
Introduction Packages Types Notes Appendix

AdaML

} Ada-tailored UML
Modeling Language ~

Francesc Rocher

May 17, 2021

AdaML – 0.1.2 Overview May 17, 2021 1 / 40

Introduction Packages Types Notes Appendix

What is AdaML?

I A modeling language to draw UML diagrams
I UML tailored for Ada 2012 programming language
I Small, extensible tool implemented on top of PlantUML

AdaML – 0.1.2 Overview May 17, 2021 2 / 40

Introduction Packages Types Notes Appendix

What is not AdaML?

I A model-based tool to generate Ada code
I A reverse engineering tool to draw UML diagrams from

existing Ada code
I An GUI-based UML modeling or drawing tool

AdaML – 0.1.2 Overview May 17, 2021 3 / 40

Introduction Packages Types Notes Appendix

Features

I Coherent set of functions to describe components
I Syntax resembling Ada
I High quality drawings (eps) to embed in other docs
I svg graphics for additional editing (e.g., inkscape)
I Online generated diagrams for online docs (e.g., GitHub)
I Easy to learn by example, both AdaML and Ada language

AdaML – 0.1.2 Overview May 17, 2021 4 / 40

https://inkscape.org/

Introduction Packages Types Notes Appendix

Online Version - Quick Start

I Open PlantUML Previewer or PlantText editor
I Remove default lines and paste the following code:

!include https://raw.github.com/rocher/AdaML/release/0.1.2/AdaML.puml
begin_type("Pan_Dimensional")

procedure("Ask_The_Question", "in out Natural")
end()

begin_package("Deep_Thought")
function("Answer_The_Question", "", "Natural")

private()
variable("The_Answer", "Natural", 42)

end()

depends("Pan_Dimensional", "Deep_Thought", "ask")

AdaML – 0.1.2 Overview May 17, 2021 5 / 40

http://sujoyu.github.io/plantuml-previewer
https://www.planttext.com/

Introduction Packages Types Notes Appendix

Online Version - Test Examples

In case you want to test the examples in this doc
I Visit one of the several available PlantUML online servers
I Copy and paste the AdaML code shown in the examples
I Replace the line ’!include AdaML.puml’ with

!include https://raw.github.com/rocher/AdaML/release/0.1.2/AdaML.puml

Warning
Depending on the PlantUML version used in the web site you can
obtain different graphical results

AdaML – 0.1.2 Overview May 17, 2021 6 / 40

Introduction Packages Types Notes Appendix

Local Version - Requirements

In case you want to integrate results in your local docs
I PlantUML installed and working in your system
I AdaML.puml file, check AdaML releases
I Your favorite text editor with PlantUML support (e.g. Emacs)
I Check the list of supported editors
I For better visualization and integration with LATEX and other

formats, computer modern fonts

AdaML – 0.1.2 Overview May 17, 2021 7 / 40

https://plantuml.com
https://github.com/rocher/AdaML
http://plantuml.com/running
https://www.fontsquirrel.com/fonts/computer-modern

Introduction Packages Types Notes Appendix

Pros & Cons

Online Version
3 Quick and easy to test
3 Same code can be embedded in online docs
] Bitmap graphics; svg in PlantText
7 No file saved, no backups
7 PlantUML version may change without notice, affecting

graphical results, layout, style or other incompatibilities

Local Version
3 Best graphical results to embed in other docs (eps)
3 Consistent graphical results over time, if no version changed
7 Requires PlantUML up and running

AdaML – 0.1.2 Overview May 17, 2021 8 / 40

Introduction Packages Types Notes Appendix

Document Conventions

In this document
Entities are classifiers, in UML terminology, that correspond

to Ada packages, types, records, arrays, subtypes,
tasks and protected objects

Elements are features, in UML terminology, that correspond to
Ada record members, functions and procedures

Specifiers are Ada constructions, like type discriminant or range
specifications (e.g, range 1..1024) that can appear
in some entity diagrams

AdaML – 0.1.2 Overview May 17, 2021 9 / 40

Introduction Packages Types Notes Appendix

OOP Support

I AdaML supports both OOP and non-OOP approaches to
software models

I There is no explicit difference between them in AdaML
I The final implementation in Ada is the last choice between the

two options
I This document and examples on it use OOP concepts as much

as possible

AdaML – 0.1.2 Overview May 17, 2021 10 / 40

Introduction Packages Types Notes Appendix

Abstraction Levels

AdaML provides two main view levels, according to the C4 model:
Code view to show in detail how entity elements (attributes,

methods) are implemented and the relationship they
have with other entities

Component view to show internal entity building blocks and the
overall relationship with other entities

In some code views, Ada code is included.

AdaML – 0.1.2 Overview May 17, 2021 11 / 40

https://c4model.com

Introduction Packages Types Notes Appendix

Deep Thought Example - Code View

AdaML
!include AdaML.puml
begin_type("Pan_Dimensional")

procedure("Ask_The_Question", "in out Natural")
end()

begin_package("Deep_Thought")
function("Get_Answer", "", "Natural")

private()
variable("The_Answer", "Natural", 42)

end()

depends("Pan_Dimensional", "Deep_Thought", "ask")

UML

AdaML – 0.1.2 Overview May 17, 2021 12 / 40

Introduction Packages Types Notes Appendix

View Levels

Minimal only shows the package entity and generic parameters

Code View shows package elements with certain level of detail;
elements can be other packages, types subprograms,
tasks, constants, variables and protected objects

Component View shows package elements and their relationships;
do not include details of such elements

AdaML – 0.1.2 Overview May 17, 2021 13 / 40

Introduction Packages Types Notes Appendix

Minimal view

The simplest package representation is

AdaML
!include AdaML.puml
package("Deep_Thought")

UML

AdaML – 0.1.2 Overview May 17, 2021 14 / 40

Introduction Packages Types Notes Appendix

Code View

Shows package elements; here variables and subprograms shown

AdaML
!include AdaML.puml
begin_package("Deep_Thought")

function("Get_Answer", "", "Natural")
private()

variable("The_Answer", "Natural", 42)
end()

UML

Ada
package Deep_Thought is

function Get_Answer return Natural;
private

The_Answer : Natural := 42;
end FooBar;

AdaML – 0.1.2 Overview May 17, 2021 15 / 40

Introduction Packages Types Notes Appendix

Adding Types

AdaML
!include AdaML.puml
begin_package("Deep_Thought")

type("Range_42", "range 1 .. 42")
private()

variable("The_Answer", "Range_42")
public()

function("Get_Answer", "Range_42")
end()

UML

Note
When using extra entity elements, like types or tasks, then
variables and methods must be manually sorted (contrast with
previous slide)

AdaML – 0.1.2 Overview May 17, 2021 16 / 40

Introduction Packages Types Notes Appendix

Adding Tasks

AdaML
!include AdaML.puml
begin_package("Deep_Thought")

type("Range_42", "range 1 .. 42")
task("Compute")
variable("-The_Answer", "Range_42")
function("Get_Answer", "", "Range_42")

end()

UML

Element visibility
I use private() and public() functions, as in previous slides
I put ‘-’, ‘+’ or ‘#’ in front of the element’s name; this has

priority over pri/pub functions

AdaML – 0.1.2 Overview May 17, 2021 17 / 40

Introduction Packages Types Notes Appendix

Generic Packages

AdaML
!include AdaML.puml
begin_package("Deep_Thought<N>")

generic_with("N : Natural range 1 .. 42")
type("Range_N", "range 1 .. N")
task("Compute")
variable("-The_Answer", "Range_N")
function("Get_Answer", "", "Range_N")

end()

UML

AdaML – 0.1.2 Overview May 17, 2021 18 / 40

Introduction Packages Types Notes Appendix

Component view

AdaML
!include AdaML.puml
begin_package_spec("Deep_Thought<N>")

type("Range_Type<N>")
type_new("Ada.Natural", "Range_Type")
task("Compute")
subprogram("Get_Answer")
variable("The_Answer")
depends("Get_Answer", "The_Answer");
depends("Compute", "The_Answer");
is("The_Answer", "Range_Type")

end()

UML

AdaML – 0.1.2 Overview May 17, 2021 19 / 40

Introduction Packages Types Notes Appendix

Type Classification

Ada 2012 overall type classification

ELEMENTARY TYPES COMPOSITE TYPES
|-- Scalar |-- Record
| |-- Discrete |-- Array
| | |-- Integer |-- Protected
| | | |-- Signed '-- Task
| | | '-- Modular
| | '-- Enumeration
| '-- Real
| |-- Float
| '-- Fixed
| |-- Decimal
| '-- Ordinary
'-- Access

AdaML – 0.1.2 Overview May 17, 2021 20 / 40

Introduction Packages Types Notes Appendix

Predefined Types

I AdaML is aware of Boolean, Integer, Natural, Positive,
Float, Character and String types

I so there is no need to declare such types

I When needed, refer to them also as, e.g. Ada.Boolean1, to
make them appear in a separate package

I otherwise it might look like the type has been redefined in your
package

1This is UML notation context, not Ada programming language

AdaML – 0.1.2 Overview May 17, 2021 21 / 40

Introduction Packages Types Notes Appendix

Discrete Types

I For discrete types like range, modular or enumeration types,
use either the stereotype or the particular specifier

I The meaning is the same, the appearance changes substantially
I Prefer stereotypes in component views, and specifiers in code

views
I Both the stereotype and the specifier can be also combined;

might be little redundant, but sometimes useful

AdaML – 0.1.2 Overview May 17, 2021 22 / 40

Introduction Packages Types Notes Appendix

Range Types

AdaML
!include AdaML.puml

' with stereotype
type("Dozen_Type", "range 1 .. 12")
note("top of Dozen_Type", "ste...")

' with specifier
begin_type("Power_Type")

range("-2_048 .. 65_536")
end()
note("top of Power_Type", "her...")

UML

Ada
type Dozen_Type is range 1 .. 12;
type Power_Type is range -2_048 .. 65_536;

AdaML – 0.1.2 Overview May 17, 2021 23 / 40

Introduction Packages Types Notes Appendix

Modular Types

AdaML
!include AdaML.puml

' with stereotype
type("Mod10_Type", "mod 10")
note("top of Mod10_Type", "ste...")

' with mod specifier
begin_type("Mod512_Type", "mod")

mod(512)
end()
note("top of Mod512_Type", "he...")

UML

Ada
type Mod10_Type is mod 10;
type Mod512_Type is mod 512;

AdaML – 0.1.2 Overview May 17, 2021 24 / 40

Introduction Packages Types Notes Appendix

Enumeration Types

AdaML
!include AdaML.puml

' with stereotype
type("Year_Months", "enum")

' with specifier
begin_type("Week_Days")

enum("Mon, Tue, Wed, Thu, Fri, Sat, Sun")
end()

top_down("Year_Months", "Week_Days")

UML

Ada
type Year_Months is (Jan, Feb, Mar, ..., Dec);
type Week_Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

AdaML – 0.1.2 Overview May 17, 2021 25 / 40

Introduction Packages Types Notes Appendix

Record Types

AdaML
!include AdaML.puml
begin_type("Foo_Type")

function("Answer", "", "Natural")
attribute("Bar", "Natural")

end()

UML

Ada
type Foo_Type is private record

Baz : Natural;
end record;
function Answer (Arg : in out Foo_Type) return Natural;

AdaML – 0.1.2 Overview May 17, 2021 26 / 40

Introduction Packages Types Notes Appendix

Record Types with Discriminant (i)

AdaML
!include AdaML.puml
begin_type("Activity_Plan<Day : Day_Type>")

attribute("Exercise", "Float := 0.75")
case("Day is Mon..Fri")

attribute("Work", "Float := 8.0")
case("Day is Sat")

attribute("Music", "Float := 4.0")
attribute("Tennis", "Float := 2.0")

case()
attribute("Location", "String")
function("Total_Hours", "", "Float")

end()

UML

AdaML – 0.1.2 Overview May 17, 2021 27 / 40

Introduction Packages Types Notes Appendix

Record Types with Discriminant (ii)

I When a case value is not specified, assume null
type Day_Type is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
type Activity_Plan (Day : Day_Type) is record

Exercise : Float := 0.75;
case Day is

when Mon .. Fri =>
Work : Float := 8.0;

when Sat =>
Music : Float := 4.0;
Tennis : Float := 2.0;

when Sun =>
null;

end case;
Location : String;

end record;

function Total_Hours (Plan : in Activity_Plan) return Float;

AdaML – 0.1.2 Overview May 17, 2021 28 / 40

Introduction Packages Types Notes Appendix

Derived Types

AdaML
!include AdaML.puml
type_new("Integer", "Foo_Type")
begin_type_new("Integer", "Bar_Type")

range("-1 .. 20")
end()

UML

Ada
type Foo_Type is new Integer;
type Bar_Type is new Integer range -1 .. 20;
-- or simply
type Bar_Type is range -1 .. 20;

AdaML – 0.1.2 Overview May 17, 2021 29 / 40

Introduction Packages Types Notes Appendix

Abstract Types

AdaML
!include AdaML.puml
begin_abstract("Animal", "tagged")

attribute("Class", "String")
end()

begin_type_new("Animal", "Mammal")
attribute("Arms", "Natural")
attribute("Legs", "Natural")

end()

begin_type_new("Animal", "Reptile")
attribute("Diurnal", "Boolean")

end()

UML

AdaML – 0.1.2 Overview May 17, 2021 30 / 40

Introduction Packages Types Notes Appendix

Access Types

AdaML
!include AdaML.puml
begin_abstract("Animal", "tagged")

attribute("Class", "String")
end()

type_access("Animal")

UML

Note
Suffix ‘_Access’ is automatically added to access types; suffix can
be configured or suppressed

AdaML – 0.1.2 Overview May 17, 2021 31 / 40

Introduction Packages Types Notes Appendix

Introduction

I Notes are usually needed to clarify some UML constructions
I AdaML notes can be

I floating, not associated to any entity
I linked to one entity, appeared some slides before
I named notes linked simultaneously to several entities
I notes on links, associated to links between entities

I AdaML supports geometry hints to specify relative position
between the note and the entity

AdaML – 0.1.2 Overview May 17, 2021 32 / 40

Introduction Packages Types Notes Appendix

Floating Notes

I Not associated to any particular entity

AdaML

!include AdaML.puml
note("Stereotypes help clarify\nrelationhips, <i>right?</i>")
type("Pan_Dimensional", "questioner")
package("Deep_Thought", "responder")
depends("Pan_Dimensional", "Deep_Thought", "ask")

UML

AdaML – 0.1.2 Overview May 17, 2021 33 / 40

Introduction Packages Types Notes Appendix

Notes Linked to Latest Defined Entity

I Notes are automatically associated to the latest defined entity
I Must specify relative position with ‘top’, ‘bottom’, ‘left’

or ‘right’ keyword
AdaML

!include AdaML.puml
type("Foo")
note("left", "What is 'Foo'?")

type("Bar")
note("right", "What is 'Bar'?")

depends("Foo", "Bar", "baz")

UML

AdaML – 0.1.2 Overview May 17, 2021 34 / 40

Introduction Packages Types Notes Appendix

Notes Linked to an Explicit Entity

I Must specify relative position with ‘top of’, ‘bottom of’,
‘left of’ or ‘right of’ keyword, followed by the name of
the entity

AdaML

!include AdaML.puml

type("Foo_Bar")
note("top of Foo_Bar", "W...?")
note("right of Foo_Bar", "W...?")
note("bottom of Foo_Bar", "W...?")
note("left of Foo_Bar", "Why...?")

UML

AdaML – 0.1.2 Overview May 17, 2021 35 / 40

Introduction Packages Types Notes Appendix

Named Notes Linked to Several Entities

I Specify a number, e.g. 42, to create the named note
‘Note_42’, and then link the note to other entities

AdaML

!include AdaML.puml
type("Foo")
type_new("Foo", "Bar")

note(42, "Is 'Foo_Bar' in between?")
link("Foo", "Note_42")
link("Note_42", "Bar")

UML

AdaML – 0.1.2 Overview May 17, 2021 36 / 40

Introduction Packages Types Notes Appendix

Notes on Links

I Automatically associated to the latest relationship defined
I Must contain ‘on link’ keyword, optionally preceded by

‘top’, ‘bottom’, ‘left’ or ‘right’ keyword

AdaML

!include AdaML.puml
type("Pan_Dimensional")
package("Deep_Thought")

depends("Pan_Dimensional", "Deep_Thought", "ask")
note("right on link", "hope..")

UML

AdaML – 0.1.2 Overview May 17, 2021 37 / 40

Introduction Packages Types Notes Appendix

Release

Status
I AdaML is available under the terms of the GPLv3 License
I Current release is 0.1.2

ChangeLog
I First public release including everything you see in this

overview document

AdaML – 0.1.2 Overview May 17, 2021 38 / 40

Introduction Packages Types Notes Appendix

TODO

Static behavior
I There are still a number of features to document and under

development, like relationships, protected objects, task entries,
arrays, etc..

Dynamic behavior
I Next releases will include interaction diagrams like sequence

diagrams, activity diagrams, state machine diagrams or timing
diagrams

AdaML – 0.1.2 Overview May 17, 2021 39 / 40

Introduction Packages Types Notes Appendix

Feedback Welcome

I Send comments, feedback or suggestions using the issues page
of the AdaML GitHub repository:
http://github.com/rocher/AdaML/issues

I Remember to specify the release number you are referring to
in you comments

I Don’t hesitate to contact the author in case you need help

AdaML – 0.1.2 Overview May 17, 2021 40 / 40

http://github.com/rocher/AdaML/issues

	Introduction
	Packages
	Types
	Notes
	Appendix

