# Stefano Calcaterra, 405769 # Final Project - Tavolino Isamu Noguchi - Prototype ############################################### FUNZIONE GRID ############################################### #funzione GRID from pyplasm import * import scipy from scipy import* #from lar import * def larExtrude(model,pattern): V,FV = model d = len(FV[0]) offset = len(V) m = len(pattern) outcells = [] for cell in FV: # create the indices of vertices in the cell "tube" tube = [v + k*offset for k in range(m+1) for v in cell] # take groups of d+1 elements, via shifting by one rangelimit = len(tube)-d cellTube = [tube[k:k+d+1] for k in range(rangelimit)] outcells += [scipy.reshape(cellTube,newshape=(m,d,d+1)).tolist()] outcells = AA(CAT)(TRANS(outcells)) outcells = [group for k,group in enumerate(outcells) if pattern[k]>0 ] coords = list(cumsum([0]+(AA(ABS)(pattern)))) outVerts = VERTEXTRUDE((V,coords)) newModel = outVerts, CAT(outcells) return newModel def VERTEXTRUDE((V,coords)): """ Utility function to generate the output model vertices in a multiple extrusion of a LAR model. V is a list of d-vertices (each given as a list of d coordinates). coords is a list of absolute translation parameters to be applied to V in order to generate the output vertices. Return a new list of (d+1)-vertices. """ return CAT(AA(COMP([AA(AR),DISTR]))(DISTL([V,coords]))) # Questa funzione mi permette di ottenere un dominio simpliciale(triangolare) def GRID (args): model= ([[]],[[0]]) for k,step in enumerate(args): model = larExtrude(model,step*[1]) V, cells = model verts = AA(list)(scipy.array(V)/AA(float)(args)) return MKPOL([verts,AA(AA(lambda h:h+1))(cells),None]) ############################################################################################## def sdoppia (asse, val, controlpoints): array_new = [] for array in controlpoints: x = array[0] y = array[1] z = array[2] if asse == 1: array_new.append([x+val,y,z]) if asse == 2: array_new.append([x,y+val,z]) if asse == 3: array_new.append([x,y,z+val]) return array_new dom1 = GRID([25,25]) ############################## piano superiore ############################## """ #curve di riferimento x = MAP(BEZIER(S1)([[-6.4,0,0],[6.4,0,0]]))(dom1) mediana = MAP(BEZIER(S1)([[0,0,0],[0,9.3,0]]))(dom1) y = MAP(BEZIER(S1)([[-6.4,0,0],[-6.4,9.3,0]]))(dom1) """ piano_superiore_struct_s_down = BEZIER(S1)([[0,0,0],[-1,0,0],[-2,0,0],[-16,-1,0],[-1.5,10,0],[0,9.3,0]]) piano_superiore_struct_d_down = BEZIER(S1)([[0,0,0],[1,0,0],[2,0,0],[16,-1,0],[1.5,10,0],[0,9.3,0]]) piano_superiore_struct_s_med = BEZIER(S1)([[0,-0.15,0.1],[-1,-0.15,0.1],[-2,-0.15,0.1],[-16.15,-1,0.1],[-1.5,10.15,0.1],[0,9.45,0.1]]) piano_superiore_struct_d_med = BEZIER(S1)([[0,-0.15,0.1],[1,-0.15,0.1],[2,-0.15,0.1],[16.15,-1,0.1],[1.5,10.15,0.1],[0,9.45,0.1]]) piano_superiore_struct_s_up = BEZIER(S1)([[0,0,0.2],[-1,0,0.2],[-2,0,0.2],[-16,-1,0.2],[-1.5,10,0.2],[0,9.3,0.2]]) piano_superiore_struct_d_up = BEZIER(S1)([[0,0,0.2],[1,0,0.2],[2,0,0.2],[16,-1,0.2],[1.5,10,0.2],[0,9.3,0.2]]) surf_down = MAP(BEZIER(S2)([piano_superiore_struct_s_down,piano_superiore_struct_d_down]))(dom1) surf_up = MAP(BEZIER(S2)([piano_superiore_struct_d_up,piano_superiore_struct_s_up]))(dom1) surf_lat1 = MAP(BEZIER(S2)([piano_superiore_struct_s_up, piano_superiore_struct_s_med, piano_superiore_struct_s_down]))(dom1) surf_lat2 = MAP(BEZIER(S2)([piano_superiore_struct_d_down,piano_superiore_struct_d_med, piano_superiore_struct_d_up]))(dom1) surf_tot = STRUCT([surf_down, surf_up, surf_lat1, surf_lat2]) #VIEW(surf_tot) piano = T([3])([4])(surf_tot) ############################## base ############################## """ #curve di riferimento x1 = MAP(BEZIER(S1)([[0,0,0],[8,0,0]]))(dom1) x2 = MAP(BEZIER(S1)([[0,0,4],[8,0,4]]))(dom1) y1 = MAP(BEZIER(S1)([[0,0,0],[0,0,4]]))(dom1) y2 = MAP(BEZIER(S1)([[8,0,0],[8,0,4]]))(dom1) """ # punti curve sinistra cp1_s = [[0.25,0,0],[-0.5,0,1.25],[0.7,0,4]] cp2_s = [[0.7,0,4],[1.25,0,4]] cp3_s = [[1.25,0,4],[1.8,0,1.5],[2,0,1.5],[2.2,0,1.25],[3,0,1],[4.5,0,0.75],[5.75,0,0.75],[6.2,0,1],[6.7,0,1.5],[6.75,0,2]] cp4_s = [[6.75,0,2],[7.25,0,2]] cp5_s = [[7.25,0,2],[8.5,0,0.75],[7.75,0,0]] # punti curve base sinistra cp_b_1_s = [[0.25,0,0],[0.75,0,0]] cp_b_2_s = [[0.75,0,0],[1.25,0,0]] cp_b_3_s = [[1.25,0,0],[6.75,0,0]] cp_b_4_s = [[6.75,0,0],[7.25,0,0]] cp_b_5_s = [[7.25,0,0],[7.75,0,0]] # punti curve destra cp1_d = sdoppia(2,0.4,cp1_s) cp2_d = sdoppia(2,0.4,cp2_s) cp3_d = sdoppia(2,0.4,cp3_s) cp4_d = sdoppia(2,0.4,cp4_s) cp5_d = sdoppia(2,0.4,cp5_s) # punti curve base destra cp_b_1_d = sdoppia(2,0.4,cp_b_1_s) cp_b_2_d = sdoppia(2,0.4,cp_b_2_s) cp_b_3_d = sdoppia(2,0.4,cp_b_3_s) cp_b_4_d = sdoppia(2,0.4,cp_b_4_s) cp_b_5_d = sdoppia(2,0.4,cp_b_5_s) # punti curve mediane (per l'effetto bombato della superficie laterale) cp1_med = [[0.25,0.2,0],[-1,0.2,1.25],[0.7,0.2,4]] cp3_med = [[1.25,0.2,4],[2.3,0.2,1.5],[2.5,0.2,2],[2.7,0.2,1.5],[3,0.2,1.5],[4.5,0.2,1.75],[5.75,0.2,1.25],[6.2,0.2,1.5],[6.7,0.2,2],[6.75,0.2,2]] cp5_med = [[7.25,0.2,2],[9.25,0.2,0.75],[7.75,0.2,0]] """ //per visualizzare le curve c1_s = MAP(BEZIER(S1)(cp1_s))(dom1) c2_s = MAP(BEZIER(S1)(cp2_s))(dom1) c3_s = MAP(BEZIER(S1)(cp3_s))(dom1) c4_s = MAP(BEZIER(S1)(cp4_s))(dom1) c5_s = MAP(BEZIER(S1)(cp5_s))(dom1) c1_d = MAP(BEZIER(S1)(cp1_d))(dom1) c2_d = MAP(BEZIER(S1)(cp2_d))(dom1) c3_d = MAP(BEZIER(S1)(cp3_d))(dom1) c4_d = MAP(BEZIER(S1)(cp4_d))(dom1) c5_d = MAP(BEZIER(S1)(cp5_d))(dom1) """ # curve sinistra c1_s = BEZIER(S1)(cp1_s) c2_s = BEZIER(S1)(cp2_s) c3_s = BEZIER(S1)(cp3_s) c4_s = BEZIER(S1)(cp4_s) c5_s = BEZIER(S1)(cp5_s) # curve base sinistra b1_s = BEZIER(S1)(cp_b_1_s) b2_s = BEZIER(S1)(cp_b_2_s) b3_s = BEZIER(S1)(cp_b_3_s) b4_s = BEZIER(S1)(cp_b_4_s) b5_s = BEZIER(S1)(cp_b_5_s) b_tot_s = BEZIER(S1)([[0.25,0,0],[7.75,0,0]]) # curve destra c1_d = BEZIER(S1)(cp1_d) c2_d = BEZIER(S1)(cp2_d) c3_d = BEZIER(S1)(cp3_d) c4_d = BEZIER(S1)(cp4_d) c5_d = BEZIER(S1)(cp5_d) # curve base destra b1_d = BEZIER(S1)(cp_b_1_d) b2_d = BEZIER(S1)(cp_b_2_d) b3_d = BEZIER(S1)(cp_b_3_d) b4_d = BEZIER(S1)(cp_b_4_d) b5_d = BEZIER(S1)(cp_b_5_d) b_tot_d = BEZIER(S1)([[0.25,0.4,0],[7.75,0.4,0]]) # curve mediane (per l'effetto bombato della superficie laterale) med1 = BEZIER(S1)(cp1_med) med3 = BEZIER(S1)(cp3_med) med5 = BEZIER(S1)(cp5_med) #VIEW(STRUCT([x1,x2,y1,y2,c1_s,c2_s,c3_s,c4_s,c5_s,c1_d,c2_d,c3_d,c4_d,c5_d])) # superfici parziali sinistra s1_s = MAP(BEZIER(S2)([b1_s,c1_s]))(dom1) s2_s = MAP(BEZIER(S2)([b2_s,c2_s]))(dom1) s3_s = MAP(BEZIER(S2)([b3_s,c3_s]))(dom1) s4_s = MAP(BEZIER(S2)([b4_s,c4_s]))(dom1) s5_s = MAP(BEZIER(S2)([b5_s,c5_s]))(dom1) # superficie sinistra intera sup_s = STRUCT([s1_s,s2_s,s3_s,s4_s,s5_s]) # superfici parziali destra s1_d = MAP(BEZIER(S2)([c1_d,b1_d]))(dom1) s2_d = MAP(BEZIER(S2)([c2_d,b2_d]))(dom1) s3_d = MAP(BEZIER(S2)([c3_d,b3_d]))(dom1) s4_d = MAP(BEZIER(S2)([c4_d,b4_d]))(dom1) s5_d = MAP(BEZIER(S2)([c5_d,b5_d]))(dom1) # superficie destra intera sup_d = STRUCT([s1_d,s2_d,s3_d,s4_d,s5_d]) # superfici parziali laterali lat1 = MAP(BEZIER(S2)([c1_s,med1,c1_d]))(dom1) lat2 = MAP(BEZIER(S2)([c2_s,c2_d]))(dom1) lat3 = MAP(BEZIER(S2)([c3_s,med3,c3_d]))(dom1) lat4 = MAP(BEZIER(S2)([c4_s,c4_d]))(dom1) lat5 = MAP(BEZIER(S2)([c5_s,med5,c5_d]))(dom1) lat6 = MAP(BEZIER(S2)([b_tot_d,b_tot_s]))(dom1) # superficie laterale intera lat_tot = STRUCT([lat1,lat2,lat3,lat4,lat5,lat6]) # singolo elemento base elemento_base = STRUCT([sup_s,sup_d,lat_tot]) ## assemblaggio base ## base1 = T([1,2])([1.75-6.4-0.25,1.75])(R([1,2])(PI/4)(elemento_base)) elemento_base_ribaltato = R([2,3])(PI)(elemento_base) base2 = T([1,2,3])([4.7,1.75,4])(R([1,2])(3*PI/4)(elemento_base_ribaltato)) #VIEW(STRUCT([base1,base2,x,y,mediana])) # base completa base = STRUCT([base1,base2]) ############################## totale ############################## VIEW(STRUCT([piano,base]))