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Abstract

The process of score-to-audio alignment matches the events in the score to the time when they

occur in the audio recording. The results of the alignment can thus be used to time scale modify

a musical piece or alternatively assign exact tempo at every position of the score, so that both

are in sync with each other. The method presented in this work uses a dynamic time warping

technique with subsequent linear spline fitting to eliminate minor alignment errors and achieve a

naturally sounding audio output. The method has been designed with music notation software

tools in mind. As such, it has performance optimisation as one of its goals. It is robust to

errors in the score such as incorrectly transcribed notes. It does not make assumptions about

the instruments present in either the audio recording or the score, but is targeted towards

pop/rock music. As opposed to methods that attempt to achieve a ground-truth alignment for

indexing and machine training purposes, a new technique has been developed to prioritise the

perceptional quality of the alignment. A variety of methods at every stage of the alignment

process are compared and discussed with reference to the problem at hand. In particular the

chroma vectors will be presented as an alternative to pure spectral features. The tests have

shown them to be more stable than spectral features during rough alignments, but not as precise

on the fine grained scale. The performance improvements result in a 70-90% reduction of the

running time. The obtained quality evaluation results show the validity of the approach and

form the basis for a discussion of possible improvements to the process.



Chapter 1

Introduction

Score is a form of musical notation. It is most commonly known as sheet music but can also

be presented in a digital equivalent. It is a symbolic representation of music. Each note to

be played by the musician is described in terms of its pitch and playing characteristics. The

relative position in time and length of each note are also recorded. Relative timing is specified

by the tempo, i.e. the speed at which the musical piece should be played. The tempo may vary

from one part to another but it is usually steady across one or more sections of the piece of

music.

While tempo may be specified as a constant for a longer part of the piece it is often idealistic.

It hardly ever reflects the reality of a human playing. And it is most certainly not the case with

live performances or recordings made without a reference track. In fact, software synthesisers

that attempt to mimic human playing often tend to loosen timing and velocity of individual

notes to convey realism.

There are, however, many applications in which the opposite process is required. That is,

having a music recording and the corresponding score, obtain the best match between the two

(Figure 1.1):

1. In film and music industries, session musicians are often given the score to the music they

are to record. Once recorded the results of an alignment may be used to guide or aid the

process of error correction with little or no intervention required.

2. In musicology the score with automatically marked tempo may be invaluable for perform-

ance analysis and evaluation. An example would be the comparison of the interpretation

of the same musical score by two or more musicians.
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Figure 1.1: Goal of score alignment. The upper graph is a valid transcription of the original
audio in the lower graph, misaligned in time and possibly in tempo. The selected notes at
about 24s in the score occur at about 26s in the audio.

3. In computer science indexing or segmentation of continuous media can be used for creating

a database for subsequent model training and content-based retrieval. The former exploits

the machine learning techniques to improve music transcription or speech recognition.

The latter attempts at finding the database entries that best mach the musical or symbolic

data supplied.

4. Professional and amateur musicians may benefit from the new capabilities while working

with their scores in music notation software. The score can be auditioned by playing back

a prerecorded track synchronised appropriately.

The work presented here attempts to approach to the last application on the list. While

the methods are similar to the first three examples, the goals have subtle differences. It is

probably beneficial for the first three tasks that the alignment is ground-truth, possibly with

some automatic error detection functionality. The present application on the other hand, is

targeted towards a non-technical user. It may seem logical to responsibly cover up the errors

in the alignment to improve the perceptional alignment quality. Such problems include both

the errors resulting from alignment, as well as the mistakes in transcription or performance:

1. The alignment process may be confused by the musical content and produce incorrect

results in the short periods of time, usually in the transition between two sections, like

verse and chorus. This may be caused, for example, by the drummer going hard on drums

or expressive vocals not being reflected by any instrument in the score.

2. While this is not an error, but rather something to be wished for in other applications, a

high alignment resolution causes the tempo to always change from one note to another.

2



Should the audio recording be time scaled to reflect every small change in tempo, it will

loose its human touch and will be unpleasant to listen to. Added to that is a noticeable

loss in quality introduced by changing the playing rate so often.

3. The score may introduce repeated or be missing sections, usually due to incorrectly tran-

scribed song structure.

One of the main research goals has been to account for the first two of the above problems.

Obviously, it introduces certain constrains on the types of music that can be processed. But

perhaps only music in highly experimental styles will be misinterpreted by the improved al-

gorithm. Usually when there is a sudden change in tempo, it is kept constant across longer

periods of time before the next change.

Another important aspect of the problem is its computational complexity. The algorithms

widely used to solve alignment problems require long running time. To give an indication, an

unoptimised solution takes over 20 seconds to align a 4 minute song with its score. This is

undesirable for a casual user and can be reduced considerably. Several optimisation solutions

have been studied and a proposal developed.

To reason about the design choices made, the discussion will follow with reference to a

notation editing software TuxGuitar (Figure 1.2). The program is targeted at guitar players but

can be used by all musicians for the purposes of editing and viewing scores. It currently allows

playing back the score through several software synthesisers approximating the sounds of real

instruments. It supports third-party extensions so one can be built to include the functionality

described here. The extension would allow importing an audio file into the software. Subsequent

use of the transport control buttons (play, next bar, loop, etc.) will result in the imported audio

file being played from the appropriate position. This would allow musicians to play along to the

original studio recordings or backing tracks freely available on the Internet, while at the same

time visualising the scores to be played. The current progress of this extension development

will be discussed in the Implementation chapter of this document.
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Figure 1.2: Main window of TuxGuitar, a guitar tablature and score editor. Plays back the
scores, graphically following the position in the song.

The following section will cover the theory and the main alternatives proposed by researchers

in the field. The technical details of the author’s system will then be disclosed. The report will

be concluded with the evaluation results and a discussion of the next steps to the system.
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Chapter 2

Background

The core of system to be developed can be divided into three main subsystems: Feature Ex-

traction, Alignment and Error Correction (Figure 2.1). The inputs to the system are an audio

and a score (also in form of audio, synthesised from MIDI, to be introduced). Two outputs are

expected:

1. The original audio, time scaled to sound in sync with the score.

2. The alignment map, i.e. a plain text file containing mappings from sample indices in the

original audio to their new positions when time scaled.

This section discusses the main approaches in the field of score-to-audio alignment and their

relevance to the problem at hand.

Figure 2.1: Preliminary overview of the system. Includes Feature Extraction, Alignment and
Error Correction subsystems.
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2.1 Feature Extraction

Score and audio fundamentally differ in the ways they are represented in data and content they

carry. Musical Instrument Digital Interface, or MIDI for short, is an implementation of the score

in digital systems. It is a protocol for communication between electronic musical instruments,

devices and computers. It defines a notion of events which, along with other control structures,

can represent the notes and their characteristics. The latter include instrument, pitch, duration,

velocity and basic playing techniques. The methods described in this document are applicable

to any digital score representation that gives access to pitch and timing information of individual

notes. However, since the target system uses a representation similar to MIDI, the terms MIDI

and score will be used interchangeably.

While score is a purely symbolic representation of music, a valid audio signal is continuous by

nature and carries enough information to reproduce the music as intended. It is a digital signal

represented as a bitstream of amplitude quantities, called samples (Figure 2.2). The samples

are captured at equal intervals Fs times a second, thus Fs is called the sampling frequency or

sampling rate (e.g. 44100 Hz).

Figure 2.2: Waveform of stereo digital audio signal. The frame contains a zoomed in fragment,
where individual samples are distinguishable (blue dots).

Due to the differences described above, Audio and MIDI cannot be compared directly. A

common representation of inputs is needed. Two main options have been explored by researchers

and discussed below are:

• alignment in symbolic domain, and,

• alignment based on audio features.

6



2.1.1 Symbolic Domain

Digital music analysis in symbolic form has been used long before the computers became power-

ful enough to manipulate digital audio. Such a symbolic alignment method implies transcribing

the given audio into MIDI and performing alignment between the transcribed and original MIDI

representations of the same musical piece. The approach has its advantages:

1. Partial but reliable transcription will suffice. This means that once the main melody

notes, chord changes and basic rhythmic structure are transcribed, the alignment will

most probably succeed. The transcription algorithm does not need to pick up every little

detail to obtain a high quality alignment. In fact, a few researches have shown that it is

enough to guess the note onsets and the pitches of notes [3], [4].

2. A precise transcription will guarantee a precise alignment. If onsets of the notes are

determined correctly the match would be exact around these notes. However, it may be

problematic to detect the exact time when the note started.

Among the disadvantages of the approach is the general difficulty of the of polyphonic audio

transcription. It is a research area on its own. While there has been some success in the field,

it is generally considered an unsolved problem. The methods that exist normally introduce

constraints on the input audio. So the alignment is highly dependant on what the transcriber

can and can’t detect (e.g. support for polyphony, drums, multiple instruments with a similar

timbre, etc..)

Some interesting works using this approach include the work by Müller et al. [3]. Their

system was claimed to be able to align piano music of arbitrary complexity and genre. They

made use of the fact that the characteristics of piano sound are well known. This made it

possible to detect note onsets for each of the 88 piano keys with a high degree of reliability. They

did not provide any numeric evaluation of their results except time and memory measurements.

However, the results of several alignment experiments have been made available online. The

system performed accurate alignments of examples that included complex jazz and classical

music.

The restrictions imposed on the music that can be aligned were too narrow to choose this

method the target application.
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2.1.2 Audio Domain

As an alternative to a complicated and generally restrictive method of aligning in symbolic

domain, a diametrically opposite technique was researched and successfully employed. Audio

is generated from the given score and the alignment is performed between the original and the

synthesised audio. This method is fairly permissive as it allows some instruments to be missing

from either the audio or the score. Similarly, vocal tracks may be substituted by an instrument

track in MIDI, or often omitted all together. It works to a high degree of acceptability on more

genres without further optimisations, thus increasing the probability of a successful alignment.

In many cases audio transcription is purely programmatic task not requiring any training

data. Audio synthesis, on the contrary, may require prerecorded data to be distributed with

the application. This introduces overhead to the distribution size (1-20 MB). This may be

negligible in other software packages, but TuxGuitar, the target system, is available as a Java

WebStart Application. The executable may be downloaded and started in a convenient way

from any Internet enabled computer. Therefore the footprint size of the system should be

monitored to insure this compatibility.

In regards to the distribution size constraint [5] has been helpful. They have looked at three

possible ways to generate audio from MIDI that work with different degrees of accuracy:

1. A full-polyphony audio is likely to be similar to the original audio. It is obtained by

substituting the MIDI note events with prerecorded instrument samples. The smallest of

such libraries are typically 10-20 MB in size.

2. Using piano or another instrument samples for every instrument in the MIDI was shown

to have little impact on the quality of the alignment. This is due to the fact that the

emphasis here is on the pitches and chords rather than timbres of individual instruments.

It adds little overhead to the distribution size (less than 1 MB). Percussive instruments

(e.g. drums) cannot be substituted by a pitched instrument (piano, strings, etc.), of

course.

3. When chroma representation is used (to be discussed later) the previous approach can

be taken further. Simplistic data is generated directly from MIDI to reflect the pitch

information only. This is very efficient and requires no sample libraries to be supplied.

In the referenced work it was said to have had little impact the results, even though it

ignores some of the information that would otherwise be present in the synthesised audio
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(e.g. harmonics).

2.1.3 Spectral Features

It is clear that alignment in audio domain is more suitable for a general, widely applicable

solution. However, it is not that easy to define a good metric for similarity even between

two audio files. In Figure 2.3 waveforms of chords C and Fm7 taken on a guitar are shown

in the top row. One can see changes in amplitude over time: there is a fast attack with an

immediate transient, after which the signal starts rapidly decaying. However, there is not any

pitch information that would distinguish the two chords. It would be very hard if not impossible

to align two complex pieces in this 2 dimensional representation.

On the other hand the required information may be retrieved when working in the frequency

domain, essentially adding a third dimension. The spectrograms of the same C and Fm7 chords

are shown on the bottom row. Spectrograms are plots of energy of frequency ranges over time.

Fundamental frequencies of individual notes and their harmonics are detectable. Two audio

clips appear to be different.

a. b.

c. d.

Figure 2.3: Time vs. Frequency Domains. (a) Chord C waveform. (b) Chord Fm7 waveform.
(c) Chord C spectrogram. (d) Chord Fm7 spectrogram.

Any time series including digital audio signal can be converted to frequency domain using

Discrete Fourier Transform (DFT). DFT expresses the signal as a sum of sinusoids scaled and

phase-shifted appropriately. Individual frequency components of the original signal are found

along with their relative amplitudes (Figure 2.4). The spectrogram of a signal is therefore a

successive application of DFT to a sliding window of adjustable size, showing spectra of the

signal varying over time.
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Figure 2.4: Digital signal in time domain (left) and a corresponding representation in frequency
domain (right).

The spectral representation is demonstrated as an appropriate for the inputs comparison.

It is now possible to define a measure of similarity between two audio frames. The output of

DFT is a vector of DFT bins, containing the amplitudes and phases of the sinusoids making up

the signal. This means that standard vector distance measures may be applied. Some of the

options are:

• Cosine distance (employed in [1])

da,b =
aT b

‖a‖‖b‖

ranging [−1, 1] with higher values of d expressing a higher similarity between a and b.

• Euclidean distance in n-dimensional space (employed in [2])

da,b =

√√√√ n∑
i=1

(ai − bi)2

ranging [0,∞) with lower values of d expressing a higher similarity between a and b.

The choice of a formula between Cosine and Euclidean distance is not likely to impact the

quality of the alignment in any way.
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2.1.4 Chroma Features

The direct comparison of two DFT vectors is only one possible measure of similarity of two

audio frames. A number of researchers [2], [5], [6] have successfully used the concept of discrete

chroma vectors as audio features. The output from DFT is in the frequency domain where

frequencies of musical notes are well known. The 12 pitch classes (C, C#, D,...) recur every

octave, so each DFT bin is assigned to the nearest pitch class as shown on Figure 2.5. The

magnitudes are averaged within each bin. The set of 12 bins is called a chroma vector. A

sequence of chroma vectors therefore constitutes a chromagram. There are a few immediate

advantages to this approach:

• Vector size is reduced to 12 elements (as opposed to 1024-8192 depending on the window

length in the case of pure DFT). Calculating vector distances becomes considerably more

efficient

• It is also a more music oriented approach since it is sensitive to pitches and chords

• Although it may seem like a disadvantage that the same notes from different octaves are

mapped to a single bin; it has been shown by researchers that this performs well and it

is appropriate to focus on pitch classes and ignore timbre of individual instruments. In

fact, chroma vectors are insensitive to spectral shape

• As it was discussed among other audio synthesis options, chroma vectors can be generated

directly from MIDI events by mapping a value of 1 into the chroma bin corresponding

to the note’s pitch class. To take into account the velocity parameter the value may be

scaled. This form of chroma vector generation is not entirely justified since not all of the

harmonics return into the same bin as the fundamental frequency

However, it has been confirmed by Ellis [11] that chroma content rarely changes within

a single beat. Both [10], [11] have used chroma vectors in conjunction with a beat tracking

algorithm thus allowing longer windows to be used. This suggests that the chroma features

alone may not be enough to produce an alignment at high resolutions and may not replace the

method based on spectral features.
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Figure 2.5: Piano keyboard with approximate frequencies marked. Every frequency range
corresponding to pitch class E is mapped to the same chroma vector bin.

2.1.5 Summary

This section (3.3) has covered the literature on previous work relevant to the feature extraction

stage. Alignment in symbolic domain has been discarded almost immediately due to its com-

plexity. Alignment based on audio features offered flexibility and proved to yield good quality

alignments across a broad selection of music genres. The synthesis method to be used has to

be a trade-off between quality and distribution size, with a bias towards quality. The audio

features to be extracted from audio can be a spectrogram or a chromagram. Both methods

were attractive and needed to be evaluated side-by-side.
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2.2 Alignment Stage

Once the audio features are extracted, the alignment subsystem can use them to perform the

matching process. There are a few techniques for finding the best match between two data

sequences. The ones encountered most often in the works on score-to-audio alignment are

Dynamic Time Warping (DTW) and Hidden Markov Models (HMM). The latter has been

discarded due to it complexity and the requirement for model training. In fact, in [7] HMM

was only applied after a preliminary DTW alignment. This ensures that the notes are already

mostly aligned and thus no pitch information had to be encoded into the HMM. The technique

is based on the notion of state transition where, for example, in sung voice the possible states

are transient, silence, steady state (actual body of the word) and breathing (Figure 2.6). Some

states are more likely to be followed by other states and some transitions may be prohibited.

a. b.

Figure 2.6: a) Four-state basic state sequence: silence (S), breath (B), beginning transient
(BT), steady state (SS), end transient (ET) and possible transitions between these. b) Time
domain representation of a sung note with the HMM states labeled.

Transition probabilities may be calculated from manually labelled audio. This requires

distributing the training data with the application as well as crafting the model suitable for

many genres of polyphonic and polyinstrumental music. It was therefore decided to focus on a

more generally applicable Dynamic Time Warping technique.

2.2.1 Dynamic Time Warping

Dynamic time warping (DTW) is an algorithm for finding the best match between two time

sequences which may vary in time or speed. With certain additions it has been used successfully

for spoken word recognition [9] where a string of words is matched against a set of reference

patterns of individual words. However, its use is not limited to applications in signal processing

as long as the two time series have a defined metric of similarity between any two of their

elements.
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In its simplest form the algorithm is a typical example of dynamic programming problem

solving method. The calculations are performed on a matrix which is commonly referred to as

similarity matrix. The row and column indices of a similarity matrix are time frame indices into

the original and synthesised audio respectively. The frames, possibly overlapping, are audio

features extracted from the audio in that time range as described in the feature extraction

section. Each element SM(i, j) of the matrix is a measure of similarity between ith frame of

original audio and jth frame of synthesised audio. Similar frames are represented visually as

darker spots on Figure 2.7. A dark diagonal path represents the best match between the two

audio and is therefore the desired result of the alignment algorithm.

Figure 2.7: Similarity matrix using spectral representation as the audio features.

DTW runs on the similarity matrix as its input. Each element DTW (i, j) is the cumulative

distance along the best path from (0, 0) to (i, j). The algorithm is based on the observation that

if cell (i, j) belongs to the lowest cost path across the whole matrix, then that path contains,

as part of it, the best path from (0, 0) to (i, j). It is therefore possible to reuse the results from

previous calculations to determine the next step. More precisely, for every element (i, j) several

14



a. b. c.

Figure 2.8: Examples of DTW neighbourhood patterns. Marked cells are examined as best
previous steps on the path to (i, j).

neighbouring cells are considered. The best paths from (0, 0) to those cells are already known

making it possible to choose one with the minimum cost. That cell becomes the second last

step along the best path to (i, j).

The neighbouring cells considered at each step are defined by the pattern which may be

customly designed for the application. The pattern on Figure 2.8a is the simplest and the only

one of the three presented that allows skipping the whole sections of one or the other audio (by

going vertically or horizontally). The formula for calculating the cost of best warp path to cell

(i, j) is as follows:

DTW (i, j) = min


DTW (i− 1, j)

DTW (i− 1, j − 1)

DTW (i, j − 1)

 + SM(i, j) (2.1)

In many cases this properly handles the missing or extra notes as well as incorrectly tran-

scribed song structure. The other two options require at least one move in every direction at

each step. As a workaround [1] presented a two stage algorithm. DTW is first applied using

a pattern similar to 2.8a. Any sections with dominating vertical or horizontal moves will then

be removed from the respective audio. The algorithm will be run again this time using pattern

2.8b (Figure 2.9).

Pattern 2.8c has been used in [4] in an attempt to obtain smoother transitions right out

of DTW. While this would achieve excellent results in many applications, it still only allows

5 discrete directions at each step. This would imply that the direction of the path would be

constantly changing when the ideal direction is anywhere between them. If the changes occur

too often, noticeable quality degradation of time scaled audio will most probably be introduced.

It is therefore might not be possible to carefully model smooth paths having longer sections of

constant tempo with DTW alone.
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Figure 2.9: Two-stage alignment. White rectangles indicate the diagonal regions passed to the
second-stage alignment (note the flipped direction of the vertical axis).

It should be noted that DTW only produces the cost of the best path through the matrix.

As the dynamic programming style might suggest a simple backtrace from the last cell to (0, 0)

will return the best path as a sequence of frame indices of the two audio.

2.2.2 Optimisation Techniques

DTW always returns the optimal path and was shown to perform well. It runs in time O(n ·m)

where n and m are the number of feature frames of original and synthesised audio respectively.

For simplicity the length of both time series will be assumed to be n, so the asymptotic behaviour

becomes O(n2). Given a 4 minute song and the window length of 128 milliseconds (overlapped

by half), which is indicative of the real values used with the system, the number of frames in

each song is 3750. This results in a similarity matrix with over 14 million cells in it and takes a

total of about 20 seconds running time on a 2.67 GHz machine in the MATLAB environment

[21]. Increasing the length of the song to only 5 minutes, which is not uncommon either,

results in a 31 seconds running time confirming the quadratic asymptotic behaviour. This is

not desirable considering that most of the audio used with the end product will probably be

very close to the score and only minor tempo modifications will be required.
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a. b.

Figure 2.10: Two DTW constraint models: (a) Sakoe-Chiba Band and (b) Itakura Parallelo-
gram. In both cases only the shaded cells are evaluated.

Methods used to make DTW faster fall into three categories:

1. Indexing

2. Constraints-based

3. Data Abstraction

1. Optimisations in the indexing category attempt to reduce the number of times DTW

has to be applied when a set of time series is given. An example of such a problem

would be finding in set of time series one that is more similar to a given time series than

the others. This relays back to the example of connected word recognition in [9] which

could potentially employ the optimisation. As for the problem at hand, further research

could be done that would take into account the repetitive nature of music. It may indeed

be possible to convert it to a problem which would benefit from indexing optimisations.

However, this is out of scope of the current research.

2. Constraints-based optimisations reduce the running time of DTW by limiting the cells

that are evaluated in the similarity matrix (Figure 2.10). Such a constrained algorithm

will produce good or even optimal results in most cases where the score is a correct rep-

resentation of audio. It may fail, however, when the score only partially represents the

audio track. Suppose, the imported recording is a cover of the original song by another

band and there are new sections introduced that are not in the score. Then the horizontal

parts of the otherwise optimal path may be clipped by the boundaries of the constrained

region.

A more adaptive constraint model, Path Pruning, has been used in [4]. For every suc-

cessfully evaluated row in the cost matrix the paths with the augmented cost lower than
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a specified threshold are selected. The leftmost and the rightmost of such paths become

the boundaries for the corridor in which the next row is evaluated. The threshold is dy-

namically calculated and is a function of the best cost encountered in the previous row.

Such a model is designed to easily adapt to movements in the vertical direction and with

sufficiently large threshold - in horizontal, too.

3. Data abstraction based optimisations focus on the idea of performing DTW on the

reduced representations of data. That is, performing DTW at a lower resolution, then

working up to higher resolutions as required. In the case of the problem at hand this

would mean taking larger frame sizes and using the results of DTW as an approximation

for further DTW applications.

An innovative method has been proposed in [8], that combines the constraint-based ap-

proach with data abstraction achieving linear runtime and memory requirements. The

algorithm, FastDTW, proceeds by recursively reducing the resolution of the time series

by a factor of two, applying DTW at a lower resolution and using the resulting path to

constraint DTW at the next finer resolution (Figure 2.11). Although the algorithm may

seem very attractive, it will not be able to improve the performance of score-to-audio

alignment. Since it requires creating a reduced data representation at every resolution

(O(log n) times in total), introducing computational overhead, it only significantly out-

performs plain DTW when the length of the time series exceeds about 10000 elements.

This is about twice as many elements as needed for a good time resolution for an average

length song.

Figure 2.11: The four increasing resolutions evaluated during a complete run of the FastDTW
algorithm.
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2.2.3 Summary

This section (2.2) presented an overview of the literature for the problem of aligning two se-

quences containing extracted audio features. The two alternatives were Hidden Markov Models

and Dynamic Time Warping. The former was discarded for the reasons of complexity and

because it required distributing model training data with the software package to the end-user.

On the other hand DTW proved to be a good algorithm for this task.

Several DTW movement patterns were considered. The simplest of them offers two ortho-

gonal and one diagonal movement at each step (Figure 2.8a). Even with the simplest model

there were concerns regarding the poor DTW performance time-wise. Several optimisation

techniques have been reviewed. Some did not seem to meet the requirements of the software

(like statically constrained methods), others did not improve performance in the case of the cur-

rent task (FastDTW) or were simply inapplicable to the problem (Indexing-based approaches).

One improvement that did seem suitable was the adaptive constraint based approach, where

the corridor for the warp path is determined dynamically.
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a. b.

Figure 2.12: DTW artifacts: (a) minor path inconsistencies and (b) path direction limitation

2.3 Error Correction

One of the outputs of the proposed system is a time scale modified audio. This means that the

audio produced will be time stretched or compressed to adapt to to the tempo of the score.

There are, however, several problems associated with this requirement that arose with the use

of the Dynamic Time Warping algorithm introduced previously.

• DTW often returns a “bumpy” path in the parts of the song where several consecutive

frames are similar to each other (Figure 2.12a).

• DTW returns a numerically optimal path which does not always coinside with the mu-

sically correct alignment (e.g. as above)

• A careful listening test showed that minor but frequent playback speed changes introduce

a noticeable quality loss

• If the warping path produced by DTW is interpreted directly, the only playback rates

would be 1, 0 and Infinity introducing discontinuities in the music (Figure 2.12b).

It was therefore crucial to investigate possible ways to keep the tempo constant across longer

sections of an audio file. Most of the works studied in the scope of this research only aimed at

producing the appropriately modified score that would sound in sync with the audio. Surely,

the modified score can be re-synthesised and would not have the problems of the time scaled

audio.
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While [1] was one such research, they did look into addressing some of these issues. In addi-

tion to applying a two-stage DTW mentioned previously (Figure 2.9), the path was smoothed

across multiple alignment frame pairs. However, no discussion of the smoothing method was

provided. The remainder of this section is devoted to discussing several smoothing and fitting

techniques from mathematics, statistics and computer graphics.

2.3.1 Requirements

It is important to establish the requirements to the error correction algorithm as well as its

inputs and expected outputs. Ideally the algorithm would be able to analyse the path and

segment it such that the slopes of the segments are piece-wise constant. Given a threshold

in milliseconds, the segments should be the longest possible such that the new position of

each point is within the threshold distance from the path predicted by DTW. The path would

be supplied in the form of frame pairs which can be treated as Cartesian coordinates in two

dimensions. The expected output is a reduced number of coordinates, called knots, such that

the linear interpolation of these approximates the warping path according to some predefined

metric. Sample input and output are illustrated on Figure 2.13.

Figure 2.13: Automatic segmentation detection. Warping path as returned by DTW (blue)
and detected segments (red).

2.3.2 Curve Fitting

A major area of study that has been looked at was curve fitting. Curve fitting is the process

of constructing a function that has the best fit to the given data. It may either be an exact fit

to the data (also called interpolation), or approximate (smoothing).

• Interpolation is inapplicable since the warping path is already defined by a large number
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of points. However, the output of the algorithm, i.e. the sequence of knots, is linearly

interpolated to produce the new path.

• Smoothing is the process creating an approximating function that attempts to capture

important patterns in the data, while leaving out noise or other fine-scale structures. This

definition very closely resembles the problem at hand. In many cases, the warping path

is already a straight line, distorted by some off the line bumps.

Many smoothing techniques are inapplicable due to the nature of the input data or the expected

output:

• Some are targeted at processing a set of observations of some real world variables that form

a relationship, yet are scattered around some unknown points being approximated. On

the other hand, DTW model precisely defines the relative positioning of two consecutive

points on the path (Figure 2.8).

• Besides, the smoothing may be carried out based on purely local features and does not

guarantee any functional relationship on the output data (e.g. polynomial, or, in the

present case, piece-wise linear).

To preserve the focus on the linearity of the output the research was turned towards the

smoothing methods that employ linear regression discussed below.

2.3.3 Linear Regression

Linear regression is a technique to model a linear relationship between two or more variables.

To relate it back to the original problem, suppose that the abscissas and ordinates of all of

the points in the warping path form vectors X = x1 . . . xn and Y = y1 . . . yn respectively. Also

suppose that the path is conceptually a straight line. Two points is sufficient to uniquely define

a line, yet there is n of them it total. Such a line is said to be overdetermined. Thus it is not

possible to uniquely fit a line y = ax + b through points (xi, yi) where i = 1 . . . n. Proceed by

introducing an error parameter ε and solving equations yi = axi + b+ εi, while minimising ε in

some way. The least squares method approaches it by minimising the sum of squared errors:

‖ε‖2 =
n∑

i=1

ε2i =
n∑

i=1

(yi − axi − b)2 (2.2)
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But ‖ε‖2 is a quadratic function of a and b, whose minimum is reached when both partial

derivatives are 0:

∂‖ε‖2

∂a
= −2

n∑
i=1

xi(yi − axi − b) = 0, leading to

∑n
i=1 xi
n

a+ b =

∑n
i=1 yi
n

, and (2.3)

∂‖ε‖2

∂b
= −2

n∑
i=1

(yi − axi − b) = 0, leading to

a+

∑
i xi∑
i x

2
i

b =

∑
i xiyi∑n
i x

2
i

(2.4)

The system of two linear equations 2.3 and 2.4 can be written in matrix form as ∑
i xi

n
1

1
∑

i xi∑
i x

2
i

 a

b

 =

 ∑
i yi
n∑
i xiyi∑
i x

2
i


This can be rearranged to find a and b as follows:
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b
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1
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∑

i x
2
i − (

∑
i xi)

2

 n
∑

i xiyi −
∑

i xi
∑

i yi∑
i x

2
i

∑
i yi −

∑
i xi

∑
i xiyi

 (2.5)

The coefficients can be substituted back into 2.2 to give the equation for sum of squared

errors (SSE ) or alternatively mean-square error MSE = 1
n
SSE. MSE can give an idea of how

good the model is on average. Recalling the original problem,
√
MSE is actually the average

vertical distance in frames, between the fitted line and the warping path as returned by DTW.

By using linear regression it is possible to fit one straight line to the compete data set.

However, due to the possible tempo fluctuations between the two inputs, it is required that

multiple lines are fitted. Below are some of the possible solutions that use linear regression in

conjunction with the least squares method.

Local Linear Regression Smoother, first introduced in [16], starts by fitting a regression

model to the data within the window of some predefined size λ sliding by ∆X. The

estimate for the mid point X0 of the window and its neighbourhood is a constant equal
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Figure 2.14: Application of local linear regression smoother. The result estimate Ŷ (X0) is the
value of the fitted line at X0 (black).

to the value of the fitted line at X0 (Figure 2.14). The process is repeated for every X0

by shifting the window by ∆X.

This is a greedy algorithm which does not need the complete data set to operate. It is

very efficient and may be applied to the warping path with the following remarks:

• The window must be sufficiently large (and the overlap sufficiently small) to actually

cure the problem of continuously fluctuating tempo

• Larger window, on the other hand, adapts more slowly to the real tempo fluctu-

ations, thus may introduce discrepancies in the sound, defeating the purpose of

error correction

• The window and the overlap parameters are fixed for the run of the algorithm and

cannot be set according to the desired mean-square error threshold in advance.

Multivariate Adaptive Regression Splines, abbreviated as “MARS” [17], is an extension

of linear models which automatically determines the knots from the provided data and

returns a set linear function providing the best fit between the corresponding knots (Figure

2.15). It proceeds in two stages:

1. In the forward path it iteratively searches for the knots which, when added, give the

maximum reduction in SSE (sum squared error). The search is stopped when either
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Figure 2.15: Application of Multivariate Adaptive Regression Splines method modelling the
relationship between two variables. The fitted model (black) has five knots at about 0, 1.5, 3.3
4.7 and 6.

the change in the overall SSE is negligible or the maximum number knot is reached

(user-adjustable parameter).

2. The backward pass prunes the model by removing the least effective knots until

it finds the best submodel. The algorithm trades off fitting quality against model

complexity and no longer uses pure SSE as the criteria for choosing the candidate

knot to be pruned.

MARS method automatically partitions the provided data into sections with one linear

model in each of them without making an assumption about the length of such sections.

This seems especially relevant to the problem of audio-to-score alignment where it is

difficult to predict the number of places of tempo fracture in advance.

The algorithm allows adjusting the maximum number of knots and various other limits,

which may appear to be useful for the problem at hand. Indeed, the User may want to

take over the system and manually control the error correction. This might as well cure

some particularly bad alignments by smoothing things out.

However, it is not clear how well it performs on the data which is already mostly in

linear relationship and the tempo changes are very subtle. Never-the-less, this technique

provides a good motivation for further research and demonstrates relevance to the problem

at hand.
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2.3.4 Summary

A range of methods for smoothing the warping path and correcting the DTW errors have

been presented in this section. The most relevant ones to the problem at hand were based on

linear regression. The discussion forms the mathematical basis for the respective section of the

proposal. It presents the theory behind the linear regression using the least squares method

and derives the necessary formulae for its application.
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Chapter 3

Proposed Solution

This section covers the details of the proposed system at a conceptual level with only some im-

plementation details. It presents design decisions at every step (Figure 3.1). Several parts of the

system offer more than one alternative implementation so as to aid evaluation by comparison.

Figure 3.1: Overview of the system with chosen alternatives at each stage.
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3.1 Target System

The alignment method proposed in this document was designed with a particular target sys-

tem in mind. It was chosen to be an extension to a notation editing software with playback

capabilities. No closed source products were considered as they typically do not have means for

extending their functionality by third parties. Two guitar players oriented open source software

solutions were considered: TuxGuitar [18] and KGuitar [19]. At the time of writing KGuitar

is still in alpha development stage. TuxGuitar, on the other hand, is a mature cross-platform

software with a large user base. Thus, TuxGuitar was chosen as the target system.

TuxGuitar, among other functionality, supports importing scores in various file formats

including MIDI. Multitrack scores can be viewed, edited and auditioned using the operating

system’s or third party software synthesisers.

TuxGuitar is implemented in the Java programming language and can be extended through

the use of plugins. It previously did not provide support for importing or playing audio files. Nor

did there exist a publicly available audio time stretching library with Java bindings. Developing

such an extension has appeared to be time consuming and therefore has not been completed.

Besides, the alignment method itself is not yet suitable for use by the end-users. The current

state of the implementation will be discussed in the next chapter.
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3.2 Prototyping Environment

While the final product is designed to extend TuxGuitar’s functionality, the latter had no

preexisting support for audio files or basic signal processing routines. To speed up prototyping,

Matlab [21] environment was chosen for its scripting features and its substantial digital signal

processing support. Also Matlab’s ability to generate complex plots to visualise results turned

out to be invaluable. Not all of the system’s features are present in the prototype. As such

all MIDI file handling was omitted. Instead, it expects another audio file, which may have

been synthesised from MIDI. Generating audio from MIDI is done manually and has only been

automated in the TuxGuitar implementation. This also allowed the author to conduct tests by

aligning the original studio recording with a backing track or a cover by another band.
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3.3 Feature Extraction

The feature extraction subsystem focuses on transforming the score and audio inputs into

directly comparable structures. Comparison based on audio features has been chosen over

comparison in symbolic domain due to the high complexity of the latter. Thus, the score is

rendered to audio using a software synthesiser and alignment between two audio is carried out.

As discussed before there are two common ways of generating audio for the purposes of

feature extraction:

1. MIDI tracks can be substituted by their corresponding instruments, or

2. one instrument can be substituted for every track.

Both options were chosen to be implemented since adding support for one when the other is

in place did not pose a problem. The third option dealing with direct extraction of audio-like

features from MIDI events was omitted as it requires MIDI events manipulation at a low level

and was not a priority of the research.

Next after the audio is generated, audio features are extracted. Two audio features most

commonly referred to in literature were chosen:

1. Spectrograms - created by applying DFT to a moving window with an overlap

2. Chromagrams - created from the spectrograms by adding together and averaging the

energy bins around the 12 pitch classes (as described in 2.1.4)

The first features preserve the spectral shape of the audio which may confuse the alignment

in cases where the two audio are very different in that respect. The second features minimise

the differences in spectral shape, focusing on pitch alone. This was found to aid the alignment

of pitched instruments but did not honour so much the percussive instruments. Both methods

were evaluated against music in various genres.

The spectrogram window is of Hann type (Figure 3.2) which is applied to the audio signal

through multiplication prior to taking the DFT. The window function is usually applied in

order to minimise the effect of the overlap.

If the audio is downsampled to 8000 Hz, the highest chromatic pitch present in the transform

is B7 at 3951 Hz. This leaves out only one pitch on the standard 88-keys piano keyboard, that

is C8 at 4186 Hz1. In practise the playing range is much lower and the higher octaves only
1The frequencies are given assuming the middle A to be 440 Hz (ISO 16:1975).
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Figure 3.2: 64-point Hann window in time domain.

contain the smeared higher order harmonics. It is in the interest of the system to remove from

the signal as much of the non-pitch information as possible.

Another advantage of such a setup is that there are less DFT bins for the same time-

frequency resolution. Assuming the sampling frequency of 8000 Hz and a window length of

1024 samples, the time resolution is 128 milliseconds. This almost exactly corresponds to a
1/16 note length in tempo 120 BPM (Table 3.1). Introducing the overlap with an appropriate

window function, the time resolution is improved further. In practise resolutions considerably

higher degrade the quality of the alignment due to the decreased frequency resolution. On the

contrary, lower time resolutions often match or outperform it.

Tempo, 1/4 note 1/8 note 1/16 note 1/32 note
BPM samples ms samples ms samples ms samples ms

90 5333 667 2667 333 1333 167 667 83
120 4000 500 2000 250 1000 125 500 63
150 3200 400 1600 200 800 100 400 50
180 2667 333 1333 167 667 83 333 42

Table 3.1: Note lengths at 8 kHz sampling rate.

Decreasing the time resolution sometimes comes at the price of minor tempo floating. On

careful listening one may hear the percussive hits being slightly off when both tracks are listened

to side-by-side. However, this is a reasonable trade-off for performance once the system is used

as intended. That is, the User is only hearing one audio track while the position in the song is

being visually traced on the note staff. According to a non-official Stanford study referenced

in [15] the sound can come up to 45 ms early, or the picture can be ahead of the sound by as

much as 125 ms.
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3.4 Alignment Stage

Out of the two major methods for aligning two musical sequences only DTW was discussed in

detail due to HMM’s increased complexity and storage requirements. As for the type of DTW,

no pattern would ensure that the path has the right slope in every case. It has therefore been

decided to use to simplest pattern on Figure 2.8a and seek other ways of finding the right slope

(discussed Error Correction section).

DTW has been implemented in the prototype. It was found however, that the algorithm

takes undesirably long time to evaluate the whole matrix at sufficiently high resolutions (ex-

amples given previously in 2.2.2). After studying the possible optimisation techniques, one of

them has been adopted. Path Pruning [4] has been chosen over the other methods since it

allows adapting of the constraint corridor to the path direction changes, thus increasing the

chances of getting the optimal path in more cases. It follows the constraint-based optimisation

pattern. It was described in some detail in the previous chapter. It does not evaluate the

complete matrix but it does require it to be evaluated at full resolution in one go.

3.5 Error Correction

It has been decided to use the simplest 3-directional pattern for Dynamic Time Warping and

rely on curve fitting to account for the problems associated with this choice and with the DTW

method in general. In particular, the algorithms based on linear regression were considered in

order to

• smooth out the possible discrepancies in the path,

• identify the regions with the constant tempo, and

• generate the alignment map with less entries than the number of frame pairs in the path.

The list of the methods chosen to be reviewed was in no way comprehensive but it provided

sufficient directives and motivation to design a custom method for the task. Some of the

highlights of the techniques are presented below:

• The Local Linear Regression Smoother traded the smoothness against being able to

quickly adapt to tempo variations. The window length and the overlap are the only
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Figure 3.3: A sample run of the proposed error correction algorithm with MSE threshold set
to 0.2.

controllable parameters which cannot be specified in terms of the desired mean-square

error or similar.

• The Multivariate Adaptive Regression Splines (MARS) method is a sophisticated al-

gorithm that can automatically determine the most important fracture points in the

path (knots) and gives room for manual configuration.

It has been decided to design an algorithm specifically for the task, that would address the

problems of the fixed-window algorithms yet be simpler and more efficient than MARS. The

new algorithm makes use of the fact that the step of the input data is small and non-decreasing

(i.e. ∆x, y ∈ {0, 1}). The algorithm is still able to perform adequately on other data, e.g. if

the pattern is replaced with a more sophisticated one.

The new algorithm proceeds by fitting a straight line to some contiguous subsequence from

the path using the least squares method (Figure 3.3). If the resultingMSE is below the specified

threshold, then the data sequence being looked at is extended by one point. In case it exceeds
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MSE the data point added last is discarded and the previous fitted line parameters are used

to set a new knot. In the figure example this knot is set to be A0: fitting to the points up to

(7, 5) resulting in a too high MSE, therefore to obtain the knot A0 the line was only fitted up

to point (6, 5) of the original data.

Once the knot A0 is found a new data subsequence begins to accumulate starting with the

last element of the previous subsequence, i.e. (6, 5) onwards. When it is time for a new knot

(B0), it is known that the new line will be a linear model fitted to data points (6, 5) up to

(17, 8). Now that the parameters for both the previous and the current line are known, the

algorithm goes back to the previous knot A0 and updates it to be the intersection A1 of the

two lines. The algorithm proceeds in this fusion until no data points remain.

The algorithm’s pseudo code is presented in Listing 3.1. It currently runs in quadratic time

in the length of the path but can easily be made linear by not recalculating the regression model

at every iteration. In practise this computational overhead does not pose a problem.

3.6 Summary

This chapter presented and justified the design decisions of the implemented system. It intro-

duced the target system and the prototyping environment mentioning the separation of scope

between the two. Then the two alternative feature sets were discussed covering some of the

constants involved. The alignment stage was only briefly touched up since DTW was discussed

in detail in the literature review section. The implementation specifics are left for the respective

chapter. Lastly, a new Error Correction algorithm was presented as an alternative for more

complicated DTW patterns. Simultaneously the algorithm takes the responsibility of reducing

the number of points in the path for a faster and a higher quality audio time scaling.

While this chapter only described the high level design with only some implementation

introduced, some of the most important implementation issues and details will be revisited

once more in the following chapter.
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Algorithm 3.1 Error correction algorithm pseudo code.

/**
* Fits straight lines to a sequence of data points automatically
* determining the knots. The algorithm assumes the presence of
* LeastSquares function reterning the slope/intersect of the
* fitten line and the resulting MSE.
*
* path sorted sequence of data points
* thresh MSE threshold that *each* line will not exceed
* retruns sorted collection of knots
*/

FitLines (path , thresh)
// initialise
knots = [] // result is collection of points
data = [] // window of data from path
a0 , b0 = 0 // parameters of the last fitted line
foreach point in path

data.append(point) // add point to subsequence
(a,b,mse) = LeastSquares(data) // fit line to the data
/* check if threshold is reached */
if mse > thresh

data.remove(end) // discard last added point
(a,b,mse) = LeastSquares(data) // fit line again
/* first shift the previous knot where it belongs */
x0 = -(b-b0)/(a-a0) // find intersection
y0 = a*x0+b
knots.replace(end , Point(a0,b0))
/* find the coordinates of the new knot */
x = data(end).x
y = a*x + b
knots.append(Point(x,y))
a0 = a // record the parameters of
b0 = b // the just fitted line
data = [data(end), point] // reinitialise subsequence

end if
end for
return knots

end FitLines
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Chapter 4

Implementation

The previous chapters were devoted almost entirely to the design of the system. Textual

explanations with some pseudo code additions ware provided for each technique employed.

The present chapter builds upon the content of the previous chapter and projects it onto the

target system and the prototype. It discusses the interaction between the parts of the system

and the external frameworks or systems. Additionally, it elaborates on each technique by

describing implementation specific issues that had to be overcome.

4.1 Target System

TuxGuitar, the target system, is a powerful guitar tablature editor enabling guitarists to edit

and listen to multitrack scores. It is written in Java programming language around the Standard

Widget Toolkit (SWT [20]) to provide native look on all supported platforms. One of the reasons

for its popularity is its extensible design. It provides support for extending its functionality

through the use of several categories of plugins:

Browser Plugins: Extend the built-in score collection management system. They unite the

online community resources and the local content.

Importer and Exporter Plugins: Add support for new score file types. In fact, MIDI sup-

port is provided in the form of such a plugin. These plugins, however, do not extend to

audio since audio does not typically contain any score information.

MIDI Output Port Plugins: Provide support for more synthesisers to audition scores. It

refers to both software and physical output ports. The possibility to audition the scores
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through the Gervill software synthesiser, discussed earlier, is provided in the form of a

plugin too.

MIDI Sequencer Plugins: Sequencers are low level implementations for MIDI playback hand-

ling. It is discussed in detail below.

Tool Item Plugins: General purpose plugins conveniently placed into the application’s menu

that have access to all internal structures and functionality.

Implementing the plugins falling into the last two categories was needed to get the required

functionality into TuxGuitar. The tool item plugin is only useful for providing a simple user

interface to the system, allowing to tweak alignment settings and to select an audio file to

import. Designing a user interface has not been a focus of this project and thus has not been

implemented at the current stage.

MIDI Sequencer, on the other hand, is the central point of communication between the

alignment system and the host application and deserves close attention. It is responsible for

directly receiving the User’s playback commands and delivering each note to the selected syn-

thesiser. Therefore, it is the duty of the sequencer to manage timing of the individual events

heard in the output. In return the application expects from the sequencer the current position

in the song, which it queries at regular intervals and shows visually on the screen.

The task of the replacement sequencer is to mimic the behaviour of the original MIDI

sequencer, yet transparently substituting MIDI by audio. The class diagram for the system

is presented on Figure 4.1. The class names are prefixed with BT, which stands for Backing

Track, the name of the extension:

• BTSequencer is the class directly communicating with the playback system of TuxGuitar

• BTToolMenuDialog is communicating with the User through the GUI (not implemented)

• BTSettings keeps track of the audio files and alignment parameters acting as the means

for communication between the UI and the core of the alignment system.

Once the alignment is required, BTSequencer requests it from

• BTAlignmentManager, which in turn relies on three class hierarchies corresponding to

the three main components of the designed alignment system (Figure 3.1):

– BTFeatures
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– BTDTW

– BTErrorCorrector

To be able to process audio files in various formatas and to unify the handling of audio files

and in-memory generated audio

• BTStream and BTPlayer classes have been implemented to read and playback audio,

transparently converting it to the desired sampling rate. They both heavily rely on the

Java Sound API.

BTSequencer and BTSettings are described in more detail below deferring the discussion of

other parts of the system until their respective sections.

BTSequencer implements TuxGuitar’s internal interfaceMidiSequencer which in turn is mod-

elled after the Sequencer interface of the Java Sound API. It is the central class of the

extension. It is a quite large class but the main functionality can be conceptually ex-

pressed in the six methods:

• start/stop methods are self explanatory

• getTickPosition/setTickPosition and getTickLength, despite the slightly misleading

naming, actually query and update the position within the song and the total length

of the song expressed in MIDI ticks. MIDI ticks is the base unit of MIDI timekeeping

• By design, every time the User starts the playback, TuxGuitar supplies the complete

song to the sequencer through the call to createSequence. The new sequence of MIDI

events is then compared to the one received the previous time (if any). In case there

are differences, the alignment may no longer be valid and has to be computed again

One other property worth noting is that BTSequencer always keeps a reference to the

conventional TuxGuitar’s MIDISequencer (backupSequencer). This comes useful for two

reasons:

• The metronome, available in TuxGuitar, is really another MIDI track which must

still be played through a conventional sequencer

• The User may wish to temporarily disable the audio backing track and preview scores

the old way. Switching the sequencers through the internal TuxGuitar facilities would
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mean unloading the whole extension, leading to the loss of the current alignment

and the associated state. Keeping a backup sequencer ready and initialised makes

the switching almost instantaneous by transparently redirecting the method calls.

BTSettings is the class used extensively by almost every other class in the system. It has been

decided to keep the alignment parameters centralised. This reduces the amount of direct

communication between parts of the system leading to cleaner and more maintainable

code. The class offers facilities for updating and retrieving both the user-adjustable

and internally used parameters. For example, the path to the backing track audio file

is set by user through the system’s user interface, while the alignmentRequired flag is

only set internally when the underlying song or some parameter have changed, possibly

invalidating the alignment.
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Figure 4.1: Class diagram for the Backing Track extension. Some book-keeping classes, methods

and fields omitted.

4.2 Inputs Processing

As discussed in the design chapter, the score-to-audio alignment is performed entirely in the

audio domain. Therefore the score must first be synthesised to audio. Moreover, the internal



audio processing is usually done with the audio samples converted to the floating point repres-

entation with the values ranging from -1.0 to 1.0. As it will be shown in Output Generation

section this data representation is essential for feature extraction and audio time scaling. Lastly,

the file with the backing track selected by the User may be in a variety of different audio file

formats and encodings which has to be accounted for.

To synthesise audio from MIDI, Gervill library [24] has been chosen for a number of reasons:

• It is designed to integrate well with Java Sound API, the standard Java framework for

sampled audio and MIDI

• It is already distributed with most TuxGuitar packages

• The tiny size of 224 Kb including an emergency soundbank (version 1.0) allows it to be

distributed as part of even the smallest packages

TuxGuitar relies heavily on Java Sound API. In fact, one of the two sequencers that come

bundled with TuxGuitar simply delegates the main processing to the default Java sequencer.

The framework has been very helpful in the handling of audio. It has implicit support for several

uncompressed audio file formats such as WAVE and is extensible by third parties to support

MP3, Vorbis/OGG, Flac and other popular compressed audio formats. The conversion is done

by the respective classes and is presented to the programmer in a convenient AudioInputStream

class. Likewise, the required number of channels, sample rate and encoding to be served by

AudioInputStream (e.g. 16/24 bit signed/unsigned integers, or 32/64 bit floats [23]) can be

specified through the use of AudioFormat. However, while AudioInputStream captures all the

coversion details, it still works at a fairly low level. In particular:

• It serves data in byte arrays, which means that the bytes have to be combined into the

correct primitives by the client programmer

• The channels are interleaved meaning that the samples from left and right audio channels

of a stereo file are stored together. This is the way they are expected for playback by Java

Sound API, but was incompatible with the Rubber Band time scaling framework which

expects a separate array for each channel

• Resetting to an earlier position within the file or in-memory audio stream is not always

supported. However, this functionality is required in several parts of the system:
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– the same audio file is usually read at least twice: during feature extraction and

during playback

– the User may wish to revert to an earlier position within the song or enable looped

playback of some section

To account for these inconveniences the BTStream class was introduced to simplify the audio

handling throughout the extension. It allows specifying the desired target format with the data

being read directly into an array of floating point numbers. Additionally it provides functions

for (de)interleaving multiple channels, and is guaranteed to be able to reset to the beginning

of the track, or to any earlier time point.

4.3 Spectral Features Extraction

Calculating spectral features for the backing track and the synthesised score has been imple-

mented in the class BTSpectrogram. The spectrogram is stored internally as a list of float

arrays, representing a sequence of feature vectors for overlapping window frames.

L i s t<f l o a t [] > specgram = new LinkedList<f l o a t [ ] > ( ) ;

The spectrogram is computed by continuously reading audio data into a buffer, extract-

ing spectral features and adding it to the list of feature vectors. Since the windows may be

overlapping and going back in time in the audio input stream is computationally expensive,

the overlapping part of the buffer is reused from the previous frame. The spectral features

are found by taking Discrete Fourier Transform and taking the absolute value of the resulting

complex numbers. More precisely, a Fast Fourier Transform (FFT) implementation for Java

[22] has been used. The method from the BTSpectrogram class that computes the spectrogram

is presented in full in Listing 4.1

The implementation can also normalise the features (frame-by-frame) if the corresponding

option is enabled in the settings by the User. This is done by subtracting the mean of the

spectral energy across the DFT bins from every bin. The goal of normalisation is to account

for the differences in loudness of the two recordings.
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Algorithm 4.1 Spectral Features Extraction Algorithm in Java.

void doCompute () {
int len = getSettings (). getWindowLength ();
int ov = getSettings (). getWindowOverlap ();
boolean normalize = getSettings (). getNormalizeSpectra ();

/* error checking and FFT initialisation code skipped */

// stream data will be read into the following buffer
float[] buffer = new float[len];
// complex number representation for FFT
float[] reals = new float[len];
float[] imgs = new float[len];
int cnt = stream.read(buffer , 0, buffer.length );
while(cnt != -1) {

reals = applyWindow(buffer ); // apply window function
fill0(imgs); // imaginary parts are all zeroes

fft.doFFT(reals , imgs , /* inverse = */ false);

float[] spectralEnergy = abs(reals , imgs);
if(normalize)

removeMean(spectralEnergy );

specgram.add(spectralEnergy ); // add processed window to spectrogram
shiftLeft(buffer , len -ov); // reuse overlapping part for next win
cnt = stream.read(buffer , ov -1, len -ov); // read rest from stream

}
}

4.4 Chroma Features Extraction

Extracting the chroma features from audio turned out to be more complicated than constructing

a spectrogram and involved solving the time-frequency resolution issues. The chromagram

construction proceeds in three steps:

1. The spectrogram of the audio is constructed as described in the previous section

2. The chroma weighting map is computed. It assigns each FFT bin to a pitch class

3. The weighting map is applied to the spectrogram to get the sequence of chroma vectors

While chroma weighing map is conceptually a table that maps each FFT bin to a pitch class,

it does not have a one-to-one correspondence. Figure 4.2 shows one possible chroma weighing
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Figure 4.2: Chroma weighting map with window length of 2048 samples at 8 kHz sampling rate
(left). Zoomed in at first 31 bins (right).

map. Every two consecutive grayscale rectangles on the same row represent an octave interval

while the sequence of ascending rectangles between them are the 12 semi-tones in the chromatic

scale. It can be seen immediately that the rectangles corresponding to the same pitch class

grow exponentially in width and the corresponding FFT bin number. This can be inferred from

the formula expressing the frequency of one note in terms of the frequency of another note as

follows:

f = f0 · 2n/12, where (4.1)

f0 is the fundamental (i.e. central) frequency of the reference note

n is the number of semi-tones the required note is above the reference note (can be negative)

It follows from the formula that, say, the fundamental frequency fA5 = fA4 · 212/12 ≈ 880 Hz

taking fA4 to be 440 Hz which is a commonly used value.
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The FFT bins, on the other hand, are evenly distributed between 0 and the sampling

frequency. That is, each bin is centred around the frequency

f = fs ·
k

N
, where

fs is the sampling frequency,

N is the FFT window length in samples,

k is the 0-based index of the bin ranging from 0 to N − 1.

Considering the example on Figure 4.2, each FFT bin spans fs
N

= 8000
2048
≈ 3.9 Hz. However,

as can be seen from the notes frequencies table in Appendix A, the fundamental frequencies of

notes below B1 are less than 3.9 Hz apart. This means that the frequency resolution of FFT

with these parameters is not enough to uniquely identify the pitch class for lower notes. This

is expressed graphically by vertical bars spanning more than one semitone (FT bins 8 to 16).

In the above example the described issues do not pose a problem in practise since the

consecutive minor second intervals (1 semitone apart) do not occur so ofter in music. And it

is still possible to distinguish notes that are over 1 semitone apart except the first three notes

(A0, A]0, B0). However, if the window length is lowered to 512 samples, the “uncertainty” range

extends to B4, well into the most common playing range of many instruments. Additionally,

the first two octaves are blurred and become practically indistinguishable (Figure 4.3). An

alternative implementation has been proposed in [12] whereby the signal is re-sampled to a

lower sampling rate before taking FFT thus increasing the time-frequency resolution for lower

pitches (Table 4.1) but this is left as a possible enhancement.

A0 −B3 C4 −B6 C7 − C8

882 Hz 4410 Hz 22050 Hz
Table 4.1: Variable sampling rate chroma extraction.

To calculate the chroma weighting map in Matlab, the following steps have been taken by

the author:

1. The central frequency for each FFT bin is determined

ffthz = (1:nfft -1)/ nfft*(Fs/2) % where nfft = window /2+1

2. The semitone different between every FFT bin and A0 is determined. This may, and

for most bins will be a decimal number, since the central frequency of a bin does not
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Figure 4.3: Chroma weighting map with window length of 512 samples at 8 KHz sampling rate
zoomed in at first 18 bins.

necessarily align with any note’s fundamental frequency

fftsemitones = N*log2(ffthz ./A0)
% make up a value for bin 0
fftsemitones = [fftsemitones (1) -1.5*N,fftsemitones]

3. Determine how many semitones every bin spans

binspan = [max(1, fftsemitones (2: nfft) - fftsemitones (1:nfft -1)), 1]

4. Iterate over FFT bins ranging from A0 to A8 (the actual implementation allows specifying

a different range)

% find first bin belonging to A0
fst = find(fftsemitones > -1, 1, ’first ’)
% find last bin belonging to A8
lst = find(fftsemitones < 88, 1, ’last’)
for k = fst:lst

% retreive the semitone difference with A0
n = fftsemitones(k);
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% Notes in higher octaves span more frequencies , penalise them
scaling = 1.3^-(n/N); % should be 2.0 but we are generous

5. Find the “exact” notes in the neighbourhood of the current bin (since the current bin

is most propably somewhere in between two notes). Then assign how much weight the

current bin has on each of them

% Each semitone is associated with a Gaussian distribution
% That is 2* stddev = 1
denom = -2*(1/2)^2;

% The note on the left
n0 = floor(n);
M(mod(n0,N)+1,k) = exp((n-n0)^2/ denom )* scaling;

% The note on the right
n0 = ceil(n);
M(mod(n0,N)+1,k) = exp((n-n0)^2/ denom )* scaling;

6. Or, in case the bin spans more than one semitone (which is the case with notes in lower

octaves, as discussed), distribute the energy between the notes it spans.

if binspan(k) > 1
nlo = fftsemitones(k-1); % prev bin
nlo = min(ceil(nlo), floor(n)); % lowest "exact" note
nhi = fftsemitones(k+1); % next bin
nhi = max(ceil(n), floor(nhi)); % highest "exact" note
ns = (nlo:nhi); % all notes it spans
M(mod(ns,N)+1,k) = 1* scaling/length(ns);
continue; % done with this iteration

end

Note that above condition is checked before step 5, and, if found to be true, is executed

instead of it.

Once the chroma wigthing map is computed, it may safely be applied to the spectrogram via

matrix multiplication. That is, if the map is a matrix of size (12, nfft) and the spectrogram

is a matrix of size (nfft, nframes) their multiplication yields a matrix of size (12, nframes),

that is a column feature vector for each frame. nfft in the above is half the window length

plus 1 due to the specifics of the Fourier Transform.
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4.5 Dynamic Time Warping

One of the reasons for choosing Dynamic Time Warping to be at the core of the alignment

process was its simplicity and extensibility. Indeed it allowed the author to quickly get a

working system and afterwards explore the possible ways to optimise this prototype model for

performance. This section mostly focuses on the issues that arose and had to be overcome when

implementing an optimised version of DTW, namely, DTW with Path Pruning proposed in [4].

The following is the description of the solution by the original authors (names of some of the

variables were changed to be consistent with the rest of this report):

To reduce the computation time and the resources needed, at every iteration

i, only the best paths are kept, by pruning the paths with an augmented distance

D(i, j) over a threshold θ. This threshold is dynamically set using the minimum of

the previous D row. After various experiments this threshold was set to:

θ(i) = 1.1min(D(i− 1))

However, the paths between the corridor of selected paths and the diagonal are

not pruned to leave more possible paths. Usually the corridor width is about 400

frames.

Intuitively, the trend in the path movement is determined at every row. But, since the

lowest cost path for the current row may not necessarily coincide with the best path for the

complete matrix, other low-cost paths are also kept. However, the paths that have already

accumulated excessive cost are left outside the bounds of corridor at the next iteration. Thus,

the potentially best paths at every row are followed by the constraint corridor. It is worth noting

that for many alignments the path formed by these “minimums” at every row approximates the

final path very closely. A sample run of the algorithm is shown on Figure 4.4. Only the narrow

corridor between the cyan lines is evaluated, which makes up about 26% of the matrix in this

particular example.

Conceptually, there are two cost matrices involved in computing the warping path. One

is the local distance matrix, or similarity matrix, SM , with each element SM(i, j) being the

measure of similarity between ith frame of the audio and jth frame of the synthesised score. The

other is is the augmented distance matrix D. The latter is filled row-by-row with each element
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Figure 4.4: Path pruned DTW with left and right constraints in cyan and weighted minimums
in white.

D(i, j) being the total cost of the best path from (1, 1) to (i, j). In practise the local distance

matrix is reused since, as follows from Formula 2.1 on page 15, SM(i, j) is only required when

calculating D(i, j) and can be overwritten. Assuming the working copy of the similarity matrix

is named D, the core of DTW can be implemented in Matlab as follows:

% First row and column are precomputed to avoid bounds checking
for i = 2:rows

for j = 2:cols
D(i,j) = D(i,j) + min([D(i-1,j-1), D(i-1,j), D(i,j -1)]);

end
end

When the proposed optimisation was implemented, the outer for loop became much more

involved, though the only modification to the inner loop has been the reduced range over which
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it executes:

% First row and column are precomputed to avoid bounds checking
% Other initialisation code
for i = 2:rows

% Skipped code A...
for j = l:r % between left/right corridor boundaries

D(i,j) = D(i,j) + min([D(i-1,j-1), D(i-1,j), D(i,j -1)]);
end
% Skipped code B ...

end

According to the original authors, the range l . . . r for the inner loop is found by pruning the

paths over some threshold value θ computed for every row. Since θ(i) = const ·min(D(i− 1)),

the code A may just be setting the threshold to the appropriate value, e.g.:

% Code A
thresh = scale_factor * D(i-1,mi); % mi is index of min element

After the inner loop has executed, it is only required to find the first and the last cells of

the current row which have the values below the threshold. The code stub B may look similar

to the following:

% Code B attempt
cells = D(i,(l:r)); % augmented cost in (l:r)
okcells = find(cells < thresh ); % indices of cells with augm. cost

% below threshold
[~,mi] = min(cells); % lowest cost path of this row
mi = l-1+mi; % make index rel to column 1,

% not to left bound
% determine new boundaries for next row
r = l-1+ okcells(end); % take the last below threshold
l = l-1+ okcells (1); % take the first below threshold

This code has been modelled following the original description of the algorithm. However,

upon running the presented code with the same parameters as before, the corridor tends to

diverge sharply upwards (Figure 4.5). This is indeed explainable since there is no constraints

on the general direction of the corridor, except that it has to follow the absolute minimums.

But going across the columns will almost always accumulate more cost than going vertically

upwards, hence the white line is rapidly ascending.

To rectify this issue, the augmented costs D(i, j)|j ∈ [l, r] of the current row i are scaled by

the ratio
√
i2 + ( cols

2
)2/

√
i2 + j2, that is the ratio of the linear distances from (1, 1) to the ith

row’s mid point and (i, j) respectively (Figure 4.6). The matrix cells are not updated with the
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Figure 4.5: Unweighted path pruning.

weighted values, instead, the minimum value and the bounds for the next row are determined

from them. Likewise, the threshold is also scaled by
√
i2 + ( cols

2
)2/
√
i2 +mi2 before being

applied, where mi is the column that contained the weighted minimum value of the previous

row.

The two features that have been added to the algorithm to make it more flexible and robust

are listed below.

1. The algorithm is able to precalculate the specified number of rows in full without pruning.

It may be useful in the cases where it is not possible to adequately form a “trend” for

the path until several seconds into the piece. Additionally it is crucial to be past the

silence or other non-musical content like metronome count-in commonly found in backing

tracks. It can be seen from Figure 4.4 that the white path “trend” estimate is not stable
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Figure 4.6: Augmented distance weighting.

until around frame 300 into the audio and jumps from one value to another, justifying

the expense of precalculating the rows.

2. The User may specify the minimum width of the corridor that has be maintained through-

out the run of the algorithm. In case the estimated boundaries are narrower than the

specified width they are forcibly extended. Figure 4.7 presents an alignment of Beeth-

oven’s 5th Symphony 1st movement where the audio recording had the intro repeated

twice and therefore the green warping path is vertical. The white path of minimums at

every row, on the other hand, is significantly off to the right in that region (although

almost exactly coincides with the warping path outside the region in question). It can be

seen that the final warping path is very close to the left boundary. It may be possible that

the correct path is accidentally pruned. The minimum corridor width has been set to 200

for this particular alignment. Therefore, for some alignments it may be very important

to set this parameter to a higher value.

In a potential improvement both of the above parameters may be set dynamically by a heuristic

based on the amount of scatter in the estimate path.
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Figure 4.7: Path Pruning applied with 200 frames minimum corridor width.
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4.6 Output Generation

The next stage after the DTW alignment is the error correction. The implementation very

closely follows the pseudo code Algorithm 3.1 presented in the previous chapter. However, it

includes additional code dealing with cases when the line is vertical and therefore the slope is

infinite. This is a purely an implementation issue and is not discussed here in further detail.

Rather, the discussion will focus on interpreting the results of the alignment and error correction

algorithms when generating the output.

By requirements, there are two outputs generated by the system:

1. the alignment map between the provided audio and the score, and

2. the time scale modified audio, that is, stretched or contracted between appropriate points

to sound sync with the score.

The alignment map is ultimately a file which contains the key alignment pairs between the

imported audio recording and the MIDI score. At the implementation level, file contains a

set of the matching millisecond positions in the audio recording and the synthesised score.

These millisecond positions are available with little extra work from the outputs of the error

correction algorithm. As discussed in section 2.3, the latter automatically determines the

feature frames, between which the audio will have to be scaled by a constant factor. Figure 4.8

presents a sample alignment with the key alignment points marked. In the context of the error

correction algorithm these are referred to as knots. To convert the knots expressed in samples

to millisecond values, the following steps were taken:

% xs, ys store the knot coordinates in frames
% Fs - sampling rate at which alignment was performed
incr = window -overlap; % window slides by that many samples

yspl = (ys -1)* incr+round(window /2); % CENTRES of frames in samples
xspl = (xs -1)* incr+round(window /2);

src = yspl/Fs *10^3; % current positions of knots in ms
dst = xspl/Fs *10^3; % desired position in ms

The alignment map is useful when the audio track is required to be played unmodified, while

the playing position is known with reference to the score. One obvious use case would be to

follow the score with a visual position marker in TuxGuitar which is a planned feature. On the

other hand, it is also an intermediate step to producing the time scaled audio. The rubberband
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Figure 4.8: Chromagrams of Bethoven’s Symphony No. 5 the first movement (first 50 frames).
Main melody notes are highlighted in white. Key alignment pairs are shown as lines connecting
frames. The intro is taking up half as many measures in MIDI as in audio.

library [25] has been selected by the author to perform this operation. It is originally a C++

library, which, among others, provides a function with the following prototype:

/**
* Provide a set of mappings from "before" to "after"
* sample numbers so as to enforce a particular stretch profile.
*/

void setKeyFrameMap (const std::map < size_t , size_t > &);

The argument is a map from audio sample frame number in the source material, to the

corresponding sample frame number in the stretched output. This is a convenient way to

set up the time scaling library, since the alignment map produced above can be reused if the

millisecond values are converted to sample numbers in the sample rate of the original file.

To use time scaling in the Matlab prototype, the map was saved to a file and supplied to

the command line utility distributed with the library. However, to be able to use the library

with TuxGuitar, a Java wrapper for the library has been created. It consists of two Java classes

(Figure 4.1) a C/C++ autogenerated header file and one C++ implementation file. The Java

wrapper closely follows the original API, with only a few differences:

1. Unsigned primitive types like size_t were substituted by their signed counterparts due
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to the lack of unsigned types in Java

2. The library destructor is called by the finalize method in Java, which, in turn, is only

called by the garbage collector. It is not guaranteed when or if this would happen. This

behaviour is acceptable since the object only contains some book-keeping data (that is,

after the audio material has been written to it, processed and read back in full).

3. The option passing style has been made more consistent with other Java libraries. A

separate RubberBandOptions class has been defined to avoid binary arithmetic on the

client programmer’s side.

The Java code communicates to the native C++ code via Java Native Interface [26], abbreviated

as JNI. JNI is a low-level framework allowing Java code to call and be called by libraries and

programs written in C, C++ and other languages. While JNI is not particularly developer

friendly or safe, it is optimised for raw speed and has been invaluable for the task.

4.7 Summary

The chapter has covered the implementation techniques and issues associated with the develop-

ment of each subsystem. Some functionality required that an external framework is used. Table

4.2 summarises the expected functionality for both the Matlab prototype and the TuxGuitar

extension. Any external frameworks or interfacing are listed per task.

Task class Task MATLAB TuxGuitar Framework
Inputs processing Import audio Completed Completed Java Sound API

Synthesise MIDI N/A Completed Gervill [24]
Feature extraction Spectrograms Completed Completed FFT [22]

Chromagrams Completed Deferred FFT [22]
Alignment DTW Completed Deferred -

DTW w/path pruning Completed Deferred -
Output generation Error correction Completed Deferred -

Tempo map generation Completed N/A -
Audio time scaling Completed Completed Rubber Band [25]

User interaction Audio playback N/A Completed Java Sound API
User controlled playback N/A In progress Java Sound API
GUI / Visual Completed Deferred SWT [20]

Table 4.2: Project task list.
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Chapter 5

Results

This chapter presents the evaluation of the complete system as well as the verification of some

of its individual components. The verification section contains the descriptions and results of

unit tests of feature extraction components isolated from the system and tested for correctness.

The evaluation section, on the other hand, tests all of the components in the context of the

compete system - the score-to-audio alignment tool. It discusses the fitness for purpose of each

component. While the system offers numerous adjustable alignment parameters, yet is oriented

at a non-technical user, the most sensible defaults are also provided, in some cases eliminating

the need for the User to be aware of it. Since some of the components are interchangeable within

a subsystem (e.g. spectral and chroma feature extraction components) these will be tested

side-by-side on various genres of music, types of the source material (e.g. monoinstrumental

or polyinstrumental) and the quality of the score being aligned (i.e. the degree to which it

represents the complementing audio track). The evaluation has been carried out on 12 musical

pieces, 9 of which have been manually aligned with the score in order to obtain numeric results.

The examples presented in the evaluation section will also demonstrate the trend among the

publicly available scores to not be of direct correspondence to the original piece. They often

introduce repetitions or omit parts of the audio. Some of such errors encountered in the tested

content will be summarised, recognising the need in further research to make the system more

robust.
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5.1 Verification

This section presents the unit tests that have been applied to the feature extraction components

of the system, discussing the correspondence between the expected outcomes and the captured

results. The component here refers to a self-contained unit of the system which can be reliably

tested demonstrating its fitness for the purpose it has been designed for. The components in

question are:

• spectral features extraction component, and

• chroma features extraction component.

The verification of the two components is carried out side by side. The reason for that is the

visual and conceptual similarity between the spectrograms and the chromagrams. Internally,

they are both represented by a matrix with each column vector being a feature vector of one

frame. The feature vectors are determined from a moving Hann window with an overlap.

The window lengths are typically larger for chromagrams than for spectrograms due to the

fact that it is not possible to reliably determine the pitch class for the notes in lower octaves

when the frequency resolution is low (explained in section 4.4). However, for the sake of visual

comparison, both features will be presented side by side. Likewise, since the system seeks to

align material with different timbre, most of the test cases presented also attempt to show the

impact of the change in timbre on the resulting features.

Experiment 1

Purpose

The purpose of the first experiment is to determine the responsiveness of the spectral

features across the octaves of the instrument. That is to find whether the complete

playing range is covered by the features.

Method

The experiment proceeds by inspecting the spectrograms of the tested audio data.

These features are obtained for different values of the window length and the sampling

rates.

Data
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Two simple recordings have been used for this experiment. They were both recreated

from the same score - one using the piano sounds, the other using the orchestral

strings section (contrabass, cello and violin ensembles to cover almost the complete

playing range of a piano except D]7 − C8). They are playing all C notes, lowest

to highest (C1 − C8), in quarter notes at tempo 120 BPM. That is, C1 for 1/2 of a

second, then C2 for the next 1/2 of a second and so on.

Results

The results of the experiment are summarised in figure 5.1. While it only shows

results for one set of parameters, it allows to see the spectral content in good detail.
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Figure 5.1: Spectral features for notes C1-C8, 512 samples window at 8000 Hz.

Discussion
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This experiment was mainly targeted at determining the “pitch response” of the

feature extraction methods across octaves. It can be seen from figure 5.1 that the

spectral shape of the audio changes about every 18 frames and the lowest dark

stripes form an exponential relation. This is due to the fact that going up by an

octave doubles the frequency. More importantly these darker, stripes represent the

fundamental frequencies of the C notes being played (table of note frequencies is

given in Appendix A on page 86). Some observations based on this figure include:

• The third note C3 has more high-energy harmonics than the notes in other

octaves. Harmonics are the component frequencies of the signal that are the

integer multiples of the fundamental frequency shown as stripes above the latter.

This octave is quite central in music since a lot of melodic content is concentrated

around the 3rd and 4th octaves. However, it appears to be the trend across

different instruments, and therefore may not have a big impact of the alignment

quality.

• The fundamental frequency of C1 appears to be the same as the fundamental

frequency of C2 (the first two notes played). However, the fundamental frequency

of C2 is the first-order harmonic of C1. A careful inspection of the lower FFT

bins revealed that the fundamental frequency of C1 contains negligible amount of

energy associated with it. This is the case with both the piano and contrabass,

and most likely with other instruments that can reach these low notes. The

situation does not seem to change with the increase of time-frequency resolu-

tion. In practise this should not affect the alignment since the clear presence of

harmonics would generate suitable features.

• Lastly, the note C8 is not present in either of the figures since the highest

frequency that can be sampled at 8000 Hz sampling rate is 4000 Hz and C8

is 4186 Hz - the only pitch in the piano playing range that is above 4000 Hz.

It is unlikely that this not would occur often enough to make any significant

impact on the alignment. On the other hand, filtering out the frequencies above

C8 ignores unnecessary harmonic content, affecting the timbre but not the pitch.

Overall the two audio recordings do not have a very dissimilar spectral shape and it

is certainly possible to differentiate between notes in different octaves. Since in most

real scenarios the synthesised sound would approximate the original, this difference
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is minimised even further. This similarity also supports the argument that it may

be possible to achieve good alignments by substituting one instrument (e.g. piano)

for every instrument in the MIDI file.

Experiment 2

Purpose

This purpose of this experiment is similar to that of Experiment 1 in a sense that it

attempts to determine the features response across the octaves. This time the chroma

features are used and the parameter set now includes a chroma-specific parameter.

Method

Like before, the experiment proceeds by inspecting the chromagrams of the audio

data. The impact of the octave damping factor on the resulting chromagram is

studied to determine the one for which the notes from different octaves have a similar

weighing. The purpose of the damping factor is to minimise the differences in energy

of the notes in different octaves caused by the logarithmic nature of the frequency

scale. It was discussed in more detail in section 4.4 on page 43.

Data

The testing data has not changed since the previous experiment.

Results

The resulting chromagrams are presented on figures 5.2 on the next page and 5.3 on

page 64.
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Figure 5.2: Chroma features for notes C1-C8, 16384 samples window at 22050 Hz and no octave
damping.
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Figure 5.3: Chroma features for notes C1-C8, 16384 samples window at 22050 Hz and octave
damping 1.5 (left) and 2.0 (right).

Discussion

While the figures present the chromagrams of the same melodic content as the spec-

trograms in the above experiment it is no longer easy to tell which frame belongs

to which note being played. The dark straight line across the chromagram corres-

ponding to the pitch class C conveys that there may be one or more C notes being

played. The lighter frames on that line may mean one of the following:

1. The C note of a lower octave is being played, having a lesser energy impact than

that of higher octaves (this case),

2. The C note has been played softly or is decaying,

3. Some other note is being played, which has C as one of its harmonics.

While a smaller energy is probably intended in the 2nd and 3rd cases, the main

theme of a piece is often played in the lower 3 octaves, therefore it would not be
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unreasonable to give them extra weighting. To rectify the issue, the octave damping

factor has been introduced. It reduces the note energy by a factor value with every

next octave. When the damping factor is set to 1.5 the strings almost have the

uniform distribution (bottom-left figure in 5.3 on the previous page), while the piano

response emphasised the lower octaves (top-left figure). Setting the damping factor

to 2.0 (right figures) has a negative effect on the higher octaves and may not be

suitable for alignments with soloing instruments.

One other thing that may be noted from the chromagrams is the presence of energy in

pitch classes E andG especially in the lower octaves. This is caused by the harmonics

being present in the signal (integer multiples of the fundamental frequency). For

example, the first few harmonics of C3 are C4, G4, C5, E5, G5, B[5, C4. While

higher-order harmonics include B[, the lower-order harmonics (containing the most

energy) belong to classes C, G and E present on the plot.

The two conclusions resulting from the experiment are:

1. The chromagrams are a valid approach to hiding the spectral details while em-

phasising the pitch

2. The response of the chroma to the notes in different octaves is not uniform but

can be adjusted for each instrument individually.

Experiment 3

Purpose

The aim of the experiment is to determine how well the features respond to pitch changes.

This is required to assess whether it is possible to increase the window size, potentially

capturing several consequent notes, without sacrificing the utility of the feature vector

for alignment.

Method

The experiment proceeds by taking spectrograms and chromagrams of known musical

content. The tests are performed using two different window lengths overlapping

by half: one gives the time resolution approximately equal to the lengths of the

notes being played, the other window is about 50% larger. The summarised set of

parameters is given in the following table:
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Time resolution Sampling rate Window Overlap
512 ms 8000 Hz 4096 samples 2048 samples
750 ms 22050 Hz 16384 samples 8192 samples

Table 5.1: Time resolution and the related parameters used in feature verification.

Lastly, the chroma features have been extracted using a wide (750 ms) non-overlapping

window (Hann and rectangular). The aim of this additional test is to show the im-

pact of the window function on the resulting features.

Data

The method is applied to two short piano recordings playing chromatic scale (all 12

notes + 1) in octaves 1, 2, 3. Each note is being played for 1/8 of the whole note in

tempo 120 BPM (250 ms).

Results

The results for the method and data described above have been collected as fig-

ures 5.4 on the following page through 5.6 on page 69.
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Figure 5.4: Spectrograms of chromatic scales in octaves 1, 2, 3. 4096 samples window at 8000
Hz (top) and 16384 samples window at 22050 Hz (bottom).
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Figure 5.5: Chromagrams of chromatic scales in octaves 1, 2, 3. 4096 samples window at 8000
Hz (top) and 16384 samples window at 22050 Hz (bottom).
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Figure 5.6: Chromagrams with non-overlapping Hann (top) and rectangular (bottom) window.

Discussion
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As it follows from figures 5.4 on page 67 and 5.5 on page 68, in an average case,

the spectrograms and the chromagrams are visually similar, when applied to the

same material with the same time resolution. The features extracted with the time

resolution of 512 ms (top of both figures) overlapped by half, allow, to some extent,

reason about the content to the accuracy of 256 ms. Since the recorded notes last

for approximately 250 ms, the two consecutive notes are seen as two overlapped

windows at different frequencies (or adjacent pitch classes).

This correspondence between the time resolution and the note lengths is purely

coincidental. Should the time resolution decrease or the passage be played at a faster

rate, it would no longer be possible to easily infer from the features the number and

the pitch of played notes. For example on the bottom chromagrams on both figures

it is only possible to distinguish 10 notes per octave run. On the other hand, the

features produced are perhaps clear enough to result in a decent alignment.

Surprisingly, the chromagram inherits from the spectra its phenomena of extremely

low energy at the fundamental frequencies of pitches below A1. The harmonics

do not seem to rectify that by much. Overall, the chroma tends to have similar

relative amount of energy to the other notes, so one cannot say that the chroma

representation is completely decoupled from the timbre. However, it seems to be

taking the correct approach in achieving this goal.

Lastly, if an extremely long window is chosen, e.g. on figure 5.6 it is 3 times the

shortest note with no overlap, the use of a window function such as Hann practically

ceases the existence of the notes around the boundaries of two windows. The result is

a choppy chromagram (or spectrogram) with some clearly missing notes (bottom of

the figure). The problem of choppy features is solved by using a simple rectangular

window. However, it does not guarantee that the alignment would be satisfactory.
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5.2 Evaluation

Automatic evaluation of the alignment results is currently an open problem. There is no data-

base with manually labelled or synchronised data either (although there are studies specifically

working towards that [1]). It is therefore currently impossible to tell with a high probability

whether the alignment is correct. On one hand, the evaluation may be done subjectively by

carefully listening to the score and the aligned audio recording simultaneously. On the other

hand, it is possible to manually create reference alignments to use as the ground truth. For the

the purposes of evaluation of the new system, 7 manual alignments have been produced. Along

with 3 other musical pieces, these form the test suit for the system.

5.2.1 Reference Alignments

The manual alignments were produced in Reaper audio/MIDI editing software [27] by assigning

the start of each bar (sometimes beat) to the corresponding position in the audio. The resulting

tempo map was then applied to the MIDI file. Thus, the MIDI files precisely matching the

corresponding audio files were obtained. Currently, the reference alignments are produced by

synthesising these MIDI files and matching them against the original, non-modified, MIDI files

using the designed system. While the quality of such alignments depends on the system being

tested, it was ensured by careful listening that the alignments are precise to the extent where

there is no audible delay between any two matching notes in both audio. This was possible

since both inputs to the system were essentially the same MIDI file varying in time, hence the

spectral difference was minimal. In a possible enhancement the reference alignment may be

parsed from the modified MIDI file directly.

To measure the correspondence between an alignment warping path and the reference path,

the distance in milliseconds between the two is sampled every 10 ms along the path (Figure

5.7). The match between the two is calculated as the percentage of the warping path which

is within 150 ms of the reference path. This value was determined experimentally: the best

alignments typically stay below 50 ms, while the acceptable ones - within 150 ms range.

5.2.2 Input Material and Parameter Selection

The musical pieces included in tests can be discriminated by the following:

• Genre
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Figure 5.7: Alignment error (illustration).

Includes examples from Rock, Pop, Metal, Jazz and Classical

• Type of source material

Original or cover recording, guitar backing track, mono1- and polyinstrumental MIDI

synthesis

• Instrumentation

Present/missing musical instruments in each of the two tracks

• Score transcription quality

Noticeable differences between the two (such as extra or missing sections, count-in, outro

fade-out)

All of the above information is concisely summarised for each piece being aligned in Appendix

C.

The selection of values used to parametrise the alignments is not the same across the songs

tested. Typically each piece of music has a range of parameters for which the alignment yields

the better results than for the parameters outside this range. Increasing or decreasing these

optimal parameter values results in a gradually decreasing quality of alignment. Only the

experiments establishing such a trend had to be evaluated. This is particularly true of the

window length parameter, the value of which often has a direct impact on the quality of the
1Piano sound is used on every track of a MIDI file except on percussive instrument tracks.
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alignment. As for the MSE threshold parameter (used by the error correction algorithm), the

one that results in subjectively or numerically higher quality alignment is shown. Following

this logic unclutters the results and reduces the number of documented alignment from over

250 to 70.

The complete set of variable parameters experimented with consists of:

• feature type (spectral, chroma)

• sampling rate to which both audio are downsampled (8000 Hz, 22050 Hz)

• window length (overlapped by half, Hann, 1024-16384 samples)

• MSE thresholds used by the error correction algorithm (0.1-2.0)

The fixed parameters are outlined and in the beginning of Appendix C.

5.2.3 Summary of Results

Appendix C presents a comprehensive set of alignment results. For each musical piece the

following information is documented:

• The degree of match to the reference alignment2 and the subjective assessment of mono-

and polyinstrumental alignment

• The discussion of the results of the experiments

• The similarity matrix corresponding to the best alignment found

• The error distribution2 (probability, cumulative and varying over time)

Table 5.2 summarises the results by presenting the best one for each musical piece. Since

spectral features happen to produce the best alignments, at least for the evaluated music set,

this redundant information is omitted from the table. The notes accompanying each alignment

had to use concise terminology to describe the results in the limited space provided:

Tempo floating denotes the minor misalignments which are only noticeable when two tracks

are auditioned side-by-side. The term tempo floating comes from the fact that the

amount by which the two tracks are misaligned is often changing from one bar to

another.
2If reference alignment is available for that musical piece.
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Misalignment denotes the mismatch between the desired and the correct alignment which is

considerably of. It is likely to be noticeable when the track played back along with

the visual score. Sometimes this also involves unnatural playing speed which is

noticed even when listened to in isolation.

The following section will attempt to reason about the obtained results as well as to draw

conclusions and outline the possible future steps for the evolvement of the system.

5.2.4 Discussion and Future Work

Many systems described in the literature used a fixed set of values to parametrise the alignments

during evaluation. The presented system values subjective quality above all, thus the author

decided to reverse the approach and determine the impact of the parameter values on the quality

of the alignment. This may contradict the objective to design a system for a non-technical user.

However, the sensible default values are provided that would perform adequately on a lot of

music.

sThe remainder of this section discusses the results with reference to individual system

parameters or input material properties.

Sampling Rate

The sampling rate was shown to have little or no impact on the quality of any alignment. This

disproves the claim made in section 3.3 that removing the unwanted higher-order harmonics and

other non-pitch information after the last playable note at 4186 Hz may improve the alignment.

While this is true in theory no difference was noticed in practice.

Window Length

When the alignments for each musical piece are ordered by the length of the window (in time,

not in samples), the patterns formed by the corresponding alignment quality metrics become

apparent (Table 5.3 and Appendix C). For some inputs the alignment quality rises with the

window length. For the others, the quality peaks at a larger window length, then goes down.

The sample size of 10 songs is not enough to be able to correlate the types of the input material

to the parameter values that work best. Never-the-less, the following observations were made:

• Most of the pop, rock and metal music is aligned well with the 128 ms window

74



#
T
it
le

G
en
re

W
in
do

w
,m

s
M
SE

T
hr
es
h

M
at
ch
,%

Sc
or
e3

N
ot
es

1
A
B
B
A

-
D
an

ci
ng

Q
ue
en

P
op

18
6

0.
6

97
5

P
er
fe
ct

A
lig

nm
en
t

2
A
C
/D

C
-
B
ac
k
in

B
la
ck

R
oc
k

12
8

0.
2

90
4

P
ro
bl
em

s
in

ou
tr
o

3
D
im

m
u
B
or
gi
r
-
Sp

el
lb
ou

nd
M
et
al

93
0.
6

93
4

M
in
or

te
m
po

flo
at
in
g

4
D
av
e
B
ru
be

ck
-
Ta

ke
F
iv
e

Ja
zz

25
6

0.
2

90
5

P
er
fe
ct

A
lig

nm
en
t

5
B
ee
th
ov
en
’s

Sy
m
ph

on
y
N
o.

5
C
la
ss
ic
al

51
2

0.
2

N
/A

2
Se
ld
om

m
is
al
ig
nm

en
ts

6
Sh

ak
ir
a
-
W

he
re
ve
r,
W

he
ne
ve
r

P
op

18
6

0.
5

97
5

P
er
fe
ct

al
ig
nm

en
t

7
M
et
al
lic
a
-
O
ne

M
et
al

37
2

0.
4

N
/A

4
M
in
or

te
m
po

flo
at
in
g

8
To

to
-
A
fr
ic
a

R
oc
k

37
2

0.
4

79
3

D
ec
en
t
er
ro
r
ha

nd
lin

g

9
M
es
hu

gg
ah

-
B
le
ed

M
et
al

25
6

0.
2

N
/A

5
P
er
fe
ct

al
ig
nm

en
t
(m

on
o)

10
A
B
B
A

-
I
D
o,

I
D
o,

I
D
o

P
op

37
2

0.
2

93
3

M
is
al
ig
nm

en
ts

in
ou

tr
o

Table 5.2: Summary of the best alignment results.
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win | song 1 2 3 4 5 6 7 8 9 10

93 5 4 2 1

128 5 4 4 2 5 1 5

186 5 4 3 2 1 5 2 3 5 2

256 2 5 2 3

372 2 3 4 4 3 5 3

512 3 4 1 2 4 4 4 3

743 3 2 1 1 3

Table 5.3: Subjective scores summary (best alignments highlighted).

• Alignments with window lengths of 372 ms and 512 ms are also often of an acceptable

quality, although not as high as those with 128 ms window

• Chroma features produce better results with larger window lengths than with lower. This

typically means using a window lengths of 350 to 750 ms with a bias towards the latter.

Instrumentation

The system performs exceptionally well in cases where one or more instruments is missing from

the score. Indeed, in 7 of 10 cases the vocal was present in one of the inputs, while only 3 of the

corresponding MIDI files had a track containing the vocal line. The most notable alignment

that exploited this capability of the system has been the song One by Metallica. The system

managed to align a backing track (drums, bass and vocals) to the MIDI file (all tracks but

vocals).

Musical Structure

Many of the misalignments that occurred throughout the course of evaluation belonged to the

erroneous regions which could not be handled smoothly by DTW. The algorithm is able to

detect the extra or missing sections in either of the two time series in most cases. However,

the path that is supposed to be a horizontal or a vertical jump to the next section, often

does so gradually causing badly sounding regions of audio. This is because going vertically

or horizontally does not necessarily mean incurring the least cost, so DTW attempts to fit
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the path with the lowest cost. Varying the alignment parameters does not always solve the

problem although sometimes improves the situation (e.g. reduces the duration of the skip). As

an example, the MIDI for the song Africa by Toto misses three 12 beat long sections. At one

set of values (chroma, 743 ms) it was handling 2 of the 3 correctly, while at the other (spectral,

743 ms) it was handling only the 3rd one well.

Another audio/MIDI difference that was common to many of the tested songs was the

fade out in the outro (in 6 out of 10). While MIDI has the capability to record the fade out

information, it is not commonly done and the MIDI plays constant volume till the end of the

song.

Out of 10 musical pieces tested 5 had errors in musical structure while 6 had a fade out not

present in MIDI. This urges upon the need to do further research of error handling techniques.

A recent work in [13] attempts to solve the problem of missing sections by forcing DTW to

match the complete bars of music rather than frames. The subjective score of 3 takes into

account these difficulties signifying that the misalignments occur only around the erroneous

regions.

Handling the errors such as the above is definitely a required step to producing a robust

alignment system for a score editor like TuxGuitar.

MSE Threshold

The choice of MSE threshold is related to the window length used and is usually ranging

between 0.2 and 0.6 for good alignments. This dependency is explainable since the error

correction algorithm currently operates in the frame domain. It may not be unreasonable to

change it to operate in time domain in future to remove the need to change the threshold when

the window length changes.

Some of the lower quality alignments with a lot of noise in the path were improved to

a certain degree using a higher threshold (0.8 to 2.0). Such smoothed out paths are often

noticeably off the reference alignment. However, in the context of the target system they still

provide an indication of the position withing the song (within the accuracy of 1 or 2 quarter

notes or better) to the User.
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Accuracy

The error distribution plots accompanying every test case in Appendix C are useful for judging

how tight the best alignment for that musical piece was. The score of 5 is awarded to the align-

ments for which there is no audible delay between any two corresponding notes. Numerically

this corresponds to the error being within 50 ms of the reference alignment (finer than 1/32 note

in tempo 120 BPM, Table 3.1 on page 31). If the delay is audible in any part of the song but

may not be noticeable in the audio/visual context of TuxGuitar, the alignment is awarded the

score of 4 and is referred to as tempo floating in the descriptions. It is usually within 100-200

ms of the reference alignment. This slightly exceeds the ideal maximum delay of -45 to +125

given in [15], so the severity of these delays will have to be determined when the TuxGuitar

extension is implemented completely.

In many genres of music percussive instruments have a very distinctive sound compared to

other instruments. In fact, the asynchrony between the two audio is immediately obvious due

to the percussive sounds, while the harmonic instruments are more permissive in that sense.

However, it has been found that, since the percussive instruments typically have a broad and a

reasonably flat spectrum, they do not have a large impact on the alignment. The possibility of

accounting for percussion has been explored in [14] with positive results. They used a database

of prerecorded drum sounds to train the system to detect the similarly sounding hits in the

audio recording. Then the latter were matched against those in the score alongside the regular

full-polyphony DTW alignment. Besides supposedly improving the accuracy of alignment in

general such a technique is likely to aid the alignment of the drum-only sections like the intro

to Back in Black by AC/DC and to Africa by Toto.

The author anticipates that tightening the synchronisation between audio and visual rep-

resentation of the musical piece would make the User experience snappier and allow for such

features are seamless looping of the source by just selecting the required bars (i.e. playing a

part of the audio over and over for practicing).

Audio Features

Despite the initial concerns that the spectral features may perform poorly due to presumably

large differences in spectral shape, it was possible to find good and excellent alignments for

many of the tested songs. Even on arbitrary settings for the window length, most of the

alignments produced were at least satisfactory (subjective score of 2, Table 5.3), meaning that
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the alignment was a helpful first approximation, and only a few manual changes would have

been required to make it suitable for the intended use.

Chroma features, on the other hand, turned out to be a double-edged sword. They were

more robust than spectral features in the presence of structural errors, i.e. were often able to

skip the sections correctly. While stable, they were not up to the accuracy the spectral features

provided. Both properties are likely to be influenced by the longer window lengths the chroma

features require to operate reasonably. The author believes that the chroma features might

generate high quality alignments if the musical piece is first analysed for tempo separately,

split into a sequence of beats and these beat are used as variable length frames for DTW

alignment.

However, it was found that chroma features performed inadequately if the instrumentation

was different. For example if a loud guitar solo was present in one of the two input tracks but

not the other (e.g. Metallica - One), the 12 bin chroma vectors of the corresponding frames

would be considerably different, and so no valid alignment can be produced. On the other hand,

such a solo would only introduce changes to a part of the spectrum (typically corresponding to

the higher octaves, depending on the solo). Thus, the alignment is still likely to be successful

since the major part of the spectrum contains other instruments common to both tracks.

While not a priority, more work can be done to investigate the possibilities of improving

chroma features for the application at hand.

Path Pruning

The implemented Dynamic Time Warping algorithm with path pruning has been successfully

applied to all of the test cases. Appendix D presents the selection of the parameter values

for the modified DTW. For each musical piece these values produced optimal results (i.e. the

alignments coincide with the unmodified verstion of DTW). The values attempt to minimise

the area of the similarity matrix evaluated. Both of the extra parameters discussed on page 51

proved to be useful in shaping the corridor of evaluated paths.

Chosing one of the highest values across the tested alignments as the default would ensure

that more songs are aligned optimally at the cost of the larger corridor to be evaluated. The

sample size of 10 test cases may not be enough to reliably estimate the default values. However,

the table shows that for many alignments the parameter values are close together. The default

parameter values that seem reasonable are summarised in Table 5.4.
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Precalculate, sec Min. corridor width, sec Thresh. scaling factor
15 20 1.2

Table 5.4: Default parameter values for DTW w/path pruning.

In a potential improvement the path resulting from the alignment may be analysed. The

paths that are suboptimal due to the constraint corridor are often winding which can be de-

tected. In this case the corridor boundaries may be extended (or removed) and the algorithm

rerun. While this would increase the overall running time for some songs, it would typically be

faster than if the User was to manually set the parameters. Additionally these parameters, even

if unified in one user interface paramenter adjusting all three, are not likely to be immediately

meaningful to the User.

The improved algorithm was found to cut the running time by 69-94%. While the running

time is dependent on the window length and the length of the song, aligning 7 of the 10 musical

pieces took less than 2 seconds each.

5.2.5 Summary

This section presented the detailed analysis of the evaluation results. The system was tested

on 10 musical pieces, 7 were manually synchronised with their score to produce reference align-

ments. The main highlights of the analysis were the following:

• The choice of the sampling frequency did not noticeably impact the quality of the align-

ment

• The range of window lengths for which high quality alignments could be produced was

varying across the test cases

• The chroma features require longer window lengths than spectral features to produce

satisfactory results

• The chroma features produce correct alignments but require a separate method to increase

precision

• The system is robust to drastic differences in instrumentation between two representations

of the musical piece being aligned (spectral features mainly)
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• The system is able to detect the differences in musical structure between the two repres-

entations (handling them cleanly is left as a future improvement)

• The error correction functionality is invaluable to delivering a smooth listening experience

to the User (besides removing minor errors from the alignment)

• The best alignments were producing audibly precise matches between the two repres-

entations. Many alignments were exhibiting an acceptable accuracy of under 100-200

ms.

• The path pruning optimisation of DTW algorithm was found to reduce the running time

by 69-94% resulting in alignment times of under 2 seconds.

The system has flexibility to allow the future improvements:

• The music transcription errors are very common to the score files found on the Internet

(50% of the tested ones had major structure errors). Taking this problem into account

will greatly increase the amount of music that can be aligned without noticeable playback

issues.

• The error correction algorithm and the path pruning optimisation may be made more

intelligent by detecting the correct parameter values.
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Chapter 6

Conclusion

This thesis has addressed the problem of automatic score alignment of recorded music. The

proposed method was targeted at the intelligent score editors able to play the piece of music

following its score. To demonstrate the approach an extension to a guitar score editor TuxGuitar

has been partially implemented. The Matlab prototype presents a fully functioning system

developed in accordance to proposed design.

Among the main contributions of the thesis are an innovative error correction algorithm

and the study of technical issues associated with a performance optimisation proposed in [4].

The error correction algorithm automatically determines the regions where the tempo in

both the score and audio is constant. It removes the minor tempo fluctuations predicted

(possibly falsely) by the alignment. As an additional benefit the algorithm provides a way to

make the poor alignments appear smoother when listened to.

Due to the excessive running times of the Dynamic Time Warping algorithm, a path prun-

ing algorithm has been implemented. The originally proposed algorithm had very a limited

description available. This thesis presents the discussion of the technical issues encountered

during implementation.

Among other contributions of the thesis is the Java wrapper for the Rubber Band library

that was essential to enable the time stretching in TuxGuitar.

The designed system is able to align the audio and its score with a good and high accuracy,

despite the differences in the selection of instruments between the two. Such a high applicability

combined with the performance improvements of 70-90% make it especially suitable for use in

an intelligent score editor.
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Appendix A

Frequencies of Musical Notes

P i t c h C l a s s

C C# D Eb E F F# G G# A Bb B

o 0 27.50 29.14 30.87

n 1 32.70 34.65 36.71 38.89 41.204 43.65 46.25 49.00 51.91 55.003 58.27 61.74

2 65.41 69.30 73.422 77.78 82.416 87.31 92.50 98.001 103.8 110.05 116.5 123.5

e 3 130.8 138.6 146.84 155.6 164.8 174.6 185.0 196.03 207.7 220.0 233.1 246.92

v 4 261.6 277.2 293.7 311.1 329.61 349.2 370.0 392.0 415.3 440.0 466.2 493.9

a 5 523.3 554.4 587.3 622.3 659.3 698.5 740.0 784.0 830.6 880.0 932.3 987.8

t 6 1047 1109 1175 1245 1319 1397 1480 1568 1661 1760 1865 1976

c 7 2093 2217 2349 2489 2637 2794 2960 3136 3322 3520 3729 3951

O 8 4186

Standard pitch: A4 = 440 Hz (ISO 16:1975).

Piano playing range: A0 − C8.

6-string guitar open string notes. Playing range (24 frets): E2 − E6.

4-string bass guitar open string notes. Playing range (24 frets): E1 −G4.

Standard tuning assumed on all instruments.
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Appendix B

Subjective Scoring Scale

5 No misalignments found upon a careful listening test of both tracks side-by-side

4 A high quality alignment with some minor tempo floating

3 Good alignment with mistakes in the intro/outro and/or the erroneous regions

2 Satisfactory draft alignment requiring manual intervention from the User to make

it suitable for comfortable listening

1 Some correctly aligned regions present but requires major user intervention

0 No alignment has been found for longer regions, the warping path is constantly

changing direction
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Appendix C

Detailed Evaluation Results

Fixed Parameters

• The reference match is expressed as a percentage of the warping path which is within 150

ms of the reference alignment (if one is available; discussed in 5.2)

• The subjective score is given as a number in a six-point scale described in Appendix B:

5 (high quality) to 0 (low quality)

• All alignments based on chroma features use 1.5 as the damping factor (chosen after

substantial testing, also discussed in Experiment 2 of section 5.1)

• The windows are overlapped by half and are of Hann type (Figure 3.2)

Legend

Reference alignment path

Linearly interpolated alignment points (knots)
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1 ABBA - Dancing Queen

Audio 1: Original studio recording, 1975

Audio 2: Synthesised MIDI

Genre: Pop

Differences:

1. MIDI file has an 8 beat count-in

2. Audio file has a fade out in the outro

Features Fs,Hz Win,spl/ms MSE Mch,% Score Notes

Chroma 22050 8192/372 0.6 73 1 Misalignments throughout the song

Chroma 22050 16384/743 0.6 94 4 Tempo floating, perfect outro

Spectral 22050 2048/93 0.6 97 5 Perfect alignment

Spectral 8000 1024/128 0.4 97 5 Perfect alignment

Spectral 22050 4096/186 0.6 97 5 Perfect alignment

Spectral 8000 2048/256 0.4 95 2 Outro cut too early

Spectral 22050 8192/372 0.2 93 2 Incorrect outro

Monoinstrumental: 96% alignment versus 97% for polyinstrumental. The alignment is excellent

throughout the song but the outro is cut 4 seconds too early (misalignment at fade

out).

Overall:

• Alignments were generally yielding good results, both numerically and subjectively.

• Longer window settings cause slight tempo variations which are only noticed when both

audio are played side-by-side.

• The only real problem appeared to be the fade-out in the outro which tends to be mis-

aligned or cut out altogether on some settings.
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2 AC/DC - Back in Black

Audio 1: Original studio recording, 1980

Audio 2: Community backing track (no vocals, no guitar solo)

Genre: Rock

Differences: Backing track has several extra bars in the end before the fade out

Notes: The intro consists of a hi-hat/muted guitar count-in, which is not always aligned

correctly

Features Fs,Hz Win,spl/ms MSE Mch,% Score Notes

Chroma 8000 4096/512 0.4 75 2 Misalignments throughout the song

Spectral 8000 1024/128 0.2 90 4 Correct count-in, almost correct outro

Spectral 22050 4096/186 0.2 86 4 Correct count-in, choppy outro

Spectral 22050 8192/372 0.2 91 3 Misaligned count-in and outro

Spectral 8000 4096/512 0.2 75 3 Misaligned count-in and outro

Spectral 22050 16384/743 0.2 66 3 Misaligned count-in

Overall:

• Alignments using spectral features performed well throughout the whole song

• Longer windows caused bad results during the intro of the song (hi-hat / muted guitar

count-in)

• The outro either came out split in multiple parts with silence in between, or misaligned

completely

• Many frames of chromagrams were very similar among each other, misleading the align-

ment.
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3 Dimmu Borgir - Spellbound

Audio 1: Original studio recording, 1996

Audio 2: Synthesised MIDI (no vocal track)

Genre: Metal

Differences:

1. MIDI file has 6 extra bars in the end

2. The audio ends with a fade out not present in MIDI

Features Fs,Hz Win,spl/ms MSE Mch,% Score Notes

Chroma 8000 4096/512 0.8 51 1 Misalignments throughout the song

Spectral 8000 1024/64 0.4 92 4 Almost correct outro

Spectral 22050 2048/93 0.6 93 4 Minor tempo floating

Spectral 22050 4096/186 0.2 90 3 Choppy outro

Spectral 8000 4096/512 0.2 63 4 Correct outro, excessive tempo floating

Spectral 22050 16384/743 0.1 66 2 Excessive tempo floating, choppy outro

Monoinstrumental: 87% alignment versus 93% for polyinstrumental. Good alignment within

the song but poorly aligned outro.

Overall:

• Alignments using spectral features performed well throughout the whole song

• Shorter windows tend to improve the outro alignment but introduce humps in the path

(requiring a higher MSE threshold at the error correction stage)

• Many frames of chromagrams were very similar among each other, misleading the align-

ment

• Alignments using chroma features resulted in a more precise alignment of song starting

notes (a 4-bar long synth chord).
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4 The Dave Brubeck Quartet - Take Five

Audio 1: Original studio recording, 1959

Audio 2: Synthesised MIDI

Genre: Jazz

Differences:

1. MIDI file omits the beginning and end of the drum solo, approximately includes

only half of it. These sections were cut out from the audio recording for the

purposes of this testing.

2. The velocities for the drum hits and saxophone notes are quite dynamic in the

recording but are not adjusted in the MIDI file.

Features Fs,Hz Win,spl/ms MSE Mch,% Score Notes

Chroma 22050 16384/743 0.2 89 2 Two misalignments, otherwise very good

Spectral 22050 2048/93 0.4 87 2 Misalignments throughout the song

Spectral 8000 1024/128 0.6 90 2 Misalignments throughout the song

Spectral 22050 4096/186 0.4 87 2 Only subtle alignment discrepancies

Spectral 8000 2048/256 0.2 90 5 Perfect alignment

Spectral 8000 4096/512 0.2 77 1 Consistently off by 2/4 after drum solo

Spectral 22050 16384/743 0.2 66 1 Consistently off by 2/4 after drum solo

Monoinstrumental: 93% versus 90% for polyinstrumental. The increase in quality can be ex-

plained by the fact that the alignment has been lead by the piano in both recordings

in the first place. On the other hand, the saxophone in the synthesised audio was

loud and played with constant dynamics, thus harming the alignment. Having been

replaced by piano it no longer sounds or acts in a destructing manner.

Overall:

• The system was able to align the song optimally using the spectral features
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• Alignments produced using both spectral and chroma features were satisfactory

• Window size had to be chosen manually. The quality of the alignment was degrading for

shorter windows (which produced good results on other songs).
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5 Beethoven’s Symphony No. 5, 1st movement

Audio 1: Symphonic orchestra recording (unknown orchestra or director)

Audio 2: Synthesised MIDI

Genre: Classical

Differences:

1. Orchestral recording holds one bar notes for two bars in the intro

2. Orchestral recording introduces a 100 seconds long section which is not in the

MIDI file

3. MIDI file tends to simplify some parts of the piece.

Features Fs,Hz Win,spl/ms MSE Mch,% Score Notes

Chroma 22050 8192/372 2.0 N/A 1 Poor alignment

Chroma 22050 16384/743 0.6 N/A 1 Skips handled correctly, poor otherwise

Spectral 22050 4096/186 0.2 N/A 1 Misalignments throughout the piece

Spectral 8000 2048/256 0.2 N/A 2 Skip spans 11s, seldom misalign.

Spectral 8000 4096/512 0.2 N/A 2 Skip spans 11s, seldom misalign.

Spectral 22050 16384/743 0.4 N/A 1 Skip spans 4s, substantial misalign.

Monoinstrumental: Poor quality alignment. Takes longer to recover from errors and get back

closer to the optimal path. This is due to the fact that the stings and the piano

are spectrally dissimilar. The resulting similarity matrix has a less clearly defined

alignment path.

Skipping the 100 seconds long extra section took 35 seconds. Within that time

range, an alternative path was found resulting in a cacophony.

Overall:

• Both the chroma and spectral features resulted in similar alignments

• Chroma-based alignments were able to correctly identify and bypass the extra section

• In general, the alignments were satisfactory but required manual intervention from the

User.
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6 Shakira - Wherever, Whenever

Audio 1: Original studio recording, 2001

Audio 2: Synthesised MIDI

Genre: Pop

Differences: N/A

Features Fs,Hz Win,spl/ms MSE Mch,% Score Notes

Chroma 22050 8192/372 0.8 62 1 Poor alignment

Chroma 22050 16384/743 0.4 96 4 Tempo floating in intro

Spectral 8000 1024/128 0.5 96 5 Perfect alignment

Spectral 22050 4096/186 0.5 97 5 Perfect alignment

Spectral 22050 8192/372 0.5 97 4 Tempo floating in intro

Spectral 8000 4096/512 0.2 95 4 Tempo floating in intro

Monoinstrumental: 96% correct versus 97% for polyinstrumental. Produced some errors in the

beginning/end of the song. These are still noticeable when listened to in isolation

from the synthesised MIDI. Throughout the main body of the song, the results are

audibly indistinguishable.

Overall:

• Both the chroma and spectral features were able to achieve high quality alignments

• Spectral alignments were able to achieve excellent results at broader range of parameter

values.
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7 Metallica - One

Audio 1: Guitar backing track (drums, bass, rhythm guitar in some sections, vocals)

Audio 2: Synthesised MIDI (no vocals)

Genre: Metal

Differences: No differences in musical structure as such. However, the backing track only

provides the guitar parts for the sections of the song in which two guitars are

played. Thus, the 16 bars of intro (where the melody is played by one guitar in the

absence of other instruments) is replaced by the metronome. It is not expected that

the alignment algorithm would be matching a guitar melody against the metronome

beat, so the notion of the ideal alignment in this case implied skipping the intro.

Features Fs,Hz Win,spl/ms MSE Mch,% Score Notes

Chroma 22050 16384/743 0.4 N/A 0 No match for 1/3 of the song

Spectral 8000 1024/128 0.8 N/A 1 Noticeable errors in the intro

Spectral 22050 4096/186 0.4 N/A 2 Intro not smooth, seldom tempo floating

Spectral 22050 8192/372 0.4 N/A 4 Tempo floating in intro

Spectral 8000 4096/512 0.8 N/A 4 Tempo floating in intro

Monoinstrumental: Remarkably, the monophonic alignment was able to fit the path through

the intro. While it is not precise, it keeps within about 500 ms, giving a useable

approximation for manual tweaking. Much of the rest of the song is aligned well

with some seldom tempo floating.

Overall:

• Despite the considerable differences in instrumentation of the two audio, some alignments

based on spectral features produced valid results

• For the same reason the chroma-based alignments were not able to produce usable results.
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8 Toto - Africa

Audio 1: Original studio recording, 1982

Audio 2: Synthesised MIDI

Audio 2 (Alternative): Synthesised MIDI (no hi-hats)

Genre: Rock

Differences:

1. Compared to the audio recording, the MIDI omits 12 beats (about 8 seconds)

in 3 places of the song

2. The MIDI file has hi-hat playing every 1/16 note. This does not reflect the

original song

Features Fs,Hz Win,spl/ms MSE Mch,% Score Notes

Chroma 22050 8192/372 2.0 40 1 Poor alignment

Chroma 22050 16384/743 0.4 66 2 2 of 3 omitted regions handled correctly

Spectral 22050 2048/93 0.8 77 1 Seldom errors in the alignment

Spectral 22050 4096/186 0.4 77 3 Poor handling of omitted regions only

Spectral 8000 2048/256 0.2 78 3 Poor handling of omitted regions only

Spectral 22050 8192/372 0.4 79 3 Decent handling of omitted regions

The above results were collected for the alignments with the hi-hats removed from the MIDI file

prior to synthesising audio. Having the hi-hats in did not tend to worsen the results throughout

the song. However, path was different in the outro, and, while resulting in a valid alignment,

was not as ideal as when the hi-hats were artificially removed from the MIDI.

Monoinstrumental: 78% as opposed to 79% alignment, practically indifferent from polyphonic.

Overall:

• The alignment path for all of the alignments were taking a parallel route in the erroneous

regions (which is acceptable)

104



• Chroma features were found to be yielding good alignments around the erroneous re-

gions. However, they incurred a larger deviation from the reference path than the spectral

features
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9 Meshuggah - Bleed

Audio 1: Original studio recording, 2008

Audio 2: Synthesised MIDI

Genre: Metal

Differences: 4 bar count-in in the MIDI file

This musical piece expresses its musicality mainly through the rhythmic component, and, to a

smaller extent, through pitch and timbre. The original recording has a constant tempo of 102.5

BPM, and most of the sections are repetitions of some rhythmic patterns played by drums,

bass and electric guitar. Most of the notes in each pattern have the length of 1/32 (1.83 ms),

while the pitch may be changing every beat (1/4) or be constant for several bars in a row. This

makes it a difficult piece to align.

Surprisingly, valid alignments could only be found when they were done against a mon-

oinstrumental re-synthesis of the MIDI file. The exact parameters of one of such successful

alignments are the following:

Features Fs,Hz Win,spl/ms MSE Score Notes

Spectral 8000 2048/256 0.2 5 Perfect alignment

Spectral 8000 4096/512 0.2 4 Minor tempo floating in one section

No errors could be heard in the resulting monoinstrumental alignment. Any attempts to pro-

duce an alignment against a polyinstrumental audio resulted in a many misaligned parts, where

the path would skip across bars to a neighbouring off-diagonal path (since most sections consist

of identical bars). Since both the MIDI and the original audio were of constant (but different)

tempo, such misalignments only overcomplicated the situation.

The reason for the poor polyinstrumental alignment may have been the sound of the guitar

in the synthesised audio. The palm muted guitar, employed throughout the song, had a short,

percussive sound, not producing a clear spectrum. (Palm muting is a technique used to damp

the sound of the guitar by placing the palm on the string before it is plucked. It is sometimes

referred to as the guitar’s counterpart for pizzicato). On the other hand, the piano ignored the

palm muting directives, thus producing a longer pitched sound with a clear spectrum, aiding

the alignment.
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10 ABBA - I Do, I Do, I Do

Audio 1: Original studio recording, 1975

Audio 2: Synthesised MIDI

Genre: Pop

Differences:

1. MIDI file repeats 4 bars one extra time in the outro and concludes the song

with a chord, while the studio recording simply fades out

2. The MIDI file introduces a short chord before the otherwise first note (1/8

triplet).

Features Fs,Hz Win,spl/ms MSE Mch,% Score Notes

Chroma 22050 4096/186 2.0 62 1 Misalignments throughout the song

Chroma 22050 8192/372 2.0 84 3 Misalignments in first bar and outro

Chroma 22050 16384/743 0.4 82 3 Misalignment in first bar

Spectral 22050 4096/186 0.4 89 2 Misalignments within the song

Spectral 8000 2048/256 0.6 93 3 Misalignments in first bar and outro

Spectral 22050 8192/372 0.2 93 3 Misalignment in outro

Spectral 22050 16384/743 0.1 94 3 Misalignments in first bar and outro

Monoinstrumental: Same 93% quality level, audibly similar to the polyinstrumental alignment.

Overall:

• Many alignments were of a good quality and absent of noticeable tempo fluctuations

• No alignment was able to omit the first extra chord. However, the best of the alignments

smoothed out the tempo across the first bar so the extra note did not cause audible errors

• The outro mismatch in the source material generally became the point of failure common

across all of the performed alignments

• Chroma features were found to perform as well as the spectral features at several window

lengths.
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Appendix D

DTW w/Path Pruning Detailed Results

The alignments presented below use the same settings as the highlighted rows in Appendix C.

Parameters Results

# Title Preclc1,sec Min.corr2,sec Thsh3 Eval4,% Time5,sec

1 ABBA - Dancing Queen 2 10 1.05 6 1.26

2 AC/DC - Back in Black 5 15 1.05 10 1.57

3 Dimmu Borgir - Spellbound 10 20 1.20 31 15.3

4 Dave Brubeck - Take Five 5 15 1.05 12 0.89

5 Beethoven’s Symphony No. 5 5 15 1.20 30 1.59

6 Shakira - Wherever,Whenever 5 10 1.05 10 1.10

7 Metallica - One 15 50 1.05 17 1.85

8 Toto - Africa 5 50 1.05 18 1.00

9 Meshuggah - Bleed 10 10 1.10 21 4.43

10 ABBA - I Do, I Do, I Do 2 15 1.10 12 0.48

1 Precalculate (sec): Number of complete rows to calculate before the path pruning is enabled

expressed in seconds.

2 Minimum corridor width (sec): The corridor is enlarged if found to be narrower than this

many seconds.

3 Pruning threshold scaling factor: The paths are pruned if their augmented distance is over

the pruning threshold. The threshold is set as a minimum of the previous row scaled

by this factor.

111



4 Evaluation ratio (% ): Ratio of the evaluated part of the similarity matrix to the complete

matrix expressed as percentrage.

5 Evaluation time (sec): Time in seconds it took DTW w/path pruning to complete.

The maximum value across all alignments or a value that is considerably larger than

is is for other alignments.
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