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The benefits of high level approach to parallel programming are well understood and are often desired in order to separate the
domain view of the problem from the intricate implementation details. Yet, a naive execution of the resulting programs attracts
unnecessary and even prohibitive performance costs.

One convenient way of expressing a program is by composing collective operations on large data structures. Even if these
collective operations are implemented efficiently and provide a high degree of parallelism, the result of each operation must be
fully computed and written into memory before the next operation can consume it as input. The cost of transferring these
intermediate results to and from memory has a very noticeable impact on the performance of the algorithm and becomes a
serious drawback of this high level approach.

Program optimisation which attempts to detect and eliminate the creation of intermediate results by combining multiple
operations into one is known as fusion. While it is a well studied problem, there are unfilled gaps when it comes to fusing data
parallel programs. In particular, I demonstrate solutions to the problems of fusion with multiple consumers as well as producing
multiple results from one fused computation (tupling).

Through my research, I have designed and implemented an embedded domain specific language called LiveFusion that offers
fusible combinators operating on flat and segmented arrays. To achieve fusion I propose a generic loop representation and use
the concept of rates to guide fusion.

The results show that LiveFusion is considerably more effective at exploiting opportunities for fusion than previous systems.
Specifically, the average performance increase of 3.2 for a non-trivial program indicates the attractiveness of the approach.
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Abstract

The benefits of high level approach to parallel programming are well understood and are

often desired in order to separate the domain view of the problem from the intricate imple-

mentation details. Yet, a naive execution of the resulting programs attracts unnecessary

and even prohibitive performance costs.

One convenient way of expressing a program is by composing collective operations on

large data structures. Even if these collective operations are implemented efficiently and

provide a high degree of parallelism, the result of each operation must be fully computed

and written into memory before the next operation can consume it as input. The cost of

transferring these intermediate results to and from memory has a very noticeable impact

on the performance of the algorithm and becomes a serious drawback of this high level

approach.

Program optimisation which attempts to detect and eliminate the creation of inter-

mediate results by combining multiple operations into one is known as fusion. While it

is a well studied problem, there are unfilled gaps when it comes to fusing data parallel

programs. In particular, I demonstrate solutions to the problems of fusion with multiple

consumers as well as producing multiple results from one fused computation (tupling).

Through my research, I have designed and implemented an embedded domain specific

language called LiveFusion that offers fusible combinators operating on flat and segmented

arrays. To achieve fusion I propose a generic loop representation and use the concept of

rates to guide fusion.

The results show that LiveFusion is considerably more effective at exploiting oppor-

tunities for fusion than previous systems. Specifically, the average performance increase

of 3.2 for a non-trivial program indicates the attractiveness of the approach.
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Chapter 1

Introduction

The past decade has seen a rise in development of increasingly sophisticated multi-core and

multi-processor computer systems. From the early hyperthreaded solutions to the modern

architectures comprising a number of independent processing cores, the horsepower for

demanding applications is now available even in the most affordable consumer grade

systems. To offer a large amount of parallelism, the high grade systems may have multiple

multi-core processors, where each core can run a number of hardware scheduled threads.

While the hardware for running highly parallel computations is readily available and

is improving at a high pace, the development of applications that make use of this cap-

ability is often a challenging task. The problems involved are finding an appropriate

parallel implementation of the task at hand, implementing it so that the computations

are evenly distributed across processing elements and synchronising parallel computations

when necessary. The latter two require a substantial programmer’s intervention to get

the algorithm running fast.

The resulting application is a mixture of the actual algorithm and the implementation

specific code, dealing with concurrency and parallelism. This obscures code clarity and

may generally be error-prone.

One alternative to this practice of explicit parallelisation is to provide a common

set of collective operations on large data structures. Programs implemented in terms of

these operations would be automatically parallelised across available processing elements.

This approach is successfully exercised by a multitude of frameworks covering many host

languages, target architectures and suitable application domains [42, 25, 11, 1].

However, in the pursuit of a high level approach to programming a major inefficiency

1
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is introduced. Having provided a number of collective operations, the problem of multiple

traversals arises. In each program there is likely to be a number of such operations

composed together in some way to compute the desired result. With each collective

operation potentially traversing a large data structure, the memory traffic is considerably

increased.

In a program written by hand without the use of collective operations the programmer

would naturally recognise all the operation that could be performed in one pass over

the data structure. The program would only traverse the data structure as few times

as required, keeping the memory traffic to the necessary minimum and utilising cache

correctly.

On the other hand, using a straight-forward implementation of a high level library of

collective operations would result in code that traverses data many times while poten-

tially performing only a small change in each pass. For large data structures this may

lead to poor cache utilisation and high memory traffic, noticeably reducing the overall

performance.

Additionally, each operation may need to store its result in a new data structure,

which is especially true for languages where values are immutable by default. Allocating

temporary data structures to store the intermediate results leads to further memory and

runtime penalties.

Optimising out the superfluous data structure traversals and allocations is collect-

ively referred to as Loop Fusion. It allows a program expressed in terms of high level

operations, also called combinators, to be transformed into a program that would be

comparable to a handwritten one in operation and speed.

In this thesis I explore the problem of loop fusion in the context of purely functional

data parallel programs. In particular I explore the challenges of fusing programs written

for the nested data parallel frameworks such as Data Parallel Haskell (DPH).

In the following I summarise the areas of my contribution, explicitly noting which are

my individual work:

• We propose a novel system, LiveFusion, for fusing collective array operations at the

run-time of the program in a purely functional setting (Chapter 4).

• I implement the proposed system as a embedded domain-specific language for the

Haskell programming language which includes automatic recovery of shared terms
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(Section 4.3.1), explicit tupling of results and a scalar language (Section 4.4).

• I devise a generic representation of loops as a more structured and composable

alternative to while and for loops found in procedural languages. I implement

the new looping construct as an intermediate language, Loop, inside LiveFusion

(Chapter 5).

• I present the mapping of flat (Sections 5.3, 5.5) and segmented (Section 5.7)1

array combinators onto the generic loop representation designed to enable fusion in

the Data Parallel Haskell framework (Chapter 3).

• I implement a dynamic code generator which translates fused loops expressed in the

intermediate Loop language into Haskell source code. I also implement dynamic

code compilation and loading facilities enabling highly efficient execution of the

generated code (Chapter 6).

• I present performance benchmarks evaluating LiveFusion against the types of pro-

grams resulting from the use of nested data parallel frameworks such as Data Parallel

Haskell (Chapter 7).

The source code for LiveFusion is available at https://github.com/roldugin/LiveFusion.

The source code for Data Parallel Haskell is available at https://github.com/ghc/

packages-dph.

I shall begin by introducing the reader to the problem of fusion and the context of my

work. In the next chapter I will outline the challenges of array fusion finding a solution

to which has motivated my work in the prior years.

1The term segmented describes combinators that operate on nested arrays. It owes its name to the
way such arrays are represented and is discussed in Section 3.2.1. Flat combinators operate on regular
arrays.

https://github.com/roldugin/LiveFusion
https://github.com/ghc/packages-dph
https://github.com/ghc/packages-dph
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Chapter 2

Array fusion

Suppose we have the following computation to perform:

sum (zipWith (*) xs ys)

A person familiar with the fundamentals of functional programming is likely to spot

the computation of the dot product of two vectors in this snippet of Haskell code. Indeed,

the zipWith list combinator will element-wise multiply the two vectors xs and ys. Quite

expectedly the sum combinator will sum the elements of the resulting vector into a scalar

value yielding the dot product of xs and ys.

This one-liner was an attempt to develop the motivation for the high-level view on

numeric computations. It may seem reasonable to replace the lists with arrays and re-

implement the same high-level interface in terms of traditional arrays to avoid random

memory access penalties as in the case of lists.

Providing an instantly familiar interface without compromising performance has been

one of the goals of the Data Parallel Haskell (DPH) project [42, 9] discussed in more detail

in Section 3.1. The work described in this essay has been carried out in the context of

this project.

However, even if we replaced the lists with arrays and gave efficient implementations

to sum and zipWith, the resulting algorithm is still likely to be slower than one written by

hand in a language such as C . The zipWith combinator produces an intermediate array

containing the element-wise product of the two input vectors. It is immediately consumed

by sum, yielding the final (scalar) value. Thus the algorithm performs two traversals and

allocates another array of the size of the input arrays.

5
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To illustrate the benefit of Array Fusion let us turn to the implementation of same

algorithm expressed in C :

double dotProduct (double xs[], double ys[], int len) {
// zipWith
double* temp = malloc(len * sizeof(double));
for(int i = 0; i < len; i++)

temp[i] = xs[i] * ys[i];

// sum
double result = 0;
for(int i = 0; i < len; i++)

result += temp[i];

return result;
}

We immediately notice that both loops iterate over the same range of indices and we

could hence perform it as one loop. The two loops are said to have the same rate (the

term used more recently in the context of loop fusion in Haskell [31]).

double* temp = malloc(len * sizeof(double));
double result = 0;
for(i = 0; i < len; i++) {

temp[i] = xs[i] * ys[i];
result += temp[i];

}

The process of finding and exploiting the opportunities for merging multiple loops into

one is referred to as loop fusion.

However, this does not completely bypass the allocation of an intermediate array.

Clearly, the intermediate array is redundant and the intermediate value temp could just

be a scalar as in the following:

double temp; // temp has become scalar
double result = 0;
for(int i = 0; i < len; i++) {

temp = xs[i] * ys[i];
result += temp;

}

The optimisation that removes the need for temporary arrays by replacing them with

scalars is called scalarisation.
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It is a special case of array contraction. Array contraction optimisation attempts

to remove a dimension from the array. In this particular case we contracted a one di-

mensional array to a scalar, hence scalarisation. However, in the examples with arrays

of higher dimensions the dimension could just be reduced, and not eliminated entirely.

We will see examples of that in the upcoming chapters when we discuss segmented array

combinators. This concept is taken even further in multi-dimensional array systems such

as Repa [25] and Accelerate [11].

Loop Fusion andArray Contraction optimisation are collectively referred to asArray

Fusion.

Another term for this commonly encountered in literature is deforestation, first

coined by Philip Wadler in [54].

In the remainder of this chapter I outline the reasons which led me to the line of work

described in this thesis.
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2.1 The problem statement

In this section I identify several types of fusion as well as the shortcomings of the previously

available fusion systems which motivated the search for a fresh approach.

I will make many references to the Stream Fusion ([14], [15], [33]) framework in my

discussion as one of the most comprehensive fusion frameworks that exist for Haskell.

However, I also will implicitly or explicitly make references to foldr/build [17], Functional

Array Fusion [10] since they all fall into the category of equational fusion frameworks.

Such fusion systems rely on adjacent term rewriting (for example through the use of

rewrite rules [41]) and subsequent compiler optimisations to produce efficient code.

Stream Fusion and foldr/build fusion are covered more thoroughly in Appendix A.

2.1.1 Simple pipeline fusion

The most basic form of optimisation that is attempted by most fusion systems is map/map

fusion where a pipeline of map combinators is transformed into a single map:

map g ◦ map f 7→ map (g ◦ f)

However, map is not the only combinator that can be chained together in a pipeline.

scan and filter, like map, both consume one array and produce another.

In the simplest case, at the beginning of such a combinator pipeline there is a physical,

ormanifest array, materialised in memory. However, there may also be a pure producer

or a generator instead. As such replicate, enumerate and several others, generate an

array from scalars or functions according to some rule.

Just like a pipeline does not necessarily start with a physical array, it may be concluded

with a computation such as fold yielding one scalar value.

The combinators discussed so far can be combined into a pipeline of operations where

an array output of one combinator is fed directly as input to the next. Additionally, each

combinator in the pipeline is able to consume the elements one by one at the rate they

are produced by the preceding combinator.

Such simple pipelines are generally handled well by most fusion frameworks. In par-

ticular the expressions presented in Figure 2.1 are all fusible by Stream Fusion [14] (and

Appendix A.2) and Functional Array Fusion [10].
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let ys = map (/100) let s = fold (+) 0 let ws = filter odd
$ filter (>0) $ map (^2) $ map (+1)
$ xs $ scan (*) 1 $ enumFromTo 1 10

$ zs

xs

filter (>0)

map (/100)

ys

zs

map (^2)

fold (+) 0

s

scan (*) 1 map (+1)

filter odd

ws

enumFromTo 1 10

Figure 2.1: Examples of simple combinator pipelines: Haskell expressions (top) and their
corresponding data flow graphs (bottom).

2.1.2 Fusing into multiple consumers

In the previous section we have looked at uninterrupted pipelines of combinators. Each

intermediate array produced by a combinator was immediately consumed by exactly one

other combinator.

However, in some cases the output of a combinator may be consumed at two or more

places in the program. Consider the example on Figure 2.2, showing a program computing,

for each element, the ratio of the sum of all preceding elements to the current element.

Because computing the ratio involves division operator, the input array is first filtered to

exclude any zero elements.

The output of the filter combinator is consumed by both the scan to compute the

partial sums and the zipWith to give the final ratio. If one was to write this in C , the

resulting program could be expressed in a single loop.

Nevertheless, this program will not be fused by an equational fusion system. Even

though each pair of combinators could be fused individually (zipWith/scan, zipWith/filter,

scan/filter) in this program the fusion will stop already after filter.

The reason for this is the following. If fused by Stream Fusion (the approach for other

fusion frameworks is similar), the program will be first expanded to the following1:

1See Appendix A.2 for the explanation of this expansion.
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let nz = filter ( 6= 0) xs
psums = scan (+) 0 nz
ratios = zipWith (/) psums nz

in ratios

xs

scan (+) 0

zipWith (/)

filter (≠ 0)

ratios

psums

nz

nz

Figure 2.2: ratios program illustrating the problem of multiple consumers (left) and the
corresponding data flow graph (right).

let nz = unstream $ filterS ( 6= 0) $ stream xs
psums = unstream $ scanS (+) 0 $ stream nz
ratios = unstream $ zipWithS (/) (stream psums) (stream nz)

in ratios

For fusion to take place the following rewrite rule needs to apply:

〈stream/unstream fusion〉 ∀stream (unstreams) 7→ s

Unfortunately, because nz term is used in multiple places, GHC will not inline its

definition into its use sites. This is done to prevent work duplication. This crucial step

will prevent the fusion from occurring.

In the application of fusion to DPH we have discovered that this pattern of array

consumption is recurring and if one of the principle factors contributing to reduced per-

formance as far as fusion is concerned.

In particular the filterMax program on Figure 2.3 is a simplified excerpt of the DPH

program computing convex hull of a set of points using QuickHull algorithm (thoroughly

covered in Chapter 7). Given an array of points it first computes the distance from each

point to some line (not shown) by mapping dist function. Then it finds all distances

corresponding to points above the line as well as the farthest distance.

Again, in C this whole computation could be expressed by one loop, traversing the

points array exactly once. However, distances array is shared between filter and

fold1 consumers, preventing them from being fused by equational fusion frameworks

into a single computation. In this example three array traversals would be performed

instead of one, increasing memory traffic and memory footprint of the program.
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let dist (x,y) = . . .
distances = map dist points
above = filter (> 0) distances
farthest = fold1 max distances

in (above, farthest)

points

filter (>0) fold1 max

map dist

farthest

distances

above

distances

Figure 2.3: filterMax program illustrating the problem of multiple consumers in DPH
(left) and the corresponding data flow graph (right).

The inability to fuse branched data flow graphs where a single intermediate array is

consumed by multiple combinators has proven to be critical to the application of fusion

in DPH and motivated the search for alternative approaches satisfying this requirement.

In the following section I discuss an additional problem with Stream Fusion which

introduces runtime overhead in successfully fused programs.

2.1.3 Duplicated counters

In the beginning of this chapter the zipWith combinator was used for point-wise mul-

tiplication of two vectors. Later it was used to compute point-wise ratios of two arrays

(Figure 2.2).

While Stream Fusion is able to fuse zipWithN combinators where the input arrays

are produced by independent2 pipelines of combinators the generated code is not optimal.

For example, consider the following expression:

zipWith3 (λ x y z → (x + y) * z) xs ys zs

Assuming that xs, ys and zs are physical arrays in memory, Stream Fusion results in

the following GHC Core code (adapted from [31]):

2As discussed in the previous section (2.1.2).
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1 loop = λ i j k l s →
2 case ≥# i len_xs of
3 True → (# s, I# n #)
4 False →
5 case indexIntArray# xs i of x →
6 case ≥# j len_ys of
7 True → (# s, I# n# #)
8 False →
9 case indexIntArray# ys j of y →
10 case ≥# k len_zs of
11 True → (# s, I# n# #)
12 False →
13 case indexIntArray# zs k of z →
14 loop (+# i 1) (+# j 1) (+# k 1) (+# l 1)
15 (writeIntArray# rs l (*# (+# x y) z) s)

Even though the arrays are consumed in lockstep, Stream Fusion introduces a separate

counter for each input array (i, j and k) as well as the output index variable l. Stream

Fusion is unable to replace all four with one counter based on the fact that i = j = k = l.

Not only this introduces extra bounds checks on lines 2, 6 and 10 and increments on line

14, but also increases register pressure. At present GHC compiler is unable to identify

the invariant i = j = k = l and remove the redundant variables either.

In DPH it is not uncommon to to encounter point-wise processing of a much larger

number of arrays. For example, the QuickHull example mentioned in the previous section

and discussed more thoroughly in Chapter 7, processes as many as 6 arrays using the

zipWith6 combinator.

Functional Array Fusion is able to fuse zipWithN combinators without introducing

repeated counter variable but is overall a more fragile system than Stream Fusion as it

relies on more complex rewrite to function. foldr/build fusion is unable to fuse point-wise

operations altogether.

The problem of duplicated loop counters was an important problem solved by the pro-

posed LiveFusion system to avoid the overhead of performing extra arithmetic operations

in the tight loop and reduce register pressure.

2.1.4 Summary

In summary, the problem of multiple consumers and duplicated loop counters are recurring

patterns in programs generated by Data Parallel Haskell and are pressing performance



2.1. THE PROBLEM STATEMENT 13

problems. In the following chapter I introduce the reader to the inner workings of DPH

demonstrating the reasons for the ubiquity of such patterns.
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Chapter 3

Nested data parallelism

In this chapter I introduce the reader to the context of my work – the Data Parallel

Haskell (DPH) project.

DPH has very specific requirements for the fusion system to satisfy in order to be

effective. While the fusion concepts I discuss in later chapters are widely applicable to

areas of high performance computing beyond nested data parallelism, DPH had a heavy

influence on the fusion system I have developed.

3.1 Data Parallel Haskell

Data Parallel Haskell (DPH) is a library for and an extension to the Haskell programming

language, providing high level access to nested data parallelism.

Nested data parallelism is a type of SPMD parallelism (single program, multiple

data) which operates on irregular data structures. Two examples of irregular data struc-

tures are sparse matrices and unbalanced trees.

In a nested data parallel program, parallel computations can call further data parallel

computations. For example when traversing an unbalanced tree each node may process

each of its children in parallel. Without statically knowing the branching of the tree,

it may be difficult to adequately parallelise the process. DPH offers an elegant solution

through its vectorisation process which will be discussed in Section 3.2.

DPH takes an active part in the optimisation and the compilation of its client code.

It guides the compilation process in many ways including vectorisation [42], choosing the

optimal data representation [7] as well as applying fusion [9] and rewrite rules [41] to

15
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improve performance.

In essence DPH reimplements the familiar list interface in terms of seamlessly parallel-

ised arrays. Listing 3.1 shows some of the most important functions in the DPH interface.

Since DPH has language support, the bracket notation for parallel arrays closely resembles

that for Haskell lists: [:a:] denotes a parallel array of type a, while [:[:a:]:] is a nes-

ted parallel array. The counterparts of Haskell’s list comprehensions are also present and

is called parallel array comprehensions.

(!:) :: [:a:] → Int → a
sliceP :: [:a:] → (Int,Int) → [:a:]
replicateP :: Int → a → [:a:]
mapP :: (a → b) → [:a:] → [:b:]
zipP :: [:a:] → [:b:] → [:(a,b):]
zipWithP :: (a → b → c) → [:a:] → [:b:] → [:c:]
filterP :: (a → Bool) → [:a:] → [:a:]

concatP :: [:[:a:]:] → [:a:]
concatMapP :: (a → [:b:]) → [:a:] → [:b:]
unconcatMapP :: [:[:a:]:] → [:b:] → [:[:b:]:]
transposeP :: [:[:a:]:] → [:[:a:]:]
expandP :: [:[:a:]:] → [:b:] → [:b:]

combineP :: [:Bool:] → [:a:] → [:a:] → [:a:]
splitP :: [:Bool:] → [:a:] → ([:a:], [:a:])

Listing 3.1: Type signatures for parallel array operations.

Collective operations on parallel arrays are executed in parallel when the hardware

supports it. The framework is targeting shared memory architectures and uses Haskell

threads [40] to achieve parallelism.

By design the computation is split evenly across the available processing elements1

which includes highly irregular parallel programs. The next sections will cover the basics

of vectorisation and describe the current stages of fusion in DPH .

1Processing element is a general term referring to processors, processor cores or hardware threads.
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Figure 3.1: Value of type [:Tree:] (left) and its flattened representation (right). Empty
subtrees are omitted from the conceptual representation.

3.2 Vectorisation

The principle idea behind DPH was to allow the programmer write parallel programs

without the additional effort of parallelising, scheduling, load balancing and low level

optimisation.

The work on DPH was originally inspired by Blelloch’s pioneering work on NESL [4],

a research language designed to explore the new approach to nested data parallelism.

At the core of DPH is the vectoriser which is implemented in the Glasgow Haskell

Compiler2 (GHC).

Vectoriser transforms nested data parallelism to flat data parallelism by means of flat-

tening transform on data and lifting transform on functions.

The two transforms are described in the following sections.

3.2.1 Flattening transform

Suppose we wanted to store trees of an arbitrary shape. The following definition of a

tree using parallel arrays is not unlike those a Haskell programmer would write using lists:

data Tree = Tree Int [:Tree:]

A sample tree is given on the left of Figure 3.1. Just by looking at the top level of the

tree it would not be possible to know what the branching is.

Now suppose we wanted to apply some function f to every node of the tree:

visit :: (Int → Int) → Tree → Tree
visit f (Tree v children) = Tree (f v) children'
where children' = mapP (visit f) children

Since the array of children may be small, we are unlikely to gain any performance by

parallelising the call to mapP. Additionally every visit to a child node would potentially
2Glasgow Haskell Compiler: http://www.haskell.org/ghc
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spawn more tiny parallel computations.

The flattening transform translates nested data in user programs to flat data repres-

entation.

The right of Figure 3.1 shows the same tree with each of its levels placed into a nested

parallel array.

At runtime a nested parallel array (e.g. each level of a tree) is represented by a data

array and a segment descriptor. The flat data array stores all the nodes’ values, while

the segment descriptor defines the partitioning to recreate the original nesting.

The following nested parallel array may have been the deepest level of the discussed

tree:

[: [:5:], [::], [:4,2:], [::], [:3:], [:17:], [::], [:11:] :]

At runtime it would be stored as an array of data values together with the segment

descriptor containing the lengths and the starting index positions of the contained arrays

(offsets into the data array):

[ 5, 4, 2, 3, 17, 11 ] -- data

[ 1, 0, 2, 0, 1, 1, 0, 1 ] -- lengths (segment descriptor)

As a result every level of a tree can be efficiently processed in parallel.

The combinators that operate on the segmented array representation are called seg-

mented combinators. They will be discussed is Section 3.5 towards the end of this

chapter.

In summary, flattening transform allows the user to define data which is then auto-

matically aggregated into parallel arrays.

In the following section we discuss the lifting transform which vectorises the functions

that can be applied to the flattened data.

3.2.2 Lifting transform

We have discussed the way the data is represented in DPH but said nothing about how

the vectoriser adapts the functions to fit the new data representation.

The lifting transform turns functions on values (a) into functions on arrays ([:a:]).

Similarly, and functions on arrays ([:a:]) into functions on nested arrays ([:[:a:]:]).
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It is not necessary to delve into too much detail here, since by the time the lifted code

is compiled in backend of DPH (where the fusion takes place) it is no longer a concern as

to how it is done.

In order to illustrate the basics of the lifting transform we will use the following

function as an example:

f :: Float → Float
f x = x * x + 1

For every such function the vectoriser generates its lifted version f↑ replacing all inner

functions by their lifted counterparts and all constants by calls to replicateP:

f↑ :: [:Float:] → [:Float:]
f↑ x = (x *↑ x) +↑ (replicateP n 1)
where n = lengthP x

This new definition obeys the rule f↑ = mapP f, thus it is possible to replace (mapP f)

with f↑ .

In the generated code3 f↑ becomes the following4:

f↑ :: Array Float → Array Float
f↑ x = zipWith (+) (zipWith (*) x x)

(replicate n 1)
where n = length x

The above code is an example of the code which is compiled against the backend library

of flat array combinators. One will notice that this code would produce two intermediate

arrays. DPH relies on subsequent fusion optimisation to remove these intermediate results

and compute f↑ in one traversal of the input array.

Vectorisation is more thoroughly covered in [42]. However, since much of the code

generated by the vectoriser is particularly idiomatic, I will come back to the topic of

vectorisation at various points of this thesis.

3The code generated by the vectoriser to be used with the backend library of array combinators.
4This is no longer true for functions as simple as f [26] but it is still a valid example indicative of

DPH inner workings



20 CHAPTER 3. NESTED DATA PARALLELISM

3.3 Data representation

Haskell allows for a very high-level of expressiveness when it comes to user-defined types.

DPH attempts to support this expressiveness and allow the programmer to create and

compose types to be used in DPH programs. We have already seen an example of a

recursive tree type in Section 3.2.1 which is fully supported by DPH .

Over the next several pages I will briefly outline how DPH chooses the data repres-

entation.

3.3.1 Unboxed values

Regular Haskell values, such as Ints and Floats are stored as boxed values on the heap.

This means that an array of such values would be stored as array of pointers to the heap

allocated values which would be a major hit on performance. It would incur boxing/un-

boxing costs as well as make it impossible to cache multiple consecutive elements at a

time.

Instead, DPH uses arrays of unboxed values in its backend which will be referred to

as unboxed arrays.

3.3.2 Product types

Haskell’s product types, or the tuples of two of more heterogeneous elements, are allocated

as boxed values on the heap. As discussed, dereferencing heap allocated values consid-

erably affects performance. Instead, an array of pairs [:(a,b):] is stored as a pair of

arrays ([:a:],[:b:]). Similarly an array of larger n-tuples becomes an n-tuple of arrays.

This parametric representation is made possible through the use of families as de-

scribed in [7, 8].

3.3.3 Sum types

One distinctive feature of DPH is that is allows one to use user defined data types. An

example presenting a Tree data type with one constructor was given in Section 3.2.1.

Likewise one could define a new data type Shape with two constructors:
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data Shape = Circle Float
| Rectangle Int Int

In DPH the values constructed by the same constructor are stored in the same array.

To store an array [:Shape:] the following arrays are used:

• An array [:Float:] that stores radii of all circles

• A pair of arrays ([:Int:],[:Int:]) that sore dimensions of all rectangles

• A selector array [:Int:] which determines which of the two constructors has

been used. The selector array allows to recreate the original interleaving of values

constructed with different constructors.

Having multiple arrays, each storing only the relevant values wrapped by the same con-

structor, not only avoids the cost of unboxing but also avoids the overhead of traditional

pattern matching on constructors.
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3.4 Backend and Fusion

By the time the backend is reached in the compilation pipeline the nested data parallelism

in the original user program has been completely transformed to flat data parallelism:

• The program is now expressed in terms of flat and segmented array combinators

that take the segment descriptor as an additional argument.

• All data is now represented in terms of flat unboxed data arrays and segment

descriptors.

• As discussed in Section 3.3 the vectoriser has also stripped out the product and sum

types including those defined by the user and conveniently arranged them in flat

arrays.

Thus the backend, or the library of array combinators, only needs to support the

arrays of primitive types (Int, Double, Bool, etc. and tuples of these). This is where

both the fusion and parallelisation occur.

3.4.1 Previous fusion systems

DPH system originally introduced fusion on two different levels: one removed the super-

fluous thread synchronisation points introduced after every combinator, while the other,

Stream Fusion, for fusing the array processing code of each combinator.

3.4.1.1 Removing synchronisation points

Due to the use of Haskell threads [40], the code responsible for distributing the processing

across the processing elements introduces many thread fork/join points. Most collective

array operations are individually surrounded by thread fork and join. This prohibits

the application of array fusion discussed in the previous chapter.

Thus if there is no processing to be done between the join and the next fork, these

are fused together using rewrite rules [41].

The handling of synchronisation points in DPH as well as the process parallelisation

by using distributed types and sequential array combinators is described in [9].
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3.4.1.2 Stream Fusion

Stream Fusion receives the most attention as far as the fusion in DPH goes. It is able to

statically fuse many types of array combinators while only relying on a single rewrite rule

and generic compiler optimisations already available in GHC ([43], [37]). A description

of Stream Fusion is given in Appendix A.2. Just like the fusion that removes superfluous

synchronisation points, Stream Fusion also heavily relies on inlining [39] and rewriting

[41] to work.

Unfortunately, the common point of failure of all of the above fusion types is that they

rely on the consecutive operations being adjacent to each other for the rewrite rules to

fire.

In particular, the required rewriting will not take place if the result of a combinator is

consumed by multiple combinators as discussed in Section 2.1. The ability to fuse heavily

branched graphs of combinators is key to achieving high performance in DPH programs

as we will see in Chapter 7. The work described in this thesis completely replaces Stream

Fusion to address this and other issues.
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3.5 DPH combinators

In Chapter 2 on array fusion we discussed fusion as applied to simple combinators op-

erating on flat arrays. This section introduces segmented combinators as well as more

advanced flat array combinators which consume multiple arrays at once.

3.6 Segmented combinators

With the introduction of segmented array representation by the Flattening transform

(Section 3.2.1) there is the need for more complex segmented array combinators.

All nested arrays in the DPH backend are represented by a flat data array and a

segment descriptor defining the original nesting.

Conceptually segmented combinators resemble nested loops in procedural languages,

where for each element taken from the segment descriptor array, that many elements of

the data array get processed.

We can identify two types of segmented combinators:

1. Combinators that produce elements at the rate of the segment descriptor, i.e. one

element per segment. For example:

fold_s max 0 [3,1,2] [1,4,2, 5, 6,8] = [4,5,8]

2. Combinators that produce elements at the rate of the data array. For example:

scan_s (+) 0 [3,1,2] [1,4,2, 5, 6,8] = [0,1,5, 0, 0,6]

As seen in the above examples fold_s and scan_s behave identically to their Prelude

counterparts as applied to individual segments. Due to the way the parallelism is achieved

in DPH , the reduction operation f is required to be associative with the neutral initial

value z. This is the reason for omitting l/r suffix from the combinator names.

In particular, the following must hold:

f (f m n) k) = f m (f n k)

f z n = n

There is also a type of segmented combinators which are a segmented equivalent

of generators. They produce segmented arrays given certain input arrays. Segmented

replicate, enumerators and index generator are all examples of these:
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replicate_s [2,1,3] [10,20,30] = [10,10, 20, 30,30,30]

enumFromStepLenEach [10,40,60] [1,2,3] [2,4,3]
= [10,11, 40,42,44,46, 60,63,66]

indices_s [5,3,4] = [0,1,2,3,4, 0,1,2, 0,1,2,3]

These combinators roughly fit in the second category (data rate) even though they

don’t consume a data array as such.

As with the reduction combinators, they behave similarly to their corresponding flat

combinators except they are applied across multiple segments.

3.6.1 Advanced multiarray consumers

3.6.1.1 Point-wise consumers

The most obvious and widely used combinator that consumes multiple arrays is zipWith

(and its zipWithN counterparts). It has already been used for point-wise multiplication

of two vectors in the beginning of this chapter.

The term point-wise describes the manner of array processing where multiple arrays

are consumed in lockstep.

Examples of point-wise consumers from the previous section on segmented combinators

include segmented replicate and enumerators :

replicate_s [2,1,3] [10,20,30] = [10,10, 20, 30,30,30]

enumFromStepLenEach [10,40,60] [1,2,3] [2,4,3]
= [10,11, 40,42,44,46, 60,63,66]

However, point-wise consumption is not the only pattern seen in DPH . Other recurring

patterns of consumption of multiple arrays include interleaved, random access and

consecutive which we discuss next.

3.6.1.2 Interleaved consumers

Interleaved consumption presumes picking elements from one array at a time but poten-

tially changing the array to pick from from iteration to iteration. Interleave and segmented

append are examples of these. Expectedly interleave picks one element from each array

in order, while segmented append interleaves the whole segments of arrays:
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interleave [1,3,5,7,9] [2,4,6] = [1,2,3,4,5,6,7,9]

append_s ([2,1,1],[10,20, 30, 40]) ([1,2,2],[50, 60,70, 80,90])
= [10,20, 50, 30, 60,70, 40, 80,90]

3.6.1.3 Random access consumers

Random access pattern is useful for combinators performing permutations on an array

given an array of indexes. We distinguish backwards and forward permutations.

In bpermute (back permute) the indexes specify which elements must be picked from

the source array and that array must be randomly accessible:

bpermute [0,10,20,30,40,50] [3,4,5,1] = [30,40,50,10]

This is different from forward permutation, where the index array specifies the destin-

ation index for a particular index of the source array.

permute [30,40,50,10,20,0] [3,4,5,1,2,0] = [0,10,20,30,40,50]

This pattern allows both arrays to be consumed in a lockstep. Each array may poten-

tially be a result of a fused pipeline of operations. However, permute will likely be unable

to fuse into its consumer because of out-of-order output generation.

3.6.1.4 Consecutive consumers

This type of consumers is a result of two or more independent array traversals, with one

happening after the other. append is currently the only combinator which possesses this

property:

append [1,2,3,4,5] [6,7,8] = [1,2,3,4,5, 6,7,8]

3.7 Conclusion

Over the following several chapters I will present my own replacement backend for Data

Parallel Haskell which enables the fusion in more cases than was possible with Stream

Fusion.



Chapter 4

Delaying array computations

This chapter describes LiveFusion – a new array language that I designed. It offers a

library of fusible array combinators and is able to exploit more fusion opportunities than

equational fusion frameworks (see Appendix A)

In its essence LiveFusion takes the approach of deeply embedded domain specific lan-

guages (EDSLs).

4.1 On embedded domain-specific languages

The term domain-specific language (DSL) describes a computer language designed for

solving problems in a particular application domain.

Examples of DSLs include HTML for webpages markup [22], SQL for relational data-

base queries [21] and Verilog for hardware description [19].

In contrast, Haskell [38] is a general purpose language and is more widely applicable

across domains.

On the other hand, an embedded domain-specific language (EDSL) is a domain-

specific language which is designed to be used from within another language, called host

language. It is implemented as a library for the host language and can reuse its syntax,

compiler and the runtime system.

The added benefit of the approach is that the EDSL code can interact with the rest

of the code in the host language. This way the programmers do not have to leave the

familiar environment and can write EDSL programs which are seamlessly integrated with

their programs.

27
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Two types of embedding exist:

Shallow embedding

Shallowly embedded DSLs directly translate their constructs to expressions in the

host language. They offer a fixed interpretation of their operations.

Parsec1 library of parsing combinators is an example of a shallow EDSL for Haskell.

Deep embedding

The principle idea behind deeply embedded DSLs is that all operations of such an

EDSL construct a tree of operations, or an abstract syntax tree (AST). This new

AST is a data structure in the host language. It is separate from the host language’s

AST and is rather presented as a tree-like structure in the host language’s runtime.

The difference from the ASTs found in compilers is that it allows for analysis,

optimisation and compilation (or interpretation) of the EDSL’s AST at runtime.

The complete process is taken care by the library written in the host language.

This avoids the difficulties of writing a complete standalone optimising compiler.

Accelerate language for functional programming on GPUs [11] is a vivid example of

a deeply embedded DSL.

LiveFusion EDSL falls under the category of deeply embedded domain-specific lan-

guages. In this chapter I describe the process of embedding array computations.

Figure 4.1 presents the overview of the LiveFusion language and the way it fits into

the Data Parallel Haskell framework. While many of the concepts in the figure have not

yet been discussed, it can serve as reference to the reader in future chapters.

4.2 LiveFusion EDSL by example

Figure 4.2 presents a program that can be written using LiveFusion library as well as the

corresponding data flow diagram.

The function uses the familiar map, filter and fold combinators. Operators and

functions of Num type class (+, -, abs...) and number literals (0, 0.5, 1...) are supported

directly. Versions of Ord and Eq operators are available postfixed with a dot (>., ==. ...).

1parsec: Monadic parser combinators - http://hackage.haskell.org/package/parsec
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Figure 4.1: Overview of DPH and LiveFusion systems.

{-# LANGUAGE OverloadedLists #-}

filterMax xs
= let xs' = map (+1) xs

pos = filter (>. 0) xs'
mx = fold max 0 xs'

in (pos :*: mx)

main = print
$ filterMax [1,-2,5,0]

-- Output: (fromList [2,6,1], 6)

xs

filter (>.0) fold max 0

map (+1)
xs’xs’

:*:

pos mx

Figure 4.2: Example of a LiveFusion program (left) and its data flow diagram (right).
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The example employs the explicit tuple constructor (:*:), which brings together the

branches computing pos and mx to be analysed for fusion. It addresses the problem of

tupling that prohibits fusion of independent terms in a pure context.

A vectorised version of this function will be presented in the Section 7.4 when we look

at the QuickHull algorithm implementation in DPH .

4.3 LiveFusion interface and AST

LiveFusion EDSL offers a library of flat and segmented array combinators some of which

are presented in Listing 4.1.

type Array a = ArrayAST a
type Scalar a = ScalarAST a

Flat array combinators
map :: (Term a → Term b) → Array a → Array b
filter :: (Term a → Term Bool) → Array a → Array a
zipWith :: (Term a → Term b → Term c) → Array a → Array b → Array c
zip :: Array a → Array b → Array (a,b)
fold :: (Term a → Term a → Term a) → Term a → Array a → Scalar a
scan :: (Term a → Term a → Term a) → Term a → Array a → Array a
replicate:: Term Int → Term a → Array a
bpermute :: Array a -- Source array

→ Array Int -- Indices to pick elements from
→ Array a

packByTag:: Term Bool → Array Bool → Array a → Array a

Segmented array combinators
scan_s :: (Term a → Term a → Term a) → Term a

→ Array Int → Array a → Array a
fold_s :: (Term a → Term a → Term a) → Term a

→ Array Int → Array a → Array a
replicate_s :: Term Int → Array Int → Array a → Array a

Listing 4.1: LiveFusion interface functions. Typeclass constraints on array elements have
been omitted for brevity.

The fundamental concept by which LiveFusion makes fusion possible is constructing

an abstract syntax tree (AST) of pending array operations at runtime and compiling that

AST to efficient code when the result is required in the host program. Thus the compile
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type ArrayAST a = AST (Vector a)
type ScalarAST a = AST a

data AST t where
Flat combinators

Map :: (Elt a, Elt b)
⇒ (Term a → Term b)
→ ArrayAST a
→ ArrayAST b

Filter :: Elt a
⇒ (Term a → Term Bool)
→ ArrayAST a
→ ArrayAST a

Fold :: Elt a
⇒ (Term a → Term a → Term a)
→ Term a
→ ArrayAST a
→ ScalarAST a

Replicate :: Elt a
⇒ Term Int
→ Term a
→ ArrayAST a

Segmented combinators
Fold_s :: Elt a

⇒ (Term a → Term a → Term a)
→ Term a
→ ArrayAST Int
→ ArrayAST a
→ ArrayAST a

Replicate_s :: Elt a
⇒ Term Int
→ ArrayAST Int
→ ArrayAST a
→ ArrayAST a
Manifest arrays

Manifest :: Elt a
⇒ Vector a
→ ArrayAST a
Explicit tupling

(:*:) :: (Typeable t1, Typeable t2)
⇒ AST t1
→ AST t2
→ AST (t1,t2)

Listing 4.2: LiveFusion AST (partial).
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time of LiveFusion language maps to the runtime of its host language – Haskell.

The AST is the topmost layer of LiveFusion system. Most of the library’s user-

facing functions are just constructing the nodes of the AST. Parts of LiveFusion AST are

presented in Listing 4.2. Is it easy to spot the correspondence between the user-facing

functions from Listing 4.1 and the constructors of the AST.

LiveFusion AST is implemented as a Generalised Algebraic Data Type (GADT) [23]

in order to have more control over the types of individual constructors.

In principle, given an interpreting function such as eval :: AST t → t, a value

of type t encoded in the AST language can be computed. Notably, t in AST t is not

necessarily an array. In fact not all of the array combinators return an array: in particular

fold and several others return a scalar value.

4.3.1 Sharing recovery

In pure functional languages like Haskell sharing of terms is not observable. That is,

given two terms it is not possible to tell whether or not they reside at the same memory

address (as it is possible with pointers in a procedural language). Thus, if LiveFusion

AST constructed for the earlier filterMax example (Figure 4.2) was traversed, Map and

Manifest nodes would be encountered twice as in Figure 4.3 (left). Naively compiling

such code would result in two computations of the result of Map.2

Nonetheless, implementing support for sharing in an EDSL is possible. An overview

of several approaches is given in [27]. There is a distinction between explicit and implicit

sharing. When using explicit sharing, the sharing of terms is specified by the programmer

using some explicit construct.

Moving on to implicit sharing, there are techniques based of structural equality of

terms where two subtree of terms are considered shared if they are equal in structure

and values. This approach is possible to implement without leaving the pure context

(provided terms can be compared for equality). However, the experience of Accelerate

language authors [11] shows that this approach suffers from severe complexity blowups

for sufficiently large problems.

The second group of implicit sharing approaches involves using techniques to escape

2Notably, this is an instance of fusion into multiple consumers identified as a major challenge for a
fusion system to overcome in Section 2.1.2.
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Filter >. 0

Map +1

Manifest [1,-2,5,0]

Fold 0max

:*:

xs

xs’

pos mx

Map +1

Manifest [1,-2,5,0]

xs

xs’

Filter >. 0

Map +1

Manifest [1,-2,5,0]

Fold 0max

:*:

xs

xs’

pos mx

Figure 4.3: Left: Conceptual representation of filterMax AST in a pure context.
Right: Likely runtime representation of filterMax node graph. Desired result of sharing
recovery.

the pure context to acquire pointers or otherwise stable references to a term. Sharing

recovery using this approach grows linearly in the size of the tree. LiveFusion incorporates

sharing recovery of this type. The approach is called Observable Sharing and is described

in [18].

More specifically, the approach is adapted to support a GADT AST [53]. An abstract

semantic graph (ASG) data type is specified (Listing 4.3) which has the same constructors

as the original AST in addition to VarG – a representation of a shared variable in the graph.

Then a mapDeRef function is implemented that converts the AST to ASG, replacing every

point of recursion with a VarG node. Sharing recovery of filterMax results in the following

graph, where recursive variable references have been replaced with unique integers:

-- Nodes:
[
(1,Wrap (BothG (VarG 2) (VarG 5))),
(2,Wrap (FilterG <function> (VarG 3))),
(3,Wrap (MapG <function> (VarG 4))),
(4,Wrap (ManifestG (fromList [1,-2,5,0]))),
(5,Wrap (FoldG <function> 0 (VarG 3))),

]
-- Entry node:
1

While the approaches to sharing recovery based on obtaining unique references to the

term are generally non-portable and unsafe, it is guaranteed to be free of false positives.

That is no erroneous sharing of terms that are not shared will occur. While false negatives
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are a possibility (i.e. unrecovered sharing), they are rare in practice.

data ASG t s where
MapG :: (Elt a, Elt b)

⇒ (Term a → Term b)
→ ArrayASG a s
→ ArrayASG b s

. . .

VarG :: Typeable t
⇒ s
→ ASG t s

instance Typeable t ⇒ MuRef (AST t) where
type DeRef (AST t) = WrappedASG
mapDeRef ap t = Wrap <$> mapDeRef' ap t
where
mapDeRef' :: Applicative ap

⇒ (∀ b. (MuRef b, WrappedASG ~ DeRef b) ⇒ b → ap u)
→ AST t
→ ap (ASG t u)

mapDeRef' ap (Map f arr)
= MapG f
<$> (VarG <$> ap arr)

mapDeRef' . . .

Listing 4.3: Abstract semantic graph type for LiveFusion AST and AST conversion func-
tion.

4.4 Parametrising higher-order combinators

Another notable feature of the interface to note here is the type of functions that para-

metrise higher-order combinators:

map :: Elt a ⇒ (Term a → Term b) → Array a → Array b
filter :: Elt a ⇒ (Term a → Term Bool) → Array a → Array Bool
fold :: Elt a ⇒ (Term a → Term a → Term a) → Term a → Array a

→ Scalar a

The corresponding Haskell list functions or array libraries like Vector or Repa [25]

accept as arguments vanilla Haskell functions like a → b or a → a → a as long as



4.4. PARAMETRISING HIGHER-ORDER COMBINATORS 35

the types match.

The question that should be asked, however, is why cannot LiveFusion do the same?

The answer lies in the approach to evaluating the AST. In order to be efficient the

AST needs to be compiled to highly optimised code. During compilation (discussed in

Chapter 6) the AST is compiled at runtime to one or more loops for which Haskell code

is generated.

If the parametrising functions were simple Haskell functions, they would have been

compiled to machine code before the program is run. When the AST is later constructed

at runtime they would only be available in the form of closures which can be called but

not inspected3.

Suppose the user writes map (+1) xs. The function (+1) needs to be inlined into the

compiled loop code to produce efficient code. If this does not happen, calling (+1) for

every element in the xs array will result in the following:

1. Boxing the element value by placing it in the heap

2. Calling the closure with the pointer to the boxed value

3. Jumping to the address of the (+1) function referenced in the closure

4. The code will unbox the value, increment it and create a new value on the heap

5. The loop code will then need to unbox the result and write it into the result array

This is a very round-about way of incrementing a value in a tight loop and will greatly

affect the performance of the loop.

Unfortunately, at the time of generating code for AST, all these Haskell functions will

have been compiled to machine code and are only available as closures. There is currently

no way to inline them or reify them into the original Haskell source code from which they

were created.

I needed to find a way to generate efficient code for user specified functions at runtime.

I needed a way to record the user-provided functions in a more high level way than machine

code.

In summary the chosen representation for functions:

1. Provides backend independent interface offering many common functions

2. Allows backend-specific implementation for each function
3There is a non-portable way to explore closures in Haskell, but it will not allow one to easily make

use of the code compiled to binary.
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3. Hides implementation from the user by default

4. Allows user to compose functions in a way that looks native

5. Allows user to provide direct backend-specific implementation for new functions that
cannon be composed from functions already provided

The following section explains how this is achieved.

4.4.1 Scalar Term language

An expression of the type Term a → Term b is a term in the scalar expression language

called Term, representing a function from type a to type b. The AST for the Term

language is given in Listing 4.4.

data Term t where
-- Function or constant in backend-specific form
Con :: Impl t → Term t

-- Lambda abstraction
Lam :: (Term s → Term t) → Term (s → t)

-- Function application
App :: Term (s → t) → Term s → Term t

-- for conversion to de Bruijn representation
Tag :: Level → Term t

type Level = Int
Listing 4.4: Term language for HOAS representation.

The language allows the user to write functions in the higher-order abstract syntax

(HOAS) form which looks native and in many cases reuses the familiar operators and

function names:

f :: Term Int → Term Int
f x = x * x + 1

The library provides backend-specific implementations for many standard functions

including all of the functions from such type classes as Num, Floating, Ord-like and Eq-

like, as well as the ability to compose them into more complex functions.
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4.4.2 HOAS vs. de Bruijn representation

Higher-order abstract syntax presented above is very convenient for library users to write.

However, this representation is inconvenient for the embedded language compilers and

interpreters to work with. In particular, it makes is impossible to inspect bodies of

lambda functions.

The conversion of HOAS to an alternative representation based on de Bruijn indices

has been independently discovered in [6] and [2]. The conversion code employed in Live-

Fusion is due to my supervisor Manuel Charkravarty, the author of the former approach.

The new representation offers an easier way to analyse embedded terms and is the

assumed representation of scalar functions in the rest of this paper.

4.4.3 Backend specific function implementations

One notable part of the Term language is its Con constructor. The only argument to

the constructor is Impl t offers a backend-dependent way of to define a function. Impl

data type gives freedom to the backend to choose the most suitable representation for a

function.

For instance, in the Haskell backend for LiveFusion we are interested in generating

Haskell source code, for which Template Haskell [46] is a natural choice. Thus we choose

the following definition of Impl:

data Impl t = HsImpl {
hs :: t, -- Native Haskell function
th :: Q TH.Exp -- TemplateHaskell quasiquoted expression

}

The Template Haskell expression is really the core part of the function representation,

but this is what would later on allow for an easy production of Haskell source code at the

code generation stage.

The representation also includes the vanilla Haskell function. At present this is just

for completeness. However in the future it may be possible to avoid compiling certain

parts of AST at runtime and run statically scheduled combinators. In this case this would

be the function to inline into the loop.

We will now see the (rather trivial) implementations for a couple of functions before

continuing with our explanation of Impl.
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plusImpl :: Num a ⇒ Impl (a → a → a)
plusImpl = HsImpl { hs = (+); th = [ | (+) |] }

absImpl :: Num a ⇒ Impl (a → a)
absImpl = HsImpl { hs = abs; th = [ | abs |] }

It is easy to see that Template Haskell expressions are trivially created from simple

Haskell functions using quasi-quotation extension [32].

When the backend is ready to generate Haskell source for these functions, it will be a

simple matter of using a Template Haskell’s pretty printer.

The following are the reasons for using Template Haskell expressions to represent the

user specified functions:

• The backend does non-trivial code generation as discussed in Chapter 6, where the

full power of Template Haskell is required. Functions defined this way become very

easy to incorporate into the generated code

• New developments in Template Haskell4 will allow its expressions to be typed. Hav-

ing Q (TExp t) as opposed to Q Exp will provide an extra layer of safety to the

function representation

4Starting with GHC 7.8.
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4.5 Related work

4.5.1 DESOLA

DESOLA (Delayed Evaluation Self Optimising Linear Algebra) [45] is an experimental

C++ library designed to explore the benefits of runtime code generation and optimisation

for scientific computing. In contrast to DPH , DESOLA does not support higher order

combinators or segmented operations, although it does support regular multidimensional

arrays.

4.5.2 Accelerate

Accelerate EDSL [11, 35, 13] is probably the closest, by design, to LiveFusion. It was

initially designed to offer a simple but powerful programming model targetting General

Purpose GPU computing. When I was starting my work on LiveFusion, Accelerate was

able to generate efficient code for GPUs but lacked fusion. Additionally, it only supported

regular arrays (although with a very powerful shape-polymorphic model similar to that

of Repa [25]). Accelerate is currently moving towards having more sophisticated fusion,

nested parallelism and ability to generate code for CPUs.

4.5.3 Flow Fusion

Embedding EDSLs in a way that they construct their intermediate data structures at the

runtime of the program is by far the most common approach but not the only one. An

EDSL can also be implemented in a host language compiler.

In particular GHC allows to specify transformations of its internal Core language in the

form of plugins integrating into the compilation pipeline. Flow Fusion framework [31, 16]

was designed to fuse combinator graphs at compile time. The data flow graph to be fused

is translated to DDC Core language – the intermediate language of Disciplined Disciple

Compiler [30] – where it is fused using techniques that inspired the work on LiveFusion

and are discussed in the next chapter: rate inference (Section 5.3.3) and compiling to a

common imperative loop structure (Section 5.1).

The approach of Flow Fusion solves sharing by analysing the entire graphs of combin-

ators and avoids runtime overheads of building, analysis and compilation of ASTs. The
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downsides of Flow Fusion are that control flow breaks fusion. However, in DPH con-

trol flow is not an issue since most of control flow is transformed into data flow by the

vectoriser.

Flow Fusion is currently in its early development stages and is not yet able to fuse

segmented combinators. In the future it may become a very comprehensive fusion plat-

form. In fact there are plans for building the CPU backend for Accelerate on top of Flow

Fusion.
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Generic loop representation and rates

LiveFusion at the top level is a library of high level array combinators. Most of these

conceptually represent a loop. Indeed, the user of the library can reason about the

individual combinators as loops and consider the result of each to be an array.

However, when running the user’s program, we are aiming to perform the required

operations in as few loops as possible1. Subject to certain restrictions, two combinators

in LiveFusion are fusible when the output array produced by one combinator is consumed

as input by another combinator one element at a time from beginning to end.

In the LiveFusion AST discussed in the previous chapter, this relationship is usually

seen between a child node (the producer) and its parent node (the consumer). This is not

true for random access combinators like backpermute which we discuss separately.

Intuitively, two combinators can be fused whenever one could write a loop by hand

which would give the same final result for the same input as the two separate loops would.

The focus of this chapter is to establish a common loop representation to which fusible

combinators can be mapped.

In the following sections we will look more closely at what a loop really is and then

present the core of our fusion optimisation.

1This may increase register pressure. However, unless register spilling poses a problem in the future
we favour the decreased memory traffic which is attained by array fusion.
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5.1 Anatomy of a loop

Despite the purely functional, combinatorial interface of the library, looking at a loop in

a procedural way is the approach I have opted for in the middle layer of the system. It is

represented by the Loop language.

The loops LiveFusion generates can be viewed as similar to those one might write in

an Assembly language. It uses labelled basic blocks and has explicit control flow using

goto statements2.

However, as we will see later, the loops are more structured than those in C and many

other procedural languages. As such I urge the reader to think of them as being high-level

and treat the explicit control flow as implementation details.

Without further delaying the discussion of the matter we will now look at the structure

of a typical for loop in a language like C in an attempt to shape our own loop structure.

5.1.1 Structure of a for loop

Consider the following fragment of a C program that creates a new array ys, by applying

some function f to those elements of array xs that satisfy some predicate function p (in

Haskell this could be expressed as ys = map f $ filter p $ xs):

1 double *ys = malloc(len * sizeof(double)); // result array
2 int j = 0; // output index
3 for(int i = 0; i < len; i++) {
4 if(p (xs[i])) {
5 ys[j] = f (xs[i]);
6 j++;
7 }
8 }
9 ys = realloc(ys, j * sizeof(double));

A for loop in C has four sections:

1. initialisation section (i = 0),

2. guard section (i < len),

3. the main body (if . . . ), and finally

4. the update section (i++).

2The formal grammar of the Loop language is introduced later in the chapter. It is presented in Figure
5.3 on page 51
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Compared to free-formed while loops which only have a guard and a body, the for

loops are already much more structured.

However, as we see next, further structural elements could be introduced which will

ultimately assist us when composing loops from array combinators.

5.1.1.1 Initialisation

The very first observation to make is that both the result array ys and the output index

j were declared and initialised outside the for loop.

In pursuit of a more structured and composable approach to looping all statements

that are executed once before the loop begins are placed in the init basic block of the

loop.

The initialisation code corresponds to the following in the Loop language:

init:
let len = arrayLength xs
let ys = newArray len
let i = 0
let j = 0
goto guard

5.1.1.2 Guard

The guard section of a for loop corresponds to the guard block in the Loop language. It

can contain arbitrary statements but usually contains at least one unless statement:

guard:
unless i < len | done
goto bodyxs

The unless statement transfers the control to a different block if the specified con-

dition is false (to done in this case, the finaliser block discussed later). Otherwise the

control stays in the current block, which in this case results in entering the loop’s body.

5.1.1.3 Update

We defer presenting the Loop language’s equivalent of the update section until after the

structure of loop bodies is discussed shortly.
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5.1.1.4 Finalisation

In the general case the filter results in a shorter array than its input. Hence, after

the for loop finishes, the resulting array is realloc’ated to free the unused memory (in

practice the array is unlikely to be copied).

This is one of the use cases for what is called the done block of the loop:.

done:
let result = sliceArray ys j -- resize to length j
return result

As seen from the code, every loop has a result which it returns explicitly.

5.1.2 “Dissecting loop bodies”

We will now attempt to categorise the types of operations that all belong to the bodies

of conventional for and while loops.

We continue using example presented on page 42 as reference. In particular, the body

of the for loop contained the following statements:

4 if(p (xs[i])) {
5 ys[j] = f (xs[i]);
6 j++;
7 }

5.1.2.1 Isolating combinators

Line 5 of the for loop, the statement ys[j] = f (xs[i]), is actually performing three

operations:

1. reading an element from array xs,

2. producing a new element by applying function f, and

3. writing the new element into array ys.

Recall, however, that we are trying to devise a loop representation for an application of

fusion. When several combinators are fused into a single loop and produce no intermediate

arrays, such reading and writing only happens at the beginning and at the end of a

combinator pipeline .

Hence we want to separate the notion of producing a new element from the fact that

it came from a physical array or just another computation. Likewise, we should not
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be concerned with how the new element is going to be consumed. It may or may not

be written into a new array. It may or may not be used by a consuming combinator.

However, it should not be up to an individual combinator to decide.

Each combinator in the pipeline is responsible to only take care of its own processing.

In particular each combinator fills in its own body, yield and bottom basic blocks which

we discuss next.

5.1.2.2 Computing a new element in the body

As discussed previously, each combinator fills in a number of blocks with statements

specific to it. For now we will only focus on the body blocks produced:

bodyxs:
let x = readArray xs i

bodyfilt:
unless (p x) | bottomfilt

bodymap:
let y = f x

The reading of xs array is treated as a separate combinator and results in a readArray

statement. The body of the filter is a conditional jump if the predicate p is not satisfied.

Lastly, the body of map is the application of function f to element x and binding it to a

fresh variable y.

We know however, that if filter produces and element, then so does map. We say that

filter and map produces elements at the same rate. Thus we can merge the respective

blocks of the two:

bodyxs:
let x = readArray xs i

bodyfilt/map:
unless (p x) | bottomfilt
let y = f x

It was mentioned that each combinator also introduces yield and bottom blocks.

The complete Loop generated for ys = map f $ filter p $ xs as well as its control

flow graph (CFG) are shown on Figure 5.1. In addition to init, guard, body and done

blocks it also contains yield and bottom block with the required control flow. A step-

by-step explanation of these spans the following four sections.
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5.1.2.3 Yielding produced elements

The Loop language attempts to be precise as to where the element is produced and where

it is consumed. More concretely, the yield block of the loop is only ever entered if an

element has been produced in the current iteration.

The body block contains the code that is concerned with producing an element, however

an element is known to have been produced only if the control reaches the yield block.

Every body block on the listing is accompanied by the yield block. The combin-

ator reading the xs array in bodyxs produces an element x at every iteration, hence the

corresponding yieldxs block is entered unconditionally.

On the other hand, the filter (and the subsequent map) may skip an element hence

the possibility possibility of bypassing yieldfilt/map block.

This allows us to make assumptions about the behaviour of a loop without knowing

what the loop is doing internally.

5.1.2.4 Writing an element into result array

The separation of yield and body has allowed for a finer grained loop structure.

In particular, if the result of a combinator has to be materialised into the physical

array (as in the the case of map in our example), the writeArray statement needs to be

inserted into yieldmap:

writeArray ys j y -- write element y into array ys at index j

5.1.2.5 Updating index

The yield block also provides a convenient place to update the index variable.

In our example the loop contains two rates :

• one at which the elements are read from the source array,

• and one at which the elements of filter and map are produced

With the current loop structure, updating both i and j index is a matter of placing

an increment statement in the right yield block:
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yieldxs:
i ··= i + 1
goto bodyfilt

yieldfilt/map:
writeArray ys j y
j ··= j + 1
goto bottommap

As seen in the code above Loop language supports destructive updates through using

assignment (:=).

This introduction of the index update is uniform for all rates that may be present in

the loop. This is in contrast to the for loop originally presented on page 42 where i++

was part of update section, while j++ was inside the for loop’s body.

5.1.2.6 Ending the iteration

When the iteration has finished the last block that is entered unconditionally (for each

rate) is bottom. In the given examples the two bottom blocks simply transfer the control

to the beginning of the next iteration, the guard. However, in more sophisticated loops,

e.g. append combinator, the bottom blocks may serve other purposes.

5.1.3 Summary of loop structure

In summary the common loop structure to be used throughout this chapter3 is comprised

of the following 6 loop sections, represented by basic blocks in the Loop language:

1. init block is the main entry into the loop and contains statements which need

to execute only once for the whole loop. New array allocation, index and length

variable initialisation all belong here.

2. guard block performs looping condition tests before every iteration of the loop.

3. body block contains all statements concerned with reading arrays and computing

elements. This block is rate-specific and there is a new body block for every distinct

rate in the loop.

3At least until segmented combinators are introduced.
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init:
let len = arrayLength xs
let ys = newArray len
let i = 0
let j = 0
goto guard

guard:
unless i < len | done
goto bodyxs

bodyxs:
let x = readArray xs i
goto yieldxs:

yieldxs:
i ··= i + 1
goto bodyfilt

bodyfilt/map:
unless (p x) | bottomfilt
let y = f x
goto yieldmap:

yieldfilt/map:
writeArray ys j y
j ··= j + 1
goto bottommap

bottomfilt/map:
goto bottomxs

bottomxs:
goto guard

done:
let result = sliceArray ys j
return result

init

guard

done

bodyxs

yieldxs

bottomxs

bodyfilt/map

yieldfilt/map

bottomfilt/map

subrate

Figure 5.1: Internal Loop language representation for ys = map f $ filter p $ xs
(left) and the corresponding CFG (right).
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4. yield block for a particular rate is entered only if a new element has been produced

by the body block of the same rate in the current iteration. It is not entered if the

loop’s logic has skipped to the next iteration without producing an element (e.g. in

filter combinator). This is the place to update the loop index as well as write the

produced element in the resulting array if required.

5. bottom block is entered unconditionally at the end of every iteration whether of not

an element has been produced. Uses beyond going back up to the beginning of the

next iteration will be seen later in this chapter.

6. done block performs any remaining operations after the loop has finished. In par-

ticular it returns the final result from the loop. Unlike the loops in the majority

of procedural languages the return of values from a loop is explicit in the Loop

language.

Figure 5.2 shows the default control flow between these sections.

init

guard

done

body

yield

bottom

Figure 5.2: Default control flow between basic blocks in the Loop language.



50 CHAPTER 5. GENERIC LOOP REPRESENTATION AND RATES

5.2 The Loop language more formally

So far we have used the following features of the Loop language:

1. New variable binding (i = 0)

2. Variable assignment (i := i + 1)

3. Explicit control transfer (goto body)

4. Conditional control transfer (unless i < len | done)

5. Returning values from loop (return ys')

6. A number of built-in array primitives: (newArray, readArray, writeArray, arrayLength
and sliceArray).

All of the above are statements, which are grouped into labelled basic blocks.

The grammar of the Loop language is presented formally in Figure 5.3. The syntax

seen in the examples throughout this thesis is the same as used by the pretty printer for

the language and it faithfully4 reproduces the internal representation of Loop programs.

If the grammar is studied more carefully one would note that one basic block may have

multiple associated labels. We have seen a use case for this when we merged body, yield

and bottom basic blocks of filter and map combinators (Figure 5.1). Such merged blocks

can be referenced by either label. For example, bottomfilt/map was being referenced both

by bottomfilt and bottommap.

It should also be noted that each label and variable in the language is postfixed with

a unique value which has so far been omitted from the listings. However, bodyxs is an

example of such label identification. At the implementation level these values are unique

integers. However, for improved readability they are replaced with combinator names and

other meaningful identifiers.

Being a flexible assembly-style language, the Loop language is not limited by the basic

block structure discussed in Section 5.1 and summarised in Section 5.1.3. However, as

seen in the rest of this chapter this structure has proven to be a useful common base for

many types of arrays combinators. Thus we assume this to be the common pattern of

using the Loop language.

4I have taken the liberty of rewriting operators in infix notation and omitting explicit literal conversions
such as fromInteger 1.

5For improved readability the unique integers are replaced with meaningful names in the code listings.
(Footnote for listing 5.3)



5.2. THE LOOP LANGUAGE MORE FORMALLY 51

name → (arr, elt, f, acc, init, body, etc.)
id → (unique integer5)
impl → (backend specific code, e.g. Template Haskell expression)
lit → (Haskell value of a supported type (Int, Float, Bool, tuple, etc..)
var ::= name id

label ::= name id

loop ::= block vararg labelentry

block ::= label stmt stmtfinal

stmt ::= let var = expr
| var := expr
| if exprbool | labeltrue labelfalse

| unless exprbool | label
| goto label
| return var
| let var = newArray exprlength
| let var = readArray vararray exprindex
| writeArray vararr exprindex exprelement

| let var = sliceArray vararr exprnew_length

| let var = arrayLength vararr

expr ::= var
| exprf exparg
| term
| lit

term ::= implt
| terms → termt

| terms→ t terms

Figure 5.3: Grammar of Loop language.
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Semantically, the Loop language does not presume a fixed order of evaluating let

bound variables. However, all statements affecting control flow (goto, unless, if) are

executed in the order they appear in the block.
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toPercentages :: Array Double → Array Double
toPercentages fractions
= let significant = filter (≥. 0.01) fractions

percents = map (* 100) significant
in percents

Filter ≥ 0.01

Map *100

Manifest vecfractions

significant

percents

Figure 5.4: toPercentages function (left) and its LiveFusion AST (right).

5.3 Fused loops generation

In the previous section we have seen the first example of the Loop EDSL which computed

a filter of an array followed by a map. We have also identified five main sections of a

loop, represented by basic blocks in the Loop language: init, guard, body, yield, bottom

and done.

We shall revisit the example from the previous section and introduce the process by

which a Loop is generated.

This time we extend the example with specific functions passed to map and filter

combinators. The function toPercentages shown on Figure 5.4 (left) converts an array

of fractions to their percentage equivalents, filtering out those below 0.01 (or 1%).

5.3.1 Start with an AST

The toPercentages function internally uses a pipeline of two combinators: the output

array of filter (called significant) becomes the input array of map. Recalling that

Array Double is the type synonym for AST (Vector Double), each combinator con-

structs a node in an AST representing a delayed array computation.

It is not known statically if the input array, fractions, is computed by a pipeline

of combinators or whether it is a Manifest array stored in memory. Likewise, it is not

known before runtime if the resulting percents array is consumed by another combinator

and the pipeline of delayed operation will continue to grow after toPercentages function

returns.

For the purposes of illustrating a complete running example we will assume that the

toPercentages function is called with a Manifest array as argument and the result is

immediately forced to be computed (e.g. to be written out to a file or to be consumed in
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a random access fashion).

In this case the AST shown on Figure 5.4 (right) is constructed and forced to a

Manifest array at the runtime of the program:

-- AST that may be a result of a call to toPercentages
ast :: AST (Vector Double)
ast = force

$ Map (* 100)
$ Filter (≥. 0.01)
$ Manifest vec

-- LiveFusion library functions
force :: Elt a ⇒ AST (Vector a) → AST (Vector a)
force = Manifest . evalAST

evalAST :: AST a → a
evalAST = . . . -- compile AST and compute result

The three fusible combinators represented by Manifest, Filter and Map AST nodes

are followed by the call to an evaluator, which processes them individually as shown next.

5.3.2 Generate loops for individual combinators

In order to generate the Loop language code for an AST of combinators, the evaluator

first processes combinators individually. For each combinator it populates the sections of

the loop that were identified in Section 5.1. It does so by inserting new statements into

the appropriate basic blocks of a loop template.

The left of Figure 5.5 shows the loops generated for the individual combinators. The

figure is implicitly referenced in the following discussion.

All variables and labels introduced by a particular combinator are given a unique

identifier. In listings these are: mfst (short for Manifest), map or filt.

Internally however, the library uses unique integers to distinguish between similarly

named variables and labels belonging to different combinators (e.g. body_2 and elt_3).

This not only avoids variable name clashes, but as we discuss next, enables communication

among combinators through naming conventions.

5.3.2.1 Iterate over manifest array

Recalling that the Manifest combinator is the only combinator in the pipeline that holds

a reference to the physical array, its loop does nothing more than to read the array arrmfst
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Manifest

initmfst:
let lenmfst = arrayLength arrmfst

bodymfst:
let eltmfst = readArray arrmfst ixmfst

Filter
initfilt:
let lenfilt = lenmfst

bodyfilt:
let eltfilt = eltmfst
unless eltmfst ≥ 0.01 | bottommap

Map
initmap:
let lenmap = lenfilt

bodymap:
let eltmap = eltfilt * 100

Writing result array
initmap:
let arrmap = newArray lenmap

yieldmap:
writeArray arrmap ixfilt eltmap

donemap:
let resultmap = sliceArray arrmap ixfilt
return resultmap

Looping
initmap/filt/mfst:
let ixfilt = 0
let ixmfst = 0

guardmap/filt/mfst:
unless ixmfst < lenmfst | donemap

yieldmfst:
ixmfst ··= ixmfst + 1

yieldmap/filt:
ixfilt ··= ixfilt + 1

initmap/filt/mfst:
let lenmfst = arrayLength arrmfst
let lenfilt = lenmfst
let lenmap = lenfilt
let ixfilt = 0
let ixmfst = 0
let arrmap = newArray lenmap
goto guardmap

guardmap/filt/mfst:
unless ixmfst < lenmfst | donemap
goto bodymfst

bodymfst:
let eltmfst = readArray arrmfst ixmfst
goto yieldmfst

yieldmfst:
ixmfst ··= ixmfst + 1
goto bodymap

bodymap/filt:
let eltfilt = eltmfst
let eltmap = eltfilt * 100
unless eltmfst ≥ 0.01 | bottommap
goto yieldmap

yieldmap/filt:
ixfilt ··= ixfilt + 1
writeArray arrmap ixfilt eltmap
goto bottommap

bottommap/filt:
goto bottommfst

bottommfst:
goto guardmap

donemap/filt/mfst:
let result = sliceArray arrmap ixfilt
return result

Figure 5.5: Loops generated for toPercentages function. Loops for individual combin-
ators (left) and their merged equivalent (right).
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element by element.

It is worth noting that the array is not let-bound in any of the blocks. This is due to

the fact that the array is an argument to the loop and is passed from the running program

when the computation is finally ready to be performed (code generation and loading are

discussed in Chapter 6).

The combinator introduces a length variable lenmfst which it binds in loop initialisa-

tion block initmfst.

The result of array read is placed in eltmfst variable.

Notably, the combinator does not bind the index variable ixmfst itself but assumes

that it’s present in scope. The insertion of appropriate index variables is done after the

complete loop is analysed and all rates are established.

5.3.2.2 Filter

In the partial loop representing the filter combinator, all bound variables and label

names are identified by filt.

As discussed previously in Section 4.4 it is essential for performance that the user

functions parametrising combinators be inlined in the generated code. In case of the

filter the predicate function (≥ 0.01) has been inlined as the predicate expression to

the unless statement.

While the length of output array of filter may be different from the length of input,

the upper bound on the length is the same as that of the previous combinator. This is

expressed by binding the length variable lenfilt to lenmfst of the Manifest combinator.

Similarly, the resulting element eltfilt is bound to be eltmfst – the output of Manifest

in the same iteration of the loop.

5.3.2.3 Map

Populating the loop with map-specific statements is straight-forward.

Since the length of the output of map is always the same as the length of input, the

lenmap variable is simply rebound. This also means that Manifest, filter and map

share the same upper bound on the length of their output arrays.

To compute eltmap for the current iteration, we only need to know eltfilt, that is the

element produced by the previous combinator in the current iteration.
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Again, the user specified function (∗100) is inlined to facilitate generation of fast code.

5.3.2.4 Physical array creation

For the toPercentages example we said the pipeline of combinators will be forced to a

Manifest array immediately after the map.

The statements required to allocate, populate, slice and return the new array are

self-explanatory.

It is worthy of note that the design decision to transfer control to yield basic block

only when an element is produced has made it very easy to introduce the array write.

5.3.3 Rates and looping

Multiple times throughout this thesis, the concept of rates has been mentioned.

Rate is a property of a combinator within a combinator graph. If two combinators are

statically known to produce arrays of the same length, they are said to have the same

rate.

For example, all three maps in map h . map g . map f are known to share the same

rate since their inputs and outputs will be of the same length.

For the same reason the filter and the subsequent map of the toPercentages example

share the same rate since they both produce same-length arrays. As such, they are

assigned a single index variable ixfilt (Figure 5.5).

However, the filter combinator has earlier been identified as rate-changing. In par-

ticular we treat filter as a combinator producing elements at a subrate of the previous

combinators. In the toPercentages example, the filter was preceded by Manifest,

which receives it’s own separate index variable ixmfst.

If the rates of combinators are equal they share one index variable and their corresponding

blocks can be merged together.

If a combinator runs at a subrate of another combinator then it has its own body, yield

and bottom blocks since it may not produce an element at every iteration.

Rate equality and subrate relationship are not the only possible relationships between
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two combinators. We will introduce other relationships when we discuss segmented com-

binators in Section 5.7.

5.3.4 Naming conventions

As seen from the loop code generated for the individual combinators in the toPercentages

example, the Loop language uses a set of naming conventions to facilitate communication

between consecutive combinators in a pipeline. In particular the following are always true

for a combinator with identifier id :
• Variable eltid contains the value of produced element at every iteration

• Variable lenid contains the upper bound on the length of the output array

• Variable ixid contains the index of the element being produced.

Binding eltid and lenid in every combinator ensures that this information is propag-

ated upwards through the pipeline of combinators. In particular, the filter only required

to know the id of Manifest combinator below it to infer these variables.

By design the combinators know their own unique identifiers and the unique identifiers of

the combinators they are referencing and nothing else.

5.3.5 Merging loops

We have given the Loop language representations for Manifest, map and filter combin-

ators as well as the code that writes out physical arrays.

In order a create a succinct loop, these individual loops are merged into one loop.

For combinators as simple as map and filter merging loops means to simply merge

the statements of the corresponding blocks blocks in no particular order.

As seen from the final loop on Figure 5.5 (right), not only the statements of same rate

blocks have been merged together, but also their labels: each block can now be identified

by one more of the three identifiers (e.g. bodyfilt/map can be identified by either filt or

map identifier).

This is done in order to support fusing complex ASTs with many shared nodes. The

benefit of this may appear much clearer when we introduce nested combinators in Sec-

tion 5.7.

We will now briefly discuss the mechanism by which this is done.
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-- * Map type
data AliasMap k a = AliasMap [(Set k, a)]
-- * Operators
(!) :: AliasMap k a → k → a
-- * Query
lookup :: k → AliasMap k a → Maybe a
lookup' :: k → AliasMap k a → Maybe (Set k, a)
lookupAny' :: Set k → AliasMap k a → Maybe (Set k, a)
synonyms :: k → AliasMap k a → Set k
-- * Insertion
insert :: k → a → AliasMap k a → AliasMap k a
addSynonym :: k → k → AliasMap k a → AliasMap k a
-- * Combine
union :: AliasMap k a → AliasMap k a → AliasMap k a
unionWithKeys :: . . .
mergeWithKeys :: . . .
-- * Traversal
map :: (a → b) → AliasMap k a → AliasMap k b
-- * Conversion
elems :: AliasMap k a → [a]
keys :: AliasMap k a → [Set k]
assocs :: AliasMap k a → [(Set k, a)]

Listing 5.1: AliasMap interface (partial). Ord k constraints omitted for brevity.

5.3.5.1 Managing label sets with AliasMap

In order to achieve the flexibility of having multiple labels associated with the same block

I have implemented a new type of associations map called AliasMap.

It offers a familiar interface (Listing 5.1) similar to that of Haskell’s Data.Map. The

difference is that it allows for a set of keys to be associated with one value. In addition

to the usual functions found in Data.Map one can query the map using synonyms. That

is, a value can be retrieved from the map given any key associated with that value.

The notion of key synonyms is used throughout AliasMap interface which greatly

facilitates managing and merging loops where blocks are associated with multiple labels.
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5.4 More on gotos

While the use of gotos is considered bad practice in modern software engineering I note

several reasons for using them in the Loop intermediate language:

• It is completely hidden from the library user.

Given a well behaving Loop code generator the produced code will always be valid

if the user program is valid.

This is akin to using unsafePerformIO and the like within the library internals for

performance reasons. They can lead to bad code but with careful use result in very

noticeable performance gains in purely functional programs.

• The Loop language was designed with a pluggable backend in mind.

It was assumed that assembly-like Loop language would be easier to connect with

any backend.

Specifically in the Haskell backend, goto statements are translated to tail-recursive

function calls.

An LLVM backend is also planned. LLVM uses a very similar notion of basic blocks.

• The goto based design was the most flexible and the easiest to implement.

Nonetheless, this does not prevent the Loop language from being extended to sup-

port a safer programming model.
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5.5 Flat array combinators

5.5.1 Reductions

We have already looked at how the indices maintain the state of the loop between itera-

tions. Although it is probably the most obvious state a loop has, it is not the only one.

Perhaps the most prominent standard list combinators that pass partial results to recurs-

ive calls as accumulators are folds and scans. LiveFusion also offers these combinators.

In practice, binding and using accumulator variables like this in the Loop language

is straight-forward and is no different from binding and using index variables. They are

both treated as mutable variables in the Loop language.

Suppose, we wanted to translate scan (*) 0 xs to a loop. As discussed previously

in Section 5.3.4 on naming conventions the generation of loop blocks for scan proceeds in

assumption that variables lenxs and eltxs are in scope.

The following is the portion of the loop generated for scan combinator:

initscan/xs:
let lenscan = lenxs
let zscan = 1
let accscan = zscan

bodyscan/xs:
let eltscan = accscan

bottomscan/xs:
accscan ··= accscan * eltxs

Generating loop code for fold is very similar except no element eltfold is produced

in each iteration and the final result is stored in accfold.

5.5.2 Zipping

So far the combinator pipelines we have looked at had a list like structure. Each combin-

ator would consume exactly one array and produce another. However, for many programs

this is not sufficient. Many combinators take multiple arrays as input.

In general there is no constraint on how a combinator would consume each of those

arrays. Some combinators (e.g. backpermute) require that one of the argument arrays can

be accessed randomly. In other cases, combinators like append and interleave consume
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arrays independently (not in a lock step).

However, there are combinators like zipWithN which consume N arrays in lock step.

A call to zipWith (*) xs ys element-wise multiplies xs and ys. Those two arrays

may internally be pipelines of combinators. It results in the following Loop code:

initzip/xs/ys:
let lenzip = lenxs

bodyzip/xs/ys:
let eltzip = eltxs * eltys

The code is similar to that of map (Figure 5.5). In fact zipWithN combinators can be

viewed as generalised maps.

There are two problems with zipWithN family of combinators:

1. The lengths of xs and ys may be different.

2. The loops for xs and ys may not produce elements in every iteration.

Appendix B considers both problems in turn, offering potential fusion strategies for

each. While these may be legitimate cases to consider in a general purpose fusion frame-

work, they do not appear in the vectorised Data Parallel Haskell code. Since DPH is

currently the primary target for the application of LiveFusion, the fusion of these cases is

left as future work.
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1 initxs/r:
2 let lenxs = arrayLength arrxs
3 let ixr = 0
4 goto guardr
5
6 guardxs/r:
7 unless ixr < lenxs | doner
8 goto bodyr
9
10 bodyxs/r:
11 let eltxs = readArray arrxs ixr
12 goto yieldr
13
14 yieldxs/r:
15 ixr ··= ixr + 1
16 goto bottomr

Figure 5.6: Sequential indexing in the Loop language.

5.6 Random access combinators

The combinators discussed so far consumed their inputs in a sequential manner from

beginning to end. However, there are cases (in DPH inclusively) where elements need

to be picked from the array at random. In particular, the backpermute combinator

(bpermute for short) creates a new array by picking elements at given indices:

bpermute :: Array a → Array Int → Array a

bpermute [0,10,20,30,40,50] [3,4,5,1]
> [30,40,50,10]

To understand the translation of random access combinators to Loop language repres-

entation we must first recall how sequential looping is done. Whenever a sequential rate

r is established, the looping statements are inserted into the loop (Figure 5.6). The cor-

responding index variable ixr is initialised (line 3) and updated (line 15) and the looping

range is established (line 7).

However, the statement reading the xs array is oblivious to how the index variable

was computed. It will use any value ixr currently has. In order to read variables at

random, the xs array the rate r is no longer considered to be sequential and no index

initialisation/update statements are inserted. Instead, the backpermute combinator will

set the ixr variable to the appropriate value to read xs at the required index.
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1 bodybperm/is:
2 let eltis = · · · -- produce index
3 let ixr = eltis -- set index to read xs at
4 let eltxs = readArray arrxs ixr -- read xs array
5 let eltbperm = eltxs -- set result element

Figure 5.7: Loop code for reading xs array at index ixr set by backpermute combinator.
where both data (xs) and indices (is) arrays are manifest and the result array is forced.
Complete code is given in Appendix C.1.

The code presented in Figure 5.7 has been simplified to only include the statements

relevant to reading xs array at the index read from is array. The complete code is

presented in Appendix C.1.

Note that the array read on line 4 has been generated by the combinator responsible for

xs array and is oblivious to the fact that xs would be read at random. Technically, xs

does not need to be a manifest array! Any pipeline of combinators that can produce

an element given an index will suffice. As such, the following expression will also fuse:

bpermute (map (+1) [0,10,20,30,40,50]) [3,4,5,1]
> [31,41,51,11]

The rate system of the Loop language makes it straightforward to switch between

sequential and random accessing. Statements responsible for sequential looping (index

initialisation and updates) are not inserted into the loop until the very end. This makes

it possible for individual combinators to override that behaviour and take on the respons-

ibility of setting the appropriate indices.
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5.7 Segmented array combinators

The process of vectorisation in Data Parallel Haskell and in particular its Flattening

transform (Section 3.2.1) mandates the need for combinators that operate on segmented

arrays in the backend library. They have been discussed in an earlier chapter in Section 3.6.

Segmented arrays is a representation of nested arrays where all of the data is stored in

a single flat array and a separate segment descriptor defines the partitioning of the data

array into subarrays, called segments.

It was said that segmented combinators fall into two categories:
1. Combinators that produce elements at the rate of the segment descriptor, i.e. one

element per segment (Figure 5.9).

2. Combinators that produce elements at the rate of data, i.e. producing entire seg-
ments (Figure 5.11).

The discussion of the combinators proceeds with reference to the two combinator

categories.

5.7.1 Nested loops

Conceptually segmented combinators resemble nested loops in procedural languages where

for each element taken from the segment descriptor array, that many elements of the data

array get processed.

So far in this chapter we have been looking at flat loops. In the Loop language they

have the standard structure and control flow presented in Figure 5.8 (left).

In order to support nested loops the Loop language offers a special basic block – nest.

If a loop contains a nested loop, the nest basic block transfers control to it. After the

nested loop is finished, the control is returned to the body block of the outer loop.

The default control flow for all nested combinators is shown on Figure 5.8 (right).

The following sections introduce the translations of the most prominent segmented

combinators to the Loop language.

5.7.2 Segmented reductions

Segmented reductions represent the first type of segmented combinators outlined on

page 65. They reduce each data segment to a single scalar value.
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init

guard

done

body

yield

bottom

initsegd/data

bodysegd

yieldsegd

bottomsegd

guardsegd

bottomdata

outer loop

guarddata

nestsegd

bodydata

yielddata

nestdata

donesegd/data

inner loop

Figure 5.8: Default control flow between basic blocks in flat loops (left) and nested loops
(right).
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data

segd

fold (+) 0 segd data

Figure 5.9: Segmented fold.

An example of fold_s application is shown in Figure 5.9.

Recalling the Loop language conventions, a single element eltfold should be produced

for every iteration of the outer loop. Incorporating the new nest block into the loop, the

call to a fold_s results in the Loop in Figure 5.10.

The code presented here has been simplified to only include statements generated by

the call to fold_s. In particular the details of eltsegd and eltdata have been omitted.

The complete code is presented in Appendix C.2.

Notably, fold_s can fuse with both the segment descriptor and the data loops. Addi-

tionally, it will fuse into its consumer. In fact, to any combinator consuming the output



5.7. SEGMENTED ARRAY COMBINATORS 67

of fold_s it will be indistinguishable from a flat combinator.

Other combinators that run at the rate of the segment descriptor include count_s,

sum_s and several others. However, they are all implemented in terms of fold_s:

-- Count the number of occurences of a value in each segment
count_s :: Term a → Array Int → Array a → Array Int
count_s x segd = fold_s (+) 0 segd

. map boolToInt

. map (==. x)
where boolToInt b = if b ==. true

then 1
else 0

sum_s :: Num a ⇒ Array Int → Array a → Array a
sum_s = fold_s (+) 0

5.7.3 Segmented data-rate combinators

In the previous section we have covered segmented reductions that produce arrays of the

size of the segment descriptor. A different type of segmented operations are those that

produce a data array containing segments of specified lengths.

An example of scan_s application is shown in Figure 5.11.

Following the Loop language conventions every iteration of the inner loop must pro-

duce an element eltscan of the result array. The relevant part of the Loop code are shown

in Figure 5.12.

As before, the code presented has been simplified to only include statements generated

by the call to scan_s. The complete code is available in Appendix C.3.

As in the case with fold_s and all other segmented combinators, scanl_s can fuse

with both the segment descriptor and the data loops as well as its consumer.

5.7.4 Segmented generators

Segmented generators correspond to the category of combinators that produce elements

at the rate of data. They differ from combinators like scanl_s discussed previously in

that they do not consume a data array.

They are similar to their scalar counterparts in that they produce arrays from scalar

values, only that they do it for an array of such scalar values, resulting in a segmented

array:
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initfold/segd/data:
· · ·
let zfold = 0
goto guardfold

Outer loop
guardfold/segd:
· · ·
goto nestfold

nestfold/segd:
let eltsegd = · · ·
-- reset accumulator
let accfold = zfold
-- find segment boundary
let endsegd = ixdata + eltsegd
-- enter inner loop
goto guarddata

bodyfold/segd:
-- the fold value
let eltfold = accfold
goto yieldfold

yieldfold/segd:
· · ·
goto bottomfold

bottomfold/segd:
goto guardfold

donefold/segd/data:
· · ·

Inner loop
guarddata:
-- exit inner loop at the end of

segment
unless ixdata < endsegd | bodyfold
goto nestdata

nestdata:
goto bodydata

bodydata:
let eltdata = · · ·
goto yielddata

yielddata:
· · ·
goto bottomdata

bottomdata:
-- update accumulator
accfold ··= accfold + eltdata
goto guarddata

Figure 5.10: Loop code for folds (+) 0 segd data. Complete code is given in Ap-
pendix C.2.
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data

segd

scanl (+) 0 segd data

Figure 5.11: Segmented left scan.
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initscan/segd/data:
· · ·
let zscan = 0
goto guardsegd

Outer loop
guardsegd:
· · ·
goto nestsegd

nestsegd:
let eltsegd = · · ·
-- reset accumulator
let accscan = zscan
-- find segment boundary
let endsegd = ixdata + eltsegd
-- enter inner loop
goto guardscan

bodysegd:
goto yieldsegd

yieldsegd:
· · ·
goto bottomsegd

bottomsegd:
goto guardsegd

donescan/segd/data:
· · ·

Inner loop
guardscan/data:
-- exit inner loop at the end of

segment
unless ixdata < endsegd | bodysegd
goto nestscan

nestscan/data:
goto bodyscan

bodyscan/data:
let eltdata = · · ·
-- result element
let eltscan = accscan
goto yieldscan

yieldscan/data:
· · ·
goto bottomscan

bottomscan/data:
-- update accumulator
accscan ··= accscan + eltdata
goto guardscan

Figure 5.12: Loop code for scanls (+) 0 segd data. Complete code is given in Ap-
pendix C.3.
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elements

replicate_s 14 segd elements

Figure 5.13: Segmented replicate.

replicate :: Int -- count
→ a -- element
→ Array a

replicate_s :: Int -- result length
→ Array Int -- segment descriptor
→ Array a -- elements
→ Array a

enumFromStepLen :: Int -- start
→ Int -- step
→ Int -- length
→ Array a

enumFromStepLen_s :: Int -- result length
→ Array Int -- starts
→ Array Int -- steps
→ Array Int -- lengths (segment descriptor)
→ Array a

Most of these combinators are also point-wise consumers (Sections 5.5.2 and 3.6.1.1).

They consume values from multiple arrays in lockstep in order to generate an array seg-

ment in the inner loop. An example of replicate_s application is shown in Figure 5.13.
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Figure 5.14: The loop template used in Shivers’ work on LISP loops. Dotted lines indicate
permutable sequences. Horizontal lines denote sequential statements, vertical lines –
independent statements.

5.8 Related work

5.8.1 Shivers’ Anatomy of the Loop

Shivers’ work on loop anatomy in LISP [47] has served as the primary motivation for

designing the structure for the loops described in this chapter. Besides striving for a

more modular structure, the work was intended to ensure the correct scoping of variables

introduced by loop generation macros. This problem is solved by LiveFusion’s Liveness

Analysis introduced in the next chapter.

Shivers identifies eight sections shown in Figure 5.14. LiveFusion’s seven sections

(init, guard, nest, body, yield, bottom, done) reflect its intended use as an intermediate

language for fusing loops generated by DPH combinators. While Shivers’ loops may be

more flexible in how they can be constructed by the library user, LiveFusion’s rate system

allows to compose loops that were generated independently of each other.

5.8.2 Waters’ Series Expressions

While identifying loop anatomy provided a convenient way to fuse combinators to a com-

mon structure, Waters’ work on Series Expressions [55] identifies criteria for such com-

binators to be fusible. Series expressions are akin to combinators and can be directly

compared. He presents the four main restrictions on the series expressions:
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1. The online criteria demands that every series expression in the graph must consume

and produce elements in a lockstep.

This restriction means that filtering and nested loops are not supported by Series

Expressions. Because of the nature of DPH programs, this would result in severe

performance penalties. The restriction is lifted in LiveFusion through the use of

a rate system which introduces the notions of equal and nested rates as well as

subrates.

2. Fusible series expressions must not be subjected to conditional control flow as in

example in 5.2.

This largely demands that the combinator graph contains no control flow at the time

it is optimised. This restriction is important when the optimisations take place at

compile time and the data flow is not statically known. However, in the case of

LiveFusion all control flow takes place as AST is being constructed thus lifting the

restriction.

3. The program is statically analysable.

Again, this restriction is more concerned with fusion implemented by the compiler.

In LiveFusion an AST of higher order combinators specialised by user functions

expressed in a scalar EDSL (Section 4.4) allow for complete graph analysis.

4. Series are not consumed in a random access manner.

This restriction is largely present in LiveFusion. Even though LiveFusion supports

random accessing of arrays, these array are required to be manifest.

halfdouble flag xs ys = scan (+) 0
$ if flag then (map (* 2) xs)

else (map (/ 2) ys))
Listing 5.2: Control flow between combinators.

5.8.3 Flow Fusion

The work most closely related to LiveFusion is Flow Fusion framework [31] for Haskell

originally also designed with DPH in mind. It extends Waters’ work on Series Expressions

with the notion of rates (which is where LiveFusion borrows the term from). It was
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discussed in some detail in Section 4.5.3. One particular advantage of Flow Fusion is its

ability to use rate information to cluster combinators into fusible groups optimising for

memory traffic [16]. The need for this arises from the fact that for sufficiently advanced

examples there is more that one way to cluster combinators in a graph. The system uses

Integer Linear Programming to determine clustering which is a non-polynomial problem

in the general case.

Its applicability to graphs with a large number of combinators at runtime remains

an open question since running an ILP solver may outweigh performance gains achieved.

None-the-less, clustering of graphs with heavy branching and many non-fusible edges

remains an important research question LiveFusion is facing.

As mentioned previously, Flow Fusion cannot currently fuse segmented combinators

although this is not a fundamental limitation and it is likely to be lifted in the future.

5.8.4 Correctness of resulting loops

The code for a single loop in the Loop language is generated by multiple combinators

independently of each other. Because of the interleaving of variable binders, their use and

the control flow, one must be careful to ensure that all the right variables are in scope

when they are referenced.

The recent work on “Combinators for impure yet hygienic code generation” [24] may

prove useful to avoid these problems statically.

Alternatively, Flow Fusion only allows binding variables before the loop begins ensur-

ing that all variables will be available at all times.
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Chapter 6

Imperative code generation

The previous chapter introduced the process of translating a graph of delayed array com-

binators to an assembly-like EDSL for expressing array computations.

We first identified a generic loop structure consisting of init, guard, body, yield,

bottom and done section represented by basic blocks in the Loop language. A nest basic

block was introduces later to support nested loops, needed by segmented combinators.

These loop sections ultimately constituted a skeleton which every combinator would pop-

ulate with relevant statements that would eventually be merged into a single loop.

We then looked at the translation of a number of flat and segmented array combinators

into the Loop language and showed how the partial loops would be merged together into

“runnable” loops.

While the basic blocks of the loops did contain imperative style statements with some

assembly-style labels attached to them, it was never said just what makes a loop “run-

nable”.

In this chapter we explore a method by which Loop language programs can be turned

into runnable code. In practice the Loop language can be interpreted by multiple backends.

I present Loop’s translation to one possible backend which is currently available. This

backend is targeting (perhaps unimaginatively) Haskell source language, which means

that the code generated is Haskell.

75
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6.1 Approaches to looping

In the surface LiveFusion language loops are not explicit. However, most of the array

combinators eventually form part of loops expressed in the internal Loop language. We

have discussed this language at length in the previous chapter.

When it comes to expressing loops there is a fundamental difference between the vast

majority of general purpose languages (even functional ones) and the purely functional

languages like Haskell. In procedural languages the loop statements are usually built

into the language. Further down, at the machine level, these loops become a collection of

instructions with labels/addresses and jump instructions to transfer control between parts

of the loop.

The situation is very different in Haskell however. The language does not offer an

explicit construct for loops. All looping is expressed in the form of recursion.

If we are to generate Haskell code that loops over arrays we need a way to express the

loops we outlined in the previous chapter as recursive functions in the generated code.
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6.2 Fast mutable arrays in Haskell

The principle data structure that LiveFusion is ultimately working with is an array. To

achieve high performance, the generated code must be able to efficiently loop over arrays

in memory which includes both reading an writing.

We have established that looping in Haskell is done using recursive functions and this

section discusses how this can be applied to array computations.

The internal Loop language has writeArray statement which hints the need for mut-

able arrays. The use of mutable values is not typical in Haskell and is discouraged.

However, for performance reasons there are mechanisms through which this can be done.

In Haskell all variable are immutable by default. To achieve mutability one must leave

the pure context and use one that supports mutable state. This usually amounts to using

IO or ST monads [29].

The IO monad lets the programmer alter the global state of the program and perform

any desired side-effecting computations. On the other hand, ST monad only allows one to

work with thread-local mutable memory. This memory is completely local to the monadic

computation in that it is allocated, used and destroyed before the monad returns to the

pure context.

The return value from the ST monad is a pure Haskell value. Thus, stateful compu-

tations performed inside the monad are not visible outside of the monadic context. The

compiler ensures that no mutable state escapes the ST computation. This means that for

all intents and purposes an ST computation can be considered pure, despite the fact that

it may use side-effects internally (usually for efficiency reasons).

In Haskell mutable arrays can be used from both IO and ST monads. There are

several implementations available providing similar interfaces to efficient mutable arrays.

Specifically LiveFusion internally uses the vector1 package.2 Its use in the examples in

this chapter should be quite self-explanatory. Since the Loop language does not require

any side-effecting computations beyond allocating and writing into memory, arrays in ST

monad will suffice.

1http://hackage.haskell.org/package/vector
2The choice of vector library is mostly due to historical reasons. It has been first implemented by

Roman Leshchinskiy in the research group I am part of. It provides array functionality to Data Parallel
Haskell and Repa [25] both of which originate from this group.

http://hackage.haskell.org/package/vector
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6.3 Compiling Loop language to Haskell loops

In this section I present the translation of the Loop EDSL to Haskell. The grammar of

Loop language is given once again in Figure 6.1.

A simple example to be used for illustration purposes is based on the toPercetages

function thoroughly studied in the previous chapter (Section 5.3). The following expres-

sion multiplies every element of an array by 100:

map (* 100) xs

While the expression only consists of one combinator, map, the xs argument may be

a fusible pipeline of combinators. Likewise the map itself may be fused into its consumer.

However, for our purposes we assume that xs is a manifest array and that the result of

map is immediately forced.

The generated Loop code for the example is shown in the right of Figure 6.2. Its

translation by the Haskell backend is presented in the left of the same figure. For improved

readability the code has been altered in the following ways:

1. Function applications β-reduced

2. Fully qualified names simplified

3. Operators moved to infix position

4. Unique integer suffixes replaced with more descriptive names

5. Explicit literal conversions omitted

6. Strictness annotations (!) omitted

let !elt_1 = (λa → λb → (GHC.Num.*) a b) elt_2 (GHC.Num.fromInteger 100)
⇓

let eltmap = eltxs * 100

6.3.1 Blocks and gotos

A Loop is essentially a group of labelled basic blocks with a predefined entry block. Every

basic block becomes its own function in the generated code. We see in the example that

each block like bodymap/xs became bodymap function choosing only one label to represent

the block. Each basic block has a unique identifier associated with it (in our case map),

3For improved readability the unique integers are replaced with meaningful names in the code listings.
(Footnote for Figure 6.1)
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name → (arr, elt, f, acc, init, body, etc.)
id → (unique integer3)
impl → (backend specific code, e.g. Template Haskell expression)
lit → (Haskell value of a supported type (Int, Float, Bool, tuple, etc..)
var ::= name id

label ::= name id

loop ::= block vararg labelentry

block ::= label stmt stmtfinal

stmt ::= let var = expr
| var := expr
| if exprbool | labeltrue labelfalse

| unless exprbool | label
| goto label
| return var
| let var = newArray exprlength
| let var = readArray vararray exprindex
| writeArray vararr exprindex exprelement

| let var = sliceArray vararr exprnew_length

| let var = arrayLength vararr

expr ::= var
| exprf exparg
| term
| lit

term ::= implt
| terms → termt

| terms→ t terms

Figure 6.1: Loop language grammar.
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entry :: [Dynamic] → Dynamic
entry [arrxs] = toDyn (run (fromDyn arrxs))

run :: Vector Double → Vector Double
run arrxs = runST (initmap arrxs)

initmap arrxs = do
let lenxs = arrayLength arrxs
let lenmap = lenxs
let ixxs = 0
arrmap ← newArray lenmap
guardmap arrxs arrmap ixxs lenxs

guardmap arrxs arrmap ixxs lenxs = do
if ixxs < lenxs
then nestmap arrxs arrmap ixxs lenxs
else donemap arrxs arrmap ixxs lenxs

nestmap arrxs arrmap ixxs lenxs = do
bodymap arrxs arrmap ixxs lenxs

bodymap arrxs arrmap ixxs lenxs = do
let eltxs = readArray arrxs ixxs
let eltmap = eltxs * 100
yieldmap arrxs arrmap ixxs lenxs eltmap

yieldmap arrxs arrmap ixxs lenxs eltmap = do
let ixxs' = ixxs + 1
writeArray arrmap ixxs eltmap
bottommap arrxs arrmap ixxs' lenxs eltmap

bottommap arrxs arrmap ixxs lenxs eltmap= do
guardmap arrxs arrmap ixxs lenxs

donemap arrxs arrmap ixxs lenxs = do
resultmap ← sliceArray arrmap ixxs
return resultmap

initmap/xs:
let lenxs = arrayLength arrxs
let lenmap = lenxs
let ixxs = 0
let arrmap = newArray lenmap
goto guardmap

guardmap/xs:
unless ixxs < lenxs | donemap
goto nestmap

nestmap/xs:
goto bodymap

bodymap/xs:
let eltxs = readArray arrxs ixxs
let eltmap = eltxs * 100
goto yieldmap

yieldmap/xs:
ixxs ··= ixxs + 1
writeArray arrmap ixxs eltmap
goto bottommap

bottommap/xs:
goto guardmap

donemap/xs:
let resultmap = sliceArray arrmap ixxs
return resultmap

Figure 6.2: Haskell code (left) and Loop code (right) generated for map (* 100) xs.
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which distinguishes it from similarly named blocks of any nested loops which may be

present.

A block becomes a function in the generated code. Consequently, the goto statements

become function calls.

Blocks of the internal Loop language do not explicitly specify what loop state they

reference or declare. A loop’s state is implicit and global. In the generated code the state

of the loop is passed as function arguments. This is the reason for a large number of

arguments to functions generated from blocks. The process for generating the arguments

from loop variables will be outlined in Section 6.4 on liveness analysis.

6.3.2 Conditionals

The Loop language offers two conditional statements: if and unless. Given a boolean

expression the if statement transfers control to one of the two specified blocks. The

unless is a simplified if statement which only transfers control to the specified block if

the predicate is false. The unless is used to preempt execution of a block if a condition

is not met.

Both if and unless are translated to Haskell’s if expression in the generated code

as seen in the guard of the provided example.

6.3.3 Variable bindings and assignments

In the Loop language every local variable must be bound before use. The code generator

checks to ensure that the control goes through the binding before the first use of the

variable.

The bound variables can be mutable as well as immutable. In fact the Loop language

does not currently make a distinction between the two in the way they are bound and

used.

A variable binding appears as a strict let binding in the generated Haskell code. The

exclamation marks, called strictness annotations, (as in let !x = . . . ; omitted from code

examples) ensure that every bound variable is evaluated to normal form so no thunks are

created during evaluation. In most cases this is not necessary since the GHC ’s strictness

analysis will find most variables to be strict anyway.
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Whenever a new variable binding is encountered in a block of the loop it is assumed

to be a fresh variable and it shadows any previous bindings of that variable in the envir-

onment. In practice this is useful for the cases where the block is entered multiple times

throughout loop execution. In the studied example the body block binds variables eltxs

and eltmap in every iteration. They are subsequently read in body and yield but are

not required afterwards. A simple liveness analysis described in section Section 6.4 allows

us to only pass those variables from body to yield and disregard them everywhere else.

As such those variables are bound anew in every iteration.

The situation with mutable variables is slightly more complex. For example, the loop

index ixxs is bound like a regular variable in the init block. However, once it has been

assigned to in bottom, it is given a fresh name ixxs' in the generated code. This is because

variables in Haskell are immutable. While there are ways to have mutable variables in ST

or IO monads it results in less efficient code.

During liveness analysis mutable variable are treated the same way as their immutable

counterparts. Technically it is possible to have a mutable variable that lives during one

loop iteration but is not carried over to the next iteration. However, the author is yet to

come across a combinator that would require that.

6.3.4 Array manipulation

Array is the fundamental data structure the Loop language works with. Consequently the

array primitives are built right into the language: readArray, writeArray, arrayLength,

newArray and sliceArray. The implementation of the primitives is presented in Fig-

ure 6.3.

The implementation is straightforward and all of these array primitives can be seen

used in the example generated code. One will notice, however, that there are two types

of vectors in use: immutable Vectors and mutable MVectors.

Immutable vectors

The immutable vectors are the ones passed around as Manifest arrays in the surface

LiveFusion language. They are pure Haskell values and can be read inside a pure function.

They are the array values that are passed into the generated code from the host program

and are returned as the result. The arrayLength and readArray statements of the Loop
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import Data.Vector.Unboxed as V
import Data.Vector.Unboxed.Mutable as MV
import Control.Monad.ST

arrayLength :: V.Unbox a ⇒ V.Vector a → Int
arrayLength = V.length

readArray :: V.Unbox a ⇒ V.Vector a → Int → a
readArray = V.unsafeIndex

writeArray :: V.Unbox a ⇒ MV.MVector s a → Int → a → ST s ()
writeArray = MV.unsafeWrite

newArray :: V.Unbox a ⇒ Int → ST s (MV.MVector s a)
newArray = MV.new

sliceArray :: V.Unbox a ⇒ MV.MVector s a → Int → ST s (V.Vector a)
sliceArray vec len = V.unsafeFreeze $ MV.unsafeTake len vec

Figure 6.3: Array primitives implementation in Haskell backend.
,

language result in function calls of the same name in the generated code and operate on

immutable Vectors.

Mutable vectors

The mutable vectors on the other hand are only used internally by the generated code to

create and fill a new array which would represent the result of the loop. The mutability

of the vector is indicated in its type and the type of functions that operate on it.

writeArray :: Unbox a
⇒ MVector s a
→ Int
→ a
→ ST s ()

In the above type of writeArray, both the type of MVector and the resulting ST

computation are indexed by s. This ensures that stateful computations on the same

MVector value are performed inside the same state thread and do not escape from the ST

monad.
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In order to return an array from the plugin, and thus outside the ST monad, it must

first be converted to an immutable Vector. sliceArray is used for that as indicated by

its type. The extra Int argument allows to take only a portion of the array and return

that. This is useful in filter-like operations which may produce a shorter array than

initially allocated.

6.3.5 Returning results

In all examples seen so far the the result of a loop computation was a single array variable

(resultmap in the above example). However it doesn’t need to be. Both the Loop

language and the code generator can return multiple array and scalar values in nested

tuples, e.g.:

let accfold = . . .
resultscan ← sliceArray ixr arrscan
resultzip ← sliceArray ixr arrzip
return ((resultscan, resultzip), accfold)
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6.4 Liveness analysis and state passing

We have discussed that the individual basic blocks of the Loop language become ST

functions in the generated code. Subsequently the statements that transfer control from

one block to the other (goto, unless, if) become function calls.

Loop language is largely a procedural language with assignment statement (:=) that

can mutate variables arbitrarily. However, since the target language Haskell has no mut-

able state by defaultall mutable variables of the Loop language must be translated to

Haskell as immutable values.

How does one pass state as pure Haskell values? Each loop potentially has a lot of

state that is written and read in different blocks of the loop. Since these blocks are

functions it would be natural to assume that the state is passed in function arguments.

The problem, however, is that there is no fixed state alive in the loop at any given

time. Referencing the original example in Figure 6.2:

• some intermediate variables like eltxs are only used inside the block they are defined
in (body)

• some variables like eltmap are bound in body and are later referenced in yield but
are unused after that

• some variables are bound in init and are persistent for the whole duration of the
loop (counters and accumulators).

In order to appropriately generate the argument lists to the functions representing

loop blocks I have implemented a liveness analysis pass in the LiveFusion EDSL compiler.

Liveness analysis is not a backend feature
Liveness analysis operates on Loop EDSL specification of the program. It computes

environment for a control flow graph (CFG) of basic blocks and operates on the notions

of variable bindings (let) and assignments (:=). The outcome of liveness analysis is the

information about the use of state in a CFG.

As such this pass is not specific to any specific backend and is a way to analyse a program

given in Loop EDSL. Nonetheless, I believe that the necessity for liveness analysis has

not been justified until now. With enough foreword, it is described below.

I will now offer an intuitive description for how the algorithm works.
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Each loop has a single entry block. Starting with that block, and following the loop’s

control flow graph (CFG) we recursively determine an environment which holds three

properties:

1. new variables bound in the block (using let)

2. variables that are destructively updated in the current block (using assignment :=)

3. variables otherwise assumed to be in environment :

• either because they are referenced in the current block, or
• they are assumed to be in the environment of any of the successor blocks, to

which control may be transferred (i.e. variables referenced but not bound in
those blocks)

Once the environment has been computed, it is used to generate function argument

lists and the appropriate function calls for each goto, unless and if statement. Each of

the block’s assumed variables becomes the argument of the Haskell function corresponding

to that block.

6.4.1 Discussion of liveness analysis

Several points to note about computing the environment:

1. Some blocks have multiple successor blocks to which control can be transferred

(e.g. guard can go to body or done). The union of all assumed variables is taken

to determine what need to be in the environment of the current block.

2. Loop CFGs are inherently cyclic (e.g. bottom block usually transfers control to

guard to begin the new iteration). Cycle detection is required when exploring CFG.

3. Loop variables may not be required by the immediate successor basic blocks in the

CFG. However, they will be in the set of assumed variables if they are required later

on. The relationship is transitive.

4. The liveness analysis pass will catch any use of variables that have not been previ-

ously bound (resulting in a runtime error indicating a problem in the library, not in

the client code).

There are also two caveats of the Haskell code generator in its current state:

• A variable can only be assigned once in any given block

• The new value won’t be available until the control is transferred to a successor block
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Both of the above are not fundamental limitations of either Loop EDSL or the Haskell

backend. They arise from the fact that the liveness analysis works on per-block basis

and not per-statement. This means that liveness analysis attempts to determine which

variables are expected to be in scope in a particular block, which are updated and which

are passed to successor blocks. However, it does not attempt to do the same for each

statement.

So far neither of these limitations posed a problem since the loop structure itself is

so modular. There is no apparent need in a more fine-grained per-statement liveness

analysis. The generated Haskell code is run through GHC which itself has excellent

liveness analysis and other compilation tactics resulting in efficient code. The planned

LLVM backend is also likely to be able to optimise the code in its current form.
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6.5 Interfacing host and plugin code

In the previous sections we have seen the process of generating Haskell code from Loop

EDSL. The functions generated from basic blocks of the loop form the main part of the

plugin that would later be compiled and loaded into the running host program.

This section describes an extra layer of functionality that enables the dynamic com-

pilation and loading of the generated code.

6.5.1 Plugin side entry

Looking at the plugin code presented at the beginning of this chapter in Figure 6.2, the

entry functions have the following type:

fromDyn :: Typeable a ⇒ Dynamic → a
fromDyn d = case fromDynamic d of

Just v → v
Nothing → error "Argument␣type␣mismatch"

entry :: [Dynamic] → Dynamic
entry [arrxs] = toDyn (run (fromDyn arrxs))

run :: Vector Double → Vector Double
run arrxs = runST (initmap arrxs)

The entry function is the dynamically typed entry into the plugin. Its type is the

same for all plugins generated by LiveFusion. The arguments such as manifest arrays are

passed in as a list of Dynamic values4 internally holding their type representation. This

allows the plugin to coerce the argument to the appropriate type using fromDyn ensuring

that the type is correct at runtime.

On the other hand, the run function is the typed entry into the plugin and is specific

to every plugin generated.

In a more elaborate program with multiple arguments and return values the plugin

may have entry functions such as the following:

4See http://hackage.haskell.org/package/base/docs/Data-Dynamic.html

http://hackage.haskell.org/package/base/docs/Data-Dynamic.html
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entry :: [Dynamic] → Dynamic
entry [arr_1, arr_2, arr_3, len_4]
= toDyn (run (fromDyn arr_1)

(fromDyn arr_2)
(fromDyn arr_3)
(fromDyn len_4))

run :: Vector Double → Vector Double → Vector Int → Int
→ ((Vector Double, Vector Double), Vector Int)

run arr_1 arr_2 arr_3 len_4 = runST (init_5 arr_1 arr_2 arr_3 len_4)

Note that the return values are structured in a nested tuple. It resulted from the use

of explicit tupling constructor :*: discussed in Section 4.3. For example:

three :: AST ((Vector Double, Vector Double), Vector Int)
three = let xs :: Array Double = . . .

ys :: Array Double = . . .
zs :: Array Int = . . .

in xs :*: ys :*: zs

6.5.2 Host side dynamic compilation and loading

The code for the host side dynamic compilation and loading is relatively straightforward

and is presented in Listing 6.1. It uses GHC API for compilation, which means that the

GHC is linked in as a library into every LiveFusion binary (provided the linking is static).

At the moment the compiled code is not cached for later reuse. This means that if

the same combinator graph is executed multiple times, it is recompiled every time. The

ability to amortise compilation costs over multiple recursive calls is important for Data

Parallel Haskell programs as we will see in the next chapter and it is left as future work.
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-- | Evaluates the AST to a final value.
evalAST :: Typeable t ⇒ AST t → t
evalAST ast = result
where
loop = getLoop ast
dynResult = unsafePerformIO $ evalLoopIO loop (typeOf result)
result = fromJust $ fromDynamic dynResult

{-# NOINLINE evalAST #-}

type Arg = Dynamic

evalLoopIO :: Loop → TypeRep → IO Arg
evalLoopIO loop resultTy = do
(pluginPath, h, moduleName) ← openTempModuleFile
let entryFnName = defaultEntryFunctionName ++ moduleName
let codeString = pluginCode moduleName entryFnName loop resultTy
dump codeString h
pluginEntry ← compileAndLoad pluginPath moduleName entryFnName
let args = Map.elems $ loopArgs loop
let result = pluginEntry args
return result

openTempModuleFile :: IO (FilePath, Handle, String)
openTempModuleFile = do
(fp, h) ← openTempFile "/tmp/" "Plugin.hs"
let moduleName = takeBaseName fp
return (fp, h, moduleName)

dump :: String → Handle → IO ()
dump code h = hPutStrLn h code >> hClose h

compileAndLoad :: FilePath → String → String → IO ([Arg] → Arg)
compileAndLoad hsFilePath moduleName entryFnName =

defaultErrorHandler defaultFatalMessager defaultFlushOut $ do
runGhc (Just libdir) $ do
dflags_def ← getSessionDynFlags
let dflags_dyn = gopt_set dflags_def Opt_BuildDynamicToo
let dflags_opt = dflags_dyn { optLevel = 2 }
setSessionDynFlags dflags_opt
target ← guessTarget hsFilePath Nothing
setTargets [target]
r ← load LoadAllTargets
case r of
Failed → error "Compilation␣failed"
Succeeded → do
setContext [IIDecl $ simpleImportDecl (mkModuleName moduleName)]
pluginEntry ← compileExpr (moduleName ++ "." ++ entryFnName)
let pluginEntry' = unsafeCoerce pluginEntry :: [Arg] → Arg
return pluginEntry'
Listing 6.1: Host side dynamic compilation and loading code
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6.6 Related work

6.6.1 Alternative backends

This chapter has introduced the Haskell backend for LiveFusion. Dynamically compiling

Haskell modules has become a popular way of extending Haskell applications with plugins

[48, 36, 49]. These applications tend to have their plugins written by hand. This is

contrary to the present work, where the plugin code is generated on the fly from the Loop

language code.

However, LiveFusion is not limited to only one backend. In order to extend the

framework to support other backends, a new interpreter for the Loop language can be

built together with an appropriate implementation of the scalar language functions (Sec-

tion 4.4).

One particularly attractive alternative is LLVM framework [28]. GHC already uses

LLVM to produce highly efficient code. However, using a framework such as LLVM for

compiling LiveFusion generated code may avoid the costs associated with running the

generated code through the complete GHC compilation pipeline. As it will be seen in

the next chapter, a compilation overhead of 600 ms is not uncommon when compiling

the generated code with GHC . Reducing those costs may make LiveFusion more widely

applicable to use cases where many pieces of code must be compiled independently and

amortisation cannot be as easily exploited.

While LiveFusion is already producing optimised procedural style code, it still relies

on GHC to perform some optimisations. In particular user defined scalar functions that

parametrise higher-order combinators are inlined without further analysis in hopes that

GHC will subsequently perform all the necessary optimisations on them. This may not be

sufficient if LLVM code is generated directly and LiveFusion might need extra optimisation

passes before the emitted code can target LLVM .

Direct LLVM code generation is becoming popular with EDSL for high performance

computations. Both Flow Fusion [31] and Accelerate [34] are targeting it. The former

first converts the AST to DDC Core [30], an intermediate compiler language similar to

GHC Core. LLVM has also been successfully used for compiling a digital signal processing

EDSL [52, 51].

Generating Haskell and LLVM are not the only options. [45] offers a comparative
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study of TaskGraph, Fabius and Tick C system that are suitable for runtime genera-

tion of numeric code (referenced implicitly) before settling with TaskGraph for DESOLA

(Delayed Evaluation Self Optimising Linear Algebra), a C++ library mentioned in Sec-

tion 4.5.1. However, Haskell and LLVM may be the most suitable targets due to their

maturity and availability as part of Haskell development toolchain.

6.6.2 Liveness Analysis and Mutability

LiveFusion takes a very high level specification of the program and converts in into an

intermediate assembly-style Loop language. The Loop language has unconstrained control

flow and destructive update which poses a problem when generating code targeting single

assignment backends such as Haskell where all variables are immutable by default. LLVM ,

similarly, requires that all registers are in SSA (Static Single Assignment) form.

In order to determine appropriate scoping of bound variables in the generated code and

ensure that all destructive updates are represented as fresh variables, a liveness analysis

pass was implemented (Section 6.4). The analysis has been developed independently,

however, in retrospect it is similar to the ubiquitous data flow analysis of control flow

graphs employed by optimising compilers [5, 55] including GHC ’s own Cmm language.

While LiveFusion sports its own implementation of data flow analysis is may be pos-

sible to reuse a more easily extensible library for this purpose. For example, Hoopl [44]

which provides a way to encode data flow analysis and transformations.



Chapter 7

Results

Throughout this chapter we will use a Data Parallel Haskell implementation of QuickHull

algorithm [3] that computes the convex hull of a finite set of points in the plane. It derives

its name from the QuickSort algorithm and similarly uses a divide and conquer approach.

The convex hull for a set of points in the plane can be visualised as a polygon formed

by a rubber band stretched around the points. More formally, convex hull is the smallest

set of points forming the polygon that encloses all other points.

Figure 7.1 depicts three steps of a sample run of QuickHull algorithm with the final

result shown on the right.

7.1 QuickHull in DPH

Data Parallel Haskell implementation of QuickHull in Listing 33 closely follows the re-

cursive solution:

1. Find the points with smallest and largest x coordinates (lines 12 and 13 as well as

left of Figure 7.1). These points are bound to be in the convex hull.

2. The line between the two points forms two subsets of points, which will be processed

recursively (line 8) by QuickHullR function.

3. The recursive QuickHullR function, given a subset of points and a line, determines

the point, on one side of the line, farthest from it (line 27). This point is also in the

convex hull.

93
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Figure 7.1: Three steps of a sample run of data parallel QuickHull algorithm.

4. QuickHullR also filters out all points on the other side of the line (line 25), keeping

only the points above the line.

5. The two ends of the line each form a new line with the far point to be recursively

processed (line 19).

6. The previous three steps are repeated, expanding the convex hull until no more

points are left above any of the lines. When recursion is finished, points forming

the lines constitute the convex hull.

7.2 QuickHull vectorisation

QuickHull program presented is a typical example of a divide and conquer algorithm.

Recursive calls of quickHullR function in most languages would be processed sequentially

one at a time. However, in DPH the function is vectorised as described in Section 3.2 to

give quickHullR↑ of the following type:

-- Original
QuickHullR :: [:Point:] → Line → [:Point:]
-- Vectorised
QuickHullR↑ :: [:[:Point:]:] → [:Line:] → [:[:Point:]:]

The vectorised function is able to process not one, but an array of lines at a time.

This means that the “expansion” of convex hull in every direction happens in one call

of quickHullR↑ . In fact the three steps of vectorised QuickHull depicted in Figure 7.1

faithfully represent the only three calls to quickHullR↑ required to find the convex hull.
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1 type Point = (Double, Double)
2 type Line = (Point, Point)
3
4 QuickHull :: [:Point:] → [:Point:]
5 QuickHull points
6 | lengthP points == 0 = points
7 | otherwise
8 = concatP [: QuickHullR points ends
9 | ends ← [: (minx, maxx), (maxx, minx) :] :]
10 where
11 xs = [: x | (x, y) ← points :]
12 minx = points !: minIndexP xs
13 maxx = points !: maxIndexP xs
14
15 QuickHullR :: [:Point:] → Line → [:Point:]
16 QuickHullR points line@(start, end)
17 | lengthP above == 0 = [:start:]
18 | otherwise
19 = concatP [: QuickHullR above ends
20 | ends ← [:(start, far), (far, end):] :]
21 where
22 -- Find relative distance from each point to the line
23 distances = [: distance p line | p ← points :]
24 -- Only keep points above the line
25 above = [: p | (p,c) ← zipP points distances, c > 0.0 :]
26 -- Find the point farthest from the line
27 far = points !: maxIndexP distances
28
29 -- Cross product used as distance-like measure
30 distance :: Point → Line → Double
31 distance (xo, yo) ((x1, y1), (x2, y2))
32 = (x1 - xo) * (y2 - yo) - (y1 - yo) * (x2 - xo)

Listing 7.1: Data Parallel Haskell implementation of QuickHull.
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7.3 QuickHull in the backend

The vectorised quickHullR↑ function takes a nested parallel array of points [:[:Point:]:]

as its first argument. It was discussed in Section 3.2.1 that such nested arrays are repres-

ented using segmented arrays in the backend.

Recalling that an array of pairs is repesented as a pair of arrays (Section 3.3), the

Flattening transform represents a nested array of Point as two data arrays and a segment

descriptor:

type Point = (Double, Double)

Points:
[:

[:(3,3):],
[:(4,7), (2,8), (2,9), (4,9):],
[:(8,8), (7,7), (7,9), (9,10):],
[:(9,5), (10,3), (8,1):],
[:(4,0):]

:]

⇓

segd: [ 1, 4, 4, 3, 1 ]

xs: [ 3, 4, 2, 2, 4, 8, 7, 7, 9, 9, 10, 8, 4 ]
ys: [ 3, 7, 8, 9, 9, 8, 7, 9, 10, 5, 3, 1, 0 ]

Since the the second argument to the function is a flat array of Line, no segment

descriptor is required. However, it does need four separate arrays in accordance with the

type of Line. For example:

type Line = (Point, Point)

x1s = [2, 1, 4, 8, 9]
y1s = [1, 5,10, 6, 0]
x2s = [1, 4, 8, 9, 2]
y2s = [5,10, 6, 0, 1]

Overall, quckHullR↑ function goes through the following transformations before it is

compiled using the backend library of collective array operations (such as LiveFusion)1:

1I omit certain internal wrapper types to simplify the example.
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QuickHullR :: [:Point:] → Line → [:Point:]

⇓ Lifting transform

QuickHullR↑ :: [:[:Point:]:] → [:Line:] → [:[:Point:]:]

⇓ Flattening transform

QuickHullR_ :: Array Int -- segment descriptor
→ Array Double → Array Double -- points
→ Array Double → Array Double -- line starts
→ Array Double → Array Double -- line ends
→ Array Double → Array Double -- convex hull points

7.4 The heart of QuickHull: segmented FilterMax

By the time a DPH program is compiled in the backend, it is composed of a large data

flow graph of flat and segmented array combinators. The complete data flow graph for

QuickHull is shown in Figure 7.2.

While the graph consists of over 40 array combinators, roughly 2/3 of its runtime the

QuickHull program spends in what we will refer to as segmented FilterMax. The data flow

diagram logically groups the constituent parts of FilterMax in boxes labelled a through

e. In each recursive step of QuickHull it uses relative distances computed by group of

combinators a to find points above the lines (c, d and e) as well as points farthest from

each line (b).

The complete implementation of FilterMax using LiveFusion interface is given in Ap-

pendix C. I have implemented it by studying the GHC Core code generated by DPH

vectoriser2.

7.5 Stream Fusion and FilterMax

In the previous section we have identified groups of combinators a through e that make

up the functionality of segmented FilterMax. The grouping is not incidental. When

vectorised QuickHull is compiled using Stream Fusion framework the combinators in each

of these groups get fused together.
2The complete hand-vectorised implementation of QuickHull is available at http://github.com/ghc/

packages-dph/tree/master/dph-examples/examples/spectral/QuickHull/handvec

http://github.com/ghc/packages-dph/tree/master/dph-examples/examples/spectral/QuickHull/handvec
http://github.com/ghc/packages-dph/tree/master/dph-examples/examples/spectral/QuickHull/handvec
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Figure 7.2: Data flow diagram of array combinators generated by the vectoriser for
QuickHullR function.
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However, the fusion stops at the boundaries of these groups.

The FilterMax example exhibits both problems with Stream Fusion identified in Sec-

tion 2.1: the inability to fuse producers with multiple consumers and the duplicated

counters.

7.5.1 Multiple consumers

Both the filtering part of FilterMax finding points above the lines (c, d, e), and the part

finding the farthest points (b), rely on the distances to be computed first (a). Because of

the inherent limitation of fusion systems that are based on rewrite rules (Section 2.1.2),

Stream Fusion is unable to fuse the producer of the segmented distances_s array into

the two consumers although they could easily be computed in the same loop.

For the same reason combinator groups d and e cannot be fused with group c that

produces an array of boolean tags specifying which points should be kept and which

filtered out.

In fact, the pattern formed by combinator groups c, d and e is very common to DPH

programs. Based on the result of some computation in c, a new segmented array is

produced in d AND a new accompanying segment descriptor in e.

LiveFusion on the other hand is able to fuse all combinator groups a through e into a

single (nested) loop.

7.5.2 Duplicated loop counters

With arrays of points being represented by two arrays and arrays of lines – by four arrays,

any computation involving their point-wise processing introduces at superfluous counter

variable and bounds checks in Stream Fusion. This problem was discussed in Section 2.1.3

and solved in LiveFusion using rates (Section 5.3.3).

Referring to the FilterMax example, zipWith6 combinator from group a uses 6 sep-

arate counters for each of the input arrays and one for the output. Similarly, zip and

zipWith combinators of groups b and c use 3 counters each.
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7.6 Evaluation

Benchmarking in this section has been carried out using an implementation of QuickHull

that was vectorised by hand, closely following the intermediate GHC Core code produced

by DPH vectoriser. It is expressed using array combinators.

A variant of QuickHull that uses LiveFusion to compute FilterMax has been compiled.

As of this writing LiveFusion is able to dynamically generate and load fused code. How-

ever, it does not yet cache the compiled code. To avoid recompiling the same combinator

graph in each recursive step of QuickHull, the pre-generated code of FilterMax has been

compiled in. Additional compilation costs are factored into the results where appropriate.

The Stream Fusion variant was compiled against dph-prim-seq library found in the

DPH distribution.

Both programs have been run on 10, 20, 25, 40 and 50 million points. The experiments

were conducted on an Apple MacBook Pro 8.2 with a 2 GHz Intel Core i7 CPU with 256

KB L2 and 6 MB L3 cache and 16 GB of system memory. The benchmarks were compiled

with a development version of GHC (7.9.20140514).3

7.6.1 Overall performance

Figure 7.3 shows the runtime of the complete QuickHull program. In one instance it

uses Stream Fusion throughout. In another it substitutes LiveFusion generated code to

compute FilterMax. The results are shown numerically in Figure 7.4 exhibiting 1.46 –

1.84 speedups even with amostised compilation costs factored in (≈ 650 ms). It should

be noted that FilterMax only accounts for 2/3 of the runtime so a complete LiveFusion

implementation is expected to yield further speedups.

7.6.2 FilterMax performance

To compare LiveFusion and Stream Fusion directly, Figures 7.2 and 7.4 show the per-

formance of each running just FilterMax. The running times given are for 100 million

points and less. Timing for fewer than 65 thousand points has been omitted even though

it shows at least as good performance of LiveFusion as compared to Stream Fusion.

3Patched for Template Haskell pretty printing bug #9022 http://ghc.haskell.org/trac/ghc/
ticket/9022.

http://ghc.haskell.org/trac/ghc/ticket/9022
http://ghc.haskell.org/trac/ghc/ticket/9022
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Figure 7.3: Runtime of vectorised QuickHull with FilterMax fused by Stream Fusion and
LiveFusion.

Number of points LiveFusion Stream Fusion LiveFusion + compilation Speedup
10000000 2631 4803 3281 1.46
15000000 4026 7322 4676 1.57
20000000 5378 9715 6028 1.61
25000000 6714 12227 7364 1.66
40000000 10627 19423 11277 1.72
50000000 12798 24715 13448 1.84

Figure 7.4: Runtime of vectorised QuickHull with FilterMax fused by Stream Fusion and
LiveFusion (measured in milliseconds).
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Figure 7.5: Runtime of FilterMax fused by Stream Fusion and LiveFusion.

Excluding the speedups for smaller number of points (161482 points and below, which

tend to be higher), the average speedup observed is 3.2.

7.6.3 Discussion

It is important to note that the both LiveFusion and Stream Fusion are able to generate

highly optimised code. Performance advantage of LiveFusion mainly comes from its abil-

ity to exploit more fusion opportunities than Stream Fusion. In the case of FilterMax,

LiveFusion was able to fuse into one loop what Stream Fusion fused into five separate

loops. Importantly each of those five loops were running at the rate of the number of

points. The overhead of reading and writing large arrays to the memory by the Stream Fu-

sion implementation had significant impact on the runtime of the program. LiveFusion’s

improved performance is in a major way attributed to reduced memory traffic.
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Number of lines Number of points LiveFusion Stream Fusion Speedup
2 100000000 2342 7828 3.3
2 80000000 1926 6543 3.4
2 50000000 1209 4100 3.4
2 40000000 965 3253 3.4
2 30000000 739 2445 3.3
2 20000000 477 1599 3.4
16 9971928 157 508 3.2
16 7979704 124 394 3.2
16 4988482 79 256 3.2
16 3989894 62 196 3.2
16 2992208 47 155 3.3
32 2550344 39 126 3.2
32 2040956 32 102 3.2
32 1275378 19 73 3.8
32 1020092 16 53 3.3
32 764138 12 40 3.3
64 643906 14 43 3.1
64 514694 8 28 3.5
32 508870 9 27 3
64 322464 5 18 3.6
64 257710 4 15 3.8
64 193086 3 11 3.7
128 161482 2 10 5
128 129112 2 8 4
64 128766 4 8 2
128 81172 1 5 5
128 65086 1 5 5

Figure 7.6: Runtime of FilterMax fused by Stream Fusion and LiveFusion (measured in
milliseconds).
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Chapter 8

Conclusion

The problem of array fusion is not in its infancy. Yet there is no definitive and widely

accepted approach to it. Every technique is often tailored to the surrounding context

to support the programming model offered by the framework. The work described in

the present dissertation has been carried out in the context of nested data parallelism

(Chapter 3) in purely functional languages. It was argued that equational approaches to

fusion (Appendix A) fall short in attempting to fuse complex combinator graphs (Sec-

tion 2.1.2) using only local program transformations (rewrite rules).

Chapter 4 introduced an EDSL based approach to fusion using a new language called

LiveFusion. Following this approach, collective array operations are not performed im-

mediately but are recorded in an AST. The chapter also covered sharing recovery of

AST terms (Section 4.3.1) as well as a way of embedding inlineable scalar functions (Sec-

tion 4.4).

Chapter 5 presented a common loop structure to which fusible combinators can be

mapped using an assembly-like Loop language. It showed the translation of a large number

of combinators to loops which included segmented combinators (Section 5.7) that are

fundamental to fusing vectorised code.

Chapter 6 offered the requirements to the backend code generators such as fast mutable

arrays and mutable variables. It applied these requirements to a backend that generated

monadic Haskell code through the use of Template Haskell. The chapter also described

liveness analysis used to analyse data flow in a control flow graph of Loop’s basic blocks

(Section 6.4). The analysis ensured that the generated code is well-scoped and all variables

are assigned exactly once (generating fresh names on destructive update).
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Chapter 7 applied the LiveFusion framework to the QuickHull algorithm. The al-

gorithm was chosen since it was illustrative of DPH vectoriser’s inner workings and used

a wide range of combinators offered by LiveFusion. It was shown that LiveFusion’s ability

to fuse more complex combinator graphs can yield speedups of 3.2 times on average as

compared to Stream Fusion.

8.1 Contributions

In this thesis I present two main research contributions. First, I show how to implement

an embedded domain specific language that is able to:

• fuse flat and segmented array combinators without depending on compiler term

rewriting

• fuse combinator graphs with a large amount of internal node sharing

• fuse graphs producing multiple results and/or demand materialisation of graph’s

intermediate nodes through explicit tupling.

LiveFusion language lifts many of the restrictions imposed by currently available fusion

libraries such as the inability to fuse a producer into multiple consumers or to compute

multiple results in one fusion pass (tupling). Compared to frameworks that do allow

tupling and/or multiple consumers fusion, the new language has support for segmented

combinators which is vital for its application in nested data parallelism.

Second, I devise a generic representation of fusible loops onto which many types of

combinators can be mapped. The Loop language with a rate system and built-in control

and data flow analysis offers a way to write composable loops. This is a core contribution

which may be applied in a variety of languages and programming paradigms. It does not

have to be a runtime feature, provided the combinator graph is known at compile time

and is free of control flow.

8.2 Future work

Following on from the work carried out and the results achieved, there are several research

and development paths that can be taken to advance the LiveFusion system.
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8.2.1 Parallelism and vectorisation

The work described in this thesis has resulted in a system that can exploit more fusion

opportunities than previous systems. However, the code generated by LiveFusion is still

sequential. The reason for this is that I focused on developing a novel fusion system rather

than a parallel execution engine.

Granted, such a fusion system targeting nested data parallel applications defeats the

purpose. Granted, introducing parallel execution would have its own challenges since it

typically results in more fusion-preventing edges in combinator graphs.

However, parallelising collective array operations is a well researched problem which

includes the lessons learnt from implementing parallelism in the Stream Fusion based

backend of DPH . In particular Distributed Types [9] allow for seamless parallelisation

given sequential combinator implementations. Additionally, my previous work on par-

allelism granularity shows that for many operations, the overhead of distributing the

computation across threads may be considerably higher than computing it sequentially.

Lastly, with vector registers growing in size in modern CPUs (512 bits in the near

future [20]) and their instruction sets expanding, it may prove to be fruitful to target

instruction-level vectorisation at the same time as full-featured parallelism.

8.2.2 Clustering and advanced rate inference

Not all combinator graphs can be fused into a single loop, especially in the parallel context.

Randomly accessing the data, or reducing an array using fold, or scanning an array in

the parallel context – all of these operations are fusion-preventing.

As discussed in Section 5.8.3 there may be more than one way to cluster combinators

into fusible groups. At present the fusion performed by LiveFusion is opportunistic.

Preventing fusion where it is not allowed and scheduling multiple loops would be the next

priority for LiveFusion.

Finally, a more sophisticated rate inference system supporting flat and segmented

appends and other interleaved access patterns would also be highly beneficial to the

application of LiveFusion in DPH . It would not be an understatement to say that the

rate system, being fundamental to composing loops, is at the absolute core of the proposed

fusion technique.
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Appendix A

Equational fusion systems

This section will review two approaches to compile-time fusion in Haskell: foldr/build

short cut fusion and Stream Fusion. They both fall into the category of equational fusion

systems meaning that they rely on compiler’s rewrite rules [41] for them to work.

A major problem with this approach is that it cannot fuse a producer into multiple

consumers which is vital for Data Parallel Haskell as discussed in Section 2.1.
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A.1 foldr/build fusion

foldr/build short cut fusion [17] is one of the most referenced techniques for fusion in

Haskell. It has been developed for use in GHC to fuse pipelined list operations. It

employs two combinators, foldr and build, and a single rewrite rule to eliminate adjacent

occurrences of the combinators. It is suitable for use in the cases when the functions to

be fused can be defined in terms of these combinators. The definition of foldr is reused

from Prelude – Haskell’s standard library:

foldr :: (a → b → b) → b → [a] → b
foldr f z [] = z
foldr f z (x:xs) = f x z : (foldr f z xs)

To understand the motivation behind short cut fusion one may think of foldr as of

replacing each Cons of a list with a binary operator and Nil with the neutral element. The

other combinator, build, takes a second order function which in turn takes an operator

to be used as Cons, and a value to be used as Nil. Since we are building a list, these

immediately become (:) and [ ].

build :: ((a → b → b) → b → b) → [a]
build g = g (:) []

To illustrate the approach a map could be defined in terms of build/foldr as follows:

map f xs = build (λc n → foldr (c . f) n xs)
-- c is (:), n is [ ]

In the above code the list is being folded into another list. With the help of a rewrite

rule

〈foldr/build fusion〉∀g k z.foldr k z (build g) 7→ g k z

the two consecutive maps could be reduced to as in the following:

map h (map f xs)
-- inline
= build(λc n → foldr (c.h) n
(build (λc n → foldr (c.f) n xs)))

-- apply rewrite rule
= build(λc n → ((λc n → foldr (c.f) n xs) (c.h) n)
-- β-reduce
= build(λc n → foldr (c.h.f) n xs)

While this leads to the desired results in many cases, it requires the programmer to

define the functions in a less readable form. This may be acceptable for some of the code
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in the standard library but is not likely to be widely accepted among client programmers.

Thus the fusion breaks for the parts of the code that do not use the explicit foldr/build

definitions. To solve this, Chitil proposed a type inference algorithm to automatically

infer the foldr/build definitions [12].

The above limiting factor is critical to the application of the fusion system to lists but

is less relevant to LiveFusion system since the number of combinators is fixed.

However, the limitations that do make it unattractive are the inability to effectively

fuse left folds and zips which are both crucial to DPH . The inability to fuse into multiple

consumers is likewise very considerable for such application of the technique as DPH .

A dual of foldr/build is destroy/unfoldr [50] fusion framework, which while able

to fuse reductions and pointwise consumers, is also unable to fuse a producer into multiple

consumers.
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A.2 Stream Fusion

Stream Fusion [14, 15] is originally employed in the DPH backend library at one of the

two levels of fusion discussed in Section 3.4.1.

It introduces two data types: a stream and a stepper.

data Stream a = ∀ s. Stream (s → Step s a) s

A Stream is defined by its stepper function and seed. The seed is essentially the

state of the stream at any given point. The stepper is used to produce a stream by taking

the current seed and yielding the next step. That is, the stepper function may produce

the next element and new state from current state. The step produced by calling stepper

on stream may be one of the following:

data Step s a = Yield a s
| Skip s
| Done

A Done flags the end of the stream, while Yield contains an element and the new seed

(i.e. new state). If a Skip is encountered it means that the current step did not contain

an element but the stream has not yet finished1.

The streaming of a list could be defined in the following way:

stream :: [a] → Stream a
stream step0 = Stream next step0
where next [] = Done

next (x:xs) = Yield x xs

The list itself is being used as the seed. Unstreaming back to a list takes the following

form:

unstream :: Stream a → [a]
unstream (Stream next0 step0) = unfold step0
where unfold s = case next0 s of

Done → []
Skip s' → unfold s'
Yield x s' → x : unfold s'

Any fusible list function should now be defined in terms of Streams as opposed to lists.

For example the map combinator is defined as follows:

1For example if the stream has skipped an element that did not satisfy the predicate of a filter
combinator.
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mapS :: (a → b) → Stream a → Stream b
mapS f (Stream next0 s0) = Stream next s0
where next s = case next0 s of
Done → Done
Skip s' → Skip s'
Yield x s' → Yield (f x) s'

map :: (a → b) → [a] → [b]
map f xs = unstream . mapS f . stream

Note that the user-facing definition of map still takes a regular lists but converts the

list to a stream internally.

To see how a Skip step might be used it may be worthwhile to look at the definition

of the filter function.

filterS :: (a → Bool) → Stream a → Stream a
filterS p (Stream next0 s0) = Stream next s0
where next s = case next0 s of
Done → Done
Skip s' → Skip s'
Yield x s' | p x → Yield x s'

| otherwise → Skip s'

filter :: (a → Bool) → [a] → [a]
filter p = unstream . filterS p . stream

Again, the user-facing filter function streams the list before passing it to the stream-

based counterpart.

Given the above definitions of map and filter the fusion opportunity such as map f . filter p

may now be exploited with the following rewrite rule

〈stream/unstream fusion〉 ∀stream (unstreams) 7→ s

(map f . filter p) xs
-- inline definitions of map and filter
= (unstream . mapS f . stream . unstream . filterS p) xs
-- apply stream/unstream rewrite rule
= (unstream . mapS f . filterS p . stream) xs

The fusion is not complete at this point but the stream processing functions mapS

and filterS are not adjacent and can be fused by inlining the definitions and GHC ’s

built-in optimisations. In order to completely remove all traces of the helper data struc-

tures Stream Fusion relies on general purpose compiler optimisations and a Constructor

Specialisation optimisation [37].
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A more thorough description list combinator fusion using Stream Fusion can be found

in [14].

Stream Fusion has proven to be very potent for array processing and is successfully

employed in the Vector library. It can fuse more types of combinators than forldr/build

and Functional Array Fusion and has recently been extended to support vectorised CPU

instructions [33].



Appendix B

Considerations for fusing lockstep

consumers

This appendix follows from the discussion of zipWithN combinators in Section 5.5.2 on

page 61.

In general the fusion of combinators that consume multiple arrays in lockstep (zipWithN

family of combinators, indices_s, replicate_s, etc..) faces the following two problems:

1. The lengths of the input arrays may be different.

2. The loops producing some of all of the input arrays may not produce elements in

every iteration.

The following two sections discuss the two problems in turn and offer potential solu-

tions. It should be noted that neither of the problems are affecting the fusion of Data

Parallel Haskell programs and can be left as future work.
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let xys = zipWith (*) xs ys
zs = map (+1) ys

in (xys, zs)

xs

map (+1)zipWith (+)

ys

xys zs

Figure B.1: Zipping arrays of different lengths. Haskell code (left) and the corresponding
data flow diagram (right).

B.1 Inputs of different lengths

In the standard Haskell library the result list of zipWith combinator has the same length

as the shortest of its inputs. In the Loop language this could easily be expressed by

setting the output length to be the minimum of the input array lengths and adjusting the

iteration range appropriately:

initzip/xs/ys:
let lenzip = min lenxs lenys

guardzip/xs/ys:
unless ixzip < lenzip | donezip

However, there are still implications of this approach. Consider the program in Fig-

ure B.1. The ys array is consumed both by zipWith and map. Supposing that xs is

shorter than ys it makes it harder (though not impossible) to compute both xys and zs

in the same loop.

In order to successfully fuse the above example the Loop language needs to be able to

express overlapping loop ranges. In this particular example a portion of the index range

should be processed by both zipWith and map operations, and the rest with just the map.

Since LiveFusion was designed to target DPH , and DPH statically guarantees the

inputs to be of the same lengths, the restriction on accepted input lengths is justified.



B.2. SKIPPING ELEMENTS IN THE INPUTS 119

B.2 Skipping elements in the inputs

LiveFusion has support for fusing loops which do not produce an elements in every itera-

tion. The most prominent of those is perhaps the filter combinator. If the combinator

pipeline producing an input to zipWith contains a filter, fusing them becomes more

challenging.

Consider the following example:

let xs = filter odd [0..9]
ys = [11..15]
zs = zipWith (*) xs ys

in zs

While zipWith is supposed to consume elements from xs and ys in a lockstep, produ-

cing both those elements will not always happen in the same iteration. ys array does not

pose a problem, it is guaranteed to produce one element in each iteration. However, the

addition of filter into the equation for xs will mean that the loop for xs may require

more than one iteration to produce an element. If the filter skips an element the loop

for ys must wait.

B.2.1 A solution

Considering a potential implementation of the same program in a procedural language

reveals that it is still possible to only use one overall loop for computing zs.

However, a separate nested loop is required for computing the elements of xs. This

loop will exit when the filter predicate is satisfied.

Figure B.2 presents a potential solution to the problem expressed as a control flow

graph in the Loop language. The bodies of zipWith and ys are merged together in the

outer loop while the whole of xs including filter is an loop which is entered before the

body of zipWith is executed.

B.2.2 Implications

A solution described above is plausible in LiveFusion. However, it requires more sophist-

icated analysis of the combinator graph.

Again, the DPH system which is the primary target of LiveFusion is guaranteed to

feed zipWith combinator with uniformly produced arrays. Even if the input arrays are
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init

guardys/zip

done

bodyxs/filt

yieldxs/filt

bottomxs/filt

guardxs/filt

bodyys/zip

yieldys/zip

bottomys/zip

nested loop

xs
 e

lem
en

t f
ou

nd

...

Figure B.2: Loop language CFG for a nested loop solution to lockstep consumption of
producers that may skip.

filtered they all skip of produce an element at the same time.
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initbperm/is:
let lenis = arrayLength arris
let lenxs = arrayLength arrxs
let lenbperm = lenis
let ixis = 0
let arrbperm = newArray lenbperm
goto guardbperm

guardbperm/is:
unless ixis < lenis | donebperm
goto bodybperm

bodybperm/is:
let eltis = readArray arris ixis
-- set index to read xs at
let ixr = eltis
let eltxs = readArray arrxs ixr
let eltbperm = eltxs
goto yieldbperm

yieldbperm/is:
ixis ··= ixis + 1
writeArray arrbperm ixis eltbperm
goto bottombperm

bottombperm/is:
goto guardbperm

donebperm/is:
let resultbperm = sliceArray arrbperm ixis
return (resultbperm)

Figure C.1: Loop code generated for bpermute xs is where both data (xs) and indices
(is) arrays are manifest and the result array is forced. Referenced in Section 5.6.
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initfold/segd/data:
let lensegd = arrayLength arrsegd
let lendata = arrayLength arrdata
let lenfold = lensegd
let zfold = 0
let ixsegd = 0
let ixdata = 0
let arrfold = newArray lenfold
goto guardfold

guardfold/segd:
unless ixsegd < lensegd | donefold
goto nestfold

nestfold/segd:
let accfold = zfold
let eltsegd = readArray arrsegd ixsegd
let endsegd = ixdata + eltsegd
goto guarddata

bodyfold/segd:
let eltfold = accfold
goto yieldfold

yieldfold/segd:
ixsegd ··= ixsegd + 1
writeArray arrfold ixsegd eltfold
goto bottomfold

bottomfold/segd:
goto guardfold

donefold/segd/data:
let resultfold = sliceArray arrfold ixsegd
return (resultfold)

guarddata:
unless ixdata < endsegd | bodyfold
goto nestdata

nestdata:
goto bodydata

bodydata:
let eltdata = readArray arrdata ixdata
goto yielddata

yielddata:
ixdata ··= ixdata + 1
goto bottomdata

bottomdata:
accfold ··= accfold + eltdata
goto guarddata

Figure C.2: Loop code generated for folds (+) 0 segd data where both segd and data
are manifest arrays and the result array is forced. Referenced in Section 5.7.2.
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initscan/segd/data:
let lensegd = arrayLength arrsegd
let lendata = arrayLength arrdata
let lenscan = lendata
let zscan = 0
let ixdata = 0
let ixsegd = 0
let arrscan = newArray lenscan
goto guardsegd

guardsegd:
unless ixsegd < lensegd | donescan
goto nestsegd

nestsegd:
let accscan = zscan
let eltsegd = readArray arrsegd ixsegd
let endsegd = ixdata + eltsegd
goto guardscan

bodysegd:
goto yieldsegd

yieldsegd:
ixsegd ··= ixsegd + 1
goto bottomsegd

bottomsegd:
goto guardsegd

donescan/segd/data:
let resultscan = sliceArray arrscan ixdata
return (resultscan)

guardscan/data:
unless ixdata < endsegd | bodysegd
goto nestscan

nestscan/data:
goto bodyscan

bodyscan/data:
let eltdata = readArray arrdata ixdata
let eltscan = accscan
goto yieldscan

yieldscan/data:
ixdata ··= ixdata + 1
writeArray arrscan ixdata eltscan
goto bottomscan

bottomscan/data:
accscan ··= accscan + eltdata
goto guardscan

Figure C.3: Loop code generated for scanls (+) 0 segd data where both segd and
data are manifest arrays and the result array is forced. Referenced in Section 5.7.2.
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Segmented FilterMax in LiveFusion

The following is the complete source of the program representing the FilterMax component

of vectorised QuickHull. QuickHull was discussed in Section 7 on page 93 with Data

Parallel Haskell source given in Listing 33 on page 95.

-- The heart of vectorised QuickHull.
-- Based on hand-vectorised version of QuickHull found in:
-- ghc/libraries/dph/dph-examples/examples/spectral/QuickHull/handvec/Handvec.hs
{-# LANGUAGE RebindableSyntax #-}
module FilterMax where

import Data.LiveFusion

import Prelude as P hiding ( map, replicate, zip, zipWith,
filter, fst, snd, unzip )

filterMax :: (IsNum a, IsOrd a, Elt a)
⇒ Term Int -- Number of points
→ Array Int -- Segd
→ Array a → Array a -- Points
→ Array a → Array a -- Line starts
→ Array a → Array a -- Line ends
→ (Array a, Array a, -- Farthest points

Array a, Array a, -- Points above lines
Array Int) -- New segd

filterMax npts segd xs ys x1s y1s x2s y2s
= let -- Find distance-like measures between each point and its

respective line.
distances = calcDistances npts segd xs ys x1s y1s x2s y2s

-- Throw out all the points which are below the line.
(above_xs, above_ys, aboveSegd) = calcAbove npts segd xs ys distances

-- Find points farthest from each line.
(fars_xs, fars_ys) = calcFarthest npts segd xs ys distances

in (fars_xs, fars_ys, above_xs, above_ys, aboveSegd)
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-- | Find (relative) distances of points from line.
--
-- Each point can be above (positive distance) or below (negative
distance)
-- a line as looking from the centre of the convex hull.
--
-- Corresponds to ’distances’ in the original program:
-- > distances = [: distance p line | p ← points :]
calcDistances :: (IsNum a, IsOrd a, Elt a)

⇒ Term Int -- Number of points
→ Array Int -- Segd
→ Array a → Array a -- Points
→ Array a → Array a -- Line starts
→ Array a → Array a -- Line ends
→ Array a -- Relative distances from lines

calcDistances npts segd xs ys x1s y1s x2s y2s
= zipWith6 distance xs

ys
(replicate_s npts segd x1s)
(replicate_s npts segd y1s)
(replicate_s npts segd x2s)
(replicate_s npts segd y2s)

-- | Compute cross product between vectors formed between a point (x,y)
-- and each of the two line ends: (x1,y1) and (x2,y2).
distance :: (IsNum a, IsOrd a, Elt a)

⇒ Term a → Term a -- Point
→ Term a → Term a -- Line start
→ Term a → Term a -- Line end
→ Term a -- Distance

distance x y x1 y1 x2 y2
= (x1 - x) * (y2 - y) - (y1 - y) * (x2 - x)
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-- | Find points above the lines given distance-like measures.
--
-- Corresponds to ’above’ in the original program:
-- > above = [: p | (p,c) ← zipP points distances, c > 0.0 :]
calcAbove :: (IsNum a, IsOrd a, Elt a)

⇒ Term Int -- Number of points
→ Array Int -- Segd
→ Array a → Array a -- Points
→ Array a -- Distances
→ (Array a, Array a, -- Points with positive distances

Array Int ) -- New Segd
calcAbove npts segd xs ys distances
= let -- Compute selector for positive elements

aboveTags = zipWith (>.) distances (replicate npts 0)

-- Compute segd for just the positive elements
aboveSegd = count_s true segd aboveTags

-- Get the actual points corresponding to positive elements
(above_xs, above_ys)

= unzip
$ packByBoolTag true aboveTags
$ zip xs ys

in (above_xs, above_ys, aboveSegd)
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-- | For each line find a point farthest from that line.
--
-- Each segment is a collection of points above a certain line.
-- The array of Doubles gives (relative) distances of points from the
line.
--
-- Corresponds to ’far’ in the original program:
-- > far = points !: maxIndexP distances
calcFarthest :: (IsNum a, IsOrd a, Elt a)

⇒ Term Int -- Number of points
→ Array Int -- Segment descriptor
→ Array a → Array a -- Points
→ Array a -- Distances
→ (Array a, Array a) -- Points with biggest distances

calcFarthest npts segd xs ys distances
= let -- Index the distances array, and find the indices corresponding

to the
-- largest distance in each segment
indexed = zip (indices_s npts segd)

distances
max_ids = fsts

$ fold_s maxSnd (0 .*. small) segd indexed

small = -999999

-- Find indices to take from the points array by offsetting from
segment starts

ids = zipWith (+) (indicesSegd segd)
max_ids

max_xs = bpermute xs ids
max_ys = bpermute ys ids

-- We are only interested in the ones which are above the line
-- (thus from segments containing points above line).

in (max_xs, max_ys)

-- | Compute array containing starting indices of each segment
-- of a segment descriptor.
indicesSegd :: Array Int → Array Int
indicesSegd = scan (+) 0

-- | Find pair with the biggest second element.
maxSnd :: (Elt a, Elt b, IsOrd b) ⇒ Term (a, b) → Term (a, b) →
Term (a, b)
maxSnd ab1 ab2 = let b1 = snd ab1

b2 = snd ab2
in if b1 ≥. b2 then ab1

else ab2
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