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A complex 
story is best 
told as a 
series of 
vacuous 1-
liners
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90% of 
software is 
trash.

90% of the 
rest will be 
trash RSN
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We basically 
don't know 
how to 
make code 
that can 
survive ten, 
let alone 50 
years
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The most 
difficult 
challenge 
in our 
profession 
is simple 
accuracy
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Future code 
has to talk 
to code, has 
to be chatty, 
sociable, 
well-
connected
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When we 
can move 
faster, 
where we 
go is more 
critical than 
ever.
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Writing 
distributed 
code is like 
a live jam 
session.

It's all about 
other people
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How we 
connect to 
each other 
matters 
more than 
who we are
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The physics 
of software 
is the 
physics of 
people
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Ideas are 
cheap. 

Execution is 
the hard 
part
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Making 
perfect 
software is 
easy, once 
you learn 
the trick 
(which is 
kinda hard)
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Simplicity 
always 
beats 
functionality
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Problems 
are not all 
equal, and 
most are 
illusions
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When you 
know the 
real problem 
you have 
done half 
the work
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Do nothing 
that is not a 
minimal, 
plausible 
answer to a 
well-defined 
problem
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Every 
commit 
should be 
shippable
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Design by 
removing 
problems, 
not adding 
features
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Five Steps 
to Satori: 
Learn, 
Draw, 
Divide, 
Conquer, 
Repeat
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1. 
Learn the 
language 
before you 
write a 
poem
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2.
If it looks 
pretty, it's 
more likely 
to work
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3.
A good 
contract is 
worth a 
thousands 
assumptions
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4.
When you 
take small 
steps, it 
hurts less 
when you 
fall
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5.
Solve one 
problem, 
and repeat 
until you run 
out of time 
or money
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Distributed 
software 
lives or dies 
by its 
protocols
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Protocols 
are contracts 
that describe 
the rights 
and 
obligations 
of each party
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An unprotocol 
takes minutes 
to explain, 
hours to 
design, days to 
write, weeks to 
prove, months 
to mature, and 
years to 
replace
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Use human 
language
in your 
unprotocols. 

ORLY? 
YARLY!

nom-protocol = 
   open-peering 
  *use-peering

open-peering = 
   C:OHAI 
 ( S:OHAI-OK / S:WTF )

use-peering  = 
   C:ICANHAZ
 / S:CHEEZBURGER
 / C:HUGZ S:HUGZ-OK
 / S:HUGZ C:HUGZ-OK
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Use GPLv3 
for your 
open specs.

Remixability 
is freedom
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If you're 
willing to 
give up 
flexibility for 
speed you 
deserve 
neither 
flexibility nor 
speed
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Use cheap 
text for the
low-volume 
chatty 
control 
commands



Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

 

Use nasty 
hand-coded 
binary for 
the high-
volume data
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ØMQ 
framing 
makes a 
lousy codec 
but a great 
separator
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A hand-
crafted 
codec can 
always beat 
a generic 
serializer
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A code-
generated 
codec can 
always beat 
a hand-
crafted one
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iMatix GSL: 
technology 
so dangerous 
we had to 
lock it up for 
years
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File transfer 
is the 
zombie 
problem of 
distributed 
applications
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Router 
sockets are 
the beating 
heart of 
every real 
ØMQ 
protocol 
engine
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The world 
needs a 
chunked, 
flow-controlled, 
restartable, 
cancellable, 
async, 
multicast 
file transfer 
ØMQ protocol
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No matter 
how hard 
you push, a 
file will not 
just go down 
a socket

C: fetch
S: chunk 1
S: chunk 2
S: chunk 3
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That 
annoying 
pause after 
you finish 
your beer, 
before you 
catch the 
waiter's eye

C: fetch chunk 1
S: send chunk 1
C: fetch chunk 2
S: send chunk 2
C: fetch chunk 3
S: send chunk 3
C: fetch chunk 4
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You can, 
and I've 
tested this, 
order a new 
beer before 
your old one 
is empty

C: fetch chunk 1
C: fetch chunk 2
C: fetch chunk 3
S: send chunk 1
C: fetch chunk 4
S: send chunk 2
S: send chunk 3
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Request-
reply is just 
a vulgar 
subclass of 
publish-
subscribe

C: subscribe
C: send credit
S: send chunk
S: send chunk
C: send credit
S: send chunk
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On a router 
socket, you 
should 
never hit the 
high-water 
mark
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Heartbeats 
are our 
protocol's 
way of 
asking if we 
still care
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Protocol 
stack 
= 
message 
codec 
+
protocol 
engine

command_t
 *request = 
command_decode
 (socket)

execute_engine
 (command)
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State 
machines 
are a perfect 
domain 
language for 
protocol 
engines
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State 
machines 
can be cudly 
and gentle, 
when you 
get to know 
them
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You don't 
want to bet 
against a 
compiler
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If you're not 
thinking of 
security, 
security is 
probably 
thinking of 
you
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For 
connected 
bidirectional 
protocols 
over ØMQ 
use SASL



Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

 

For loosely 
connected 
and one-way 
protocols 
over ØMQ, 
use AES and 
such
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SASL over 
ØMQ is 
darned 
simple

secure-nom = open-peering 
            *use-peering

open-peering = 
    C:OHAI 
 *( S:ORLY C:YARLY ) 
  ( S:OHAI-OK / S:WTF )

ORLY = 1*mechanism 
       challenge
mechanism = string
challenge = *OCTET

YARLY = mechanism 
        response
response = *OCTET
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Theory is 
fine in 
theory, but 
in practice, 
practice is 
better
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FileMQ is a 
file sharing 
protocol and 
stack over 
ØMQ.

Reusable 
until 2062
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To sum it up:

zero.mq/ch6

The Weird 
Fish Book, 
coming soon 
from O'Reilly

1. Aim for 50 years

2. It's all about people

3. Minimal plausible solutions

4. To real immediate problems

5. Document the contracts

6. Cheap and Nasty codecs

7. Code generation rocks

8. Router sockets rock

9. CBFC > HWM

10. Learn state machines

11. Learn about SASL

12. Worked example: FileMQ
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