
Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

Software
Architecture
using ØMQ

by
Pieter Hintjens
Strange Loop 2012

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

A complex
story is best
told as a
series of
vacuous 1-
liners

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

90% of
software is
trash.

90% of the
rest will be
trash RSN

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

We basically
don't know
how to
make code
that can
survive ten,
let alone 50
years

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

The most
difficult
challenge
in our
profession
is simple
accuracy

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

Future code
has to talk
to code, has
to be chatty,
sociable,
well-
connected

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

When we
can move
faster,
where we
go is more
critical than
ever.

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

Writing
distributed
code is like
a live jam
session.

It's all about
other people

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

How we
connect to
each other
matters
more than
who we are

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

The physics
of software
is the
physics of
people

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

Ideas are
cheap.

Execution is
the hard
part

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

Making
perfect
software is
easy, once
you learn
the trick
(which is
kinda hard)

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

Simplicity
always
beats
functionality

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

Problems
are not all
equal, and
most are
illusions

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

When you
know the
real problem
you have
done half
the work

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

Do nothing
that is not a
minimal,
plausible
answer to a
well-defined
problem

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

Every
commit
should be
shippable

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

Design by
removing
problems,
not adding
features

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

Five Steps
to Satori:
Learn,
Draw,
Divide,
Conquer,
Repeat

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

1.
Learn the
language
before you
write a
poem

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

2.
If it looks
pretty, it's
more likely
to work

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

3.
A good
contract is
worth a
thousands
assumptions

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

4.
When you
take small
steps, it
hurts less
when you
fall

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

5.
Solve one
problem,
and repeat
until you run
out of time
or money

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

Distributed
software
lives or dies
by its
protocols

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

Protocols
are contracts
that describe
the rights
and
obligations
of each party

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

An unprotocol
takes minutes
to explain,
hours to
design, days to
write, weeks to
prove, months
to mature, and
years to
replace

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

Use human
language
in your
unprotocols.

ORLY?
YARLY!

nom-protocol =
 open-peering
 *use-peering

open-peering =
 C:OHAI
 (S:OHAI-OK / S:WTF)

use-peering =
 C:ICANHAZ
 / S:CHEEZBURGER
 / C:HUGZ S:HUGZ-OK
 / S:HUGZ C:HUGZ-OK

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

Use GPLv3
for your
open specs.

Remixability
is freedom

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

If you're
willing to
give up
flexibility for
speed you
deserve
neither
flexibility nor
speed

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

Use cheap
text for the
low-volume
chatty
control
commands

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

Use nasty
hand-coded
binary for
the high-
volume data

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

ØMQ
framing
makes a
lousy codec
but a great
separator

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

A hand-
crafted
codec can
always beat
a generic
serializer

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

A code-
generated
codec can
always beat
a hand-
crafted one

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

iMatix GSL:
technology
so dangerous
we had to
lock it up for
years

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

File transfer
is the
zombie
problem of
distributed
applications

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

Router
sockets are
the beating
heart of
every real
ØMQ
protocol
engine

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

The world
needs a
chunked,
flow-controlled,
restartable,
cancellable,
async,
multicast
file transfer
ØMQ protocol

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

No matter
how hard
you push, a
file will not
just go down
a socket

C: fetch
S: chunk 1
S: chunk 2
S: chunk 3

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

That
annoying
pause after
you finish
your beer,
before you
catch the
waiter's eye

C: fetch chunk 1
S: send chunk 1
C: fetch chunk 2
S: send chunk 2
C: fetch chunk 3
S: send chunk 3
C: fetch chunk 4

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

You can,
and I've
tested this,
order a new
beer before
your old one
is empty

C: fetch chunk 1
C: fetch chunk 2
C: fetch chunk 3
S: send chunk 1
C: fetch chunk 4
S: send chunk 2
S: send chunk 3

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

Request-
reply is just
a vulgar
subclass of
publish-
subscribe

C: subscribe
C: send credit
S: send chunk
S: send chunk
C: send credit
S: send chunk

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

On a router
socket, you
should
never hit the
high-water
mark

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

Heartbeats
are our
protocol's
way of
asking if we
still care

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

Protocol
stack
=
message
codec
+
protocol
engine

command_t
 *request =
command_decode
 (socket)

execute_engine
 (command)

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

State
machines
are a perfect
domain
language for
protocol
engines

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

State
machines
can be cudly
and gentle,
when you
get to know
them

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

You don't
want to bet
against a
compiler

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

If you're not
thinking of
security,
security is
probably
thinking of
you

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

For
connected
bidirectional
protocols
over ØMQ
use SASL

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

For loosely
connected
and one-way
protocols
over ØMQ,
use AES and
such

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

SASL over
ØMQ is
darned
simple

secure-nom = open-peering
 *use-peering

open-peering =
 C:OHAI
 *(S:ORLY C:YARLY)
 (S:OHAI-OK / S:WTF)

ORLY = 1*mechanism
 challenge
mechanism = string
challenge = *OCTET

YARLY = mechanism
 response
response = *OCTET

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

Theory is
fine in
theory, but
in practice,
practice is
better

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

FileMQ is a
file sharing
protocol and
stack over
ØMQ.

Reusable
until 2062

Photos by Pieter Hintjens
cc-by-sa © 2012 Pieter Hintjens

To sum it up:

zero.mq/ch6

The Weird
Fish Book,
coming soon
from O'Reilly

1. Aim for 50 years

2. It's all about people

3. Minimal plausible solutions

4. To real immediate problems

5. Document the contracts

6. Cheap and Nasty codecs

7. Code generation rocks

8. Router sockets rock

9. CBFC > HWM

10. Learn state machines

11. Learn about SASL

12. Worked example: FileMQ

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

