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What isHDF5?

HDF5 stands for (H)eirarchical (D)ata (F)ormat (5)ive.

t is supported by the lovely people at FOF e o Group
At itscore HDF5 is binary file type specification.

However, what makes HDF5 great Is the numerous
libraries written to interact with files of this type and their
extremely rich feature set.

Which you will lear n today!
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A Note on the Format

| ntermixed, there will be:

e Slides
e | nteractive Hacking
e EXercises

Fedl freeto:

* Ask questions at anytime

e EXplore at your own pace.
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A Note on the Format

Thistutorial was submitted to the Advanced track.
And this was dated to be after the | Python tutorial. So...

Get the Program Committee!

~please don't! A
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Class Makeup

By a show of hands, how many people have used:

HDF5 before?

Py Tables?

* hSpy?
*the HDF5 C API?

*SQL?
 Other binary data formats?

<t



Please clone the repo:

git clone git://github.conl scopatz/scipy2012.qit

Or download atarball from:

https://github.com/scopatz/scipy2012



https://github.com/scopatz/scipy2012

Warm up exercise

In 1Python:

| Mport nunmpy as np
| nport tables as tb

f = tb.openFile( tenp.h5, "a')

heart = np.ones(42, dtype=[('rate', int),
f.createTable('/', "heart', heart)
f.close()

Or run pyt hon exer/ war nup. py

(' beat',

float)])




Warm up exercise

You should seein ViTables:

2 = |Thusul 12, 12:05
File Node Dataset Settings Window Help
e EaEA0CX]T V8w
Tree of databases | i heart
B % temp.h5
E Query results 1
2
3
4
5
6 1 1.0
7 1 10
g 1 1.0
9 1 1.0
10 1 1.0
11 1 10
12 1 1.0
13 1 1.0
14 1 1.0
15 1 10
16 1 1.0 LI
ViTables 2.1
Copyright (c) 2008-2011 Vicent Mas.
All rights reserved.
[rh h5->/heart




A Brief Introduction

For persisting structured numerical data, binary formats
are superior to plaintext.




A Brief Introduction

For persisting structured numerical data, binary formats
are superior to plaintext.

For one thing, they are often smaller:

# small ints # med I nts
42 (4 bytes) 123456 (4 byt es)
'42' (2 bytes) ''123456"' (6 bytes)

# near-int floats # e-notation floats

12. 34 (8 bytes) 42.424242E+42 (8 byt es)

''12. 34" (5 bytes) '42.424242E+42' (13 byt es)
&
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A Brief Introduction

For another, binary formats are often faster for I/O because
atol () andat of () areexpensive.
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For another, binary formats are often faster for I/O because
atol () andat of () areexpensive.

However, you often want some thing more than a binary
chunk of datain afile.
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A Brief Introduction

For another, binary formats are often faster for I/O because
atol () andat of () areexpensive.

However, you often want some thing more than a binary
chunk of datain afile.

Note

This Is the mechanism behind nunpy. save() and
nunpy. savez() .

N A.~
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A Brief Introduction

Instead, you want a real database with the ability to store
many datasets, user-defined metadata, optimized 1/O, and
the ability to query its contents.

<t
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A Brief Introduction

Instead, you want a real database with the ability to store
many datasets, user-defined metadata, optimized 1/O, and
the ability to query its contents.

Unlike SQL, where every dataset lives in aflat namespace,
HDF allows datasets to live in a nested tree structure.

In effect, HDF5 is afile system within afile.

(Moreont

11

nis later.)
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A Brief Introduction

Basic dataset classes include:

e Array
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A Brief Introduction

Basic dataset classes include:

e Array

e CArray (chunked array)

« EArray (extendable array)

*VVLArray (variable length array)

 Table (structured array w/ named fields)

All of these must be composed of atomic types.

12
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A Brief Introduction

There are six kinds of types supported by PyTables:

* bool: Boolean (true/false) types. 8 hits.
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eint: Signed integer types. 8, 16, 32 (default) and 64 bits.
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A Brief Introduction

There are six kinds of types supported by PyTables:

 bool: Boolean (true/false) types. 8 hits.
eint: Signed integer types. 8, 16, 32 (default) and 64 bits.
e uint: Unsigned integers. 8, 16, 32 (default) and 64 bits.

ofloat: Floating point types. 16, 32 and 64 (default) bits.
e complex: Complex number. 64 and 128 (default) bits.

e String: Raw string types. 8-bit positive multiples.

A
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A Brief Introduction

Other elements of the hierarchy may include:

e Groups (dirs)
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A Brief Introduction

Other elements of the hierarchy may include:

e Groups (dirs)
eLinks

File Nodes

e Hidden Nodes

PyTables docs may be found at http://pytables.github.com/

&
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Opening Files

nmp

i
f

ort tables as tb
tb.openFile('/path/to/file",

A
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Opening Files

| nport tables as tb
f = tbh.openFile('/path/to/file , "a")
*'r': Read-only; no data can be modified.

o'W': Write; anew fileis created (an existing file with the
same name would be deleted).

o'a'’. Append; an existing file is opened for reading and
writing, and if the file does not exist it Is created.

o'r+' [t Issimilar to 'a, but the file must already exist.

N A.~
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Using the Hierarchy

In HDF5, all nodes stem from aroot ("/ " or f . r oot ).

16




nHD

16

Using the Hierarchy

-5, dl nodes stem from aroot (*/ " or f . r oot ).

n Py’

Python object (f . root . a_group. sone_dat a).

‘ables, you may access nodes as attributes on a

<t



nHD
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Using the Hierarchy

n HDF5, all nodes stem from aroot (*/ " or f . r oot ).

n PyTables, you may access nodes as attributes on a
Python object (f . root . a_group. sone_dat a).

Thisis known as natural naming.

Creating new nodes must be done on the file handle:

f.create@oup('/', "a group', "My G oup")
f.root.a group

N A/v
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Creating Datasets

The two most common datasets are Tables & Arrays.
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Creating Datasets

The two most common datasets are |

"ables & Arrays.

Appropriate create methods live on t

# I nteger array

ne file handle:

f.createArray('/a group', 'arthur _count', [1, 2, 5, 3])
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Creating Datasets

The two most common datasets are |

"ables & Arrays.

Appropriate create methods live on t

# I nteger array
f.createArray('/a group',

“art hur _count',

ne file handle:

[1, 2, 5, 3])

# tabl es, need descriptions

dt = np.dtype([('id, int), ('nanme', 'S10')])

kni ghts = np.array([ (42, 'Lancelot'), (12, 'Bedivere' )], dtype=dt)
f.createTable(' /', "knights', dt)

f.root. kni ghts. append(kni ghts)

17




Reading Datasets

Arrays and Tables try to preserve the origina flavor that
they were created with.
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Reading Datasets

Arrays and Tables try to preserve the origina flavor that
they were created with.

>>> print f.root.a_group.arthur_count|:]
[1, 2, 5, 3]

>>> type(f.root.a_group.arthur_count[:])
| 1 st

>>> type(f.root.a_group. arthur_count)

t abl es. array. Array
A

\, . A~

e
18 b %4



Reading Datasets

So if they come from NumPy arrays, they may be accessed
In a numpy-like fashion (slicing, fancy indexing, masking).

19



Reading Datasets

So if they come from NumPy arrays, they may be accessed
In a numpy-like fashion (slicing, fancy indexing, masking).

>>> f . root. kni ghts[1]
(12, 'Bedivere')

>>> f . root. knights[:1]
array([ (42, 'Lancelot')], dtype=[('id", '"<i8), ('nanme', 'S10')])

>>> mask = (f.root.knights.cols.id[:] < 28)
>>> f.root. kni ght s[ mask]

array([ (12, 'Bedivere')], dtype=[("id", "<i8), ('nane’', '"S10")])

>>> f.root.knights[([1, O],)]
array([ (12, 'Bedivere'), (42, 'Lancelot')], dtype=[('id", '<i8), ('name', 'S10')])

A

\y A A~

«

A“..->
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Reading Datasets

So if they come from NumPy arrays, they may be accessed
In a numpy-like fashion (slicing, fancy indexing, masking).

>>> f . root. kni ghts[1]
(12, 'Bedivere')

>>> f . root. knights[:1]
array([ (42, 'Lancelot')], dtype=[('id", '"<i8), ('nanme', 'S10')])

>>> mask = (f.root.knights.cols.id[:] < 28)
>>> f.root. kni ght s[ mask]

array([ (12, 'Bedivere')], dtype=[("id", "<i8), ('nane’', '"S10")])

>>> f.root.knights[([1, O],)]
array([ (12, 'Bedivere'), (42, 'Lancelot')], dtype=[('id", '<i8), ('name', 'S10')])

Data accessed in thisway IS memory mapped. "

\«Aﬁ’
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Exercise

exer/peaks of kilimanjaro.py

A
#E E
g p
z e
i

<P
%
-l .
1

NONE SHALL PASS
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Exercise

sol/peaks of kilimanjaro.py




Hierarchy Layout

Suppose there is a big table of like-things:

# peopl e: nane, pr of essi on, hone

people = [(" Art hur', "King', ‘Canel ot'),
(' Lancel ot ', "'Kni ght ', 'Lake'),
(' Bedevere', "'Kni ght ', 'Wal es' ),
('Wtch', '"Wtch', "Vill age'),
(' GQuard', ‘Man-at-Arns', 'Swanp Castle'),
("N ", " Kni ght ', " Shrubbery' ),
(' Strange Woman', ' Lady', 'Lake'),
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Hierarchy Layout

Suppose there is a big table of like-things:

# peopl e: nane, pr of essi on, hone

people = [(" Art hur', "King', ‘Canel ot'),
(' Lancel ot ', "'Kni ght ', 'Lake'),
(' Bedevere', "'Kni ght ', 'Wal es' ),
('Wtch', '"Wtch', "Vill age'),
(' GQuard', ‘Man-at-Arns', 'Swanp Castle'),
("N ", " Kni ght ', " Shrubbery' ),
(' Strange Woman', ' Lady', 'Lake'),

.
It istempting to throw everyone into abig peopl e table.

A
22 b %



Hierarchy Layout

However, a search over a class of people can be eliminated
by splitting these tables up:

knight = [ (' Lancel ot", "'Kni ght ', 'Lake'),
(' Bedevere', ' Kni ght ', ‘Wl es' ),
("N ", ' Kni ght ', ' Shrubbery'),
]

others = [ (' Arthur', "King', "Canel ot'),
('Wtch', 'Wtch', "Vill age'),
(' Guard', ‘Man-at-Arns', 'Swanp Castle'),
(' Strange Woman', ' Lady', ' Lake'),

A
¥ . u e
23 b



Hierarchy Layout

The profession column is now redundant:

knight = [(' Lancelot', 'Lake'),
(' Bedevere', 'Wles'),
("N ", ' Shr ubbery'),
]

others = [ (' Arthur', "King', "Canel ot'),
('Wtch', 'Wtch', "Vill age'),
(' Guard', ‘Man-at-Arns', 'Swanp Castle'),
(' Strange Woman', ' Lady', ' Lake'),

] .

24



Hierarchy Layout

Information can be embedded implicitly in the hierarchy as
well:

r oot
- Engl and
| - kni ght
| - others
- France
| - kni ght
| - others
&2
25 b %)



Hierarchy Layout

Why bother pivoting the datalike this at all?
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Why bother pivoting the data like this at all?
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e Fewer rows to pull from disk.

* Fewer columns in description.
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Hierarchy L ayout

Why bother pivoting the data like this at all?

e Fewer rows to search over.
e Fewer rows to pull from disk.

* Fewer columns in description.

Ultimately, it is all about speed, especially for big tables.

A

\«A/"’
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Access Time Analogy

If aprocessor's access of L1 cacheisanalogous to you finding
aword on a computer screen (3 seconds), then
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Access Time Analogy

If aprocessor's access of L1 cacheisanalogous to you finding
aword on a computer screen (3 seconds), then

Accessing L2 cache is getting a book from a bookshelf (15 s).

>
VT
1

<t
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Access Time Analogy

If aprocessor's access of L1 cacheisanalogous to you finding
aword on a computer screen (3 seconds), then

Accessing L2 cache is getting a book from a bookshelf (15 9).

Accessing main memory is going to the break room, get a
candy bar, and chatting with your co-worker (4 min).

t
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Access Time Analogy

If aprocessor's access of L1 cacheisanalogous to you finding
aword on a computer screen (3 seconds), then

Accessing L2 cache is getting a book from a bookshelf (15 9).

Accessing main memory is going to the break room, get a
candy bar, and chatting with your co-worker (4 min).

Accessing a (mechanical) HDD isleaving your office, leaving
your building, wandering the planet for ayear and four months
to return to your desk with the information finally made
available.

Thanks K. Smith & http://duartes.org/gustavo/bl og/post/what-your-computer-does-while-you-wait A
\, T ~
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Starving CPU Problem

Waiting around for access times prior to computation is
known as the Starving CPU Problem.

A !
Y

Solid state disk

Capacity

poads

Level 2 cache
Level 1 cache

A
Level 2 cache
Level 1 cache

(a) (b) (c)

Francesc Alted. 2010. Why Modern CPUs Are Starving and What Can Be Done about It. IEEE Des.
Test 12, 2 (March 2010), 68-71. DOI=10.1109/M CSE.2010.51
http://dx.doi.org/10.1109/M CSE.2010.51
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Tables

Tables are a high-level interface to extendable arrays of
structs.
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Tables

Tables are a high-level interface to extendable arrays of
structs.

Sort-of.
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Tables

Tables are a high-level interface to extendable arrays of
Structs.

Sort-of.

In fact, the struct / dtype / description concept is only a
convenient way to assign meaning to bytes:

P
29 b %4



Tables

Data types may be nested (though they are stored in
flattened way).

dt = np.dtype([(' 1d, int),

('first', 'S5'),

(‘'last', 'S5'),

(' parents', [
('"momid, int),
('dad_id', int),

1),

1)

people = np.fronstring(np. random bytes(dt.itensize * 10000), dt)
f.createTable('/', 'random peeps', people)

‘if15"

30 b %



Tables

W\ ViTables 2.1

File Node Dataset Settings Window Help

= == [CEIILE 14:54.

[PE MBS ADCRIT VB v

Tree of databases | L]

[ tmp.h5 id first parents

E& knights 1416890702 [\xDeixd3Wx0... xad \xbdDix... |(5537396479236512389, 7583416503426657664)

:\91 5| 8563582034 clxiTinb7... | w@3WTMxf8\... |(-4518160632182689102, -4951794778879208964]

EE big

9 a_group 54223310427 . ['6\xablxed .. | "xeBylWx10\.. |(3126181522521231759, -4203444881920202933)

Query results
4| 4704731021 "Ixxal\x05\x .. | 'Q{xe9\xb4S' | (-6397272458003114576, 2344611707613511300)
5|9048963637... |\ [30038029)
General | System attributes | User Attributes |
5|9520397286... |\ 017638923)
_ Datab.
7|-420875380. |'s AN o peeps 10766412)
8—256399450“. 2\ Path:  jrandom_peeps 793545726)
o| 1050617167 - | WPE =l h45308142)
10| 505359735, | - Dataspac 55817104)
12| 230321754, | L i 5999326)
Shape: (10000,)
123332206 T e o L06578144)
13|618032879. "< | Compression: uncompressed 16926721)
14 -368773989... |'i | Field name Type Shape [=] F1478507)
15|8379350372._ | last string 0 43060661)
Lo3215441782. | parents nested - ZI P40051631)
_Cancel |

ViTables 2.1

Copyright (c) 2008-2011 Vicent Mas.

All rights reserved.

Opening cancelled: file fhome/scopatz/tmp.hs has not HDF5 format.

[/home/scopatz/tmp.h5->/random_peeps




Tables

Python aready has the ability to dynamically declare the
Size of descriptions.
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Tables

Python already has the ability to dynamically declare the
Size of descriptions.

This 1s accomplished in compiled languages through
normal memory allocation and careful byte counting:

t ypedef struct mat {
doubl e nass;
I nt atons_per_nol;
doubl e conp [];

} mat;

°t
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Tables

t ypedef struct mat {
doubl e mass;
I nt atons_per_nol ;
doubl e comp [];

} mat;

size t mat _size = sizeof (mat) + sizeof (doubl e)*conp_si ze;
hid t desc = H5Tcreate( H5T _COVPOUND, nat_si ze);
hid t conptype = H5Tarray_create2(H5T_NATI VE DOUBLE, 1, nuc_di ns);

/1 make the data table type

H5Ti nsert (desc, "nmss", HOFFSET(mat, mass), H5T NATI VE DOUBLE) ;

H5Ti nsert (desc, "atons per nol", HOFFSET(mat, atons_per nol), H5T NATI VE DOUBLE)
H5Ti nsert (desc, "conp", HOFFSET(mat, conp), conp_type);

/'l make the data array for a single row, have to over-allocate
mat * nmat _data = new mat[mat _si ze];

[l ... fill in data array..

Il Wite the row
HoDwri t e(dat a_set, desc, nmem space, data hyperslab, H5P _DEFAULT, mat _ data);

33
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Exercise

exer /boatload.py

NONE SHALL PASS
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Exercise

sol/boatload.py




Chunking

Chunking is afeature with no direct analogy in NumPy.
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file and in dataspace must be stored.
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Chunking Is afeature with no direct analogy in NumPy.

Chunking isthe ability to split up a dataset into smaller
blocks of equal or lesser rank.

Extra metadata pointing to the location of the chunk in the
file and in dataspace must be stored.

By chunking, sparse data may be stored efficiently and
datasets may extend infinitely in all dimensions.

A
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Chunking

Chunking Is afeature with no direct analogy in NumPy.

Chunking isthe ability to split up a dataset into smaller
blocks of equal or lesser rank.

Extra metadata pointing to the location of the chunk in the
file and in dataspace must be stored.

By chunking, sparse data may be stored efficiently and
datasets may extend infinitely in all dimensions.

Note: Currently, PyTables only allows one extendable dim.

36



Chunking

Contiguous

Contiguous Dataset

Chunked Dataset

37



Chunking

All 1/O happens by chunk. Thisisimportant for:

* edge chunks may extend beyond the dataset
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All 1/O happens by chunk. Thisisimportant for:
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o default fill values are set in unallocated space
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Chunking

All 1/O happens by chunk. Thisisimportant for:

* edge chunks may extend beyond the dataset
o default fill values are set in unallocated space
* reading and writing in parallel

e small chunks are good for accessing some of data

N A/v
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Chunking

All 1/O happens by chunk. Thisisimportant for:

38

* edge chunks may extend beyond the dataset

o default fill values are set in unallocated space

* reading and writing in parallel

e small chunks are good for accessing some of data

e |arge chunks are good for accessing lots of data

A

b %



Chunking

Any chunked dataset allows you to set the chunksize.

f.createTable(' /', 'omomomnm , data, chunkshape=(42, 42))
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Chunking

Any chunked dataset allows you to set the chunksize.
f.createTable(' /', 'omomomnm , data, chunkshape=(42, 42))
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Any chunked dataset allows you to set the chunksize.
f.createTable(' /', 'omomomnm , data, chunkshape=(42, 42))

For example, a 4x4 chunked array could have a 3x3
chunksize.

However, 1t could not have a 12x12 chunksize, since the
ranks must be less than or equal to that of the array.
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Chunking

Any chunked dataset allows you to set the chunksize.
f.createTable(' /', 'omomomnm , data, chunkshape=(42, 42))

For example, a 4x4 chunked array could have a 3x3
chunksize.

However, 1t could not have a 12x12 chunksize, since the
ranks must be less than or equal to that of the array.

Manipulating the chunksize is a great way to fine-tune an
application.

A
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Chunking

Memory " File

Memory - File

3 x 3 chunks

Chunked 4x4 Dataset A
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Chunking

Note that the addresses of chunks in dataspace (memory)
has no bearing on their arrangement in the actual file.

41
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| n-Core vs Qut-of-Core

ations depend on the current memory layout.

access time analogy (wander Earth for 16 months).

Definitions;

» Operations which require all data to be in memory are

IN-

core and may be memory bound (NumPy).

» Operations where the dataset is external to memory are
out-of-core (or in-kernel) and may be CPU bound.

42
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In-Core Operations

Say,a andb arearrayssdtting in memory:

a = np.array(...)
b = np.array(...)
c =42 * a + 28 * b + 6
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Say,a andb arearrayssdtting in memory:

a = np.array(...)
b = np.array(...)
c =42 * a + 28 * b + 6

The expression for ¢ creates three temporary arrays!

For N operations, N- 1 temporaries are made.
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In-Core Operations

Say,a andb arearrayssdtting in memory:

a = np.array(...)
b = np.array(...)
c =42 * a + 28 * b + 6

The expression for ¢ creates three temporary arrays!
For N operations, N- 1 temporaries are made.

Wastes memory and is slow. Pulling from disk is slower.

N A/v
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In-Core Operations

A less memory intensive implementation would be an
element-wise evaluation:

C = np.empty(...)
for 1 1 n range(len(c)):
c[i] =42 * a[i] + 28 * b[I] + 6




In-Core Operations

A less memory intensive implementation would be an
element-wise evaluation:

C = np.empty(...)
for 1 1 n range(len(c)):
c[i] =42 * a[i] + 28 * b[I] + 6

Butifa andb were HDF5 arrays on disk, individual element
access time would kill you.

A
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In-Core Operations

A less memory intensive implementation would be an
element-wise evaluation:

C = np.empty(...)
for 1 1 n range(len(c)):
c[i] =42 * a[i] + 28 * b[I] + 6

Butifa andb were HDF5 arrays on disk, individual element
access time would kill you.

Even with in memory NumPy arrays, there are problems with

gratuitous Python type checking. 4
A
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Out-of-Core Operations

Say there was a virtual machine (or kernel) which could be fed
arrays and perform specified operations.
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Out-of-Core Operations
Say there was a virtual machine (or kernel) which could be fed
arrays and perform specified operations.

Giving this machine only chunks of data at atime, it could function
on infinite-length data using only finite memory.

<t
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Out-of-Core Operations

Say there was a virtual machine (or kernel) which could be fed
arrays and perform specified operations.

Giving this machine only chunks of data at atime, it could function
on infinite-length data using only finite memory.

for 1 1n range(0, len(a), 256):
r0, rl = af[i:1+256], b[I:1+256]
mul tiply(rO, 42, r2)
mul tiply(rl, 28, r3)
add(r2, r3, r2); add(r2, 6, r2)
c[1:1+256] = r2

N A.~
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Out-of-Core Operations

This is the basic idea behind numexpr, which provides a
general virtual machine for NumPy arrays.

46



Out-of-Core Operations

This is the basic idea behind numexpr, which provides a
general virtual machine for NumPy arrays.

This problem lends itself nicely to parallelism.

<t

46



Out-of-Core Operations

This is the basic idea behind numexpr, which provides a
general virtual machine for NumPy arrays.

This problem

Numexpr has

46

ends itself nicely to parallelism.
ow-level multithreading, avoiding the GIL.

t



Out-of-Core Operations

This is the basic idea behind numexpr, which provides a

general virtual
This problem
Numexpr has

PyTables imp
to the numex

machine for NumPy arrays.
ends itself nicely to parallelism.
ow-level multithreading, avoiding t

ements at b. Expr class which

disk reading and writing.

46

ne GIL.

pnackends

or VM but has additional optimizations for

A

b %



Out-of-Core Operations

This is the basic idea behind numexpr, which provides a

general virtual
This problem
Numexpr has

PyTables imp
to the numex

machine for NumPy arrays.
ends itself nicely to parallelism.
ow-level multithreading, avoiding t

ements at b. Expr class which

disk reading and writing.

Thefull array

46

need never be in memory.

ne GIL.

pnackends

or VM but has additional optimizations for
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Out-of-Core Operations

Fully out-of-core expression example:

shape = (10, 10000)
f = tb.openFile("/tnp/expression. h5", "w')

a = f.createCArray(f.root, '"a', tb. Float32Aton(dflt=1.), shape)
b = f.createCArray(f.root, 'b', tb. Fl oat32Aton(dflt=2.), shape)
c = f.createCArray(f.root, 'c', tb. Float32Aton(dflt=3.), shape)
out = f.createCArray(f.root, 'out', tb. Fl oat32Aton(dflt=3.), shape)

expr = tbh. Expr("a*b+c")
expr . set Qut put (out)
d = expr.eval ()

print "returned-->", repr(d)
f.close()
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Querying

The most common operation Is asking an existing dataset
whether its elements satisfy some criteria. This is known
as guerying.
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The most common operation Is asking an existing dataset
whether its elements satisfy some criteria. This is known
as guerying.

Because querying is so common PyTables defines special
methods on Tables.
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Querying

The most common operation Is asking an existing dataset
whether its elements satisfy some criteria. This is known
as guerying.

Because querying is so common PyTables defines special
methods on Tables.

tb. Tabl e. wher e( cond)
t b. Tabl e. get Wher eLi st (cond)
t b. Tabl e. readWher e( cond)
tb. Tabl e. wher eAppend( dest, cond)
{hf”
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Querying

The conditions used in wher e() calls are strings which
are evaluated by numexpr. These expressions must return
boolean values.
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Querying

The conditions used in wher e() calls are strings which
are evaluated by numexpr. These expressions must return
boolean values.

They are executed in the context of table itself combined
with| ocal s() andgl obal s().

t
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Querying

The conditions used in wher e() calls are strings which
are evaluated by numexpr. These expressions must return
boolean values.

They are executed in the context of table itself combined
with| ocal s() andgl obal s().

The where() method itself returns an iterator over all
matched (hit) rows:

for rowin table. where(' (coll < 42) & (col2 == col 3)"):
# do sonething with row

=,
L =
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Querying

For a speed comparison, here is a complex query using
regular Python:

result = [rowf'col2'] for rowin table if (
((row'col4d4"] >=1Tinml and row 'col4'"] < linR) or
((rowf ' col2'] >1inmB and rowf 'col 2'] < 1lim])) and
((row"'col 1']+3.1*row 'col 2" ] +rowf ' col 3" ] *rowf 'col 4']) > |inb)
)]
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Querying

For a speed comparison, here is a complex query using
regular Python:

result = [rowf'col2'] for rowin table if (
((row'col4d4"] >=1Tinml and row 'col4'"] < linR) or
((rowf ' col2'] >1inmB and rowf 'col 2'] < 1lim])) and
((row"'col 1']+3.1*row 'col 2" ] +rowf ' col 3" ] *rowf 'col 4']) > |inb)
)]

And thisisthe equivalent out-of-core search:

result = [row 'col2'] for row in table. where(
"(((col4 >=1im) & (cold4d < 1linR)) |
"((col2 >1imB) & (col2 <lim)) &
"((col 1+3. 1*col 2+col 3*col 4) > | i nb))
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Querying

Query time for complex query and 10 Mrow (not indexed)

10° . . ; :
B8 PyTables 2.1 inkernel nocompr
®—® PyTables 2.1 inkernel zlibl
¥—¥ PyTables 2.1 inkernel |zol
A—a  PyTables 2.1 regular nocompr
Lot PostgreSQL 8.3.1
)
L
£
'—
10'1 0 i1 i2 i3 i4 i5 IE 7
10 10 10 10 10 10 10 10

Number of hits

Complex query with 10 million rows. Data fits in memory. "

a A~

«

D"
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Querying

Query time for complex query and 1 Grow (not indexed)

10* ; : :
B8 PyTables 2.1 inkernel nocompr
®—® PyTables 2.1 inkernel zlibl
¥—¥ PyTables 2.1 inkernel |zol
A—a  PyTables 2.1 regular nocompr
L0? PostgreSQL 8.3.1
w : : : : . g
E : : 5 ; :~ : :
10°
101 0 I1 I2 i3 4 i5 Iﬁ i]" 8
10 10 10 10 10 10 10 10 10

Number of hits

Complex query with 1 billion rows. Too big for memory. "

a A~
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Exercise

exer/crono.py

NONE SHALL PASS
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Exercise

sol/crono.py




Compression

A more general way to solve the starving CPU problem is
through compression.
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A more general way to solve the starving CPU problem is
through compression.

Compression is when the dataset is piped through a

zipping algorithm on write and the inverse unzipping
algorithm on read.
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through compression.

Compression is when the dataset is piped through a

zipping algorithm on write and the inverse unzipping
algorithm on read.

Each chunk is compressed independently, so chunks end
up with avarying number bytes.
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Compression

A more general way to solve the starving CPU problem is
through compression.

Compression is when the dataset is piped through a

zipping algorithm on write and the inverse unzipping
algorithm on read.

Each chunk is compressed independently, so chunks end
up with avarying number bytes.

Has some storage overhead, but may drastically reduce file
sizesfor very regular data.

<
=
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Compression

At first glance thisis counter-intuitive. (\Why?)
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Compression/Decompression is clearly more CPU
Intensive than ssmply blitting an array into memory.
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Compression

At first glance this is counter-intuitive. (\Why?)

Compression/Decompression is clearly more CPU
Intensive than ssmply blitting an array into memory.

However, because there iIs less total information to
transfer, the time spent unpacking the array can be far less
than moving the array around wholesale.
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Compression

At first glance this is counter-intuitive. (\Why?)

Compression/Decompression is clearly more CPU

Intensive than ssmply

However, because t

plitting an array into memory.

nere 1S less total Information to

transfer, the time spent unpacking the array can be far less

than moving the array

This is kind of like

around wholesa e.

power steering, you can either tell

wheels how to turn manually or you can tell the car how

you want the wheels turned.
> .
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Compression

Compression is a guaranteed feature of HDFS itsalf.
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Compression

Compression is a guaranteed feature of HDF5 itsalf.
At minimum, HDF5 requires zlib.

The compression capabilities feature a plugin architecture
which allow for avariety of different algorithms, including

user defined ones!
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Compression

Compression is a guaranteed feature of HDF5 itsalf.
At minimum, HDF5 requires zlib.

The compression capabilities feature a plugin architecture
which allow for avariety of different algorithms, including
user defined ones!

Py Tables supports:
o Zlib (default), « 1zo, ¢ bzip2, and « blosc.

A
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Compression

Compression is enabled in PyTables through filters.
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# conpl evel goes from|[O0, 9]
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f.root.group. v filters = filters
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Compression

Compression is enabled in PyTables through filters.

# conpl evel goes from|[O0, 9]
filters = tb. Filters(conpl evel =5, conpli b="blosc', ...)

# filters nay be set on the whole file,
f =tb.openFile('/path/to/file , "a , filters=filters)
f.filters = filters

# filters may al so be set on nost ot her nodes

f.createTable('/', 'table', desc, filters=filters)
f.root.group. v filters = filters

Filters only act on chunked datasets.
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Compression

Tips for choosing compression parameters:

59




Compression
Tips for choosing compression parameters:

A mid-level (5) compression is sufficient. No need to
go all the way up (9).
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Tips for choosing compression parameters:

A mid-level (5) compression is sufficient. No need to
go all the way up (9).

e Use zlib If you must guarantee complete portability.

e Use blosc all other times. It is optimized for HDF5.
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Compression
Tips for choosing compression parameters:

A mid-level (5) compression is sufficient. No need to
go all the way up (9).

e Use zlib If you must guarantee complete portability.

e Use blosc all other times. It is optimized for HDF5.

But why? (I don't have time to go into the details of blosc.
However here are some justifications...)

\, o A~
&
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Compression

Disk space taken by a record (original record size: 16 bytes)

= No compression
m— zlib IvI1
m— zlib IvI3
e 7lib V16
w— zlib vI9

251

d
=
T

Bytes/row

s
wn
1

10

i{ﬁ 1o 10° 106 107 108
Mumber of rows

Comparison of different compression levels of Zlib. a4
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Compression

Creation write speed

Auftomatic

40 : ;
chunksize

Throughput (MB/s)
(1)
[=]

20 B—8 nocompr
&—® z|ib5
15 ¥ |z05
a—a  blosch
11%3 10* 10° 10° 107
Chunksize (bytes)

Creation time per element for a 15 GB EArray and
different chunksizes.
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Size (MB)

Compression

Chunksize (bytes)

18000 :
160008 T —
14000 ' Automatic
12000 chunksize
10000 ;
8000 §
6000 R
4000} | =8 nocompr
oo zIlib5
2000} | ¥—¥ |z05
A&—a blosch
0 1 1
10° 10* 10°

File sizesfor a 15 GB EArray and different chunksizes.
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Sequential

Compression

Sequential read speed

1400 T
B—8 nocompr
o—e z|j :
1200_ ZIIDE ................................................ ............................
¥ |z05 :
A—4 blosc5 :
1000 R RRRRar? A TLL T T TR TE R ......................... |
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o
2 go0}
-
3
(=1
=
g
2 6001
-
|_

400

200
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access time per element for a 15 GB EArray
and different chunksizes.




Compression

Random read mean time per element

B—8 nocompr
—e z|ib5

5F| ¥ |zo5
A& blosch

Automatic
chunksize

10° 10° 10° 10° 107

Random access time per element for a 15 GB EArray and
different chunksizes.
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Exercise

exer/spam_filter.py

NONE SHALL PASS
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Exercise

sol/spam_filter.py




Other Python Data Structures

Overwhelmingly, numpy arrays have been the in-memory
data structure of choice.
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data structure of choice.

Using lists or tuples instead of arrays follows analogoudly.

It 1S data structures like sets and dictionaries which do not
guite map.
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Other Python Data Structures

Overwhelmingly, numpy arrays have been the in-memory
data structure of choice.

Using lists or tuples instead of arrays follows analogoudly.

It 1S data structures like sets and dictionaries which do not
guite map.

However, aslong as all elements may be cast into the same
atomic type, these structures can be stored in HDF5 with
relative ease.

A

\, =
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Sets

Example of serializing and deserializing sets:

>>> s = {1.0, 42, 77.7, 6E+01l, True}

>>> f. createArray(' /', 's', [float(x) for x in s])
/s (Array(4,))

atom : = Fl oat 64At on( shape=(), dflt=0.0)
maindim:= 0

flavor : = '"python'

byteorder := "little

chunkshape : = None

>>> set (f.root.s)

set([1.0, 42.0, 77.7, 60.0])

638
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Exercise

exer/dict_table.py
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NONE SHALL PASS




70

Exercise

sol/dict_table.py




What Was Missed

« Walking Nodes

File Nodes

e |Indexing

e Migrating to / from SQL

* HDFS5 in other database formats
 Other Databases in HDF5
 HDF5 as a File System

71

¢



Acknowledgements

Many thanks to everyone who made this possiblée!

12



Acknowledgements

Many thanks to everyone who made this possiblée!

* The HDF Group

12



Acknowledgements

Many thanks to everyone who made this possiblée!

* The HDF Group

* The PyTables Governance Team:

 Josh Moore, « Antonio Valentino, « Josh Ayers

A

\y A A~

A‘»/
72 b %



Acknowledgements

(Cont.)

* The NumPy Developers

/3




Acknowledgements

(Cont.)

* The NumPy Developers

 hSpy, the symbiotic project

/3



Acknowledgements

(Cont.)

* The NumPy Developers

 hSpy, the symbiotic project

e Francesc Alted

/3



Acknowledgements

(Cont.)

* The NumPy Developers

* hSpy, the symbiotic project

&

e Francesc Alted

Shameless Plug: We are always |looking for more hands.
Join Now!
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Questions

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TRBLE Stwerts;—- 7

~ OH.YES LUITTLE
BOBEY TARLES,
WE CALL HIM.
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