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ABSTRACT
The volume and complexity of data that must be analyzed
in scientific applications is increasing exponentially. Often,
this data is distributed, thus efficient processing of large
distributed datasets is required, whilst ideally not intro-
ducing fundamentally new programming models or meth-
ods. For example, extending MapReduce – a proven and
effective programming model for processing large datasets –
to work more effectively on distributed data and on differ-
ent infrastructure is desirable. MapReduce on distributed
data requires effective distributed coordination of compu-
tation (map and reduce) and data, as well as distributed
data management (in particular the transfer of intermediate
data). We posit that this can be achieved with an effective
and efficient runtime environment and without refactoring
MapReduce itself. To address these requirements, we de-
sign and implement Pilot-MapReduce (PMR) – a flexible,
infrastructure-independent runtime environment for Map-
Reduce. PMR is based on Pilot abstractions for both com-
pute (Pilot-Jobs) and data (Pilot-Data): it utilizes Pilot-
Jobs to couple the map phase computation to the nearby
source data, and Pilot-Data to move intermediate data using
parallel data transfers to the reduce phase. We analyze the
effectiveness of PMR on applications with different charac-
teristics (e. g. different volumes of intermediate and output
data). We investigate the performance of PMR with dis-
tributed data using a Word Count and a genome sequencing
application over different MapReduce configurations. Our
experimental evaluations show that the Pilot abstractions
are powerful abstractions for distributed data: PMR can
lower the execution time on distributed clusters and that it
provides the desired flexibility in the deployment and con-
figuration of MapReduce runs to address specific application
characteristics.
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1. INTRODUCTION
There are various challenges associated with processing of

data at extreme scales: which has become a critical factor in
many science disciplines, e. g. in the areas of fusion energy
(ITER), bioinformatics (metagenomics), climate (Earth Sys-
tem Grid), and astronomy (LSST) [13]. The volumes of
data produced by these scientific applications is increasing
rapidly, driven by advanced technologies (e. g. increasing
compute capacity and higher resolution sensors) and de-
creasing costs for computation, data acquisition and stor-
age [11]. The number of applications that either currently
utilize, or need to utilize large volumes of potentially dis-
tributed data is immense. The challenges faced by these ap-
plications are interoperability, efficiently managing compute
tasks, and moving data to the scheduled compute location.

Processing large volumes of data is a challenging task.
MapReduce is an effective programming model for address-
ing this challenge. MapReduce [5] as originally developed by
Google aims to address the big data problem by providing
an easy-to-use abstraction for parallel data processing. The
most prominent framework for doing MapReduce computa-
tions is Apache Hadoop [1]. However, there are limitations
to the current MR implementations: (i) They lack a modu-
lar architecture, (ii) are tied to specific infrastructure, e. g.
Hadoop relies on the Hadoop File System (HDFS), and (iii)
do not provide efficient support for dynamic and processing
distributed data, e. g. Hadoop is designed for cluster/local
environment, but not for a high degree of distribution.

Pilot abstractions enable the clean separation of resource
management concerns and application/frameworks. In par-
ticular, Pilot-Jobs have been notable in their ability to man-
age large numbers of compute units across multiple high
performance clusters, providing decoupling application-level
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scheduling and system-level resource management. But, there
is also a need of an abstraction to liberate applications from
the challenging task of compute-data placement and schedul-
ing. The Pilot-API [15] aims to address this issue by pro-
viding a unified API for managing both compute and data
pilots. In this paper, we present BigData (BD), an extension
of the BigJob framework (BJ) [20] to data. Both BigJob and
BigData provide a full implementation of the Pilot-API and
enable the management of resources, compute & data units
as well as the relationships between them. Specifically, the
Pilot-API promotes affinities as a first class characteristic
for describing such relationships between compute and data
elements and to support dynamic decision making.

A critical aspect of MapReduce, is the management of
data and compute localities as well as the management of
data movements, e. g. between the map and the reduce phase.
In this paper, we demonstrate the efficient support of these
capabilities via the Pilot abstractions. We design and im-
plement Pilot-MapReduce – a novel Pilot-based MapReduce
implementation which enables clean separation of resource
management and MapReduce application. We show how
Pilot abstractions are used for managing the map and re-
duce tasks and intermediate shuffle data between them. In
addition, we show the advantages of the Pilot-based archi-
tecture in terms of flexibility, extensibility, scalability and
performance; for example, we discuss the usability of Pilot-
abstractions in designing dynamic execution workflows which
involves multiple MapReduce computations.

Before we proceed further, it is critical to emphasize that
it is not the aim of this paper to suggest PMR as a replace-
ment to Hadoop. However, we posit that where MR-based
applications need to be employed over distributed data, in-
cluding but not limited to clusters connected over WAN, or
production distributed cyberinfrastructure such as XSEDE,
EGI, PMR provides a flexible, extensible implementation of
MR that is also efficient.

This paper is organized as follows: Section 2 presents re-
lated works. Section 3 gives an overview of Pilot abstrac-
tions and the BigData framework. In section 4 we dis-
cuss the design and implementation of the Pilot-MapReduce
framework. Section 5 gives experiment setup and result
analysis. The conclusion and future work are given in Sec-
tion 6.

2. RELATED WORK
The MapReduce programming model [5] and the distributed

file system (Google File System (GFS) [9]) were originally
pioneered by Google. Apache Hadoop [1] is an open source
implementation of MapReduce. Hadoop also includes an im-
plementation of a distributed file system – the Hadoop File
System (HDFS) [3]. In addition the Hadoop ecosystems in-
cludes several other projects, such as HBase (a system also
inspired by Google’s BigTable), Hive, Pig and Zookeeper.
The main limitation of Hadoop MapReduce is that it forces
applications into a very rigid model. Hadoop e. g. is well
suited for running a single MapReduce application, but very
limited in terms of extensibility, e. g. it cannot efficiently run
an ensemble of MapReduce simulations or support a pipeline
of multiple iterative MapReduce tasks. Also, the deploy-
ment of Hadoop on HPC resources remains a challenge: the
deployment in user-space is complex and error-prone. Also,
HPC resources often have shared distributed file system and
only a small amount of local storage, which leads to sub-
optimal Hadoop performance. Running Hadoop on multi-

ple resources is in principal possible, but firewall regulations
often prohibit such deployment on many infrastructures in
practice.

Sector/Sphere [10] is a parallel data processing framework
consisting of a distributed file system (Sector) and a data
processing engine (Sphere). In contrast to Hadoop, which
operates on file chunks, Sphere can execute arbitrary user-
defined functions on a stream of data.

Twister [6] is a MapReduce addressing particularly the re-
quirement for supporting iterative MapReduce jobs. Twister
allows the flexible composition of applications by specify-
ing map and reduce tasks and the data flow between these
tasks. Dryad [12] provides distributed execution of coarse-
grain data-parallel applications. The entire execution is rep-
resented in the form of data flow graphs, where the vertices
represent the computational tasks that can be paralleled on
a set of computational resources and the links between ver-
tices tell Dryad what other vertices need to complete before
a particular vertex can start.

Several proposal for deploying MapReduce and Hadoop
on distributed data and resources exist: Weissman et al. [4]
explore different Hadoop configurations to accommodate dif-
ferent distributed resource configurations. Qiu et al. [16] also
propose a hierarchical MapReduce configuration that im-
plements the Map-Reduce-Global Reduce pattern on top of
distributed resources.

SAGA-MapReduce [21] is a SAGA-based MapReduce im-
plementation that utilizes the SAGA-API for accessing system-
level features, such as resource & file management and co-
ordination. The SAGA-based approach enabled the decou-
pling of infrastructure and application concerns enabling the
support of a wide-set of distributed infrastructure (e. g, grids
and clouds). The utilization of Pilot abstractions has sev-
eral advantages compared to the SAGA-only approach: (i)
compute and data pilots allow an efficient decoupling of re-
source allocation and usage, i. e. the MapReduce master can
efficiently schedule compute units containing mapper and
reduce tasks; (ii) the co-location of data and compute units
can be descriptively defined, and are automatically handled
by Pilot framework; this enables the applications to easily
trade-off data transfers and available compute capacities.

Pilot-MapReduce utilizes Pilot abstractions for de-coupling
the MapReduce runtime, application-level scheduling and
resource management in order to provide a high degree of
flexibility and extensibility.

3. PILOT ABSTRACTIONS
The P* model [15] aims to provide a unified model for

describing and analyzing Pilot-Job implementations. Fig-
ure 1 shows the elements of the P* model. The P* model
defines common elements of both compute and data pilot
implementations. Pilot abstractions for both compute and
data are the foundation of the Pilot-MapReduce. In this
section we give an overview of the Pilot-API, which exposes
the elements of the P* model to the applications as well as
the implementation of the BigJob and BigData framework.

The Pilot-API is an interoperable and extensible API which
exposes the core functionalities of a Pilot framework via a
unified interface providing a common API that can be used
across multiple distinct production cyber infrastructures.
The API provides five core classes: the PilotComputeSer-

vice for the management of Pilot-Jobs, PilotDataService
for the management of Pilot-Data and the ComputeDataSer-
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Figure 2: BigData Architecture and Interactions

vice for the management of ComputeUnits (CUs) and DataU-

nits (DUs). A CU represents a primary self-containing
piece of work, while a DU represents a logical set for data [15].

3.1 BigJob: A Pilot-Compute Implementation
The abstraction of a Pilot-Job (PJ) generalizes the reoc-

curring concept of utilizing a placeholder job as a container
for a set of compute tasks; instances of that placeholder job
are commonly referred to as Pilot-Jobs or pilots. The PJ
provides application- (user-) level control and management
of the set of allocated resources.

BigJob (BJ) is a SAGA-based PJ framework that imple-
ments the Pilot-API. BJ has been designed to be general-
purpose and extensible. While BJ has been originally built
for HPC infrastructures, such as XSEDE and FutureGrid, it
is generally also usable in other environments, such as OSG.
This extensibility mainly arises from the usage of SAGA as
a common API for accessing distributed resources.

3.2 BigData: A Pilot-Data Implementation
Analogous to Pilot-Jobs, Pilot-Data (PD) abstraction pro-

vides late-binding capabilities for data by separating the
storage allocation and application-level Data Units [15]. For
this purpose, the API defines the Pilot-Data (PD) and Data
Unit (DU) entity: A PD function as a placeholder object
that reserves storage spaces for a set of DUs.

BigData (BD) is an implementation of the Pilot-Data ab-
straction. BigData is designed as an extension of BigJob [20]
– a SAGA-based Pilot-Job implementation. Figure 2 pro-
vides an overview of the architecture of BigData. Similar
to BigJob, it is comprised of two components: the BD-

Manager and the BD-Agents, which are deployed on the
physical resources. The coordination scheme used is Master-
Worker (MW), with some decentralized intelligence located
at the BD-Agent. Analogous to BJ, the SAGA Advert Ser-
vice [17] provides a distributed communication mechanism
in a push/pull mode.

The BD-Manager is responsible for (i) meta-data manage-
ment, i. e. it keeps track of all PD and associated DUs, (ii) for
scheduling of data movements and replications (taking into
account the application requirements defined via affinities),
and (iii) for managing data movements activities. BigData
supports plug-able storage adaptors – currently an adaptor
for SSH, WebHDFS [22] and Globus Online [7] is provided.

3.3 Scheduling and Affinities
A critical requirement for data-intensive application, is

the management of compute and data dependencies, also re-
ferred to as affinities. The Pilot-API promotes affinities as a
first class characteristic for describing relationships between
data and/or compute supporting dynamic decision making.
Unfortunately, most production infrastructure lack system-
level support for affinities, e. g. resource localities cannot be
introspected. Data storage in particular in distributed set-
tings, such as in the XSEDE or the EGI environment, is
often a black box for the application with unknown qual-
ity of services, i.e., the application usually does not know
what bandwidths and latencies it can expect. To address
these deficiencies the Pilot-API introduces affinities at the
application-level: applications can associate compute and
data units with affinity labels. The BigJob/BigData run-
time ensures that CUs and DUs are placed with respect to
the affinity requirements.

The PMR framework assigns each file output from a map
task to a reduce partition. For each reduce partition, a
DU containing the respective files is created. Then, PMR
submits the reduce CUs and DUs using the Pilot-API. The
affinity-aware scheduler assigns CUs and DUs to appropri-
ate resources taking into account data localities and mini-
mizing the amount of necessary data movements, i. e. if pos-
sible a CU is always moved to a DU. The Pilot-API and
BigJob/BigData provide an effective way to manage both
compute and data units and the relationships between them
liberating the applications from the challenging task of as-
signing/scheduling/managing Compute and Data Units.

4. PILOT-MAPREDUCE – A PILOT-BASED
MAPREDUCE IMPLEMENTATION

Pilot-MapReduce (PMR) is a Pilot-based implementation
of the MapReduce programming model. By decoupling job
scheduling and monitoring from the resource management
using Pilot-based abstraction, PMR can efficiently re-use
the resource management and late-binding capabilities of
BigJob and BigData. PMR exposes an easy-to-use inter-
face, which provides the complete functionality needed by
any MapReduce algorithm, while hiding the more complex
functionality, such as chunking of the input, sorting the in-
termediate results, managing and coordinating the map &
reduce tasks, etc., which are implemented by the framework.

4.1 Architecture of Pilot-MapReduce
Pilot-MapReduce introduces a clean separation of con-

cerns between management of compute and data on the one
hand, with their scheduling in a distributed context. The pi-
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lot abstractions enable the easy acquisition of both compute
and storage resources.

Figure 3 shows the architecture of the Pilot-MapReduce
framework. PMR relies on BigJob to launch MapReduce
workers through a set of Pilots. The MR Workers are re-
sponsible for running chunk, map and/or reduce tasks. MR-
Manager packages data chunks into DUs and associates them
with Pilot-Data objects, which are placed close to Pilot-
Computes by BigData. The MR-Manager can focus on or-
chestrating this resource pool.

The flow of a typical MapReduce application involves the
chunking of the data, the execution of the map compute
tasks, shuffling and moving the intermediate data to the
reduce task and finally the execution of the reduce tasks.
Pilot-MapReduce utilizes a set of compute and data pilots
for this application workflow:
A. Initially, the MR-Manager allocates a set of compute and

data resources by starting one (or most often a set of)
compute and data pilots on different resources. In gen-
eral, on each resource one compute and one data pilot
is co-located. The data pilot is either created with ref-
erence to local input data or the input data is moved to
the data pilot after its creation.

B. Chunking: The MR-Manager executes a CU on each
resource, which splits the input data on the respective
resource with respect to the defined chunk size. Each
chunk is stored in a new DU. BigJob and BigData –
in particular the ComputeDataService – are used as the
common abstraction for managing the Compute Units
and Data Units.

C. Mapping: The MR-Manager assigns a map CU to each
chunk created in step B. Again, BJ is used for managing
the CUs. BJ and BD ensures that each CUs is co-located
with an appropriate DU taking into account data local-
ities and minimizing the amount of data movements.

D. Shuffling: After the map phase is completed the output
data is sorted and partitioned. For each partition a DU
is created. Each partition is then processed by a reduce
task. For this purpose, the MR-Manager assigns each
reduce CU to a DU. Each DU comprises of a group of
sorted, partitioned map output files. CUs and DUs are

then submitted through the ComputeDataService of BJ
and BD. The affinity-aware scheduler ensure that CUs
are assigned to local DUs minimizing the amount of data
transfers. For each reduce task a Data Unit containing
the necessary input files is created and submitted.

E. Reducing: The reduce tasks are prepared and executed
on the DUs representing the intermediate data. The
management of the data transfers is done by BJ/BD tak-
ing into account the specified affinities.

F. The Pilots are terminated.
The PMR relies on the master/worker coordination model,

i. e. a central MR-Manager orchestrates a set of MapReduce
workers, which in turn are responsible for executing map and
reduce tasks. The MR-Manager utilizes BigJob and Big-
Data, and in particular the central ComputeDataService for
executing mapper and reduce tasks. This architecture can
also efficiently support workloads that currently not sup-
ported well enough by Hadoop, e. g. iterative applications.

4.2 Compute and Data Management
The Pilot-API provides a well-defined interface for sup-

porting the late-binding of compute and data units decou-
pling resource assignment from resource usage. Using BJ
and BD, PMR can allocate both storage and compute re-
sources, which can then be flexibly utilized for executing
map and reduce tasks as well as for storing both intermedi-
ate and output data.

The API also allows the expression and management of re-
lationships between data units and/or compute units. BigJob
and BigData provide an implementation of the Pilot-API.
These frameworks ensure that the data and compute affin-
ity requirements of the MapReduce applications are met for
each step of the MapReduce workflow. For example, in the
shuffle phase for each reduce task a DU and CU is gen-
erated. These are then submitted to BigJob and BigData
framework, which handles the scheduling, transfer of the DU
and execution of the CU. PMR assigns a resource affinity to
each DU and CU. BJ and BD then ensure that each CU is
co-located to the right DU.

The efficiency of PMR on multiple resources depends on
the management of the the intermediate data. BigData not
only provides flexibility to manage the relationship between
data and compute units, but also allows parallel data trans-
fers between machines and between data units. BigData is
used for moving the intermediate output files of the mapper
tasks to the resource where the reduce compute units are
executed.

Interestingly, Hadoop also utilizes a job and task tracker:
the job tracker is the central manager that dispatches map
and reduce tasks to the nodes of the Hadoop cluster. On
each node the task tracker is responsible for executing the
respective tasks. The main limitation of this architecture is
the fact that it intermixes both cluster resource management
and application-level task managements. Thus, it is not
easily possible to integrate Hadoop with another resource
management tool, e. g. PBS or Torque. Also, the job tracker
represents a single point of failure and scalability bottleneck.

4.3 Distributed and Hierarchical MapReduce
An increasing amount of data that scientific applications

need to operate on is distributed. Often data generation
and processing are far apart: For example, the Earth Sci-
ence Grid federates data of various climate simulations [2].
Meta-genomic workflows need to process and analyze data
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generated by various sequencing machines [13]; the localiza-
tion onto a single resource is often not a possibility.

Several options for running Hadoop on distributed data
have been proposed [4]: (i) in a global MapReduce setup
one central JobTracker and HDFS NameNode is used for
managing a distributed set of resources; (ii) in a hierar-
chical MapReduce setup multiple MapReduce clusters are
used: a MapReduce cluster close to the data source for pre-
processing data and a central cluster for aggregating the
different de-central data sources. The volume of the pre-
processed data is generally lower and thus, can be easily
moved to another processing resource.

Ref [4] shows that a hierarchical Hadoop configuration
leads to a better performance than a global Hadoop cluster
for some applications. A drawback of this approach is the
increased complexity: Hadoop is not designed with respect
to a federation of multiple MapReduce clusters. Setting up
such a system typically requires a lot of manual effort.

Pilot-MapReduce supports different distributed MapReduce
topologies: (i) local, (ii) distributed and (iii) hierarchical.
A local PMR performs all map and reduce computations
on a single resource. Figure 4 shows options (ii) and (iii):
A distributed PMR utilizes multiple resources often to run
map tasks close to the data to avoid costly data transfers;
the intermediate data is then moved to another resource for
running the reduce tasks. BigJob and BigData are used for
managing CUs and DUs and the necessary data movements.
In contrast, in a hierarchical PMR the outputs of the first
complete MapReduce run are moved to a central aggrega-
tion resource. A complete MapReduce run is then executed
on this resource to combine the results.

Pilot-MapReduce uses the Pilot-API as an abstraction for
compute and data resources, as well as managing both Com-
pute Units (i. e. map and reduce tasks) and Data Units. Us-
ing these abstractions, PMR can efficiently manage data and
compute localities and operate on a dynamic and distributed
pool of storage and compute resources. Using descriptive
affinities label the data flow between CUs, i. e. the transfer
of the intermediate data, can be efficiently managed. Us-
ing this capability PMR can be easily scaled out to multiple
resources to support scenarios (ii) and (iii).

5. EXPERIMENTS AND RESULTS
In this section we analyze the performance and scalability

of Pilot-MapReduce and compare it to Hadoop MapReduce
using different applications. For this purpose we run several
experiments on FutureGrid (FG) [8]. We run the experiment

on the following FG resources: India, Sierra and Hotel. Each
experiment is repeated at least three times. For our Hadoop
experiments, we use Hadoop 0.20.2. At the begining of each
run a Hadoop cluster is started via the Torque resource man-
agement system on a specified number of nodes. The first
assigned node is used as master node running the Hadoop
JobTracker and the NameNode. The HDFS replication fac-
tor is set to 2 and number of reduces to 8.

5.1 MapReduce-Based Applications
MapReduce has been utilized in various science applica-

tions. A key performance factor is the amount of data that
must be moved through the MapReduce system. The degree
of data aggregation of the map tasks is thus, an important
characteristic of a MapReduce application [4].

MapReduce application can be classified with respect to
different criteria: (i) the volume of the intermediate data
(i. e. the size of the output of the map tasks), and (ii) the
volume of the output data, (i. e. the size of reduce phase
output), and the relative proportion of these data volume.
In the following we investigate two application scenarios:
Word Count and a Genome Sequencing application.

Word count: The Word Count application is the basis for
many machine learning use cases, used e. g. for the classifi-
cation of documents or clustering. Word Count generates a
large volume of intermediate data (∼200%). The volume of
the output data depends on the type of input data, e. g. the
size of the output data is larger for a random input than for
an input in a natural language.

Genome Sequencing (GS): High-throughput genome se-
quencing as provided by Next Generation Sequencing (NGS)
platforms is changing biological sciences and biomedical re-
search. The data volumes generated by sequencing machines
is increasing rapidly. The distributed processing of this data
requires a sophisticated infrastructure. We utilize Map-
Reduce to model an important part of the sequencing work-
flow: the read alignment and the duplicate removal. We use
two implementations: the Hadoop-based SEQAL [19] appli-
cation and a PMR-based implementation GS/PMR. Both
applications implement the read alignment in the mapping
phase of the application using BWA aligner [14]. In the SE-
QAL case the duplicate removal in the reduce phase is im-
plemented using Picard’s rmdup [18]. The GS/PMR reducer
removes duplicate reads based on the key fields-chromosome,
position and strand of the mapper output.

5.2 Characterizing Word Count
In the first experiment, we benchmark the performance of

Pilot-MapReduce and Hadoop using a simple Word Count
application on a single resource. For both frameworks, 8
nodes on India machine are used. In all scenarios the in-
put data is pre-staged on the respective resources, i. e. for
Hadoop the data is located in HDFS, for PMR the data is
stored on a shared file system. We set the total number of
reduces to 8 for both Hadoop and Pilot-MapReduce; fur-
ther, the default chunk size of 128 MB is used. A HDFS
replication factor of 2 is used.

The runtime of PMR includes the time to chunk input
data, running the mapping CUs, shuffling (which in-turn
comprises of sorting and the intermediate data transfer),
and finally running the reduce CUs. Figure 5 shows the
results. The runtime of Hadoop MapReduce includes the
time to load input source data into HDFS and MapReduce
runtime.
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Figure 5: PMR vs. Hadoop (Word Count): The
performance of Hadoop and PMR is comparable.
The runtime increases with the input data size. Ha-
doop tasks have a notable higher startup time.

The time to solution increased linearly as data size in-
creased; the performance of both Hadoop and PMR is com-
parable up to 8 GB. However, for the largest volumes of in-
put data we examined, PMR shows a better performance
than Hadoop. In particular, the setup, map and shuffle
phase in the Hadoop case are longer. Both the map and
shuffle phase are the most data-intensive phases – Word
Count needs to read all input files and generates interme-
diate data with the size of about 200 % of the input data.
Hadoop shows the worst shuffle performance. A reason is
that we were unfortunately not able to run HDFS in an op-
timal configuration due to a lack of local storage on the FG
machine. Thus, HDFS was configured to utilize a shared file
system.

5.3 Characterizing Genome Sequencing
In this section, we compare and contrast GS/PMR and

SEQAL. For both applications, we utilize the same input
data comprising of different sizes of read files and the refer-
ence genome. SEQAL, however, expects the input data in a
different format (prq instead of fastq); data was converted
to meet the SEQAL requirements. For GS/PMR, the fastq

files from sequencing machines are directly used; further, a
custom chunk script is used to chunk the fastq files based
on the number of reads. The chunk size for both SEQAL
and PMR are equal. For both GS/PMR and SEQAL, a
total of 4 nodes on FG Sierra machine, 8 reduces, 2 worker-
s/node, default chunk size of 128 MB is used. For Hadoop
based SEQAL, the replication factor of two is used.

Figure 6 shows the comparative results of both SEQAL
and GS/PMR applications. The time required to copy and
extract the reference genome to HDFS is included in the
SEQAL set-up time. In comparison to Word Count GS
applications are more compute intensive, i. e. the ratio be-
tween computation in the map phase and the size of the
input data is significantly larger. Furthermore, SEQAL has
a larger time-to-completion than GS/PMR. Both the map
and reduce phase of SEQAL are longer. While the map
phase of SEQAL relies on the same BWA implementation
as GS/PMR, the reduce phase uses Picard’s rmdump [18] for
duplicate removal, which has a significant longer runtime
than the duplicate removal process in the reduce phase of
GS/PMR. A reason for the slower runtime of SEQAL in the
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Figure 6: SEQAL and GS/PMR: GS/PMR provides
a marginal better performance that SEQAL. The
overhead of SEQAL is mainly attributed to the us-
age of shared file system for HDFS.

map phase is the non-optimal Hadoop configuration: As de-
scribed, the local disks available on FG are too small; thus,
HDFS had to be configured to utilize a shared, distributed
file system, which leads to a non-optimal performance dur-
ing the I/O intensive map phase.

5.4 Characterizing Distributed and Hierarchi-
cal MapReduce

In this section, we evaluate the performance and scalabil-
ity of the (i) distributed and (ii) hierarchical PMR configura-
tion using the Word Count application on natural language
and on random data as well as the genome sequencing ap-
plication. In the distributed PMR scenario, the CUs are
distributed across two machines; in the hierarchical PMR
two resources are used, each executing an independent MR
run. The MapReduce run for combining and aggregating
the output of the first round is executed on one of these ma-
chines. The performance of each application depends on the
amount of generated intermediate and output data. Table 1
summarizes the characteristics of the used applications.

Application Input Intermediate Output
GS/PMR 80 GB 71 GB 17 GB
Word Count
(English)

16 GB 26 GB 20 MB

Word Count
(random)

16 GB 30 GB 30 GB

Table 1: Data Volumes for different Applications

Word Count
For Word Count we compare a distributed and hierarchi-
cal PMR configuration with the performance of two Hadoop
configurations: a single resource Hadoop configuration and
a hierarchical Hadoop setup with two resources. We uti-
lize two machines, Sierra and Hotel. For all configurations,
we use 8 nodes. The initial input data of 16 GB is equally
distributed on these two machines. For the single resource
Hadoop configuration, half of the input data needs to be
moved from Sierra to Hotel prior to running the actual Map-
Reduce job. Unfortunately, the FG firewall rules prohibited
the usage of a distributed Hadoop setup.
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Figure 7: Word Count on 16 GB Data Using Ha-
doop, Hierarchical Hadoop, Distributed PMR and
Hierarchical PMR

Figure 7 shows the results. For natural language input,
both Hadoop and PMR show comparable performance. A
major determinant of performance for Hadoop (in the case
of distributed data) is the necessity to move parts of the data
(half of the input data) to the central Hadoop cluster. The
performance of PMR is determined by the runtime of the
map and reduce phase, which are slightly longer than for
Hadoop mainly due to the resource heterogeneity and the
resulting scheduling overhead: the slowest node determines
the overall runtime of both the map and reduce phase.

Both hierarchical Hadoop and PMR perform better than
the distributed PMR and single resource Hadoop configura-
tion. The performance is mainly influenced by data move-
ment costs. In the distributed PMR scenario, half of the in-
termediate data needs to be moved to the other resource; in
the hierarchical case half of the output data requires move-
ment. Since the output data in the hierarchical case is a
magnitude smaller than the intermediate data in the dis-
tributed case (cmp. table 1) – 20 MB in cmp. to 30 GB
– the performance in the hierarchical case is significantly
better.

For random data, the distributed PMR and single resource
Hadoop perform better than the hierarchical PMR and hi-
erarchical Hadoop configuration. As the output data is ap-
proximately equal to the intermediate data (30 GB), i. e. the
advantage of a reduced transfer volume does not exit. For
random data, the additional MapReduce run represents an
overhead. In the Hadoop case, the moved data needs to be
loaded into HDFS, which represents another overhead.
Genome Sequencing
For the genome sequencing application, we investigate hi-
erarchical and distributed PMR scenarios utilizing a total
of 32 nodes on India and Hotel. We vary the input data
size between 20 and 80 GB. Figure 8 shows the results. In
both scenarios the runtime increases with the input data
size. For the distributed PMR, a significant part of the
performance is determined by the movement of the interme-
diate data – 71 GB for the 80 GB problem set (see table 1).
In the hierarchical PMR scenario, the main overhead arises
from the additional MapReduce run. For GS/PMR the hi-
erarchical configuration shows a slight advantage over the
distributed setup, since the amount of data that needs to be
transferred is significant less: half of the output, i. e. 8.5 GB,
respectively, of the intermediate data, i. e. 36 GB. However,
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Figure 8: Time to completion of GS/PMR for 20, 40
and 80GB using Hierarchical and Distributed PMR.
These measurements were performed utilizing a to-
tal of 32 nodes on India and Hotel.

a great amount of the time saved in the transfer is offset by
the overhead of the additional MapReduce run.

In summary, optimizing MapReduce for distributed data
is not a trivial task: Depending on the volumes of the in-
termediate and output data, a distributed or hierarchical
configuration may have better performance. In applications
with a less output volume compared to intermediate data,
such as GS and Word Count on natural languages, a hierar-
chical MapReduce is a good choice since it involves less data
movement. PMR provides the flexibility to deploy Map-
Reduce workloads in different configurations optimizing the
performance with respect to the characteristics of different
applications. Hadoop, in contrast, is very inflexible in sup-
porting different kind of MapReduce configurations, due to
deployment challenges (e. g. we were not able to run Hadoop
across more than two machines on FG due to firewall issues)
as well as runtime limitations.

6. DISCUSSION AND FUTURE WORK
Pilot-MapReduce provides a flexible runtime environment

for MapReduce applications on general-purpose distributed
infrastructures, such as XSEDE and FutureGrid. It brings
the advantages of the Pilot abstraction to MapReduce, and
enables utilization of federated and heterogeneous compute
and data resources. In contrast to Hadoop, no previous
cluster setup, which includes running several Hadoop/HDFS
daemons, is required. Pilot-MapReduce provides a extensi-
ble runtime environment, which allows the flexible usage of
sorting in the shuffle, more fine-grained control of data local-
ities and transfer, as well as support for different MapReduce
topologies. Using these capabilities, applications with differ-
ent characteristics, e. g. compute/IO and data aggregation
ratios, can be efficiently supported.

The Pilot abstraction, and specific the BigJob and Big-
Data implementation have proven to be a powerful tool for
developing PMR. Using finer-grain affinity specifications for
compute/data units and resources, the runtime is able to
optimize compute and data placement as well as transfers.
These capabilities are essential for PMR, especially when
dealing with large amounts of distributed data; in order to
achieve an optimal performance in this case the applica-
tion must be able to reason and trade-off properties, such
as data/compute localities and data transfers to achieve an
optimal performance.

Moving forward, we will extend the capabilities of PMR
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and BigData to support use cases, such as data streaming,
data caching as well as different data/compute scheduling
heuristics. Further, we will explore scenarios and applica-
tions with dynamic data and execution. An obvious and
trivial extension will be to implement Iterative MapReduce
using PMR. A clear advantage will be to obviate the need
to distinguish between static and dynamic data, for PMR
will be able to treat both symmetrically.
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