatest common divisor of * {@code abs(this)} and {@code abs(val)}. Returns 0 if * {@code this==0 && val==0}. * * @param val value with which the GCD is to be computed. * @return {@code GCD(abs(this), abs(val))} */ public BigInteger gcd(BigInteger val) { if (val.signum == 0) return this.abs(); else if (this.signum == 0) return val.abs(); MutableBigInteger a = new MutableBigInteger(this); MutableBigInteger b = new MutableBigInteger(val); MutableBigInteger result = a.hybridGCD(b); return result.toBigInteger(1); } /** * Package private method to return bit length for an integer. */ static int bitLengthForInt(int n) { return 32 - Integer.numberOfLeadingZeros(n); } /** * Left shift int array a up to len by n bits. Returns the array that * results from the shift since space may have to be reallocated. */ private static int[] leftShift(int[] a, int len, int n) { int nInts = n >>> 5; int nBits = n&0x1F; int bitsInHighWord = bitLengthForInt(a[0]); // If shift can be done without recopy, do so if (n <= (32-bitsInHighWord)) { primitiveLeftShift(a, len, nBits); return a; } else { // Array must be resized if (nBits <= (32-bitsInHighWord)) { int result[] = new int[nInts+len]; System.arraycopy(a, 0, result, 0, len); primitiveLeftShift(result, result.length, nBits); return result; } else { int result[] = new int[nInts+len+1]; System.arraycopy(a, 0, result, 0, len); primitiveRightShift(result, result.length, 32 - nBits); return result; } } } // shifts a up to len right n bits assumes no leading zeros, 00; i--) { int b = c; c = a[i-1]; a[i] = (c << n2) | (b >>> n); } a[0] >>>= n; } // shifts a up to len left n bits assumes no leading zeros, 0<=n<32 static void primitiveLeftShift(int[] a, int len, int n) { if (len == 0 || n == 0) return; int n2 = 32 - n; for (int i=0, c=a[i], m=i+len-1; i>> n2); } a[len-1] <<= n; } /** * Calculate bitlength of contents of the first len elements an int array, * assuming there are no leading zero ints. */ private static int bitLength(int[] val, int len) { if (len == 0) return 0; return ((len - 1) << 5) + bitLengthForInt(val[0]); } /** * Returns a BigInteger whose value is the absolute value of this * BigInteger. * * @return {@code abs(this)} */ public BigInteger abs() { return (signum >= 0 ? this : this.negate()); } /** * Returns a BigInteger whose value is {@code (-this)}. * * @return {@code -this} */ public BigInteger negate() { return new BigInteger(this.mag, -this.signum); } /** * Returns the signum function of this BigInteger. * * @return -1, 0 or 1 as the value of this BigInteger is negative, zero or * positive. */ public int signum() { return this.signum; } // Modular Arithmetic Operations /** * Returns a BigInteger whose value is {@code (this mod m}). This method * differs from {@code remainder} in that it always returns a * non-negative BigInteger. * * @param m the modulus. * @return {@code this mod m} * @throws ArithmeticException {@code m} ≤ 0 * @see #remainder */ public BigInteger mod(BigInteger m) { if (m.signum <= 0) throw new ArithmeticException("BigInteger: modulus not positive"); BigInteger result = this.remainder(m); return (result.signum >= 0 ? result : result.add(m)); } /** * Returns a BigInteger whose value is * (thisexponent mod m). (Unlike {@code pow}, this * method permits negative exponents.) * * @param exponent the exponent. * @param m the modulus. * @return thisexponent mod m * @throws ArithmeticException {@code m} ≤ 0 or the exponent is * negative and this BigInteger is not relatively * prime to {@code m}. * @see #modInverse */ public BigInteger modPow(BigInteger exponent, BigInteger m) { if (m.signum <= 0) throw new ArithmeticException("BigInteger: modulus not positive"); // Trivial cases if (exponent.signum == 0) return (m.equals(ONE) ? ZERO : ONE); if (this.equals(ONE)) return (m.equals(ONE) ? ZERO : ONE); if (this.equals(ZERO) && exponent.signum >= 0) return ZERO; if (this.equals(negConst[1]) && (!exponent.testBit(0))) return (m.equals(ONE) ? ZERO : ONE); boolean invertResult; if ((invertResult = (exponent.signum < 0))) exponent = exponent.negate(); BigInteger base = (this.signum < 0 || this.compareTo(m) >= 0 ? this.mod(m) : this); BigInteger result; if (m.testBit(0)) { // odd modulus result = base.oddModPow(exponent, m); } else { /* * Even modulus. Tear it into an "odd part" (m1) and power of two * (m2), exponentiate mod m1, manually exponentiate mod m2, and * use Chinese Remainder Theorem to combine results. */ // Tear m apart into odd part (m1) and power of 2 (m2) int p = m.getLowestSetBit(); // Max pow of 2 that divides m BigInteger m1 = m.shiftRight(p); // m/2**p BigInteger m2 = ONE.shiftLeft(p); // 2**p // Calculate new base from m1 BigInteger base2 = (this.signum < 0 || this.compareTo(m1) >= 0 ? this.mod(m1) : this); // Caculate (base ** exponent) mod m1. BigInteger a1 = (m1.equals(ONE) ? ZERO : base2.oddModPow(exponent, m1)); // Calculate (this ** exponent) mod m2 BigInteger a2 = base.modPow2(exponent, p); // Combine results using Chinese Remainder Theorem BigInteger y1 = m2.modInverse(m1); BigInteger y2 = m1.modInverse(m2); result = a1.multiply(m2).multiply(y1).add (a2.multiply(m1).multiply(y2)).mod(m); } return (invertResult ? result.modInverse(m) : result); } static int[] bnExpModThreshTable = {7, 25, 81, 241, 673, 1793, Integer.MAX_VALUE}; // Sentinel /** * Returns a BigInteger whose value is x to the power of y mod z. * Assumes: z is odd && x < z. */ private BigInteger oddModPow(BigInteger y, BigInteger z) { /* * The algorithm is adapted from Colin Plumb's C library. * * The window algorithm: * The idea is to keep a running product of b1 = n^(high-order bits of exp) * and then keep appending exponent bits to it. The following patterns * apply to a 3-bit window (k = 3): * To append 0: square * To append 1: square, multiply by n^1 * To append 10: square, multiply by n^1, square * To append 11: square, square, multiply by n^3 * To append 100: square, multiply by n^1, square, square * To append 101: square, square, square, multiply by n^5 * To append 110: square, square, multiply by n^3, square * To append 111: square, square, square, multiply by n^7 * * Since each pattern involves only one multiply, the longer the pattern * the better, except that a 0 (no multiplies) can be appended directly. * We precompute a table of odd powers of n, up to 2^k, and can then * multiply k bits of exponent at a time. Actually, assuming random * exponents, there is on average one zero bit between needs to * multiply (1/2 of the time there's none, 1/4 of the time there's 1, * 1/8 of the time, there's 2, 1/32 of the time, there's 3, etc.), so * you have to do one multiply per k+1 bits of exponent. * * The loop walks down the exponent, squaring the result buffer as * it goes. There is a wbits+1 bit lookahead buffer, buf, that is * filled with the upcoming exponent bits. (What is read after the * end of the exponent is unimportant, but it is filled with zero here.) * When the most-significant bit of this buffer becomes set, i.e. * (buf & tblmask) != 0, we have to decide what pattern to multiply * by, and when to do it. We decide, remember to do it in future * after a suitable number of squarings have passed (e.g. a pattern * of "100" in the buffer requires that we multiply by n^1 immediately; * a pattern of "110" calls for multiplying by n^3 after one more * squaring), clear the buffer, and continue. * * When we start, there is one more optimization: the result buffer * is implcitly one, so squaring it or multiplying by it can be * optimized away. Further, if we start with a pattern like "100" * in the lookahead window, rather than placing n into the buffer * and then starting to square it, we have already computed n^2 * to compute the odd-powers table, so we can place that into * the buffer and save a squaring. * * This means that if you have a k-bit window, to compute n^z, * where z is the high k bits of the exponent, 1/2 of the time * it requires no squarings. 1/4 of the time, it requires 1 * squaring, ... 1/2^(k-1) of the time, it reqires k-2 squarings. * And the remaining 1/2^(k-1) of the time, the top k bits are a * 1 followed by k-1 0 bits, so it again only requires k-2 * squarings, not k-1. The average of these is 1. Add that * to the one squaring we have to do to compute the table, * and you'll see that a k-bit window saves k-2 squarings * as well as reducing the multiplies. (It actually doesn't * hurt in the case k = 1, either.) */ // Special case for exponent of one if (y.equals(ONE)) return this; // Special case for base of zero if (signum==0) return ZERO; int[] base = mag.clone(); int[] exp = y.mag; int[] mod = z.mag; int modLen = mod.length; // Select an appropriate window size int wbits = 0; int ebits = bitLength(exp, exp.length); // if exponent is 65537 (0x10001), use minimum window size if ((ebits != 17) || (exp[0] != 65537)) { while (ebits > bnExpModThreshTable[wbits]) { wbits++; } } // Calculate appropriate table size int tblmask = 1 << wbits; // Allocate table for precomputed odd powers of base in Montgomery form int[][] table = new int[tblmask][]; for (int i=0; i>>= 1; if (bitpos == 0) { eIndex++; bitpos = 1 << (32-1); elen--; } } int multpos = ebits; // The first iteration, which is hoisted out of the main loop ebits--; boolean isone = true; multpos = ebits - wbits; while ((buf & 1) == 0) { buf >>>= 1; multpos++; } int[] mult = table[buf >>> 1]; buf = 0; if (multpos == ebits) isone = false; // The main loop while(true) { ebits--; // Advance the window buf <<= 1; if (elen != 0) { buf |= ((exp[eIndex] & bitpos) != 0) ? 1 : 0; bitpos >>>= 1; if (bitpos == 0) { eIndex++; bitpos = 1 << (32-1); elen--; } } // Examine the window for pending multiplies if ((buf & tblmask) != 0) { multpos = ebits - wbits; while ((buf & 1) == 0) { buf >>>= 1; multpos++; } mult = table[buf >>> 1]; buf = 0; } // Perform multiply if (ebits == multpos) { if (isone) { b = mult.clone(); isone = false; } else { t = b; a = multiplyToLen(t, modLen, mult, modLen, a); a = montReduce(a, mod, modLen, inv); t = a; a = b; b = t; } } // Check if done if (ebits == 0) break; // Square the input if (!isone) { t = b; a = squareToLen(t, modLen, a); a = montReduce(a, mod, modLen, inv); t = a; a = b; b = t; } } // Convert result out of Montgomery form and return int[] t2 = new int[2*modLen]; System.arraycopy(b, 0, t2, modLen, modLen); b = montReduce(t2, mod, modLen, inv); t2 = Arrays.copyOf(b, modLen); return new BigInteger(1, t2); } /** * Montgomery reduce n, modulo mod. This reduces modulo mod and divides * by 2^(32*mlen). Adapted from Colin Plumb's C library. */ private static int[] montReduce(int[] n, int[] mod, int mlen, int inv) { int c=0; int len = mlen; int offset=0; do { int nEnd = n[n.length-1-offset]; int carry = mulAdd(n, mod, offset, mlen, inv * nEnd); c += addOne(n, offset, mlen, carry); offset++; } while(--len > 0); while(c>0) c += subN(n, mod, mlen); while (intArrayCmpToLen(n, mod, mlen) >= 0) subN(n, mod, mlen); return n; } /* * Returns -1, 0 or +1 as big-endian unsigned int array arg1 is less than, * equal to, or greater than arg2 up to length len. */ private static int intArrayCmpToLen(int[] arg1, int[] arg2, int len) { for (int i=0; i b2) return 1; } return 0; } /** * Subtracts two numbers of same length, returning borrow. */ private static int subN(int[] a, int[] b, int len) { long sum = 0; while(--len >= 0) { sum = (a[len] & LONG_MASK) - (b[len] & LONG_MASK) + (sum >> 32); a[len] = (int)sum; } return (int)(sum >> 32); } /** * Multiply an array by one word k and add to result, return the carry */ static int mulAdd(int[] out, int[] in, int offset, int len, int k) { long kLong = k & LONG_MASK; long carry = 0; offset = out.length-offset - 1; for (int j=len-1; j >= 0; j--) { long product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; out[offset--] = (int)product; carry = product >>> 32; } return (int)carry; } /** * Add one word to the number a mlen words into a. Return the resulting * carry. */ static int addOne(int[] a, int offset, int mlen, int carry) { offset = a.length-1-mlen-offset; long t = (a[offset] & LONG_MASK) + (carry & LONG_MASK); a[offset] = (int)t; if ((t >>> 32) == 0) return 0; while (--mlen >= 0) { if (--offset < 0) { // Carry out of number return 1; } else { a[offset]++; if (a[offset] != 0) return 0; } } return 1; } /** * Returns a BigInteger whose value is (this ** exponent) mod (2**p) */ private BigInteger modPow2(BigInteger exponent, int p) { /* * Perform exponentiation using repeated squaring trick, chopping off * high order bits as indicated by modulus. */ BigInteger result = ONE; BigInteger baseToPow2 = this.mod2(p); int expOffset = 0; int limit = exponent.bitLength(); if (this.testBit(0)) limit = (p-1) < limit ? (p-1) : limit; while (expOffset < limit) { if (exponent.testBit(expOffset)) result = result.multiply(baseToPow2).mod2(p); expOffset++; if (expOffset < limit) baseToPow2 = baseToPow2.square().mod2(p); } return result; } /** * Returns a BigInteger whose value is this mod(2**p). * Assumes that this {@code BigInteger >= 0} and {@code p > 0}. */ private BigInteger mod2(int p) { if (bitLength() <= p) return this; // Copy remaining ints of mag int numInts = (p + 31) >>> 5; int[] mag = new int[numInts]; System.arraycopy(this.mag, (this.mag.length - numInts), mag, 0, numInts); // Mask out any excess bits int excessBits = (numInts << 5) - p; mag[0] &= (1L << (32-excessBits)) - 1; return (mag[0]==0 ? new BigInteger(1, mag) : new BigInteger(mag, 1)); } /** * Returns a BigInteger whose value is {@code (this}-1 {@code mod m)}. * * @param m the modulus. * @return {@code this}-1 {@code mod m}. * @throws ArithmeticException {@code m} ≤ 0, or this BigInteger * has no multiplicative inverse mod m (that is, this BigInteger * is not relatively prime to m). */ public BigInteger modInverse(BigInteger m) { if (m.signum != 1) throw new ArithmeticException("BigInteger: modulus not positive"); if (m.equals(ONE)) return ZERO; // Calculate (this mod m) BigInteger modVal = this; if (signum < 0 || (this.compareMagnitude(m) >= 0)) modVal = this.mod(m); if (modVal.equals(ONE)) return ONE; MutableBigInteger a = new MutableBigInteger(modVal); MutableBigInteger b = new MutableBigInteger(m); MutableBigInteger result = a.mutableModInverse(b); return result.toBigInteger(1); } // Shift Operations /** * Returns a BigInteger whose value is {@code (this << n)}. * The shift distance, {@code n}, may be negative, in which case * this method performs a right shift. * (Computes floor(this * 2n).) * * @param n shift distance, in bits. * @return {@code this << n} * @throws ArithmeticException if the shift distance is {@code * Integer.MIN_VALUE}. * @see #shiftRight */ public BigInteger shiftLeft(int n) { if (signum == 0) return ZERO; if (n==0) return this; if (n<0) { if (n == Integer.MIN_VALUE) { throw new ArithmeticException("Shift distance of Integer.MIN_VALUE not supported."); } else { return shiftRight(-n); } } int[] newMag = shiftLeft(mag, n); return new BigInteger(newMag, signum); } private static int[] shiftLeft(int[] mag, int n) { int nInts = n >>> 5; int nBits = n & 0x1f; int magLen = mag.length; int newMag[] = null; if (nBits == 0) { newMag = new int[magLen + nInts]; System.arraycopy(mag, 0, newMag, 0, magLen); } else { int i = 0; int nBits2 = 32 - nBits; int highBits = mag[0] >>> nBits2; if (highBits != 0) { newMag = new int[magLen + nInts + 1]; newMag[i++] = highBits; } else { newMag = new int[magLen + nInts]; } int j=0; while (j < magLen-1) newMag[i++] = mag[j++] << nBits | mag[j] >>> nBits2; newMag[i] = mag[j] << nBits; } return newMag; } /** * Returns a BigInteger whose value is {@code (this >> n)}. Sign * extension is performed. The shift distance, {@code n}, may be * negative, in which case this method performs a left shift. * (Computes floor(this / 2n).) * * @param n shift distance, in bits. * @return {@code this >> n} * @throws ArithmeticException if the shift distance is {@code * Integer.MIN_VALUE}. * @see #shiftLeft */ public BigInteger shiftRight(int n) { if (n==0) return this; if (n<0) { if (n == Integer.MIN_VALUE) { throw new ArithmeticException("Shift distance of Integer.MIN_VALUE not supported."); } else { return shiftLeft(-n); } } int nInts = n >>> 5; int nBits = n & 0x1f; int magLen = mag.length; int newMag[] = null; // Special case: entire contents shifted off the end if (nInts >= magLen) return (signum >= 0 ? ZERO : negConst[1]); if (nBits == 0) { int newMagLen = magLen - nInts; newMag = Arrays.copyOf(mag, newMagLen); } else { int i = 0; int highBits = mag[0] >>> nBits; if (highBits != 0) { newMag = new int[magLen - nInts]; newMag[i++] = highBits; } else { newMag = new int[magLen - nInts -1]; } int nBits2 = 32 - nBits; int j=0; while (j < magLen - nInts - 1) newMag[i++] = (mag[j++] << nBits2) | (mag[j] >>> nBits); } if (signum < 0) { // Find out whether any one-bits were shifted off the end. boolean onesLost = false; for (int i=magLen-1, j=magLen-nInts; i>=j && !onesLost; i--) onesLost = (mag[i] != 0); if (!onesLost && nBits != 0) onesLost = (mag[magLen - nInts - 1] << (32 - nBits) != 0); if (onesLost) newMag = javaIncrement(newMag); } return new BigInteger(newMag, signum); } int[] javaIncrement(int[] val) { int lastSum = 0; for (int i=val.length-1; i >= 0 && lastSum == 0; i--) lastSum = (val[i] += 1); if (lastSum == 0) { val = new int[val.length+1]; val[0] = 1; } return val; } // Bitwise Operations /** * Returns a BigInteger whose value is {@code (this & val)}. (This * method returns a negative BigInteger if and only if this and val are * both negative.) * * @param val value to be AND'ed with this BigInteger. * @return {@code this & val} */ public BigInteger and(BigInteger val) { int[] result = new int[Math.max(intLength(), val.intLength())]; for (int i=0; i>> 5) & (1 << (n & 31))) != 0; } /** * Returns a BigInteger whose value is equivalent to this BigInteger * with the designated bit set. (Computes {@code (this | (1<>> 5; int[] result = new int[Math.max(intLength(), intNum+2)]; for (int i=0; i>> 5; int[] result = new int[Math.max(intLength(), ((n + 1) >>> 5) + 1)]; for (int i=0; i>> 5; int[] result = new int[Math.max(intLength(), intNum+2)]; for (int i=0; iexcluding a sign bit. * For positive BigIntegers, this is equivalent to the number of bits in * the ordinary binary representation. (Computes * {@code (ceil(log2(this < 0 ? -this : this+1)))}.) * * @return number of bits in the minimal two's-complement * representation of this BigInteger, excluding a sign bit. */ public int bitLength() { @SuppressWarnings("deprecation") int n = bitLength - 1; if (n == -1) { // bitLength not initialized yet int[] m = mag; int len = m.length; if (len == 0) { n = 0; // offset by one to initialize } else { // Calculate the bit length of the magnitude int magBitLength = ((len - 1) << 5) + bitLengthForInt(mag[0]); if (signum < 0) { // Check if magnitude is a power of two boolean pow2 = (Integer.bitCount(mag[0]) == 1); for (int i=1; i< len && pow2; i++) pow2 = (mag[i] == 0); n = (pow2 ? magBitLength -1 : magBitLength); } else { n = magBitLength; } } bitLength = n + 1; } return n; } /** * Returns the number of bits in the two's complement representation * of this BigInteger that differ from its sign bit. This method is * useful when implementing bit-vector style sets atop BigIntegers. * * @return number of bits in the two's complement representation * of this BigInteger that differ from its sign bit. */ public int bitCount() { @SuppressWarnings("deprecation") int bc = bitCount - 1; if (bc == -1) { // bitCount not initialized yet bc = 0; // offset by one to initialize // Count the bits in the magnitude for (int i=0; i{@code certainty}). The execution time of * this method is proportional to the value of this parameter. * @return {@code true} if this BigInteger is probably prime, * {@code false} if it's definitely composite. */ public boolean isProbablePrime(int certainty) { if (certainty <= 0) return true; BigInteger w = this.abs(); if (w.equals(TWO)) return true; if (!w.testBit(0) || w.equals(ONE)) return false; return w.primeToCertainty(certainty, null); } // Comparison Operations /** * Compares this BigInteger with the specified BigInteger. This * method is provided in preference to individual methods for each * of the six boolean comparison operators ({@literal <}, ==, * {@literal >}, {@literal >=}, !=, {@literal <=}). The suggested * idiom for performing these comparisons is: {@code * (x.compareTo(y)} <op> {@code 0)}, where * <op> is one of the six comparison operators. * * @param val BigInteger to which this BigInteger is to be compared. * @return -1, 0 or 1 as this BigInteger is numerically less than, equal * to, or greater than {@code val}. */ public int compareTo(BigInteger val) { if (signum == val.signum) { switch (signum) { case 1: return compareMagnitude(val); case -1: return val.compareMagnitude(this); default: return 0; } } return signum > val.signum ? 1 : -1; } /** * Compares the magnitude array of this BigInteger with the specified * BigInteger's. This is the version of compareTo ignoring sign. * * @param val BigInteger whose magnitude array to be compared. * @return -1, 0 or 1 as this magnitude array is less than, equal to or * greater than the magnitude aray for the specified BigInteger's. */ final int compareMagnitude(BigInteger val) { int[] m1 = mag; int len1 = m1.length; int[] m2 = val.mag; int len2 = m2.length; if (len1 < len2) return -1; if (len1 > len2) return 1; for (int i = 0; i < len1; i++) { int a = m1[i]; int b = m2[i]; if (a != b) return ((a & LONG_MASK) < (b & LONG_MASK)) ? -1 : 1; } return 0; } /** * Version of compareMagnitude that compares magnitude with long value. * val can't be Long.MIN_VALUE. */ final int compareMagnitude(long val) { assert val != Long.MIN_VALUE; int[] m1 = mag; int len = m1.length; if(len > 2) { return 1; } if (val < 0) { val = -val; } int highWord = (int)(val >>> 32); if (highWord==0) { if (len < 1) return -1; if (len > 1) return 1; int a = m1[0]; int b = (int)val; if (a != b) { return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1; } return 0; } else { if (len < 2) return -1; int a = m1[0]; int b = highWord; if (a != b) { return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1; } a = m1[1]; b = (int)val; if (a != b) { return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1; } return 0; } } /** * Compares this BigInteger with the specified Object for equality. * * @param x Object to which this BigInteger is to be compared. * @return {@code true} if and only if the specified Object is a * BigInteger whose value is numerically equal to this BigInteger. */ public boolean equals(Object x) { // This test is just an optimization, which may or may not help if (x == this) return true; if (!(x instanceof BigInteger)) return false; BigInteger xInt = (BigInteger) x; if (xInt.signum != signum) return false; int[] m = mag; int len = m.length; int[] xm = xInt.mag; if (len != xm.length) return false; for (int i = 0; i < len; i++) if (xm[i] != m[i]) return false; return true; } /** * Returns the minimum of this BigInteger and {@code val}. * * @param val value with which the minimum is to be computed. * @return the BigInteger whose value is the lesser of this BigInteger and * {@code val}. If they are equal, either may be returned. */ public BigInteger min(BigInteger val) { return (compareTo(val)<0 ? this : val); } /** * Returns the maximum of this BigInteger and {@code val}. * * @param val value with which the maximum is to be computed. * @return the BigInteger whose value is the greater of this and * {@code val}. If they are equal, either may be returned. */ public BigInteger max(BigInteger val) { return (compareTo(val)>0 ? this : val); } // Hash Function /** * Returns the hash code for this BigInteger. * * @return hash code for this BigInteger. */ public int hashCode() { int hashCode = 0; for (int i=0; i Character.MAX_RADIX) radix = 10; // If it's small enough, use smallToString. if (mag.length <= SCHOENHAGE_BASE_CONVERSION_THRESHOLD) return smallToString(radix); // Otherwise use recursive toString, which requires positive arguments. // The results will be concatenated into this StringBuilder StringBuilder sb = new StringBuilder(); if (signum < 0) { toString(this.negate(), sb, radix, 0); sb.insert(0, '-'); } else toString(this, sb, radix, 0); return sb.toString(); } /** This method is used to perform toString when arguments are small. */ private String smallToString(int radix) { if (signum == 0) return "0"; // Compute upper bound on number of digit groups and allocate space int maxNumDigitGroups = (4*mag.length + 6)/7; String digitGroup[] = new String[maxNumDigitGroups]; // Translate number to string, a digit group at a time BigInteger tmp = this.abs(); int numGroups = 0; while (tmp.signum != 0) { BigInteger d = longRadix[radix]; MutableBigInteger q = new MutableBigInteger(), a = new MutableBigInteger(tmp.mag), b = new MutableBigInteger(d.mag); MutableBigInteger r = a.divide(b, q); BigInteger q2 = q.toBigInteger(tmp.signum * d.signum); BigInteger r2 = r.toBigInteger(tmp.signum * d.signum); digitGroup[numGroups++] = Long.toString(r2.longValue(), radix); tmp = q2; } // Put sign (if any) and first digit group into result buffer StringBuilder buf = new StringBuilder(numGroups*digitsPerLong[radix]+1); if (signum<0) buf.append('-'); buf.append(digitGroup[numGroups-1]); // Append remaining digit groups padded with leading zeros for (int i=numGroups-2; i>=0; i--) { // Prepend (any) leading zeros for this digit group int numLeadingZeros = digitsPerLong[radix]-digitGroup[i].length(); if (numLeadingZeros != 0) buf.append(zeros[numLeadingZeros]); buf.append(digitGroup[i]); } return buf.toString(); } /** * Converts the specified BigInteger to a string and appends to * sb. This implements the recursive Schoenhage algorithm * for base conversions. *

* See Knuth, Donald, _The Art of Computer Programming_, Vol. 2, * Answers to Exercises (4.4) Question 14. * * @param u The number to convert to a string. * @param sb The StringBuilder that will be appended to in place. * @param radix The base to convert to. * @param digits The minimum number of digits to pad to. */ private static void toString(BigInteger u, StringBuilder sb, int radix, int digits) { /* If we're smaller than a certain threshold, use the smallToString method, padding with leading zeroes when necessary. */ if (u.mag.length <= SCHOENHAGE_BASE_CONVERSION_THRESHOLD) { String s = u.smallToString(radix); // Pad with internal zeros if necessary. // Don't pad if we're at the beginning of the string. if ((s.length() < digits) && (sb.length() > 0)) for (int i=s.length(); i * This could be changed to a more complicated caching method using * Future. */ private static synchronized BigInteger getRadixConversionCache(int radix, int exponent) { BigInteger retVal = null; ArrayList cacheLine = powerCache[radix]; int oldSize = cacheLine.size(); if (exponent >= oldSize) { cacheLine.ensureCapacity(exponent+1); for (int i=oldSize; i<=exponent; i++) { retVal = cacheLine.get(i-1).square(); cacheLine.add(i, retVal); } } else retVal = cacheLine.get(exponent); return retVal; } /* zero[i] is a string of i consecutive zeros. */ private static String zeros[] = new String[64]; static { zeros[63] = "000000000000000000000000000000000000000000000000000000000000000"; for (int i=0; i<63; i++) zeros[i] = zeros[63].substring(0, i); } /** * Returns the decimal String representation of this BigInteger. * The digit-to-character mapping provided by * {@code Character.forDigit} is used, and a minus sign is * prepended if appropriate. (This representation is compatible * with the {@link #BigInteger(String) (String)} constructor, and * allows for String concatenation with Java's + operator.) * * @return decimal String representation of this BigInteger. * @see Character#forDigit * @see #BigInteger(java.lang.String) */ public String toString() { return toString(10); } /** * Returns a byte array containing the two's-complement * representation of this BigInteger. The byte array will be in * big-endian byte-order: the most significant byte is in * the zeroth element. The array will contain the minimum number * of bytes required to represent this BigInteger, including at * least one sign bit, which is {@code (ceil((this.bitLength() + * 1)/8))}. (This representation is compatible with the * {@link #BigInteger(byte[]) (byte[])} constructor.) * * @return a byte array containing the two's-complement representation of * this BigInteger. * @see #BigInteger(byte[]) */ public byte[] toByteArray() { int byteLen = bitLength()/8 + 1; byte[] byteArray = new byte[byteLen]; for (int i=byteLen-1, bytesCopied=4, nextInt=0, intIndex=0; i>=0; i--) { if (bytesCopied == 4) { nextInt = getInt(intIndex++); bytesCopied = 1; } else { nextInt >>>= 8; bytesCopied++; } byteArray[i] = (byte)nextInt; } return byteArray; } /** * Converts this BigInteger to an {@code int}. This * conversion is analogous to a * narrowing primitive conversion from {@code long} to * {@code int} as defined in section 5.1.3 of * The Java™ Language Specification: * if this BigInteger is too big to fit in an * {@code int}, only the low-order 32 bits are returned. * Note that this conversion can lose information about the * overall magnitude of the BigInteger value as well as return a * result with the opposite sign. * * @return this BigInteger converted to an {@code int}. * @see #intValueExact() */ public int intValue() { int result = 0; result = getInt(0); return result; } /** * Converts this BigInteger to a {@code long}. This * conversion is analogous to a * narrowing primitive conversion from {@code long} to * {@code int} as defined in section 5.1.3 of * The Java™ Language Specification: * if this BigInteger is too big to fit in a * {@code long}, only the low-order 64 bits are returned. * Note that this conversion can lose information about the * overall magnitude of the BigInteger value as well as return a * result with the opposite sign. * * @return this BigInteger converted to a {@code long}. * @see #longValueExact() */ public long longValue() { long result = 0; for (int i=1; i>=0; i--) result = (result << 32) + (getInt(i) & LONG_MASK); return result; } /** * Converts this BigInteger to a {@code float}. This * conversion is similar to the * narrowing primitive conversion from {@code double} to * {@code float} as defined in section 5.1.3 of * The Java™ Language Specification: * if this BigInteger has too great a magnitude * to represent as a {@code float}, it will be converted to * {@link Float#NEGATIVE_INFINITY} or {@link * Float#POSITIVE_INFINITY} as appropriate. Note that even when * the return value is finite, this conversion can lose * information about the precision of the BigInteger value. * * @return this BigInteger converted to a {@code float}. */ public float floatValue() { if (signum == 0) { return 0.0f; } int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1; // exponent == floor(log2(abs(this))) if (exponent < Long.SIZE - 1) { return longValue(); } else if (exponent > Float.MAX_EXPONENT) { return signum > 0 ? Float.POSITIVE_INFINITY : Float.NEGATIVE_INFINITY; } /* * We need the top SIGNIFICAND_WIDTH bits, including the "implicit" * one bit. To make rounding easier, we pick out the top * SIGNIFICAND_WIDTH + 1 bits, so we have one to help us round up or * down. twiceSignifFloor will contain the top SIGNIFICAND_WIDTH + 1 * bits, and signifFloor the top SIGNIFICAND_WIDTH. * * It helps to consider the real number signif = abs(this) * * 2^(SIGNIFICAND_WIDTH - 1 - exponent). */ int shift = exponent - FloatConsts.SIGNIFICAND_WIDTH; int twiceSignifFloor; // twiceSignifFloor will be == abs().shiftRight(shift).intValue() // We do the shift into an int directly to improve performance. int nBits = shift & 0x1f; int nBits2 = 32 - nBits; if (nBits == 0) { twiceSignifFloor = mag[0]; } else { twiceSignifFloor = mag[0] >>> nBits; if (twiceSignifFloor == 0) { twiceSignifFloor = (mag[0] << nBits2) | (mag[1] >>> nBits); } } int signifFloor = twiceSignifFloor >> 1; signifFloor &= FloatConsts.SIGNIF_BIT_MASK; // remove the implied bit /* * We round up if either the fractional part of signif is strictly * greater than 0.5 (which is true if the 0.5 bit is set and any lower * bit is set), or if the fractional part of signif is >= 0.5 and * signifFloor is odd (which is true if both the 0.5 bit and the 1 bit * are set). This is equivalent to the desired HALF_EVEN rounding. */ boolean increment = (twiceSignifFloor & 1) != 0 && ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift); int signifRounded = increment ? signifFloor + 1 : signifFloor; int bits = ((exponent + FloatConsts.EXP_BIAS)) << (FloatConsts.SIGNIFICAND_WIDTH - 1); bits += signifRounded; /* * If signifRounded == 2^24, we'd need to set all of the significand * bits to zero and add 1 to the exponent. This is exactly the behavior * we get from just adding signifRounded to bits directly. If the * exponent is Float.MAX_EXPONENT, we round up (correctly) to * Float.POSITIVE_INFINITY. */ bits |= signum & FloatConsts.SIGN_BIT_MASK; return Float.intBitsToFloat(bits); } /** * Converts this BigInteger to a {@code double}. This * conversion is similar to the * narrowing primitive conversion from {@code double} to * {@code float} as defined in section 5.1.3 of * The Java™ Language Specification: * if this BigInteger has too great a magnitude * to represent as a {@code double}, it will be converted to * {@link Double#NEGATIVE_INFINITY} or {@link * Double#POSITIVE_INFINITY} as appropriate. Note that even when * the return value is finite, this conversion can lose * information about the precision of the BigInteger value. * * @return this BigInteger converted to a {@code double}. */ public double doubleValue() { if (signum == 0) { return 0.0; } int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1; // exponent == floor(log2(abs(this))Double) if (exponent < Long.SIZE - 1) { return longValue(); } else if (exponent > Double.MAX_EXPONENT) { return signum > 0 ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY; } /* * We need the top SIGNIFICAND_WIDTH bits, including the "implicit" * one bit. To make rounding easier, we pick out the top * SIGNIFICAND_WIDTH + 1 bits, so we have one to help us round up or * down. twiceSignifFloor will contain the top SIGNIFICAND_WIDTH + 1 * bits, and signifFloor the top SIGNIFICAND_WIDTH. * * It helps to consider the real number signif = abs(this) * * 2^(SIGNIFICAND_WIDTH - 1 - exponent). */ int shift = exponent - DoubleConsts.SIGNIFICAND_WIDTH; long twiceSignifFloor; // twiceSignifFloor will be == abs().shiftRight(shift).longValue() // We do the shift into a long directly to improve performance. int nBits = shift & 0x1f; int nBits2 = 32 - nBits; int highBits; int lowBits; if (nBits == 0) { highBits = mag[0]; lowBits = mag[1]; } else { highBits = mag[0] >>> nBits; lowBits = (mag[0] << nBits2) | (mag[1] >>> nBits); if (highBits == 0) { highBits = lowBits; lowBits = (mag[1] << nBits2) | (mag[2] >>> nBits); } } twiceSignifFloor = ((highBits & LONG_MASK) << 32) | (lowBits & LONG_MASK); long signifFloor = twiceSignifFloor >> 1; signifFloor &= DoubleConsts.SIGNIF_BIT_MASK; // remove the implied bit /* * We round up if either the fractional part of signif is strictly * greater than 0.5 (which is true if the 0.5 bit is set and any lower * bit is set), or if the fractional part of signif is >= 0.5 and * signifFloor is odd (which is true if both the 0.5 bit and the 1 bit * are set). This is equivalent to the desired HALF_EVEN rounding. */ boolean increment = (twiceSignifFloor & 1) != 0 && ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift); long signifRounded = increment ? signifFloor + 1 : signifFloor; long bits = (long) ((exponent + DoubleConsts.EXP_BIAS)) << (DoubleConsts.SIGNIFICAND_WIDTH - 1); bits += signifRounded; /* * If signifRounded == 2^53, we'd need to set all of the significand * bits to zero and add 1 to the exponent. This is exactly the behavior * we get from just adding signifRounded to bits directly. If the * exponent is Double.MAX_EXPONENT, we round up (correctly) to * Double.POSITIVE_INFINITY. */ bits |= signum & DoubleConsts.SIGN_BIT_MASK; return Double.longBitsToDouble(bits); } /** * Returns a copy of the input array stripped of any leading zero bytes. */ private static int[] stripLeadingZeroInts(int val[]) { int vlen = val.length; int keep; // Find first nonzero byte for (keep = 0; keep < vlen && val[keep] == 0; keep++) ; return java.util.Arrays.copyOfRange(val, keep, vlen); } /** * Returns the input array stripped of any leading zero bytes. * Since the source is trusted the copying may be skipped. */ private static int[] trustedStripLeadingZeroInts(int val[]) { int vlen = val.length; int keep; // Find first nonzero byte for (keep = 0; keep < vlen && val[keep] == 0; keep++) ; return keep == 0 ? val : java.util.Arrays.copyOfRange(val, keep, vlen); } /** * Returns a copy of the input array stripped of any leading zero bytes. */ private static int[] stripLeadingZeroBytes(byte a[]) { int byteLength = a.length; int keep; // Find first nonzero byte for (keep = 0; keep < byteLength && a[keep]==0; keep++) ; // Allocate new array and copy relevant part of input array int intLength = ((byteLength - keep) + 3) >>> 2; int[] result = new int[intLength]; int b = byteLength - 1; for (int i = intLength-1; i >= 0; i--) { result[i] = a[b--] & 0xff; int bytesRemaining = b - keep + 1; int bytesToTransfer = Math.min(3, bytesRemaining); for (int j=8; j <= (bytesToTransfer << 3); j += 8) result[i] |= ((a[b--] & 0xff) << j); } return result; } /** * Takes an array a representing a negative 2's-complement number and * returns the minimal (no leading zero bytes) unsigned whose value is -a. */ private static int[] makePositive(byte a[]) { int keep, k; int byteLength = a.length; // Find first non-sign (0xff) byte of input for (keep=0; keep= 0; i--) { result[i] = a[b--] & 0xff; int numBytesToTransfer = Math.min(3, b-keep+1); if (numBytesToTransfer < 0) numBytesToTransfer = 0; for (int j=8; j <= 8*numBytesToTransfer; j += 8) result[i] |= ((a[b--] & 0xff) << j); // Mask indicates which bits must be complemented int mask = -1 >>> (8*(3-numBytesToTransfer)); result[i] = ~result[i] & mask; } // Add one to one's complement to generate two's complement for (int i=result.length-1; i>=0; i--) { result[i] = (int)((result[i] & LONG_MASK) + 1); if (result[i] != 0) break; } return result; } /** * Takes an array a representing a negative 2's-complement number and * returns the minimal (no leading zero ints) unsigned whose value is -a. */ private static int[] makePositive(int a[]) { int keep, j; // Find first non-sign (0xffffffff) int of input for (keep=0; keep>> 5) + 1; } /* Returns sign bit */ private int signBit() { return signum < 0 ? 1 : 0; } /* Returns an int of sign bits */ private int signInt() { return signum < 0 ? -1 : 0; } /** * Returns the specified int of the little-endian two's complement * representation (int 0 is the least significant). The int number can * be arbitrarily high (values are logically preceded by infinitely many * sign ints). */ private int getInt(int n) { if (n < 0) return 0; if (n >= mag.length) return signInt(); int magInt = mag[mag.length-n-1]; return (signum >= 0 ? magInt : (n <= firstNonzeroIntNum() ? -magInt : ~magInt)); } /** * Returns the index of the int that contains the first nonzero int in the * little-endian binary representation of the magnitude (int 0 is the * least significant). If the magnitude is zero, return value is undefined. */ private int firstNonzeroIntNum() { int fn = firstNonzeroIntNum - 2; if (fn == -2) { // firstNonzeroIntNum not initialized yet fn = 0; // Search for the first nonzero int int i; int mlen = mag.length; for (i = mlen - 1; i >= 0 && mag[i] == 0; i--) ; fn = mlen - i - 1; firstNonzeroIntNum = fn + 2; // offset by two to initialize } return fn; } /** use serialVersionUID from JDK 1.1. for interoperability */ private static final long serialVersionUID = -8287574255936472291L; /** * Serializable fields for BigInteger. * * @serialField signum int * signum of this BigInteger. * @serialField magnitude int[] * magnitude array of this BigInteger. * @serialField bitCount int * number of bits in this BigInteger * @serialField bitLength int * the number of bits in the minimal two's-complement * representation of this BigInteger * @serialField lowestSetBit int * lowest set bit in the twos complement representation */ private static final ObjectStreamField[] serialPersistentFields = { new ObjectStreamField("signum", Integer.TYPE), new ObjectStreamField("magnitude", byte[].class), new ObjectStreamField("bitCount", Integer.TYPE), new ObjectStreamField("bitLength", Integer.TYPE), new ObjectStreamField("firstNonzeroByteNum", Integer.TYPE), new ObjectStreamField("lowestSetBit", Integer.TYPE) }; /** * Reconstitute the {@code BigInteger} instance from a stream (that is, * deserialize it). The magnitude is read in as an array of bytes * for historical reasons, but it is converted to an array of ints * and the byte array is discarded. * Note: * The current convention is to initialize the cache fields, bitCount, * bitLength and lowestSetBit, to 0 rather than some other marker value. * Therefore, no explicit action to set these fields needs to be taken in * readObject because those fields already have a 0 value be default since * defaultReadObject is not being used. */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { /* * In order to maintain compatibility with previous serialized forms, * the magnitude of a BigInteger is serialized as an array of bytes. * The magnitude field is used as a temporary store for the byte array * that is deserialized. The cached computation fields should be * transient but are serialized for compatibility reasons. */ // prepare to read the alternate persistent fields ObjectInputStream.GetField fields = s.readFields(); // Read the alternate persistent fields that we care about int sign = fields.get("signum", -2); byte[] magnitude = (byte[])fields.get("magnitude", null); // Validate signum if (sign < -1 || sign > 1) { String message = "BigInteger: Invalid signum value"; if (fields.defaulted("signum")) message = "BigInteger: Signum not present in stream"; throw new java.io.StreamCorruptedException(message); } if ((magnitude.length == 0) != (sign == 0)) { String message = "BigInteger: signum-magnitude mismatch"; if (fields.defaulted("magnitude")) message = "BigInteger: Magnitude not present in stream"; throw new java.io.StreamCorruptedException(message); } // Commit final fields via Unsafe UnsafeHolder.putSign(this, sign); // Calculate mag field from magnitude and discard magnitude UnsafeHolder.putMag(this, stripLeadingZeroBytes(magnitude)); } // Support for resetting final fields while deserializing private static class UnsafeHolder { private static final sun.misc.Unsafe unsafe; private static final long signumOffset; private static final long magOffset; static { try { unsafe = sun.misc.Unsafe.getUnsafe(); signumOffset = unsafe.objectFieldOffset (BigInteger.class.getDeclaredField("signum")); magOffset = unsafe.objectFieldOffset (BigInteger.class.getDeclaredField("mag")); } catch (Exception ex) { throw new ExceptionInInitializerError(ex); } } static void putSign(BigInteger bi, int sign) { unsafe.putIntVolatile(bi, signumOffset, sign); } static void putMag(BigInteger bi, int[] magnitude) { unsafe.putObjectVolatile(bi, magOffset, magnitude); } } /** * Save the {@code BigInteger} instance to a stream. * The magnitude of a BigInteger is serialized as a byte array for * historical reasons. * * @serialData two necessary fields are written as well as obsolete * fields for compatibility with older versions. */ private void writeObject(ObjectOutputStream s) throws IOException { // set the values of the Serializable fields ObjectOutputStream.PutField fields = s.putFields(); fields.put("signum", signum); fields.put("magnitude", magSerializedForm()); // The values written for cached fields are compatible with older // versions, but are ignored in readObject so don't otherwise matter. fields.put("bitCount", -1); fields.put("bitLength", -1); fields.put("lowestSetBit", -2); fields.put("firstNonzeroByteNum", -2); // save them s.writeFields(); } /** * Returns the mag array as an array of bytes. */ private byte[] magSerializedForm() { int len = mag.length; int bitLen = (len == 0 ? 0 : ((len - 1) << 5) + bitLengthForInt(mag[0])); int byteLen = (bitLen + 7) >>> 3; byte[] result = new byte[byteLen]; for (int i = byteLen - 1, bytesCopied = 4, intIndex = len - 1, nextInt = 0; i>=0; i--) { if (bytesCopied == 4) { nextInt = mag[intIndex--]; bytesCopied = 1; } else { nextInt >>>= 8; bytesCopied++; } result[i] = (byte)nextInt; } return result; } /** * Converts this {@code BigInteger} to a {@code long}, checking * for lost information. If the value of this {@code BigInteger} * is out of the range of the {@code long} type, then an * {@code ArithmeticException} is thrown. * * @return this {@code BigInteger} converted to a {@code long}. * @throws ArithmeticException if the value of {@code this} will * not exactly fit in a {@code long}. * @see BigInteger#longValue * @since 1.8 */ public long longValueExact() { if (mag.length <= 2 && bitLength() <= 63) return longValue(); else throw new ArithmeticException("BigInteger out of long range"); } /** * Converts this {@code BigInteger} to an {@code int}, checking * for lost information. If the value of this {@code BigInteger} * is out of the range of the {@code int} type, then an * {@code ArithmeticException} is thrown. * * @return this {@code BigInteger} converted to an {@code int}. * @throws ArithmeticException if the value of {@code this} will * not exactly fit in a {@code int}. * @see BigInteger#intValue * @since 1.8 */ public int intValueExact() { if (mag.length <= 1 && bitLength() <= 31) return intValue(); else throw new ArithmeticException("BigInteger out of int range"); } /** * Converts this {@code BigInteger} to a {@code short}, checking * for lost information. If the value of this {@code BigInteger} * is out of the range of the {@code short} type, then an * {@code ArithmeticException} is thrown. * * @return this {@code BigInteger} converted to a {@code short}. * @throws ArithmeticException if the value of {@code this} will * not exactly fit in a {@code short}. * @see BigInteger#shortValue * @since 1.8 */ public short shortValueExact() { if (mag.length <= 1 && bitLength() <= 31) { int value = intValue(); if (value >= Short.MIN_VALUE && value <= Short.MAX_VALUE) return shortValue(); } throw new ArithmeticException("BigInteger out of short range"); } /** * Converts this {@code BigInteger} to a {@code byte}, checking * for lost information. If the value of this {@code BigInteger} * is out of the range of the {@code byte} type, then an * {@code ArithmeticException} is thrown. * * @return this {@code BigInteger} converted to a {@code byte}. * @throws ArithmeticException if the value of {@code this} will * not exactly fit in a {@code byte}. * @see BigInteger#byteValue * @since 1.8 */ public byte byteValueExact() { if (mag.length <= 1 && bitLength() <= 31) { int value = intValue(); if (value >= Byte.MIN_VALUE && value <= Byte.MAX_VALUE) return byteValue(); } throw new ArithmeticException("BigInteger out of byte range"); } }