
D
RA
FT

P*: A Model of Pilot-Abstractions
Andre Luckow1, Mark Santcroos2,3, Andre Merzky3, Ole Weidner1, Pradeep Mantha3, Shantenu Jha1,3

1Rutgers University, Piscataway, NJ 08854, USA
2Bioinformatics Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands

3Center for Computation & Technology, Louisiana State University, USA
∗Contact Author: shantenu.jha@rutgers.edu

Abstract—Pilot-Jobs support effective distributed resource uti-
lization, and are arguably one of the most widely-used distributed
computing abstractions – as measured by the number and types
of applications that use them, as well as the number of pro-
duction distributed cyberinfrastructures that support them. In
spite of broad uptake, there does not exist a well-defined, unify-
ing conceptual model of Pilot-Jobs which can be used to define,
compare and contrast different implementations. Often Pilot-Job
implementations are strongly coupled to the distributed cyber-
infrastructure they were originally designed for. These factors
present a barrier to extensibility and interoperability. This pa-
per is an attempt to (i) provide a minimal but complete model
(P*) of Pilot-Jobs, (ii) establish the generality of the P* Model by
mapping various existing and well known Pilot-Job frameworks
such as Condor and DIANE to P*, (iii) derive an interoperable
and extensible API for the P* Model (Pilot-API), (iv) validate the
implementation of the Pilot-API by concurrently using multiple
distinct Pilot-Job frameworks on distinct production distributed
cyberinfrastructures, and (v) apply the P* Model to Pilot-Data.

I. INTRODUCTION AND OVERVIEW

The seamless uptake of distributed infrastructures by sci-
entific applications has been limited by the lack of pervasive
and simple-to-use abstractions at multiple levels – at the de-
velopment, deployment and execution stages [1]. Even where
meaningful abstractions exist, the challenges of implementing
them in an extensible, reliable and scalable manner, so as to
support multiple applications are formidable. The lack of ap-
propriate implementations has in fact resulted in “one-off” so-
lutions that address challenges in a highly customized manner.
Tools and implementations are often highly dependent on and
tuned to a specific execution environment, further impacting
portability, reusability and extensibility. Semantic and interface
incompatibility are certainly barriers, but so is the lack of a
common architecture and conceptual framework upon which
to develop similar tools a barrier. This general state of affairs
also captures the specific state of the abstractions provided by
Pilot-Jobs (PJ). There are a plethora of working definitions
and roles for Pilot-Jobs; from our perspective, a Pilot-Job pro-
vides the ability to utilize a placeholder job as a container for
a dynamically determined set of compute tasks.

Distributed cyber/e-infrastructure is by definition comprised
of a set of resources that is fluctuating – growing, shrinking,
changing in load and capability (in contrast to a static resource
utilization model of traditional parallel and cluster comput-
ing systems). The ability to utilize a dynamic resource pool
is thus an important attribute of any application that needs
to utilize distributed cyberinfrastructure (DCI) efficiently. As
a consequence of providing a simple approach for decoupling

workload management and resource assignment/scheduling, PJ
provide an effective abstraction for dynamic execution and re-
source utilization in a distributed context. Not surprisingly,
Pilot-Jobs have been one of the most successful abstractions in
distributed computing. The fundamental reason for the success
of the Pilot-Job abstraction is that Pilot-Jobs liberate applica-
tions/users from the challenging requirement of mapping spe-
cific tasks onto explicit heterogeneous and dynamic resource
pools. Pilot-Jobs thus shield applications from having to load-
balance tasks across such resources. The Pilot-Job abstraction
is also a promising route to address specific requirements of
distributed scientific applications, such as coupled-execution
and application-level scheduling [2], [3].

A variety of PJ frameworks have emerged: Condor-G/
Glide-in [4], Swift [5], DIANE [6], DIRAC [7], PanDA [8],
ToPoS [9], Nimrod/G [10], Falkon [11] and MyCluster [12],
to name a few. Although they are all, for the most parts, func-
tionally equivalent – they support the decoupling of workload
submission from resource assignment – it is often impossi-
ble to use them interoperably, or even just to compare them
functionally or qualitatively.

Our objective is to provide a minimal, but complete model
for Pilot abstractions [13] – referred to as P* Model (”P-star”),
which we present in §II. The P* Model provides a conceptual
basis to compare and contrast different PJ frameworks – which
to the best of our knowledge is the first such attempt. We also
investigate generalizations to the base P* Model: a natural and
logical extension of the P* Model arises from the opportunity
to extend it to include data in addition to computational tasks.
This leads to an abstraction analogous to the Pilot-Job: the
Pilot-Data (PD) abstraction. The potentially consistent treat-
ment of data and compute suggests symmetrical compute and
data elements in the model; thus we refer to this model as the
P* Model of Pilot Abstractions.

In §III we validate the P* Model by analyzing well-
known PJ frameworks (BigJob, Condor-G/Glide-in, DIANE)
and mapping them to the elements of the P* Model. §IV of this
paper motivates and describes the Pilot-API; we discuss how
existing and widely used Pilot-Job frameworks can be used
through the Pilot-API. §V describes the experiments and per-
formance measurements used to characterize the workings of
the Pilot-API and to demonstrate interoperability across mid-
dleware and infrastructure. To further substantiate the impact
of P*, we will demonstrate interoperability between different
PJ frameworks. We believe this is also the first demonstra-
tion of concurrent interoperation of different Pilot-Job imple-

978-1-4673-4466-1/12/$31.00 ©2012 IEEE

D
RA
FT

mentations. Performance advantages arising from the ability
to distribute part of a data-intensive workload are discussed;
interoperable capabilities increase flexibility in resource selec-
tion and optimization.

It is worth noting that Pilot-Jobs are used on every major
national and international DCI, including NSF/XSEDE, NS-
F/DOE Open Science Grid (OSG), European Grid Initiative
(EGI) and others; they are used to support hundreds of thou-
sands of tasks daily. Thus we believe the impact and validation
of this paper lies in its ability to not only influence but also
bridge the theory and practice of Pilot-Jobs, and thus multiple
domains of science dependent on distributed CI.

II. THE P* MODEL OF PILOT-
ABSTRACTIONS

An initial motivation for the P* Model of pilot-abstractions
is to provide a common analytical framework to understand
commonly used Pilot-Job frameworks. The P* model was de-
rived by analyzing many Pilot-Job implementations. We first
present the common elements of the P* Model, followed by
a description of the characteristics that determine the inter-
action of these elements and the overall functioning of any
Pilot-Job framework consistent with the P* Model.

Before we proceed to discuss the P* Model, it is important
to emphasize that there exists a plethora of terms (abstraction,
model, framework, implementation etc) that are overloaded
and overlapping, and often used inconsistently in the literature;
thus we establish context and usage of relevant terms.

Terms and Usage: A Pilot-Job can be defined as an ab-
straction that generalizes the reoccurring concept of utilizing
a placeholder job as a container for a set of compute tasks;
an instance of that placeholder job is commonly referred to
as Pilot-Job or pilot. The P* model provides a comprehen-
sive description of the Pilot-Job abstraction, based on a set of
identified elements and their interactions. The P* Model can be
used as a conceptual model, for analyzing different implemen-
tations of the Pilot-Job abstraction. The Pilot-API provides an
interface that exposes a sub-set of the P* elements and char-
acteristics to applications. It is important to distinguish P* –
which provides a conceptual (abstract) model, from an imple-
mentation of the P* Model. A Pilot-Job framework refers to a
specific instance of a Pilot-Job implementation that provides
the complete Pilot-Job functionality (e. g. BigJob).
A. Elements of the P* Model

This sub-section defines the elements of the P* Model:
• Pilot (Pilot-Compute): The Pilot is the entity that actually
gets submitted and scheduled on a resource. The Pilot provides
application (user) level control and management of the set of
allocated resources.
• Compute Unit (CU): A CU encapsulates a self-contained
piece of work (a compute task) specified by the application,
that is submitted to the Pilot-Job framework. There is no in-
trinsic notion of resource associated with a CU.
• Scheduling Unit (SU): SUs are the units of scheduling,
internal to the P* Model, i.e., it is not known by or visible to

Resource Manager

SU

Application

Pilot

Resource

Pilot-Manager

3) start pilot

SU

4) submit CU

2) submit pilot

SU

P*

Application

5) schedule SU to pilot

CU CU CU CU

1) submit pilot
description

6) manage and schedule execution of SU

Fig. 1: P* Model: Elements, Characteristics and Interactions: The manager
has two functions: it manages 1) Pilots (step 1-3) and 2) the execution of
CUs. After a CU is submitted to the manager, it transitions to an SU, which
is scheduled to a Pilot by the PM.

an application. Once a CU is under the control of the Pilot-Job
framework, it is assigned to an SU.
• Pilot-Manager (PM): The PM is responsible for (i) or-
chestrating the interaction between the Pilots as well as the
different components of the P* Model (CUs, SUs) and (ii) de-
cisions related to internal resource assignment (once resources
have been acquired by the Pilot-Job). For example, an SU can
consist of one or more CUs. Further, CUs and SUs can be
combined and aggregated; the PM determines how to group
them, when SUs are scheduled and executed on a resource via
the Pilot, as well as how many resources to assign to an SU.

The application utilizes a PJ framework to execute multi-
ple instances (ensemble) of an application kernel (kernel: the
actual binary that gets executed), or alternatively instances of
multiple different application kernels (a workflow). To execute
an application kernel, an application must define a CU speci-
fying the application kernel as well as other parameters. This
CU is then submitted to the PM (the entry point to the Pilot-
Job framework), where it transitions to an SU. The PM is then
responsible for scheduling the SU onto a Pilot and then onto a
physical resource. As we will see in §III, the above elements
can be mapped to specific entities in many existing Pilot-Job
frameworks – more than one logical element are often rolled
into one specific entity in a Pilot-Job.

B. Characteristics of P* Model

We propose a set of fundamental properties/characteristics
that describe the interactions between the elements, and thus
aid in the description of P* Model.

Coordination Characteristics: these describe how various
elements of the P* Model, i. e. the PM, the Pilot, the CUs
and the SUs, interact. A common coordination pattern is mas-
ter/worker (M/W): the PM represents the master process that
controls a set of worker processes, the Pilots. The point of
decision making is the master process. In addition to the cen-
tralized M/W, M/W can also be deployed hierarchically. Al-
ternatively, coordination between the elements, in particular

D
RA
FT

the Pilots, can be performed so as to be decentralized, i. e.
without central decision making point.

Communication Characteristics: The communication
characteristics describes the mechanisms for data exchange
between the elements of the P* Model: e. g. messages (point-
to-point, all-to-all, one-to-all, all-to-one, or group-to-group),
streams (potentially unicast or multicast), publish/subscribe
messaging or shared data spaces.

Scheduling Characteristics: describe the process of map-
ping a SU to resources via a Pilot, and potential multiple levels
of scheduling. Scheduling has a spatial component (which SU
is executed on which Pilot?) but also a temporal component
(when to bind?). For example, for the temporal component: a
SU can be bound to a Pilot either before the Pilot has in turn
been scheduled (early binding), or binding occurs if the SU is
bound after the Pilot has been scheduled (late binding). The
different scheduling decisions that need to be made are rep-
resentative of multi-level scheduling that is often required in
distributed environments. For example, the Pilot is scheduled
using the system-level scheduler. Once resources are assigned
to the Pilot, application-level scheduling can occur at several
levels both inside and outside the PJ framework.

The term agent, although not a part of the P* Model, finds
mention when discussing implementations. For the purposes
of this paper, an agent refers to a “proxy process” that has
some decision making capability, and could aid the imple-
mentation of one or more of the characteristics of the P*
Model (coordination, communication, scheduling), within a
Pilot-Job framework. These agents can be used to enforce a
set of (user-defined) policies (e.g. resource capabilities, data/-
compute affinities, etc.) and heuristics.

C. P* as a Model for Pilot-Data

Many scientific applications have immense data require-
ments, which are projected to increase dramatically in the near
future [14]. While Pilot-Jobs efficiently support late-binding of
Compute Units and resources, the analogous management of
data in distributed systems remains a challenge due to various
reasons: (i) the placement of data is often decoupled from the
placement of Compute Units and Pilots, i. e. the application
must often manually stage in and out its data using simple
scripts; (ii) heterogeneity, e. g. with respect to storage, filesys-
tem types and paths, often prohibits or at least complicates
late binding decisions; (iii) higher-level abstraction that allow
applications to specify their data dependencies on an abstract,
logical level (rather than on file basis) are not available; (iv)
due to lack of a common treatment for compute and data, op-
timizations of data/compute placements are often not possible.

This motivates an analogous abstraction that we call Pilot-
Data (PD). PD provides late-binding capabilities for data by
separating the allocation of physical storage and application-
level data units. Further, it provides an abstraction for express-
ing and managing relationships between data units and/or com-
pute units. These relationships are referred to as affinities.

P* Model Elements for Data: The elements defined by P*
can be extended with the following elements:

• Pilot (Pilot-Data): A Pilot-Data (PD) functions as a place-
holder object that reserves the space for data units. PD facil-
itates the late-binding of data and resource and is equivalent
to the Pilot in the compute model.
• Data Unit (DU): DU is the base unit of data assigned by
the application, e. g. a set of data files.
• Scheduling Unit (SU): is an internal unit of scheduling (as
in the compute case). The Pilot framework can aggregate or
split DUs into one or more SUs.
• The Pilot-Manager (PM) is the same as in the compute
model and implements the different characteristics of the P*
Model. It is responsible for managing DUs and SUs. Data
is submitted to the framework via the PM. The PM which
is responsible for mapping DUs to SUs and for conducting
decision regarding resource assignments. SUs are placed on
physical resources via the Pilot.

Note, each element can be mapped to an element in the P*
Model by symmetry, e. g., a DU correspond to a CU in the
original P* Model; a PD is a placeholder reserving a certain
amount of storage on a physical resource and corresponds to
the Pilot in the P* Model.

P* Model Characteristics for Data: While the extended P*
Model introduces new elements, the characteristics however,
remain the same to a great extent. The coordination charac-
teristic describes how the elements of PD interact, e. g. uti-
lizing the M/W model; the communication characteristic can
be applied similarly. The scheduling characteristics must be
extended to not only meet compute requirements, but also to
support common data patterns. The scheduling component par-
ticularly needs to consider affinities, i. e. user-defined relation-
ships between CUs and/or DUs. Data-data affinities e. g. exist
if different DUs must be present at the same resource; data-
compute affinities arise if data and compute must be co-located
– if their current location is different, data and compute place-
ment decisions are made by the scheduler based on defined
policies, affinities and dynamic resource information.

D. Putting it all together

Figure 1 illustrates the interactions between the elements of
the P* Model. The figure focuses on Pilot-Compute, for sim-
plicity, but immediately applies to Pilot-Data by symmetry.
First, the application specifies the capabilities of the required
resources using a Pilot-Job description (step 1). The PM then
submits the necessary number of Pilots to fulfill the resource
requirements of the application (step 2). Each Pilot is queued
at a resource manager, which is responsible for starting the
Pilot (step 3). There can be variations of this flow: while in
the described model, the application defines the required re-
sources, the PM could also decide based on the submitted CU
workload whether and when it submits new Pilots.

The application can submit CUs to the PM at any time
(step 4). A submitted CU becomes an SU, i. e. the PM is now
in control of its scheduling. In the simplest case one CU corre-
sponds to one SU; however, SUs can be combined and aggre-
gated to optimize throughput and response times. Commonly,
a hierarchical M/W model for coordination is internally used:

D
RA
FT

6) pull sub-jobs

2) submit
4) run sub-job

1) run big-job

Resource Manager 1

Application
Kernel

BigJob

Distributed
Coordination

Service

ReplicaApp
Kernel

sub-job

ReplicaApp
Kernel

sub-job

ReplicaApp
Kernel

sub-job

5) create
sub-job entry

Application

ReplicaApp
Kernel

sub-job

BigJob-Agent 1
7) Manage sub-jobs

Resource

Resource 1

Resource Manager N

BigJob-Agent N
7) Manage sub-jobs

BigJob-
Manager

Resource N

Application

2) submit

3) Start
BigJob-Agent

3) Start
BigJob-Agent

Fig. 2: BigJob Architecture and Mapping to P*: The BJ architecture re-
sembles many elements of the P* Model. The BigJob-Manager is the central
Pilot-Manager, which orchestrates a set of Pilots. Each Pilot is represented by
a decentral component referred to as the BigJob-Agent. Sub-job – the CUs–
are submitted via the PM. CUs are mapped 1:1 to SUs.

the PM uses M/W to coordinate a set of Pilots, the Pilot itself
acts as manager for the execution of the assigned SUs.

Scheduling decisions can be made on multiple levels. A Pi-
lot is bound to a physical resource on which it is responsible
for a particular resource set. The PM is responsible for select-
ing a Pilot for an SU (step 5). Once a SU has been scheduled
to a Pilot, the Pilot decides when and on which part of the
resource an SU is executed. Further, the Pilot manages the
subsequent execution of an SU (step 6). There can be varia-
tions of this flow. PJ frameworks with decentralized decision
making e. g. often utilize autonomic agents that pull SUs ac-
cording to a set of defined policies.

III. PILOT-JOB FRAMEWORKS

The aim of this section is to provide a basic understanding
of some of the most commonly used PJ frameworks. This will
serve to both motivate the development of the P* Model as
well as validate it. In particular, we focus on Condor-G/Glide-
in, BigJob and DIANE, and show that the P* Model can be
used to explain/understand these and other PJ frameworks.

A. Condor-G/Glide-in

The Condor project pioneered the concept of Pilot-Jobs by
introducing the Condor-G/Glide-in mechanisms [4] which al-
low the temporary addition of Globus GRAM controlled HPC
resources to a Condor resource pool. The Pilot is exposed as
a complete Condor pool that is started via the Globus GRAM
service of a resource. This mechanism is referred to as Con-
dor Glide-in. Subsequently, jobs (CUs) can be submitted to
the Condor Glide-in pool via standard Condor tools and APIs.

GlideinWMS [15] is a higher-level workload management
system built on top of the Pilot capabilities of Condor-G/Glide-
in. The system can based on the current and expected number
of jobs in the pool, automatically increase or decrease the
number of active Glide-ins (Pilots) available to the pool. In
contrast to Condor-G/Glide-In, the Pilot capabilities are not
directly exposed to the end-user. GlideinWMS is the recom-
mended mode for accessing OSG resources.

file 1 file 2

2) submit du

1) create pd

Resource Manager 1

Application

Pilot-Data Abstraction

Resource 1

BigData-
Manager

Distributed
Coordination

Service
Resource

BigData-Agent 1

file 1 file 2

Resource Manager n

Resource n

BigData-Agent n

Fig. 3: BigData Architecture and Interactions: Similar to BJ, a BD-Manager
orchestrates a set of Pilots, i. e. BigData-Agent. Coordination is carried out
via a distributed coordination service.

B. DIANE

DIANE [6] is a task coordination framework, which was
originally designed for implementing master/worker applica-
tions, but also provides PJ functionality for job-style execu-
tions. it utilizes a single hierarchy of worker agents and a PJ
manager referred to as RunMaster. For the spawning of PJs
a separate script, the so-called submitter script, is required. For
access to the physical resources the GANGA framework [16]
can be used. Once the worker agents are started they register
themselves at the RunMaster. For communication between the
RunMaster and worker agents point-to-point messaging based
on CORBA is used. CORBA is also used for file staging. DI-
ANE includes a simple capability matcher and FIFO-based
task scheduler. Plugins for other workloads, e. g. DAGs or for
data-intensive application, exist or are under development.

C. BigJob and BigData: A SAGA-based PJ Framework

BigJob (BJ) [17], [18] is a SAGA-based PJ framework. BJ
has been designed to be general-purpose and extensible. While
BJ has been originally built for HPC infrastructures, such as
XSEDE and FutureGrid (FG), it is generally also usable in
other environments. This extensibility mainly arises from the
usage of SAGA [19], [20] as a common API for accessing
distributed resources. Figure 2 illustrates the BJ architecture
and its mapping to P*. The architecture reflects all P* ele-
ments: The BJ-Manager is the Pilot-Manager responsible for
coordinating the different components of the frameworks. The
BigJob-Agent is the actual Pilot that is submitted to a resource.
CUs are referred to as sub-jobs, and internally map 1:1 to SUs.

BJ implements the following P* characteristic: As coordi-
nation model the M/W scheme is used: The BJ-Manager is the
central entity, which manages the actual Pilot, the BJ-Agent.
Each agent is responsible for gathering local information, for
pulling sub-jobs from the manager, and for executing SUs on
its local resource. The SAGA Advert Service is used for com-
munication between manager and agent. The Advert Service
(AS) exposes a shared data space that can be accessed by
manager and agent, which use the AS to realize a push/pull
communication pattern, i. e. the manager pushes a SU to the
AS while the agents periodically pull for new SUs. Results
and state updates are similarly pushed back from the agent
to the manager. Further, BJ provides a pluggable communica-
tion & coordination layer and also supports other c&c systems
besides the AS, e. g. Redis [21] and ZeroMQ [22].

D
RA
FT

P* Element BigJob DIANE Condor-G/
Glide-in

Pilot-Manager BigJob
Manager

RunMaster condor master
condor collector
condor negotiator
condor schedd

Pilot BigJob
Agent

Worker
Agent

condor master
condor startd

Compute Unit (CU) Task Task Job

Scheduling Unit
(SU)

Sub-Job Task Job

TABLE I: Mapping P* elements and PJ Frameworks: While each PJ frame-
work maintains its own vocabulary, each of the P* elements can be mapped
to one (or more) components of the different PJ frameworks.

BigData (BD) is an implementation of the Pilot-Data ab-
straction. BigData is designed as an extension of BigJob. Fig-
ure 3 provides an overview of the architecture of BigData.
Similar to BigJob, it is comprised of two components: the
BD-Manager and the BD-Agents, which are deployed on the
physical resources. The coordination scheme used is Master-
Worker (MW), with some decentralized intelligence located at
the BD-Agent. The BD-Manager is responsible for (i) meta-
data management, i. e. it keeps track of all PD and associ-
ated DUs, (ii) for scheduling of data movements and replica-
tions (taking into account the application requirements defined
via affinities), and (iii) for managing data movements activ-
ities. BigData supports plug-able storage adaptors (currently
for SSH, WebHDFS [23] and Globus Online [24]).

D. Discussion

P* provides an abstract model for describing and under-
standing PJ frameworks, i.e., different components of PJ
frameworks can be mapped to the P* elements. While each
of the frameworks maintains its own vocabulary, all share the
common P* elements. Table I summarizes how P* can be
applied to BigJob, DIANE and Condor-G/Glide-in. Table II
summarizes the P* characteristic and other properties of these
frameworks. While most of these frameworks share many
properties, such as the M/W coordination model, they differ in
characteristics, such as communication model or scheduling.
Despite of the many commonalities, the different PJ frame-
works have different usage modalities mainly cause by the
fact that each PJ framework has evolved in a specific infras-
tructures, e. g., Condor-G/Glide-in is the native PJ framework
of the Open Science Grid.

IV. PILOT-API: A UNIFORM API TO HETEROGENEOUS PJ
FRAMEWORKS

In the previous two sections we presented successively
the P* Model and existing Pilot-Job frameworks. Before we
present the Pilot-API – which provides an abstract interface
to Pilot-Job frameworks that adhere to the P* Model, we will
motivate the need for such an API.

A. Motivation

At a high-level, there exist two approaches towards inter-
operability: (i) deep integration of systems (system level in-

Properties BigJob DIANE Condor-G/
Glide-in

Coordination M/W M/W M/W

Communication Advert Service CORBA TCP

Scheduling FIFO, custom FIFO, custom Matchmaking,
priority-based
scheduler

Agent Submis-
sion

API GANGA
Submission
Script

Condor CLI

End User Envi-
ronment

API API and
M/W Frame-
work

CLI Tools

Fault Tolerance Error propa-
gation

Error propa-
gation, retries

Error propa-
gation, retries

Resource Ab-
straction

SAGA GANGA/
SAGA

Globus

Security Multiple
(GSI, User/-
Pass.)

Multiple
(GSI)

Multiple
(GSI, Ker-
beros)

TABLE II: P* Characteristics and Properties of Different Pilot-Job Frame-
works: The properties in bold-face correspond to the P* characteristics; other
items are general properties. The PJ frameworks share many P* character-
istics and properties, e. g. the common usage of the M/W scheme or of a
resource abstraction layer. However, they also differ in aspects, such as the
coordination model or the communication framework.

teroperability), and (ii) the use abstract interfaces (application
level interoperability). Approach (i) requires a certain level
of semantic harmonization between the systems, and is (in
principle and technically) hard to achieve post-facto, even if
the respective systems inherently implement the same abstract
model (here: the P* Model). While interoperation via an ab-
stract interface (ii) (here: Pilot-API) is a semantically weaker
approach than (i), it does allow for interoperability with min-
imal (application level) effort [18], [25].

We appreciate the difficulty of designing an API for mul-
tiple, heterogeneous systems with the right level of semantic
expressivity and simplicity [26]. Defining the API as ’small-
est common denominator’ is often too simplifying and misses
large numbers of ’edge’ use cases; defining the API as ’great-
est common factor’ clutters the API with non-portable seman-
tics, making the API too complex [27]. The Pilot-API uses the
Pareto principle as guideline for a balanced abstraction level.

B. Understanding the Pilot-API

The Pilot-API [28] is a Python-based API and supports two
different usage modes (i) it provides a unified API to various
PJ frameworks (e. g. BigJob, DIANE and Condor-G/Glide-in),
and (ii) it enables the concurrent usage of multiple PJ frame-
works. The Pilot-API classes and interactions are designed to
reflect the P* elements and characteristics. The API exposes
the two primary interfaces: the PilotComputeService is
responsible for the management of Pilots and the Compute-
UnitService for the management of CUs. As defined by
P*, a CU represents a primary self-containing piece of work
that is submitted through the Pilot-API.

Figure 4 shows the interactions between the Pilot-API en-
tities. The Pilot-API decouples workload management and

D
RA
FT

resource scheduling by exposing two separate services: The
PilotComputeService and ComputeUnitService.
The PilotComputeService serves as a factory for cre-
ating Pilots. Also, it can be used to query for currently active
PilotCompute instances. A PilotCompute instance
is returned as result of the create_pilot() method of
the PilotComputeService (step 1). The instantiation of
the PilotCompute instance is done by using a Pilot-
ComputeDescription. The description can be reused and
has no state, while the PilotCompute instance has state
and is a reference for further usage: the references Pilot-
Compute object represents a Pilot instance and allows the
application to interact with it, e. g. to query its state or to
cancel it. The process of PilotCompute creation is de-
picted in step 1-2 of Figure 4 and in Listing 1.

pcs = PilotComputeService()
pc_desc = PilotComputeDescription()
pc_desc.total_core_count = 8
pc = pcs.create_pilot(’gram://queenbee’,

pc_desc, ’bigjob’)

Listing 1: Creation of a PilotCompute instance using a Pilot-
ComputeDescription.

Listing 2 shows the creation of a ComputeUnit-
Service. Having created a ComputeUnitService
instance, PilotComputeService instances can be added
and removed at any time, which makes the respective pilots
available to that Service. These semantics enable applications
to respond to dynamic resource requirements at runtime, i. e.
additional resources can be requested on peak demands, and
can be released if they are no longer required.

cus = ComputeUnitService()
cus.add(pcs)

Listing 2: Instantiation of a ComputeUnitService using a reference
to the PilotComputeService.

The ComputeUnitService is responsible for man-
aging the execution of CUs. Regardless of the state of the
PilotComputeService, applications can submit CUs to
a ComputeUnitService at anytime (Listing 3 and step
3 in Figure 4). Once the ComputeUnitService becomes
responsible for a CU, the CU transitions to an SU. SUs are in-
ternally processed (e. g. they can be aggregated) and are then
scheduled to the Pilot-Job Framework (step 4). The PJ frame-
work is responsible for the actual execution of the SU on a
resource. Note that multiple levels of (hierarchical) schedul-
ing can be present – commonly a SU is scheduled inside a PJ
framework, the model allows it to be present in multiple layers.

cud = ComputeUnitDescription()
cud.executable = ’/bin/bfast’
cud.arguments = [’match’, ’-t4’, ’/data/file1’]
cud.total_core_count = 4
cu = cus.submit(cud)

Listing 3: Instantiation and submission of a ComputeUnit-
Description.

Each ComputeUnit and PilotCompute object is asso-
ciated with a state. The state model is well-defined. Applica-
tions can query the state using the get_state() method or

PilotComputeService ComputeUnitService

Application

schedule
(SchedulingUnit)

submit
(ComputeUnitDescription)

create_pilot
(PilotComputeDescription)

Pilot-Job Framework

start
(Pilot)

1)

2)

3)

4)

Fig. 4: Control Flow Pilot-API and PJ Frameworks: The functionality of
pilot-jobs are exposed using two primary classes: The PilotCompute-
Service for the management of Pilots, and the ComputeUnitService
for the management of CUs.

XSEDE (Globus)

Node n

SSH

Node n

SSH

EGI
Physical Resource Layer
Application Layer

Distributed Application

Node n

BJ Agent

Front Node
GRAM

OSG (Condor-G)

Node n

SSH

Node n

SSH

Node n

Condor

Front Node
GRAM

FutureGrid (PBS)

WMS

Node n
Diane
Agent

Node n
Diane
Agent

Node n
DIANE
Agent

Pilot API

BigJob Condor-G/Glide-InDIANE

Pilot API Pilot API

Node n

SSH

Node n

SSH

Node n

Front Node
PBS

BJ Agent

Fig. 5: Pilot-API and PJ frameworks: The Pilot-API provides a unified in-
terface to utilize the native Pilot-Job capabilities of different infrastructures,
e. g. BigJob for XSEDE/FutureGrid, DIANE for EGI and Condor for OSG.

they can subscribe to state update notifications using callbacks.
Finally, an application can have any number of Pilot-

ComputeService or ComputeUnitService instances.
Multiple PilotComputeService instances can be associ-
ated to a ComputeUnitService, and a PilotCompute-
Service can be associated to multiple ComputeUnit-
Service instances. A ComputeUnitService can man-
age multiple ComputeUnit instances, but a ComputeUnit
can only be managed by one ComputeUnitService. Sim-
ilarly, a PilotComputeService can manage multiple
PilotCompute instances, but a PilotCompute can only
be managed by one PilotComputeService.

C. Pilot-API for Data

Analogous to the Pilot-API for Compute, the Pilot Data
API [28] defines the PilotDataService entity as an
abstraction for creating and managing pools of storage. A
PilotData instance represents the actual physical storage
space. An additional ComputeDataService entity func-
tions as an application-level scheduler, which accepts both
ComputeUnits and DataUnits – this resolves new de-
pendencies (e.g. data/data or data/computer affinities), and is
responsible for managing the execution of DUs and CUs.

In summary, the Pilot-API provides a well-defined ab-
straction for managing both compute and data. The API has
been developed to support production-scale science on pro-
duction infrastructure. As shown in Figure 5 the API supports
different HPC and HTC infrastructures.

V. EXPERIMENTS AND RESULTS

As discussed in §III, several PJ frameworks can be collec-
tively used via the Pilot-API. We begin by understanding the
overhead of PJ frameworks (section V-A). In section V-B we

D
RA
FT

show the effectiveness of the Pilot-API/P* Model approach by
executing real application workloads – a genome alignment
application – on multiple distinct production (XSEDE, EGI,
OSG) and research (FutureGrid) infrastructures. It is impor-
tant to note that our experiments do not try to identify the
“fastest” PJ framework, as this is dependent on several exter-
nal factors, often specific to the infrastructure used. Instead,
we focus on demonstrating interoperability via the common
Pilot-API by using multiple PJ frameworks concurrently on
multiple infrastructures (see section V-C). Further, we show
how Pilot-Data enables applications (i) to lower the volume
of the transferred data, and (ii) to utilize different transfer pro-
tocols in section V-D.

A. PJ Frameworks Overhead

Before we understand the performance of different frame-
works for real application workloads, we analyze the typi-
cal overheads for BigJob and DIANE. The overhead of a PJ
framework, like many distributed submission mechanisms and
tools, is most commonly determined by the following factors:
the API overhead, the job submission and coordination over-
head. Although important determinants of the time-to-solution,
the queueing and file staging time heavily depend on extrinsic
factors, such as the system and network load, but are not intrin-
sic overheads of the PJ framework. The overhead of the API-
layer, i. e. the Pilot-API, was not measurable using the built-in
Python profiler, which provides accuracies in the magnitude
of milliseconds; this places an effective upper-bound on Pilot-
API latencies. Ref. [29] established that even in a distributed
context, job submission overheads, are very low when com-
pared to the runtimes in consideration. There are many factors
that influence the overall performance, e. g. the degree of dis-
tribution (local (LAN) vs. remote (WAN)), the communication
pattern (1:n versus n:n) and the communication frequency. We
focus our investigation on the the communication & coordina-
tion (c&c) subsystem, which we established earlier as import
characteristics of PJ frameworks.

We executed a different number of very short running (i. e.
zero workload) CUs on Alamo/FG concurrently. This enables
us to focus on the overhead induced by the c&c subsystem.
In general, the c&c systems used are mostly insensitive to the
number of coordinated CUs. Although we do not provide a
detailed discussion of the dependency between coordination
overhead and the number of CUs, it is worth mentioning that
the runtime increases only slightly with the size of the pilot
and/or the number of managed CUs.

Figure 6 illustrates the scalability of BJ and DIANE with
respect to the number of cores and CUs managed by Pilot.
For this purpose, we execute 4 CUs per core, i. e. between 32
and 512 CUs. BigJob with Redis (local) shows almost linear
scaling up to 128 cores. BigJob with Redis (remote) imposes
an increase of about 14 %. BigJob with ZeroMQ performs
very well with lower core counts; with larger core counts, the
runtimes increase, indicating a potential scalability bottleneck.
Due to higher startup overhead, at lower core counts DIANE
shows a longer runtime than ZeroMQ or Redis. At higher

 0

 20

 40

 60

 80

 100

 120

 140

 8 16 32 64 128

R
un

tim
e

(in
 s

ec
)

Number of Cores

Redis (Remote)
Redis (Local)

ZMQ
DIANE

Fig. 6: Pilot-Job Coordination Mechanism: The runtime of a workload of 4
CUs per core, i. e. 32 - 512 CUs, using different Pilots and configuration. For
BJ-Redis the runtime increases only moderately, the client-server-based im-
plementations BJ-ZMQ and CORBA-based DIANE show particularly a steep
increase when going from 64 to 128 cores.

core counts DIANE behaves similar to BigJob/ZeroMQ, but
shows a greater increase in the overall runtime. This increase
is likely attributable to the single central manager in DIANE’s
CORBA-based client-server architecture. Using Redis as cen-
tral data space for BigJob decouples Pilot-Manager and Agent,
yielding better performance in particular with many CUs.

B. Characterizing PJ Frameworks on DCI

To validate the effectiveness and usability of the Pilot-API,
we conducted a series of experiments on various production
infrastructures. We executed BFAST [30] using three different
PJ frameworks (BigJob, DIANE and Condor) on XSEDE [31],
FutureGrid (FG) [32], EGI [33] and OSG [34]. Specifically, we
utilized the following resources: XSEDE: Trestles (100 TFlop
/ 324 nodes / 10,368 cores / Torque) and QueenBee (Linux
Cluster / 668 nodes / 5,344 cores / PBS); FutureGrid: India and
Sierra (108 nodes / 864 cores / PBS); EGI: Resource federation
of 364,500 cores; OSG: Condor pool (via the Engage VO,
GlideinWMS, 20,000 Glide-ins).

Experimental Configuration: We run experiments using five
different configurations: (B1) BigJob/XSEDE, (B2) BigJob/-
FutureGrid, (B3) two BigJob/FutureGrid, (B4) DIANE/EGI,
(B5) Condor/OSG. As discussed, the Pilot-API provides a uni-
fied interface for accessing these infrastructures using the re-
spective native PJ framework, i. e. BigJob, DIANE and Con-
dor (see Figure 5). For BJ we use the PBS/SSH plugin to ac-
cess both the FutureGrid and XSEDE machines. On OSG, we
use SAGA and the SAGA-Condor adaptor to interface directly
with OSG’s dynamic GlideinWMS resource pool. Further, we
utilize DIANE on EGI.

The investigated workload consists of 128 CUs. Each CU
executes a BFAST matching process, which is used to find
potential DNA sequence alignments. Each CU requires the
following input data: 1.9 GB for the reference genome and
index files, and 170 MB for the short read file (generated by
the DNA sequencing machine). A total of 128 read files (one
per CU) are used. Each BFAST CU requires 1 core; All input
files are staged previous to the actual run.

Experimental Results: Figure 7 shows the results of the ex-
periments. We measured the time to transfer input files (TX),
and the compute time TC . TC also includes the overhead of
the pilot. The total runtime (TR) is the sum of TX and TC .
For each CU, the reference genome, the index files and one

D
RA
FT

0!

50!

100!

150!

200!

250!

300!

350!

BigJob/XSEDE
(Trestles) !

(B1)!

BigJob/FG!
 (India)!

(B2)!

BigJob/FG !
(India/Sierra)

(B3)!

DIANE/EGI !
(B4)!

GlideInWMS/!
OSG !
(B5)!

R
un

tim
e

(in
 m

in
)!

Staging! Compute!

Fig. 7: PJ Framework Performance on XSEDE, FutureGrid, EGI and OSG:
Average runtime of 128 BFAST match tasks on 128 cores. Each experiment
is repeated at least 3 times.

read file need to be staged (1.9 GB); this constitutes the most
significant part of the overall runtime. In particular, on HPC
clusters, the staging quickly becomes a bottleneck due to the
fact that all CUs share the incoming network bandwidth. Also,
fluctuation of the bandwidth in this scenario leads to a high
failure rate during downloads. As seen in B3 (middle bar), the
distribution of the network load to two resources leads to a re-
duction of TX . Also, in the HTC configuration (B4, B5), CUs
are distributed across multiple machines minimizing the pos-
sibility of network congestion on single links. As indication,
typical runs of 128 CUs on OSG end up being scheduled on
10+ sites spread over an equal amount of nodes per site.

In general TC , is heavily dependent on the available disk
I/O. Both Trestles (XSEDE) and India/Sierra (FG) have shared
network filesystems (Lustre for Trestles, NFS for India), which
are utilized by all jobs running on these machines. The collec-
tive performance of multiple, concurrent BFAST CU thus de-
grades significantly as contention for available disk I/O band-
width increases due to larger number of tasks accessing the
filesystem concurrently (due to the usage of NFS, the runtime
on India is depending on the scenario >20 % slower than other
machines). On EGI and OSG, BFAST CU performs best. This
can mainly be attributed to the use of local storage and the
high degree of distribution of the CUs to multiple sites.

C. PJ Framework Interoperability

In principal, two types of interoperability between Pilot-
Jobs and infrastructure exist: the first is the usage of a given
PJ framework on different infrastructures; in the scenario ex-
amined, BigJob is used on different infrastructures by invok-
ing different SAGA adaptors. The second is the usage of dis-
tinct PJ frameworks via the Pilot-API, i.e., interoperability be-
tween PJ frameworks. In configuration C1 we utilize SAGA
adaptors to run BigJob concurrently on FutureGrid:India and
XSEDE:Trestles. C2 and C3 show PJ framework interoper-
ability by concurrently running BigJob and DIANE on Fu-
tureGrid:India and EGI (C2), as well as Condor and BigJob
on OSG and XSEDE:QueenBee (C3). It is worth reiterating,
that to the best of our knowledge, the latter scenario, wherein
different PJ frameworks are utilized concurrently for the same
application (whether on the same infrastructure or distinct) has
never before been realized. We attribute this to the use of the
Pilot-API. All scenarios run the same BFAST application as

0!
20!
40!
60!
80!
100!
120!
140!
160!
180!
200!

XSEDE:Trestles/FG!
(C1)!

EGI/FG !
(C2)!

XSEDE:QB/OSG!
(C3)!

R
un

tim
e

(in
 m

in
)!

Fig. 8: PJ Framework Interoperability: Average runtime of 128 BFAST CUs
on different infrastructures. CUs are equally distributed across the two in-
frastructures. The performance heavily depends on the available bandwidths
to the resources, which determines the time required for file transfers.

in §V-B: 64 CUs per infrastructure, totaling 128 CUs.
Figure 8 shows the results of the interoperability tests. In

C1, one BJ Pilot is submitted to Trestles and one BJ Pilot to
FG/India. The overall runtime is the sum of the file staging and
the actual compute time on the respective resource. Consistent
with previous results, the Pilot on Trestles finished before the
Pilot on India. TR of the distributed run improved more than
50 % compared to a run on only one resource, i.e., Trestles or
India only, mainly due to the minimization of the incoming
bandwidth bottleneck by distributing the load to two sites.

The middle bar (C2) in Figure 8 demonstrates that two PJ
frameworks can be utilized concurrently using the Pilot-API.
As previously, the overall performance heavily depends on the
time required for staging the files (for configuration C2 and
C3 we estimated the staging times based on previous measure-
ments). Further, some performance overhead is induced by the
distributed coordination necessary particular in case C2 where
the BJ manager and Redis service are highly distributed. In
this configuration, the communication is conducted via a Redis
instance deployed on FG, while the BJ manager is deployed
on EGI; thus, for each CU several cross-atlantic roundtrips (la-
tencies >100 msec) are necessary. Another important aspect is
file staging: as previously established, the incoming network
bandwidth quickly becomes a bottleneck as in the FG case
(even dominating the distributed latencies). In HTC environ-
ments the pilots and CUs, are distributed across multiple ma-
chines, which avoids such bottlenecks. Finally, C3 (right bars
in Figure 8) shows the result of the OSG and XSEDE:QB
run. Since QueenBee is an older XSEDE machine, TR on this
machine is much longer than TR on OSG.

Although the aim of our experiments is to demonstrate in-
teroperable use of hitherto distinct and disjoint Pilot-Jobs, in
the process we highlight the performance advantages that can
emanate from the ability to seamlessly distribute (I/O inten-
sive) workloads in a scalable manner. The Pilot-API does not
represent a barrier to scalability, but by virtue of facilitating
the use of distributed resources, it provides the ability to over-
come limitations to scalability on certain infrastructure arising
from factors such as I/O, memory, and/or bandwidths.

D. Pilot-Data: Data Transfer and Management

An important challenge when running distributed data-
intensive tasks is the effective management of data, and its
efficient transfer. We investigate different scenarios: (D1) the

D
RA
FT

0!

50!

100!

150!

200!

250!

300!

No PD!
(Trestles)!

PD/SSH!
(Trestles)!

PD/Globus Online!
(Trestles)!

R
un

tim
e

(in
 m

in
)!

Staging! Compute!

Fig. 9: Pilot-Data (PD) Performance: Using PD the staging time can be
significantly improved due to a reduction of the overall data transfer volume
from 128 times 1.9 GB to about 24 GB (1.9 GB + 128 times 170 MB). Further,
Globus Online utilizes with GridFTP a more efficient transfer protocol.

usage of application-level file staging without PD, (D2) the
usage of PD with the SSH plugin, and (D3) the usage of PD
with Globus Online. For these experiments, we utilize Trestles
(XSEDE). The input files are located on a remote machine:
Quarry (IU) for D1; Lonestar (TACC) for D2 and D3.

As previously alluded (Figure 8), as the number of CUs
increases, file staging quickly becomes a bottleneck, as all
CUs share the incoming bandwidth. Also, I/O contention on
the shared file systems leads to an increasing compute time.
Figure 9 shows that with an increasing number of CUs, the
naive way of moving files (D1) is not a scalable solution; this
is reflected in a runtime of >4 hours for 128 CUs. While the
download time increases linearly with the number of CUs, the
compute time remains almost constant at ∼15 min.

There are two options to address this issue: (i)
distribute/scale-out the computation to multiple resources
(C3), and/or (ii) optimize data transfers using PD. The opti-
mization via PD has two components: the amount transferred
and the transfer protocol. By being cognizant of the distri-
bution of the CUs, redundant transfers can be reduced (if
not eliminated); using PD the overall amount of data that
needs to be transferred for the 128 CU scenario can be re-
duced from 243 GB (i. e. 128 CUs times 1.9 GB data for the
reference genome, index files and 1 read file) to 24 GB (a
single transfer of the reference genome and index files and 1
read file per CU, i. e. 128 times 170 MB). The staging times
in D2 and D3 are significantly lower than in D1. Further,
Globus Online show a significant better performance than
SSH (∼30 %) mainly due to the usage of a more efficient
transfer protocol (GridFTP).

VI. DISCUSSION AND FUTURE WORK

The primary intellectual contributions of this work are (i)
the development of the P* Model, (ii) the mapping of the P*
elements to PJ frameworks such as Condor-G/Glide-in, and
(iii) the design and development of the Pilot-API. The P*
Model provides a common abstract model for describing and
characterizing Pilot-abstractions; the Pilot-API exposes the P*
elements and characteristics. We validate the P* Model by
demonstrating that the most widely used PJ frameworks, viz.,
DIANE and Condor-G/Glide-in, can be compared, contrasted

and analyzed using this analytical framework. Furthermore we
demonstrate the use of the Pilot-API with multiple PJ frame-
works on distributed production cyberinfrastructure, such as
XSEDE, OSG, EGI and FutureGrid.

Although current PJ frameworks collectively support mil-
lions of tasks yearly on several production distributed infras-
tructure, extensibility and interoperability remain a significant
challenge [35]. In addition, there is confusion about what con-
stitutes a Pilot-Job system; in the absence of a well-defined
model, often different semantic capabilities and functional-
ity are compared. For example, GlideinWMS is often called
a Pilot-Job, which is then logically compared to DIANE or
BigJob. Using the P* Model, one can address this ambigu-
ity and clearly establish that GlideinWMS provides a spe-
cific scheduling characteristic for an implementation of the
Condor/Glide-in Pilot-Job.

This points to the first non-trivial deduction that this pa-
per makes: it presents, arguably for the first time, an ana-
lytical framework upon which to construct tools and thereby
define them as implementations of a specific and semantically
well-defined capability, rather than a loosely-defined capabil-
ity validated by a weak existence principle, i. e., “because it
exists, it must be correct”. One can argue that similar semantic
tightness is required in the implementation and definition of
middleware capabilities. The second non-trivial deduction is
that this paper presents a conceptual framework which unifies
job and data abstractions, via an extended and generalized Pi-
lot abstraction. Given the increasing importance of Pilot-Jobs
in supporting scalable dynamical execution and the challenges
associated with distributed data placement, this has immense
practical implications and potential.

However, the other practical implications of this work are
already evident: the Pilot-API [28] has been deployed to sup-
port production-scale science on production infrastructure as
emphasized in our experimentation. In fact, it is a stated goal
of our research to enhance the range of applications and usage-
modes that will benefit from the Pilot abstraction, by deeply
integrating Pilot-API/P* capabilities with multiple production
infrastructures (both grids and clouds). However, attention to
several deployment issues is required, e. g., in spite of a com-
mon Pilot-API, each PJ framework has a rather different us-
age modality; this is reflective of the fact that typically, PJ
frameworks “evolve in” and are “native to” specific infras-
tructure, e.g., Condor-G/Glide-in is the native PJ framework
of the OSG, and its use is heavily coupled with infrastructure
specific to OSG, such as GlideinWMS. This is not a limi-
tation of our approach, but a reiteration of the need for the
P* approach as a first-step in addressing deployment barriers
towards interoperability.

The Pilot-Jobs concept is not limited to traditional dis-
tributed CI but also has applicability to Clouds. For exam-
ple, PaaS cloud systems, such as Venus-C (Azure), support
the notion of Generic Workers (worker role) which are con-
ceptually similar to pilots in that they pull tasks (application
workload) from a central repository when the environment is
available. Furthermore, Pilot-Jobs map well to IaaS cloud sys-

D
RA
FT

tems, wherein a Pilot can marshall multiple VMs, possibly of
different characteristics and performance capabilities; an agent
which pulls and executes CUs is deployed on each VM. Ul-
timately, there is a decoupling between task specification and
resource assignment, with the Pilot-Manager or an equivalent
cloud-entity carrying out the mapping using dynamic/real-time
information. The specifics of matching CUs to clouds is dis-
tinct from the matching CUs to grids.

P* provides significant future development & research op-
portunities, e. g., to experiment and reason on the relative roles
of system versus application-level scheduling, heuristics for
dynamic execution, the role of affinity and data/compute place-
ment strategies, to name just a few. We will explore these ideas
in upcoming work and integrate the results with production-
grade implementations.

ACKNOWLEDGEMENTS

This work is funded by NSF CHE-1125332 (Cyber-enabled Discovery
and Innovation), HPCOPS NSF-OCI 0710874 award, NSF-ExTENCI (OCI-
1007115) and NIH Grant Number P20RR016456 from the NIH National Cen-
ter For Research Resources. Important funding for SAGA has been provided
by the UK EPSRC grant number GR/D0766171/1 (via OMII-UK) and the Cy-
bertools project (PI Jha) NSF/LEQSF (2007-10)-CyberRII-01, NSF EPSCoR
Cooperative Agreement No. EPS-1003897 with additional support from the
Louisiana Board of Regents. SJ acknowledges the e-Science Institute, Edin-
burgh for supporting the research theme. “Distributed Programming Abstrac-
tions” & 3DPAS. MS is sponsored by the program of BiG Grid, the Dutch
e-Science Grid, which is financially supported by the Netherlands Organisa-
tion for Scientific Research, NWO. SJ acknowledges useful related discus-
sions with Jon Weissman (Minnesota) and Dan Katz (Chicago). We thank
J Kim (CCT) for assistance with BFAST. This work has also been made
possible thanks to computer resources provided by TeraGrid TRAC award
TG-MCB090174 (Jha) and BiG Grid. This document was developed with
support from the US NSF under Grant No. 0910812 to Indiana University for
“FutureGrid: An Experimental, High-Performance Grid Test-bed”.

REFERENCES

[1] S. Jha, D. S. Katz, M. Parashar, O. Rana, and J. B. Weissman, “Criti-
cal Perspectives on Large-Scale Distributed Applications and Production
Grids (Best Paper Award),” in The 10th IEEE/ACM Conference on Grid
Computing ’09, 2009.

[2] S.-H. Ko, N. Kim, J. Kim, A. Thota, and S. Jha, “Efficient runtime
environment for coupled multi-physics simulations: Dynamic resource
allocation and load-balancing,” in Proceedings of the 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing (CC-
GRID). USA: IEEE Computer Society, 2010, pp. 349–358.

[3] J. Kim, W. Huang, S. Maddineni, F. Aboul-Ela, and S. Jha, “Exploring
the RNA folding energy landscape using scalable distributed cyberin-
frastructure,” in Emerging Computational Methods in the Life Sciences,
Proceedings of HPDC, 2010, pp. 477–488.

[4] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, “Condor-
G: A Computation Management Agent for Multi-Institutional Grids,”
Cluster Computing, vol. 5, no. 3, pp. 237–246, July 2002.

[5] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and
I. Foster, “Swift: A language for distributed parallel scripting,” Parallel
Computing, vol. 37, no. 9, pp. 633–652, 2011.

[6] J. Moscicki, “Diane - distributed analysis environment for grid-enabled
simulation and analysis of physics data,” in Nuclear Science Symposium
Conference Record, 2003 IEEE, vol. 3, 2003, pp. 1617 – 1620.

[7] A. Casajus, R. Graciani, S. Paterson, and A. Tsaregorodtsev, “Dirac
pilot framework and the dirac workload management system,” Journal
of Physics: Conference Series, vol. 219, no. 6, p. 062049, 2010.

[8] P.-H. Chiu and M. Potekhin, “Pilot factory – a condor-based system for
scalable pilot job generation in the panda wms framework,” Journal of
Physics: Conference Series, vol. 219, no. 6, p. 062041, 2010.

[9] “Topos - a token pool server for pilot jobs,” https://grid.sara.nl/wiki/
index.php/Using the Grid/ToPoS, 2011.

[10] R. Buyya, D. Abramson, and J. Giddy, “Nimrod/g: An architecture for a
resource management and scheduling system in a global computational
grid,” International Conference on High-Performance Computing in the
Asia-Pacific Region, vol. 1, pp. 283–289, 2000.

[11] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde, “Falkon: A
Fast and Light-Weight TasK ExecutiON Framework,” in SC ’07: Pro-
ceedings of the 2007 ACM/IEEE conference on Supercomputing. New
York, NY, USA: ACM, 2007, pp. 1–12.

[12] E. Walker, J. Gardner, V. Litvin, and E. Turner, “Creating personal adap-
tive clusters for managing scientific jobs in a distributed computing en-
vironment,” in Challenges of Large Applications in Distributed Environ-
ments, 2006 IEEE, 0-0 2006, pp. 95–103.

[13] A. Luckow, M. Santcroos, O. Weider, A. Merzky, S. Maddineni, and
S. Jha, “Towards a common model for pilot-jobs,” in Proceedings of
The International ACM Symposium on High-Performance Parallel and
Distributed Computing, 2012.

[14] T. Hey, S. Tansley, and K. Tolle, Eds., The Fourth Paradigm: Data-
Intensive Scientific Discovery. USA: Microsoft Research, 2009.

[15] I. Sfiligoi, D. Bradley, B. Holzman, P. Mhashilkar, S. Padhi, and
F. Wurthwein, “The pilot way to grid resources using glideinwms,” in
Computer Science and Information Engineering, 2009, pp. 428 –432.

[16] J. M. et al, “Ganga: A tool for computational-task management and easy
access to grid resources,” Computer Physics Communications, vol. 180,
no. 11, pp. 2303 – 2316, 2009.

[17] “SAGA BigJob,” http://saga-project.github.com/BigJob/, 2012.
[18] A. Luckow, L. Lacinski, and S. Jha, “SAGA BigJob: An Extensible

and Interoperable Pilot-Job Abstraction for Distributed Applications and
Systems,” in IEEE/ACM CCGrid, 2010, pp. 135–144.

[19] “The SAGA Project,” http://www.saga-project.org.
[20] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, A. Merzky,

J. Shalf, and C. Smith, “A Simple API for Grid Applications (SAGA),”
Open Grid Forum, OGF Recommendation Document, GFD.90, 2007,
http://ogf.org/documents/GFD.90.pdf.

[21] Redis, http://redis.io/, 2012.
[22] ZeroMQ, http://www.zeromq.org/, 2012.
[23] “WebHDFS REST API,” http://hadoop.apache.org/common/docs/r1.0.0/

webhdfs.html, 2012.
[24] I. Foster, “Globus online: Accelerating and democratizing science

through cloud-based services,” IEEE Internet Computing, vol. 15, pp.
70–73, 2011.

[25] S. Jha, H. Kaiser, A. Merzky, and O. Weidner, “Grid Interoperability
at the Application Level Using SAGA,” in Proceedings of the Third
IEEE International Conference on e-Science and Grid Computing (e-
Science 2007). Washington, DC, USA: IEEE Computer Society, 2007,
pp. 584–591.

[26] B. W. Lampson, “Hints for computer system design,” in Proceedings of
the ninth ACM symposium on Operating systems principles, ser. SOSP
’83. New York, NY, USA: ACM, 1983, pp. 33–48.

[27] Joel Spolsky, “The Law of Leaky Abstractions,” http://www.
joelonsoftware.com/articles/LeakyAbstractions.html.

[28] Pilot API, http://saga-project.github.com/BigJob/apidoc/, 2012.
[29] M. D. Burger, C. Jacobs, T. Kielmann, A. Merzky, O. Weidner, and

H. Kaiser, “What Is the Price of Simplicity? – A Cross-Platform Evalu-
ation of the SAGA API,” in Proceedings of the 16th international Euro-
Par conference on Parallel processing, ser. EuroPar’10. Berlin, Hei-
delberg: Springer, 2010, pp. 392–404.

[30] N. Homer, B. Merriman, and S. F. Nelson, “BFAST : An alignment
tool for large scale genome resequencing,” PLoS One, vol. 4, no. 11, p.
e7767, 2009.

[31] “XSEDE: Extreme Science and Engineering Discovery Environment,”
https://www.xsede.org/, 2012.

[32] “FutureGrid: An Experimental, High-Performance Grid Test-bed,” https:
//portal.futuregrid.org/, 2012.

[33] EGI, http://www.egi.eu/, 2012.
[34] R. P. et al, “The open science grid,” Journal of Physics: Conference

Series, vol. 78, no. 1, p. 012057, 2007.
[35] “ExTENCI: Extending Science Through Enhanced National Cyberin-

frastructure,” https://sites.google.com/site/extenci/.

