
Overture Technical Report Series
No. TR-005

January 2021

VDM Combinatorial Testing Guidelines

by

Nick Battle
Hugo Daniel Macedo

Peter Gorm Larsen

Overture – Open-source Tools for Formal Modelling

VDM Combinatorial Testing Guidelines

Document history
Month Year Version Version of Overture.exe Comment
December 2020 0.1 3.0.2 Initial version
January 2021 1.0 3.0.2 First public release

ii

Contents

1 Introduction 1
1.1 What is Combinatorial Testing? . 1
1.2 The Structure of this Document . 2

2 Working with Traces 3
2.1 Basic Trace Constructs . 3
2.2 Using Variables . 8
2.3 Tests with Errors . 14
2.4 Trace Reduction . 16
2.5 How does Trace Expansion Work? . 19
2.6 Language Considerations . 20

2.6.1 Traces in VDM-SL . 20
2.6.2 Traces in VDM++ and VDM-RT . 22
2.6.3 Expansion and Execution Considerations 22

3 Combinatorial Testing Patterns 25
3.1 Data and Process Traces . 25
3.2 Traces and Test Operations . 25
3.3 Common Patterns . 26

3.3.1 Sets for “let” bindings . 26
3.3.2 Bracketing operations with headers and trailers 27
3.3.3 Graph searching by traces . 28
3.3.4 Building data in stages . 29
3.3.5 Oracle functions . 30
3.3.6 Using positive and negative sense checks 30

3.4 Avoiding Test Explosions . 31

4 Combinatorial Testing Examples 33
4.1 The Luhn Check Digit Model . 33

4.1.1 Background . 33
4.1.2 The Structure of the Specification . 33
4.1.3 Testing Approach . 35

iii

VDM Combinatorial Testing Guidelines

4.1.4 Real World Luhn, the ACME Example 38
4.2 The Basket Service Model . 40

4.2.1 Background . 40
4.2.2 The Structure of the Specification . 40
4.2.3 Testing Approach . 42

A Combinatorial Testing Syntax 47

B Tool Support 49
B.1 Overture GUI . 49
B.2 Visual Studio Code GUI . 49
B.3 VDMTools UI . 50
B.4 Command Line Tools . 50

B.4.1 Overture Command Line . 50
B.4.2 VDMJ Command Line . 51
B.4.3 VDMTools Command Line . 51

C Example Model Listings 53
C.1 The LUHN Check Digit Model . 53
C.2 The Basket Service Model . 58

iv

Chapter 1

Introduction

This manual is a complete guide to the combinatorial testing of VDM models. It assumes the reader
has no prior knowledge of combinatorial testing, but a working knowledge of software testing and
the Vienna Development Method (VDM), in particular, the VDM++ and VDM-SL dialects.

1.1 What is Combinatorial Testing?
In general, specifications are tested to verify that certain properties or behaviours are met, as spec-
ified by constraints in the specification and validation conjectures in the tests. The simplest way to
test a specification is to write ad-hoc tests, starting from a known system state and proceeding with
a sequence of operation calls that should move to a new state or produce some particular result or
error response. The problem with this kind of testing is that it can be very laborious to produce the
number of tests needed to cover the complete system behaviour. It is also expensive to maintain a
large test suite as the specification evolves. Thus, Overture provides a VDM language extension
(for all dialects) called Combinatorial Testing [Nie&11, Larsen&10], which enables the automated
generation of a comprehensive set of tests for VDM specifications from user specified patterns
(traces). The language extension adds the possibility to define tests using regular expressions, a
permutation operator, and special VDM let definitions. A trace can thus be unfolded into several
tests, for instance calling a function with arguments arbitrarily taken from a set of values instead of
hard coding each call, thus automating test suite generation and lowering the maintenance effort.

A combinatorial trace is a pattern that describes the construction of argument values and the
sequences of operation calls that will exercise the specification as a standard ad-hoc test, but traces
are automatically expanded into a (potentially large) number of tests, each of which is a particular
sequence of operation calls and argument values. The execution of tests is performed automatically,
starting each in a known state; a test is considered to pass if it does not violate the specification’s
constraints (pre- or postconditions, state and type invariants, recursive measure and dynamic type
checks), or the test’s validation conjectures. Individual failed tests can be executed in isolation
to find out why they failed. A specification may contain several traces, each designed to test a
particular aspect, but Combinatorial Testing is as incomplete as any other testing approach, yet
interesting when compared with its alternatives.

1

VDM Combinatorial Testing Guidelines

The most complete way to test a specification is to produce a formal mathematical proof that
it will never violate its constraints, and always meet its validation conjectures if presented with
a legal sequence of operation calls. This provides the highest level of confidence in the correct-
ness of a specification, but it can be unrealistic to produce a complete formal proof for complex
specifications, even with tool support [Paulson97, Bicarregui&94]. Model checking provides an
approach to formal testing that is considerably better than ad-hoc testing but not as complete as for-
mal proof [Clarke&99]. This approach uses a formal specification of the system properties desired,
often written in a temporal calculus, and the model checker symbolically executes the specifica-
tion searching for execution paths that violate the constraints. Since the execution is symbolic,
extremely large state spaces can be searched (billions of cases is not uncommon), and failed cases
can produce a “counter example” that demonstrates the failure. This is a very powerful technique,
but in practice, realistic specifications often produce a state space explosion that is too great for
model checkers [Clarke&20].

Combinatorial testing is not a formal proof. It is far more powerful than ad-hoc testing, but
not as complete as model checking, yet tests are produced automatically from “traces” that
are relatively simple to define without the need for extra model checking tools and expertise. The
approach allows specifications to be tested with perhaps millions of test cases, but cannot guarantee
to catch every corner case in the way that a model checker can. Therefore the technique is useful
for specifications that are too complex for model checking or formal proof. It is also an efficient
approach to exercise and test VDM models at an early stage, when a full proof or model checking
approach is neither useful nor appropriate.

1.2 The Structure of this Document
The document is intended to be read sequentially, but readers who are familiar with the basics of
VDM traces can skip Chapter 2 and go straight to the patterns in Chapter 3.

• Chapter 2, Working with Traces introduces the concept of a combinatorial test and explains
how to work with traces in VDM.

• Chapter 3, Combinatorial Testing Patterns looks at common ways of using traces that are
useful in many different situations.

• Chapter 4, Combinatorial Testing Examples uses two more significant specifications to demon-
strate typical usage of traces in real life.

• Appendix A, Combinatorial Testing Syntax defines the formal grammar of traces.

• Appendix B, Tool Support describes how to use Combinatorial Testing in various tools.

• Appendix C, Example Model Listings contains the full listings of the models explored in
Chapter 4.

2

Chapter 2

Working with Traces

2.1 Basic Trace Constructs

Combinatorial tests are embedded within a VDM specification using a section called “traces”.
Typically, one or more traces are added to a separate class or module that is intended for testing
rather than the main specification, though you can add traces to any class you wish. In this chapter,
we will use the example VDM++ classes below:�
class Counter
instance variables

total:int := 0;

operations
public inc: () ==> int
inc() == (total := total + 1; return total;)

public dec: () ==> int
dec() == (total := total - 1; return total;)

end Counter

class Tester
instance variables

obj:Counter := new Counter();

traces
T1: obj.inc();

end Tester
� �
Notice that there are two classes, Counter and Tester. The Counter class defines a simple

3

VDM Combinatorial Testing Guidelines

operation that increments and decrements a total state value that is initially zero. The Tester
class creates an instance of Counter and defines a single trace called T1. Trace names are simple
identifiers, optionally separated by slashes (e.g. item456/interface/all, though the slashes
have no deper meaning). This example is the simplest trace possible and indicates that the trace
should expand to a single test that just calls obj.inc().

This trace can either be executed in Overture IDE in the Combinatorial Testing perspective (see
Appendix B), or it can be executed from the command line using the runtrace command. The
command line output is illustrated in this document for simplicity:

> runtrace Tester‘T1
Generated 1 tests in 0.004 secs.
Test 1 = obj.inc()
Result = [1, PASSED]
Executed in 0.007 secs.
All tests passed

The first line of output indicates that one test has been generated from the trace. With more complex
examples, this generation could expand to thousands or millions of tests, and consequently it may
take a few seconds.

The next line of the output describes the test that was generated. Note that this is called “Test 1”,
and consists of a single call to obj.inc(). The line below the test gives the result of executing
that test. There is a single return value from the call to obj.inc(), 1, which is listed along with
the word “PASSED” that indicates that there were no constraint violations in the test execution.
Lastly the time taken to execute all of the tests is given, and an indication of whether any tests
failed.

The reason that this trace only expands to a single test is that the trace, when considered as a
pattern, only matches a single operation call. But if we change the trace to the following:�
traces

T1: obj.inc() | obj.dec();
� �
The trace is now saying that it would match either a call to obj.inc() or a call to obj.dec().
Therefore the test expansion produces the following:

> runtrace Tester‘T1
Generated 2 tests
Test 1 = obj.inc()
Result = [1, PASSED]
Test 2 = obj.dec()
Result = [-1, PASSED]
Executed in 0.033 secs.
All tests passed

4

CHAPTER 2. WORKING WITH TRACES

This time two tests are generated. The first calls obj.inc(), the second obj.dec(). Notice
that the decrement test is completely separate from the increment test. It produces -1 as its result,
because the Counter object is re-created for each test. It does not decrement the counter back to
zero after the first test incremented it.

If we want to test an increment followed by a decrement, that would be expressed using a
semi-colon separator:�
traces

T1: obj.inc(); obj.dec();
� �
This produces the output:

Generated 1 tests
Test 1 = obj.inc(); obj.dec()
Result = [1, 0, PASSED]
Executed in 0.027 secs.
All tests passed

This generates a single test again, but you can see that the test involves two calls and that they
return 1 and 0, respectively. So this time the second call is operating on the same object instance
as the first.

If the increment and decrement operations are independent, it makes sense to test calls to them
in either order, which would be expressed as:�
traces

T1: || (obj.inc(), obj.dec());
� �
Notice that the separator has changed to a comma. That produces the output:

Generated 2 tests
Test 1 = obj.inc(); obj.dec()
Result = [1, 0, PASSED]
Test 2 = obj.dec(); obj.inc()
Result = [-1, 0, PASSED]
Executed in 0.029 secs.
All tests passed

So now both orderings of the two calls are produced. This is because there are two orderings that
match the pattern || (..., ...). This particular trace construct naturally expands to an
arbitrary number of comma-separated calls and produces a test for every permutation of the calls
in brackets.

But what if some tests are a pair of calls and some are not? If we want to make a call optional,

5

VDM Combinatorial Testing Guidelines

the ? operator can be added to any operation call (i.e. not just within || operators) to indicate that
this will match tests where the call is made and where it is not. For example:�
traces

T1: || (obj.inc(), obj.dec()?);
� �
This means that the decrement call is optional and so although it is included in the orderings of the
pair, it should also be absent in some cases. This example produces the following:

Generated 4 tests
Test 1 = obj.inc(); skip
Result = [1, (), PASSED]
Test 2 = obj.inc(); obj.dec()
Result = [1, 0, PASSED]
Test 3 = skip; obj.inc()
Result = [(), 1, PASSED]
Test 4 = obj.dec(); obj.inc()
Result = [-1, 0, PASSED]
Executed in 0.043 secs.
All tests passed

You see that the decrement call is sometimes present and sometimes replaced by skip, which
indicates the absence of an optional call. Notice also that the || operator and the ? operator work
together to combine their effects in this example, though ? can be used for any operation call
(strictly, for any trace core definition, see A).

Along the same lines as ?, it is possible to add * and + operators to any call, which indicate
that it should be called zero or more times, and one or more times. The maximum number of times
is a tool preset value that defaults to 5, though it can be changed. So for example:�
traces

T1: obj.inc()*;
T2: obj.dec()+;
� �

> runtrace Tester‘T1
Generated 6 tests
Test 1 = skip
Result = [(), PASSED]
Test 2 = obj.inc()
Result = [1, PASSED]
Test 3 = obj.inc(); obj.inc()
Result = [1, 2, PASSED]
Test 4 = obj.inc(); obj.inc(); obj.inc()

6

CHAPTER 2. WORKING WITH TRACES

Result = [1, 2, 3, PASSED]
Test 5 = obj.inc(); obj.inc(); obj.inc(); obj.inc()
Result = [1, 2, 3, 4, PASSED]
Test 6 = obj.inc(); obj.inc(); obj.inc(); obj.inc(); obj.inc()
Result = [1, 2, 3, 4, 5, PASSED]
Executed in 0.046 secs.
All tests passed

> runtrace Tester‘T2
Generated 5 tests
Test 1 = obj.dec()
Result = [-1, PASSED]
Test 2 = obj.dec(); obj.dec()
Result = [-1, -2, PASSED]
Test 3 = obj.dec(); obj.dec(); obj.dec()
Result = [-1, -2, -3, PASSED]
Test 4 = obj.dec(); obj.dec(); obj.dec(); obj.dec()
Result = [-1, -2, -3, -4, PASSED]
Test 5 = obj.dec(); obj.dec(); obj.dec(); obj.dec(); obj.dec()
Result = [-1, -2, -3, -4, -5, PASSED]
Executed in 0.042 secs.
All tests passed

The important difference between these two is that T1 includes an extra skip case, whereas T2
does not. Lastly, it is possible to indicate a specific number of repetitions of a call or a range of
repetitions. For example:�
traces

T1: obj.inc(){3};
T2: obj.dec(){2, 4};
� �

> runtrace Tester‘T1
Generated 1 tests
Test 1 = obj.inc(); obj.inc(); obj.inc()
Result = [1, 2, 3, PASSED]
Executed in 0.026 secs.
All tests passed

> runtrace Tester‘T2
Generated 3 tests
Test 1 = obj.dec(); obj.dec()
Result = [-1, -2, PASSED]
Test 2 = obj.dec(); obj.dec(); obj.dec()

7

VDM Combinatorial Testing Guidelines

Result = [-1, -2, -3, PASSED]
Test 3 = obj.dec(); obj.dec(); obj.dec(); obj.dec()
Result = [-1, -2, -3, -4, PASSED]
Executed in 0.01 secs.
All tests passed

The T1 trace now produces a single test with precisely three repetitions, while the T2 trace gives
three tests with 2, 3 and 4 repetitions respectively.

If you combine a || operator with a repetition, the result is to repeat all of the possibilities of
the permutation with the given number of repetitions. For example:�
traces

T1: || (obj.inc(), obj.dec()) {2};
� �
> runtrace Tester‘T1
Generated 4 tests
Test 1 = obj.inc(); obj.dec(); obj.inc(); obj.dec()
Result = [1, 0, 1, 0, PASSED]
Test 2 = obj.dec(); obj.inc(); obj.inc(); obj.dec()
Result = [-1, 0, 1, 0, PASSED]
Test 3 = obj.inc(); obj.dec(); obj.dec(); obj.inc()
Result = [1, 0, -1, 0, PASSED]
Test 4 = obj.dec(); obj.inc(); obj.dec(); obj.inc()
Result = [-1, 0, -1, 0, PASSED]
Executed in 0.038 secs.
All tests passed

Here, the || operator produces (inc, dec) and (dec, inc); then the repetition doubles this, but
it doubles every combination of the two rather than simply repeating each one twice.

2.2 Using Variables
So far, the trace examples have called operations that do not include any arguments. Arguments
can be passed as literals, but traces also provide the means to define variables that can change value
as tests are generated from a trace.

If we overload the example increment and decrement operations with versions that take an
integer parameter, by which to change the counter, we can write traces like this:

8

CHAPTER 2. WORKING WITH TRACES

�
...

public inc: int ==> int
inc(i) == (total := total + i; return total;);

public dec: int ==> int
dec(i) == (total := total - i; return total;)

traces
T1:

let a in set {1, ..., 10} be st a mod 2 = 0 in
obj.inc(a);
� �

> runtrace Tester‘T1
Generated 5 tests
Test 1 = obj.inc(2)
Result = [2, PASSED]
Test 2 = obj.inc(4)
Result = [4, PASSED]
Test 3 = obj.inc(6)
Result = [6, PASSED]
Test 4 = obj.inc(8)
Result = [8, PASSED]
Test 5 = obj.inc(10)
Result = [10, PASSED]
Executed in 0.04 secs.
All tests passed

In a standard VDM specification, the let... be st expression would choose an arbitrary el-
ement from the set that meets the be st clause. But in a trace context, this looseness is used as
a pattern that expands to a test covering every possible set value that would match. Notice that the
tests list the actual value of the argument passed, rather than the symbolic name, “a”.

A trace can include multiple let clauses, but if these are nested, then the trace expands to the
combination of the variables. For example:�
traces

T1:
let a in set {1, 2, 3} in

let b in set {4, 5, 6} in
(obj.inc(a); obj.dec(b));
� �

9

VDM Combinatorial Testing Guidelines

> runtrace Tester‘T1
Generated 9 tests
Test 1 = obj.inc(1); obj.dec(4)
Result = [1, -3, PASSED]
Test 2 = obj.inc(1); obj.dec(5)
Result = [1, -4, PASSED]
Test 3 = obj.inc(1); obj.dec(6)
Result = [1, -5, PASSED]
Test 4 = obj.inc(2); obj.dec(4)
Result = [2, -2, PASSED]
Test 5 = obj.inc(2); obj.dec(5)
Result = [2, -3, PASSED]
Test 6 = obj.inc(2); obj.dec(6)
Result = [2, -4, PASSED]
Test 7 = obj.inc(3); obj.dec(4)
Result = [3, -1, PASSED]
Test 8 = obj.inc(3); obj.dec(5)
Result = [3, -2, PASSED]
Test 9 = obj.inc(3); obj.dec(6)
Result = [3, -3, PASSED]
Executed in 0.066 secs.
All tests passed

This example produces a test for every combination of “a” and “b” values, which is therefore nine
tests. The round brackets are needed around the pair of operation calls because a call binds tightly
to the let. Without the brackets, you get the following scope error, referring to the “a” in the
second call to obj.dec(a):�
traces

T1:
let a in set {6, 7, 10} in

obj.inc(a); obj.dec(a)
� �
Error 3182: Name ’Tester‘a’ is not in scope in ’Tester’ (example.vpp) at line 28:29
Type checked 2 classes in 0.12 secs. Found 1 type error

Note also that the variables defined are in scope throughout the clauses below, so the “a” variable
could be used to define the set of “b” values:

10

CHAPTER 2. WORKING WITH TRACES

�
traces

T1:
let a in set {1, 2, 3} in

let b in set {a, ..., a + 2} in
(obj.inc(a); obj.dec(b));
� �

> runtrace Tester‘T1
Generated 9 tests
Test 1 = obj.inc(1); obj.dec(1)
Result = [1, 0, PASSED]
Test 2 = obj.inc(1); obj.dec(2)
Result = [1, -1, PASSED]
Test 3 = obj.inc(1); obj.dec(3)
Result = [1, -2, PASSED]
Test 4 = obj.inc(2); obj.dec(2)
Result = [2, 0, PASSED]
Test 5 = obj.inc(2); obj.dec(3)
Result = [2, -1, PASSED]
Test 6 = obj.inc(2); obj.dec(4)
Result = [2, -2, PASSED]
Test 7 = obj.inc(3); obj.dec(3)
Result = [3, 0, PASSED]
Test 8 = obj.inc(3); obj.dec(4)
Result = [3, -1, PASSED]
Test 9 = obj.inc(3); obj.dec(5)
Result = [3, -2, PASSED]
Executed in 0.059 secs.
All tests passed

If two variables should take values from the same set of values, it is possible to use a multiple
bind in a trace, but not a bind list. For example:�
traces

T1:
let a, b in set {1, 2, 3} in

(obj.inc(a); obj.dec(b));
� �
> runtrace Tester‘T1
Generated 9 tests
Test 1 = obj.inc(1); obj.dec(1)
Result = [1, 0, PASSED]

11

VDM Combinatorial Testing Guidelines

Test 2 = obj.inc(2); obj.dec(1)
Result = [2, 1, PASSED]
Test 3 = obj.inc(3); obj.dec(1)
Result = [3, 2, PASSED]
Test 4 = obj.inc(1); obj.dec(2)
Result = [1, -1, PASSED]
Test 5 = obj.inc(2); obj.dec(2)
Result = [2, 0, PASSED]
Test 6 = obj.inc(3); obj.dec(2)
Result = [3, 1, PASSED]
Test 7 = obj.inc(1); obj.dec(3)
Result = [1, -2, PASSED]
Test 8 = obj.inc(2); obj.dec(3)
Result = [2, -1, PASSED]
Test 9 = obj.inc(3); obj.dec(3)
Result = [3, 0, PASSED]
Executed in 0.061 secs.
All tests passed

As well as defining a variable value from a set, variables can be used to simplify calculations that
would otherwise have to be made in the arguments to operation calls. These simpler let defini-
tions do not increase the number of tests generated from the trace, they just introduce new names
in the scope that follows. Multiple variable definitions can be declared in one let expression. For
example:�
traces
T1:

let a in set {1, 2, 3} in
let b = a + 1, c = a - 1 in

(obj.inc(b); obj.dec(c));
� �
> runtrace Tester‘T1
Generated 3 tests
Test 1 = obj.inc(2); obj.dec(0)
Result = [2, 2, PASSED]
Test 2 = obj.inc(3); obj.dec(1)
Result = [3, 2, PASSED]
Test 3 = obj.inc(4); obj.dec(2)
Result = [4, 2, PASSED]
Executed in 0.054 secs.
All tests passed

12

CHAPTER 2. WORKING WITH TRACES

If repetitions are added to a clause within a let body, they bind tightly to the operation call rather
than the entire let clause. If you want to repeat the entire let, you have to bracket the whole
clause and add a repetition to that. For example:�
traces

T1:
let a in set {1, 2, 3} in

obj.inc(a){1, 2}
T2:

(let a in set {1, 2, 3} in
obj.inc(a)){1, 2}
� �

> runtrace Tester‘T1
Generated 6 tests
Test 1 = obj.inc(1)
Result = [1, PASSED]
Test 2 = obj.inc(1); obj.inc(1)
Result = [1, 2, PASSED]
Test 3 = obj.inc(2)
Result = [2, PASSED]
Test 4 = obj.inc(2); obj.inc(2)
Result = [2, 4, PASSED]
Test 5 = obj.inc(3)
Result = [3, PASSED]
Test 6 = obj.inc(3); obj.inc(3)
Result = [3, 6, PASSED]
Executed in 0.044 secs.
All tests passed

> runtrace Tester‘T2
Generated 12 tests
Test 1 = obj.inc(1)
Result = [1, PASSED]
Test 2 = obj.inc(2)
Result = [2, PASSED]
Test 3 = obj.inc(3)
Result = [3, PASSED]
Test 4 = obj.inc(1); obj.inc(1)
Result = [1, 2, PASSED]
Test 5 = obj.inc(2); obj.inc(1)
Result = [2, 3, PASSED]
Test 6 = obj.inc(3); obj.inc(1)
Result = [3, 4, PASSED]

13

VDM Combinatorial Testing Guidelines

Test 7 = obj.inc(1); obj.inc(2)
Result = [1, 3, PASSED]
Test 8 = obj.inc(2); obj.inc(2)
Result = [2, 4, PASSED]
Test 9 = obj.inc(3); obj.inc(2)
Result = [3, 5, PASSED]
Test 10 = obj.inc(1); obj.inc(3)
Result = [1, 4, PASSED]
Test 11 = obj.inc(2); obj.inc(3)
Result = [2, 5, PASSED]
Test 12 = obj.inc(3); obj.inc(3)
Result = [3, 6, PASSED]
Executed in 0.03 secs.
All tests passed

The difference may seem subtle, but the effect is significant. T1 behaves like a simple “{1, 2}”
repetition for each of the let values, whereas T2 produces either one or two cases from the entire
set created by the let clause.

Although the example above uses a let <set bind> expression, it is also possible to
use a let <seq bind> or let <type bind>. In a trace context, the ordering that a se-
quence bind carries does not affect the generation of tests; if the example had let a in seq
[1,2,3], the same tests would be generated, and since tests are independent their order is not
meaningful. So sequence binds are not particularly useful in traces. However type binds (of finite
types) are a shorthand for “all values of this type”, which can be useful in some circumstances.
This is covered later in Chapter 3.

2.3 Tests with Errors

The examples so far have only included tests that PASSED. This means that they completed the
sequence of operation calls without violating any pre-conditions, post-conditions, state invariants,
type invariants, recursive measures or dynamic type checks.

If a sequence of operations causes a post-condition failure, then it is certain that there is a
problem with the specification — it should not be possible to provoke a post-condition failure with
a set of legal calls (ie. ones which pass the pre-conditions and type invariants). On the other hand,
if a sequence of operations violates a pre-condition, or a type or class invariant, then it is possible
that the specification has a problem, but it is also possible that the test itself is at fault (passing
illegal values).

The combinatorial testing environment indicates the exit status of the test in the verdict returned
in the last item of the results (all PASSED above). So if pre/post/invariant conditions are violated
during a test, this may be set to FAILED or INDETERMINATE1. If a test fails, then any subsequent

1The tools sometimes call this INCONCLUSIVE

14

CHAPTER 2. WORKING WITH TRACES

test which starts with the same sequence of calls as the failed sequence will also fail. These tests
are filtered out of the remaining test sequence automatically, and not executed.

For example, if we introduce a pre- and postcondition into our example, we see this behaviour:�
...

public inc: int ==> int
inc(i) == (total := total + i; return total;)
pre i < 10
post total < 20;

traces
T1:

let a in set {6, 7, 10} in
obj.inc(a){1, 5}
� �

> runtrace Tester‘T1
Generated 15 tests
Test 1 = obj.inc(6)
Result = [6, PASSED]
Test 2 = obj.inc(6); obj.inc(6)
Result = [6, 12, PASSED]
Test 3 = obj.inc(6); obj.inc(6); obj.inc(6)
Result = [6, 12, 18, PASSED]
Test 4 = obj.inc(6); obj.inc(6); obj.inc(6); obj.inc(6)
Result = [6, 12, 18, Error 4072: Postcondition fail: post_inc in ’Counter’ at line 15:16, FAILED]
Test 5 = obj.inc(6); obj.inc(6); obj.inc(6); obj.inc(6); obj.inc(6)
Test 5 FILTERED by test 4
Test 6 = obj.inc(7)
Result = [7, PASSED]
Test 7 = obj.inc(7); obj.inc(7)
Result = [7, 14, PASSED]
Test 8 = obj.inc(7); obj.inc(7); obj.inc(7)
Result = [7, 14, Error 4072: Postcondition fail: post_inc in ’Counter’ at line 15:16, FAILED]
Test 9 = obj.inc(7); obj.inc(7); obj.inc(7); obj.inc(7)
Test 9 FILTERED by test 8
Test 10 = obj.inc(7); obj.inc(7); obj.inc(7); obj.inc(7); obj.inc(7)
Test 10 FILTERED by test 8
Test 11 = obj.inc(10)
Result = [Error 4071: Precondition fail: pre_inc in ’Counter’ at line 14:11, INCONCLUSIVE]
Test 12 = obj.inc(10); obj.inc(10)
Test 12 FILTERED by test 11
Test 13 = obj.inc(10); obj.inc(10); obj.inc(10)
Test 13 FILTERED by test 11
Test 14 = obj.inc(10); obj.inc(10); obj.inc(10); obj.inc(10)
Test 14 FILTERED by test 11
Test 15 = obj.inc(10); obj.inc(10); obj.inc(10); obj.inc(10); obj.inc(10)
Test 15 FILTERED by test 11
Executed in 0.075 secs.
Some tests failed or indeterminate

The inc operation now has a pre-condition that the argument must be less than 10 and a post-
condition that the resulting total must be less than 20. The trace makes 1 to 5 calls to the inc
operation with arguments 6, 7 and 10, respectively.

15

VDM Combinatorial Testing Guidelines

The first three tests are fine, but Test 4 fails because the fourth call to inc(6) pushes the
total over the limit. This is therefore a post-condition FAILED test, and the error message is listed
along with the results of the earlier operation calls. Test 5 then tries to do the same, but adds a
further call. This must fail in the same place as Test 4, because Test 4 is the “stem” of Test
5. Therefore this test is “FILTERED by Test 4”. Similarly, Test 8 fails and Tests 9 and 10
are filtered by this failure.

Test 11 fails on the first call to inc(10), since the argument must be less than 10. This
produces an INDETERMINATE error because we are not sure whether this is a problem with the
trace or the specification being tested. Lastly, Tests 12 to 15 are filtered by Test 11, since they
would behave the same way.

At the end of the run, the runtrace command indicates that some tests failed or were inde-
terminate, just to remind you.

2.4 Trace Reduction
A trace may expand to many millions of tests and these may take many hours to execute. This can
make large traces difficult to work with, both while the trace is being developed and subsequently
when traces are used to check that a change to a specification is sound.

Therefore the trace system provides the means to reduce the number of tests that are generated.
This limited number can then be checked more quickly, which naturally does not provide the
confidence of a full execution, but is convenient to work with when a sample of tests is sufficient.
Trace reduction can be achieved in four different ways:

• RANDOM reduction. This is the simplest kind of reduction, and is used to randomly select
tests from the full set. For example, a 1% RANDOM reduction of a trace that expands to a
million tests would select 10,000 tests from the set. The pseudo-random selection is seeded,
so that a consistent subset of the tests can be selected.

• SHAPES NOVARS reduction. The “shape” of a test means the sequence of operation names
(regardless of arguments passed), and the idea of shaped reduction is to preserve at least one
test of every shape in the full set. So for example, a test that calls [opA(1), opB(2),
opC(3)]would be considered the same shape as a test that calls [opA(111), opB(222),
opC(333)], but different to a test that calls [opX(1), opY(2)]. So a shaped reduction
of 1% of one million tests would try to select 10,000 tests, but it also guarantees to include
at least one test of every shape within the million, even if that means the reduction is (say)
1.5%.

• SHAPES VARNAMES reduction. The simple interpretation of a shape above only looks at
the names of the operations called. This second kind of shaped reduction looks at the variable
names used in the let bindings and constants as well as the names of the operations. So
with this kind of reduction, [opA(a), opA(b)] is different to [opA(x), opA(y)],
even if the values of “a” and “x” can sometimes be the same. Typically, different variable

16

CHAPTER 2. WORKING WITH TRACES

names are used in different parts of a complex trace and so this reduction method is trying to
select all of the different parts of a trace, even if the sequence of operation names produced
is the same as another part of the trace.

• SHAPES VARVALUES reduction. The third type of shaped reduction is even more specific
about what constitutes a shape, taking into account the value of the variables used as well
as their names. So [opA(a)] will be considered a different shape to another [opA(a)]
elsewhere, as long as “a” is bound to a different value.

The following simple trace, using the Counter example from previous chapters, illustrates RAN-
DOM reduction:�
traces

T1:
let a in set {1, ..., 1000} in
let b in set {1, ..., 1000} in

(obj.inc(a); obj.dec(b));
� �
> filter
Usage: filter %age | RANDOM | SHAPES_NOVARS | SHAPES_VARNAMES | SHAPES_VARVALUES | NONE
Trace filter currently 100.0% NONE (seed 0)

> filter random
Trace filter currently 100.0% RANDOM (seed 0)

> filter 1%
Trace filter currently 1.0% RANDOM (seed 0)

> seedtrace 1234
Trace filter currently 1.0% RANDOM (seed 1234)

> runtrace Tester‘T1
Generated 1000000 tests, reduced to 10000, in 1.571 secs.
Test 66 = obj.inc(1); obj.dec(66)
Result = [1, -65, PASSED]
Test 155 = obj.inc(1); obj.dec(155)
Result = [1, -154, PASSED]
Test 323 = obj.inc(1); obj.dec(323)
Result = [1, -322, PASSED]
Test 419 = obj.inc(1); obj.dec(419)
Result = [1, -418, PASSED]
...
Test 999815 = obj.inc(1000); obj.dec(815)
Result = [1000, 185, PASSED]
Test 999894 = obj.inc(1000); obj.dec(894)
Result = [1000, 106, PASSED]
Test 999992 = obj.inc(1000); obj.dec(992)
Result = [1000, 8, PASSED]
Executed in 4.932 secs.

The “filter” and “seedtrace” commands are used to set the filtering required, then the trace is
executed as normal. But we see that the million tests have been reduced to 10,000 (taking a few

17

VDM Combinatorial Testing Guidelines

seconds). Then instead of trying every combination of “a” and “b”, the filtering selects them at
random, starting with a = 1, b = 65 and ending with a = 1000, b = 992.

The next example illustrates shaped reduction. The trace joins together two let bindings,
repeating each call once and twice. This would normally produce 36 tests.�
traces

T1:
let a in set {1, 2, 3} in obj.inc(a){1,2};
let b in set {1, 2, 3} in obj.dec(b){1,2}
� �

> filter 1
Trace filter currently 1.0% RANDOM (seed 0)

> filter shapes_novars
Trace filter currently 1.0% SHAPES_NOVARS (seed 0)

> runtrace Tester‘T1
Generated 36 tests, reduced by SHAPES_NOVARS, in 0.001 secs.
Test 1 = obj.inc(1); obj.dec(1)
Result = [1, 0, PASSED]
Test 2 = obj.inc(1); obj.inc(1); obj.dec(1)
Result = [1, 2, 1, PASSED]
Test 7 = obj.inc(1); obj.dec(1); obj.dec(1)
Result = [1, 0, -1, PASSED]
Test 8 = obj.inc(1); obj.inc(1); obj.dec(1); obj.dec(1)
Result = [1, 2, 1, 0, PASSED]
Executed in 0.006 secs.
All tests passed
>

Here, we try to reduce this to 1%, but using the SHAPES NOVARS option. A reduction of 1%
of 36 tests ought to produce a single test (reduction will never produce zero tests), but in fact the
shaped reduction produces four. You can see that there is one case of each “shape”: one inc and
one dec; two inc’s and one dec, and so on. So the idea is that the shaped reduction has given a
representative sample of all of the possible shapes, disregarding variable names or values.

Reducing this trace using SHAPES VARNAMES produces the same number of shapes, since
the two calls always use the same variable names. But reduction using SHAPES VARVALUES
regards all of the tests as different shapes, because the variable/value/operation combinations are
different in all of the tests.

In practice, the most useful reductions are RANDOM and SHAPES NOVARS. Random re-
ductions give a simple way to cut down a large number of tests. Shaped reduction is choosing one
example of every “path” that the trace is taking the specification through, which is often closely

18

CHAPTER 2. WORKING WITH TRACES

related to the different use cases that the system has.

2.5 How does Trace Expansion Work?
The sections above have given an overview of all the trace operators, and there are some examples
of combinations of operators. But to see how traces are expanded in general, we need to look at
traces from a different point of view. The syntax of traces is deliberately made similar to the syntax
of VDM-SL, but to understand how operators combine to produce multiple tests, it helps to look at
operators as though they followed a separate “expansion” grammar. In the description that follows,
a set is a set of tests:

• set = object.opname(args). The simplest form of a trace is a set that comprises a
single call to an operation or function with arguments. The arguments can be symbolic, and
bound to various values by the let operator described below.

• set = set1; set2; ...; setn. A set of tests may be formed from an ordered
sequence of sets. This expands to all possible selections of one test from each of the sets. In
its simplest form, this could be a sequence of operation calls which therefore just expands
to one test. But a combination of sets of tests expands to a set of the product of the sizes of
those sets.

• set = set1 ?. A set of tests may be formed from another set with a ? operator. This
produces the same set, but includes a “skip” step.

• set = set1 {n[, n]}. A set of tests may be formed from another set with a {n} or
{n1, n2} operator. This produces a set with every member of the original set repeated n
times, or between n1 and n2 times (inclusive).

• set = set1 *|+. A set of tests may be formed from another set with a * or + operator.
This produces another set with every member of the original set repeated from 0 to N times
(with *) or 1 to N times (with +). The value of N is tool dependent, but defaults to 5.

• set = set1 | set2 | ... | setn. A set of tests may be formed by combining
a number of other test sets with a | operator. This produces a set with the union of the other
sets.

• set = || (set1, set2, ..., setn). A set may be formed from the permuta-
tions of a number of other sets. This produces a set with each permutation of each selection
of one test from each set.

• set = let <multiple bind> [be st <cond>] in set1. A set of tests may
be formed from a multiple bind, which expands to the substitution of all the possible
the bound values in the original set.

19

VDM Combinatorial Testing Guidelines

• set = let <name> = <exp> [, <name2> = <exp2>, ...] in set1. A set
of tests may be evaluated in a scope that defines name/value pairs. This does not increase
the number of tests in the set, but just binds free variables.

For example, if (for brevity) we say that a test with a single call to obj.opA() is written as “[A]”,
and similarly “[B]” and “[C]” for other operation calls, and “[-]” for a skip, then we can say the
following trace operators produce these sets of tests:

A? = { [A], [-] }
A;B = { [AB] }
A;B? = { [AB], [A] }
A* = { [-], [A], [AA], [AAA], [AAAA], [AAAAA], ... }
A+ = { [A], [AA], [AAA], [AAAA], [AAAAA], ... }
A{3} = { [AAA] }
A{1,3} = { [A], [AA], [AAA] }
A | B = { [A], [B] }
A | B? = { [A], [B], [-])
|| (A, B, C) = { [ABC], [ACB], [BAC], [BCA], [CAB], [CBA] }
|| (A, (B;C)) = { [ABC], [BCA] }
|| (A, B+) = { [AB], [BA], [ABB], [BBA], [ABBB], [BBBA], ... }
let a in set {1,2,3} in A(a) = { [A(1)], [A(2)], [A(3)] }
let b : bool * bool in B(b) = {

[B(mk_(true, true))], [B(mk_(true, false))],
[B(mk_(false, true))], [B(mk_(false, false))]

}
let z = 1 in B(z) = { [B(1)] }

Note that the repeat limits in a trace (like {1,3}) must be numeric literals. But values in a multiple
set or sequence bind can be variables, either bound earlier in the trace or other fields within scope
of the trace inside the object or module where it is defined. Similarly, the values in the right hand
side of let definitions can be variables within the trace or the object/module scope.

2.6 Language Considerations
Combinatorial tests are available for both VDM-SL and VDM++/VDM-RT. The process of trace
expansion and execution is very similar in all cases, but there are some differences that are de-
scribed below.

2.6.1 Traces in VDM-SL

Traces are added in a traces section within a VDM-SL specification. This can either be within
one or more modules or within a flat specification. The name of the traces in a module are implicitly

20

CHAPTER 2. WORKING WITH TRACES

exported, so they are referred to as <modulename>‘<tracename>. You can omit the module
name if it is the default module.

The VDM-SL specification that is equivalent to the example used above is like this:�
module Counter
exports all
definitions

state S of
total:int

init s == s = mk_S(0)
end

operations
inc: int ==> int
inc(i) == (total := total + i; return total;);

dec: int ==> int
dec(i) == (total := total - i; return total;)

end Counter

module Tester
imports from Counter all
definitions

traces
T1: Counter‘inc(1)*;

end Tester
� �
And in the VDM-SL command line, that would be executed as follows. Note that Tester is not the
default module, so the trace name is qualified:

> modules
Counter (default)
Tester
> runtrace Tester‘T1
Generated 6 tests in 0.002 secs.
Test 1 = skip
Result = [(), PASSED]
Test 2 = inc(1)
Result = [1, PASSED]
Test 3 = inc(1); inc(1)
Result = [1, 2, PASSED]
Test 4 = inc(1); inc(1); inc(1)
Result = [1, 2, 3, PASSED]
Test 5 = inc(1); inc(1); inc(1); inc(1)
Result = [1, 2, 3, 4, PASSED]
Test 6 = inc(1); inc(1); inc(1); inc(1); inc(1)

21

VDM Combinatorial Testing Guidelines

Result = [1, 2, 3, 4, 5, PASSED]
Executed in 0.019 secs.
All tests passed
>

This trace is very similar to the VDM++ example. The Counter module has a single state that
is equivalent to the VDM++ total instance variable. Note that this is reset to zero automatically
before each test is executed. This is because each test re-initialises the specification, and the
module state has an init clause that sets the total to zero.

Notice also that the operation calls are not applied to a Counter object, unlike VDM++, but to
a function defined inside the Counter module.

2.6.2 Traces in VDM++ and VDM-RT
Traces are added in a traces section within a VDM++ or VDM-RT specification, inside one
or more classes. In effect, the name of the trace is a public static symbol, so it is referred to as
<classname>‘<tracename>, as we have seen in the examples above. You can omit the class
name if that is the default class.

Although a VDM++ trace is effectively a static scope, and can call static operations directly
(similar to a VDM-SL trace), every test execution occurs in a new instance of the containing class –
in our examples, in a new Tester instance. This means that objects created within the Tester’s con-
struction will be freshly initialised and ready for use in each test run. In the example, the Counter
object obj is created for each test, because the instance variable is initialised at construction.

2.6.3 Expansion and Execution Considerations
The process of running a combinatorial test has two phases: expanding the trace to a number of
test definitions; and subsequently executing those definitions. The trace expansion typically does
not take very long, since it is only constructing a tree of iterators that are capable of generating
the tests one after another. The subsequent execution of those tests can obviously take a long time,
depending on how many there are and on each test complexity.

We have seen (above) how the specification is initialised before test execution, and the state
of the module or class is available to the trace, but care must be taken if operations or functions
within the environment are used as part of a trace. This is because some expressions are evaluated
during trace expansion and some during test execution. For example:

22

CHAPTER 2. WORKING WITH TRACES

�
...
functions

private static range: int * int -> set of int
range(a, b) == {a, ..., b};

values
Z = 100;

traces
T1: let x in set range(3, 5) in

let y in set range(x, x+2) in
obj.inc(Z + x + y);
� �

In this case, the range function is used to create a set for the multi-binds, and this is executed
during expansion, once for “x” and three times for “y”. Similarly, the right hand side of simple let
definitions are executed during trace expansion. But the addition of Z + x + y in the argument
to inc is called during execution (once for each test).

Trace generation starts inside a fresh object instance of the class (or initialised module) that
contains the trace. So if operations are called during trace expansion, these can modify state and so
affect subsequent operation calls elsewhere in the expansion. This can become very confusing, and
it is not a recommended trace design strategy! On the other hand, calling functions as part of the
trace expansion can make traces easier to understand and can provide the means to build complex
sets that would be difficult to construct directly within the trace statements.

When a test is listed in the trace output, the arguments that are passed to operation calls are
shown as literals, if possible. As seen in the examples here, a call to obj.inc(1) is shown, rather
than obj.inc(a). This is possible whenever arguments can be easily evaluated. For example
the Z + x + y case above would produce Test 1 = obj.inc(106), which is 100 + 3 + 3.
But if the argument is a more complex expression involving operation calls or new object creation,
these cannot be evaluated and so the argument expression is listed “as is”. For example, if the
trace above is changed to call obj.inc(max(x, y)), the test would be listed with “x” and
“y” rather than their current values:

> runtrace Tester‘T1
Generated 9 tests in 0.006 secs.
Test 1 = inc(max(x, y))
Result = [3, PASSED]
Test 2 = inc(max(x, y))
Result = [3, PASSED]
...

Arguments passed to functions or operations can sometimes be very large when represented as
literals. So to avoid producing trace output that has (say) a million identical copies of a very large

23

VDM Combinatorial Testing Guidelines

map value, trace output uses the variable name if the literal value is longer than a particular limit,
by default 50 characters2.

2VDMJ only. The limit can be changed via a property.

24

Chapter 3

Combinatorial Testing Patterns

3.1 Data and Process Traces

Traces fall into two broad categories, although you can have a mixture of both in a specification.
One category is focussed on the behaviour of a single function or operation when presented with
a large variety of different data structures; the other category is focussed on the process behaviour
of a system when exercised by a large number of different operation call paths.

In one sense this distinction is artificial. You can create a trace that explores many process
paths and also creates a wide variety of data values to pass to the operations called on the way. But
these aspects of a specification’s behaviour are often separable, and little advantage is gained by
trying to test everything at once.

The patterns described in this chapter are generally useful in one or other of the trace styles.
The styles are also illustrated in more detail by the examples in Chapter 4.

3.2 Traces and Test Operations

After expanding a trace to all of the call sequences that match, a test is ultimately just a sequence
of operation or function calls. But these calls do not have to be the primary operations that drive
the specification. In some cases, it makes sense for traces to expand to a set of tests that call
test operations that maintain their own state and exercise the main specification, checking the
responses and the main state. Checks like this, that do not directly form part of the constraints of
the specification, are usually called validation conjectures. The task of the testing operations is
therefore to check that, whatever the call sequence made by the trace, the validation conjectures
for the specification are maintained.

For example, a specification may describe how a sequence of parts are produced as calls are
made to newPart(), adjustPart(), completePart(). The process of creation of
individual parts may well involve preconditions, postconditions, type invariants and so on. But
there may also be a requirement that (say) over time, the total number of parts of type A and type
B never differ by more than a tolerance. This is a validation conjecture: it is not directly stated in

25

VDM Combinatorial Testing Guidelines

the constraints of the specification, but it is a behaviour that must be manifest by the system over
time. Therefore the trace(s) for such a system can call the main operations via test operations, like
testNewPart() and so on, and the testCompletePart() operation can check the history
of parts created to validate that the tolerance is always respected, regardless of the sequence of
operations that the trace tries. Note that these test operations can maintain their own state that is
private and separate from that of the main specification.

In such cases, it makes sense to add all of the test operations to a separate class or module,
to make it clear that they are not part of the main specification. This is illustrated in the Basket
Service example in Chapter 4.

3.3 Common Patterns
Experience has shown that the testing of many specifications with traces requires several common
“patterns” to create data selections or sequences of operations. These are presented in this section.

3.3.1 Sets for “let” bindings
The set of values that is used by a let multiple-bind is usually shown as an enumeration of
literals in examples. But the set value can use any VDM expression that yields a set. The following
cases are generally useful:

• Set comprehensions can be used to select values from a larger set that meet the membership
predicate. This is similar to the use of the be st clause, but the filter acts on the members
of the set rather than the values that are bound:�

let pair in set {mk_(a, b) | a, b in set VALUES & a > b} in ...
� �
• The power operator can be used to produce all possible subsets from another set, though

you often have to eliminate the empty set, which is produced by the operator:�
let options in set power ALL_OPTIONS \ {{}} in ...
� �

• If you are using finite types (i.e. types that have a finite number of values), then you can use
a multiple type bind to conveniently choose all of the possible values of that type:�

let p1, p2 : Product in ...
� �
• Often elements have to be chosen from a set such that they are different to previous selections

from the same set. This can sometimes be done in a single let bind by using a be st

26

CHAPTER 3. COMBINATORIAL TESTING PATTERNS

clause that states that the values are different. But a common usage is to make a selection
from a set that has had the first choice(s) eliminated:�

let a, b in set S be st a <> b in ...
let c in set S \ {a, b} in ...
let d in set S be st d not in set {a, b, c} in ...
� �

• A common requirement is to select permutations of a set. This can be done by using the
looseness of a set bind. Note the cardinality check in the k-permutation example (k=3), and
the use of the set pattern and the set-of-set {S} in the full permutation example - in this case
you have to know the size of the set to match the pattern:�
-- Every k-permutation of 3 values from S

let p1, p2, p3 in set S be st card {p1, p2, p3} = 3 in ...
-- Permutations of all values from S

let {p1, p2, p3, p4, p5} in set {S} in ...
� �
• It is sometimes useful to be able to select all k-combinations from a set, rather than k-

permutations. This is similar, but with a be st discriminator that selects one unique com-
bination from the possible orderings (here, c1 < c2 and c2 < c3):�
-- Every k-combination of 3 values from S

let c1, c2, c3 in set S be st card {c1, c2, c3} = 3
and c1 < c2 and c2 < c3 in ...
� �

3.3.2 Bracketing operations with headers and trailers
A very common requirement is to make a number of fixed setup calls, followed by a large num-
ber of different test calls, followed by a number of fixed closedown calls. This pattern emerges
naturally from a semi-colon separated trace sequence with a complex “middle”:�
traces

T:
SetSystemDate(221220);
LoadCertificates(RefData);

test1() |
test2() |
test3() |
test4() |
test5() |
test6() |
test7();

EndTransaction();
� �
27

VDM Combinatorial Testing Guidelines

This produces a set of seven tests, calling test1 to test7, each of which is sandwiched by
calls that set up the system and close down the transaction. Clearly the body containing the al-
ternative tests can be arbitrarily complicated, for example using variable binds to generate many
possibilities.

3.3.3 Graph searching by traces

Traces that explore all of the possible uses cases of a system frequently need to search a graph that
describes the possible paths through the use case. This is translated into a trace by generating a
call for each step through the graph, where the trace expands to the possibilities at each step. For
example:�
values

TESTSTATES : map TestState to map Event to TestState =
{

<READY> |->
{

<SEND> |-> <SENT>
},

<SENT> |->
{

<RX_NACK> |-> <RESEND1>,
<RX_ACK> |-> <END>,
<TIMEOUT> |-> <RESEND1>,
<PARTIAL> |-> <SENT>

},
...

}

traces
AllTransitions:

let s1 = <READY> in
let ev1 in set dom TESTSTATES(s1) in
let s2 = TESTSTATES(s1)(ev1) in
let ev2 in set dom TESTSTATES(s2) in
let s3 = TESTSTATES(s2)(ev2) in
let ev3 in set dom TESTSTATES(s3) in
let s4 = TESTSTATES(s3)(ev3) in
let ev4 in set dom TESTSTATES(s4) in
let s5 = TESTSTATES(s4)(ev4) in
let ev5 in set dom TESTSTATES(s5) in

execute([ev1, ev2, ev3, ev4, ev5]);
� �
Here the system starts in state s1, which must be READY. From there, a number of events are
possible given by the domain of a lookup of the state in the TESTSTATES map. One of these
events is selected as ev1, which then moves us to state s2, and so on. After five events have been
generated, they are passed to an execute operation which uses the events to test that particular
path through the graph.

Note that a graph searching cascade like this can generate tens of thousands of possibilities
very quickly, even with comparatively simple graphs.

28

CHAPTER 3. COMBINATORIAL TESTING PATTERNS

3.3.4 Building data in stages

A cascade of let bindings can be used to build a complex data structure in stages, rather than
each binding having to create a complete value. For example:�
EPATest:

let a, b, c, d, e in set -- Pick five branches
{

mk_B([1], 0),
mk_B([-1, 2], 1),
mk_B([1, 2, 0], 2)

}
in

let branches in set -- Between one and five of them
{

[a],
[a,b],
[a,b,c],
[a,b,c,d],
[a,b,c,d,e]

}
in

let epa = mk_InputFile(-- EPA InputFile from those B values
mk_Header(),
mk_PaymentSummary(getPS(branches)),
{

mk_Branch(
mk_SummaryOfCharge(mk_token(mk_("MID", B)), ...),
{

mk_RecordOfCharge(... mk_("TxnNum", B, i) ...)
| i in set inds branches(B).ROCs

},
{

mk_Adjustment(mk_token(mk_(B, i)))
| i in set {1, ..., branches(B).ADJs}

}
)
| B in set inds branches

},
mk_Trailer(getTR(branches) + 1)

)
in

-- Finally, transform the EPA file into the various output formats.
(

transformAudit(epa);
transformC4D(epa)

);
� �
This example creates InputFiles, which contain various records that relate to electronic pay-
ments taken from a branch of a business. The objective of the trace is to check a large number of
different input files with different numbers of branches and various record types.

Creating such files in a single trace step would be difficult, if not impossible. But here, we see
that the generation starts with a selection of “B” values from a set of possibilities. Then sequences
of between one and five of these values is created. Then these “branch” sequences are used in
nested set comprehensions to create an InputFile. Lastly, every InputFile created is processed

29

VDM Combinatorial Testing Guidelines

by a couple of operations.

3.3.5 Oracle functions
In many cases, the expected result of an operation or function call is too complicated to predict
simply in a trace - assuming you have a support function that checks the result with (say) a post-
condition:�

assert: seq1 of nat * seq1 of nat +> bool
assert(data, expected) == data = expected
post RESULT = true;
� �

Here, we assume that the “data” argument passed comes from some processing in the specifica-
tion, but where does the “expected” value come from? It could be a literal in the trace, but this
is not practical for non-trivial examples, so it is common to create support functions that produce
answers that are correct by definition. Such functions are called oracles. For example:�
Scenarios:

let s = mk_Service(...) in
let q in set ... in
let mk_(first, second) in set ... in
let test = mk_Test(

[s],
keyStrokesFor(q, first, second), -- Expected keystrokes
basketFor(first, second)) -- Expected basket

in
run(test);
� �

In this example, a Test record is created that includes a Service, the expected keystrokes and the
expected basket result for a retail application in a given scenario (use case). The run operation
uses the key strokes to drive the specification under test and then check that the expected basket is
produced correctly. The keyStrokesFor and basketFor functions are oracles.

3.3.6 Using positive and negative sense checks
The natural way to think about testing a specification is to consider all of the success paths and
then design traces that exercise those paths. But in many cases, a specification is also required to
“fail” in the correct way; that is, there certain inputs or call sequences that require a specific error
condition to be generated, even though that is a failure in some sense.

There is an example of this in the Luhn specification described in Chapter 4. The Luhn algo-
rithm is a kind of checksum. Therefore it is required to fail if a piece of data is corrupted in specific
ways, which shows that the checksum is doing its job, detecting the corruption. So the Luhn spec-
ification tests deliberately corrupt a piece of data and then verify that the algorithm generates a
different check digit – i.e. they verify that a check with the original check digit fails correctly:

30

CHAPTER 3. COMBINATORIAL TESTING PATTERNS

�
checkFail: seq1 of nat * nat * nat ==> bool
checkFail(data, expected, base) ==

return luhn(data, base) <> expected -- Expect failure
post RESULT = true;
� �

3.4 Avoiding Test Explosions
It is extremely easy to write a comparatively simple looking trace definition that expands into a
collection of tests that is so large that it is not practical to execute, either because it would take too
long or because the generation process takes up too much memory. The following tips will help
you to avoid this pitfall:

Start small: It is tempting to write traces as clearly as possible to start with, and that may lead
to the binding of values from sets of data or types with many values. The combinatorial
expansion process will then either multiply these data sizes together, or in some cases gen-
erate combinations that depend on the product of the factorial of the data sizes. Therefore
a modest set of 50 values might generate of the order of 1064 tests (i.e. the factorial of 50).
So start small: design and test traces with small example sets and types, and only expand the
data selections when you can see that the trace is expanding as you require.

Split up traces: The alternation operator, |, will join together two sets of tests in a trace. It
may therefore be tempting to write a single trace that is composed of many parts, testing
different parts of the system, joined by alternation. This has the advantage that the whole
specification can be tested by running one trace. But it also means that the trace expands
to the sum of all of the tests within all of the parts. That is much better than a product or
factorial combination, but if the parts are genuinely separate, you will be able to do more
tests in the parts by separating them into multiple traces.

Be careful with multiple-binds and power sets: As mentioned above, factorial scaling is extremely
expensive. This occurs most commonly with multiple-binds that are used for k-permutations,
and with the power operator on sets. As suggested above, in these cases start with small
sets and increase them with care!

31

VDM Combinatorial Testing Guidelines

32

Chapter 4

Combinatorial Testing Examples

This Chapter looks at two significant specifications and their traces. Extracts of the specifications
are given, but the full listing of both can be found in Appendix C.

4.1 The Luhn Check Digit Model

4.1.1 Background

The Luhn1 check digit algorithm is commonly used in commercial systems to provide a simple
means to check the integrity of a number, such as a credit card number or a product barcode.

The simplest version of the algorithm is able to check strings of decimal digits. A more com-
plex version is defined for checking strings of digits in an arbitrary numerical base and encoding.
In both cases, the check digit produced is a valid character in the numerical base of the input. The
example presented here is the more complex algorithm.

The Luhn algorithm can detect a wide range of common transcription errors, for example when
adjacent digits are swapped in the input. But its error detection is not perfect. In particular, there
are specific patterns of input corruption that are not detected by the algorithm. The testing of the
specification has to verify both the correct detection of most corruptions, and the the correct failure
to detect the known weaknesses.

The discussion below starts by describing the structure and traces used to test a standard version
of the Luhn algorithm. Then we look at a non-standard implementation from a real life example,
and show how combinatorial tests not only identify the problem, but also show that the level of
error checking provided by the non-standard implementation is weaker than the standard one.

4.1.2 The Structure of the Specification

The first part of the Luhn specification defines the encoding for the digit strings that are to be
checked. The algorithm is defined for a given base, and therefore a set of characters for the base

1See https://en.wikipedia.org/wiki/Luhn algorithm

33

VDM Combinatorial Testing Guidelines

must be defined. In the simple base-10 case, the ten characters are usually ’0’, ’1’, . . . , ’9’, but
they could be any selection of ten distinct characters. Similarly, other bases require more or fewer
characters, and the choice is arbitrary. A given choice is defined by a Mapping type in the model:�
public Mapping = inmap char to nat
inv m == rng m = {0, ..., card rng m - 1};
� �
The top level Luhn algorithm is then a function which takes a Mapping as well as a base and a
string of characters, returning a single check digit:�
public luhns: seq1 of char * nat1 * Mapping -> char
luhns(string, base, mapping) ==

let encoded = [mapping(string(i)) | i in set inds string] in
(inverse mapping)(luhn(encoded, base))

pre (elems string subset dom mapping) and (card rng mapping = base)
post RESULT in set dom mapping;
� �
The precondition checks that the string passed is only comprised of characters in the domain of the
mapping, and that the base is consistent with the size of the mapping. The postcondition checks
that the character returned is also a member of the mapping.

The body of the function uses the mapping to encode the input string into a sequence of num-
bers. These are then processed by a lower level luhn function to produce a check value, which is
finally mapped back to a character using the inverse of the mapping.

The luhn core function is passed a sequence of numbers and a base, returning another number
of that base:�
public luhn: seq1 of nat * nat1 -> nat
luhn(data, base) ==

let remainder = total(data, base) mod base in
(base - remainder) mod base

pre forall i in set inds data & data(i) < base
post RESULT < base and (total(data, base) + RESULT) mod base = 0;
� �
The Luhn check value is defined in terms of a total function. The Luhn result is difference
between the total function and the base (modulo the base). The precondition checks that all of the
values in the input string are within the base, and the postcondition checks that the result is within
the base and that adding the total value to the result gives zero (modulo the base).

Lastly, the total function is passed the sequence of input values and produces a total, which
is the sum of the digits of the value multiplied by a factor which alternates between 1 and 2, such
that the rightmost factor is always 2.

34

CHAPTER 4. COMBINATORIAL TESTING EXAMPLES

4.1.3 Testing Approach

The natural approach to test the algorithm is to produce a check digit for some strings with known
check digits, such as a credit or debit card number2, where the Luhn calculation is in base-10 and
computed over the first 15 digits of the number:�
> print Test‘luhn10("492912341234999")
= ’5’
Executed in 0.006 secs.
� �
This is a perfectly valid way to test, and quickly gives confidence that the LUHN specification is
roughly correct. But of course there may be many edge cases and strange combinations of digits
that cause issues. This is where combinatorial tests give us more testing power.

The style of combinatorial testing needed for a specification like LUHN is the “data” style,
where traces are used to generate a large number of input data strings, which are then verified by a
single function. See 3.1.

The first trace creates a large set of test strings to check whether the specification produces a
result that does not violate any of the constraints:�
values

charToCodeMap10 : LUHN‘Mapping =
let decimal = "0123456789" in

{ decimal(a) |-> (a-1) | a in set inds decimal };

traces
FirstN:
let a,b,c,d in set dom charToCodeMap10 in
(

luhn10([a]) |
luhn10([a,b]) |
luhn10([a,b,c]) |
luhn10([a,b,c,d])

);
� �
This uses the domain of the Mapping for base 10 to produce all possible sequences of 1, 2, 3 and
4 digits, calculating the Luhn check digit for each. Note the following:

• Unlike the ad-hoc tests of various credit card examples, this trace does not include the cor-
rect answer for each test. Rather, it depends on the postcondition of the luhn function,
which says that the total function plus the check digit must be zero (mod 10). This is
generally the case for combinatorial tests, unless you produce an oracle function instead of a

2No, this is not my real credit card number!

35

VDM Combinatorial Testing Guidelines

postcondition. In this case, such an oracle would have to reproduce the Luhn algorithm, and
so this would add little value (i.e. the oracle could be wrong as well).

• The trace only includes strings of length 1 to 4, not 5 and beyond. Why not? The reason
is a judgement, made by the tester. A string with a single value may well be a special
case; similarly a string of two is the minimal example of a multi-character string. The Luhn
algorithm treats alternate places in the string differently, so adding three and four values
covers cases for the second pair. Tests of five or more values are probably adding less value,
and at some point you simply have to stop. This trace produces 40,000 tests. If you have
time, it would be easy to extend it to produce a million, but if the first 40,000 work there is
unlikely to be a problem in the remainder.

After the FirstN trace, there is a second one called FirstN 16, which does the same processing
but in base 16 rather than base 10. This naturally produces more test cases (because the alphabet
is larger), so to keep the trace size manageable, it covers strings of length 1 to 3. As before, this
can be extended (with diminishing returns) if you have time.

So at this point, we have much greater confidence that the specification is producing results that
meet the internal constraints. But recall that the correct Luhn specification is also unable to detect
certain changes in its input. This is an unusual case where the algorithm is required to produce
a particular “wrong” behaviour, in a sense. So next we can design traces that test this particular
aspect.

The first trace checks that the algorithm correctly detects all single-digit errors. This means all
cases where a single digit is changed to another value:�
AllOneDigitErrors:
let base = 16 in
let input = conc [[a, a] | a in set {0, ..., base-1}] in
let expected = LUHN‘luhn(input, base) in
let pos in set inds input in
let replacement in set {0, ..., base-1} \ {input(pos)} in
let corrupt = input(1, ..., pos-1) ˆ

[replacement] ˆ input(pos+1, ..., len input)
in

checkFail(corrupt, expected, base);
� �
This trace is mostly simple definitions. The test uses base 16; an input string is created formed
from pairs of all digits from the base; the expected Luhn check digit for the string is calculated.
There are duplicated pairs because the Luhn algorithm treats odd and even positions differently, so
both should be tried for every value. Then the pos value considers every position in the string and
replacement takes the value of every other possible digit at that position. The corrupt value
is then the original input with the digit at pos replaced by replacement. This corrupt string
ought to produce a different Luhn check digit to the expected value from the original input,
which is verified by checkFail.

36

CHAPTER 4. COMBINATORIAL TESTING EXAMPLES

So having verified the correct detection of all single digit errors, we have to check for the cases
that are not detected by the algorithm. This happens in two special cases, firstly for swapped pairs
of digits in the input, where one digit is zero and the other is base-1 (e.g. ’F’ in hexadecimal or ’9’
in base-10). The trace to prove this is as follows:�
AllAdjacentTranspositions:

let base = 16 in
let a, b in set {0, ..., base-1} be st a <> b in
let pass = (a = 0 and b = base-1) or (a = base-1 and b = 0) in
let expected = LUHN‘luhn([a, b], base) in
checkResult([b, a], expected, base, pass);
� �

This trace produces all [a, b] pairs for the given base, where the two values are different. The
expected Luhn check value is calculated for the pair and then the result is checked for the swap
of the two values, [b, a]. The pass value is true for the special cases where the algorithm
explicitly should not detect the swap - the checkResult operation uses the pass argument to
call checkOK or checkFail.

The second special case that is not detected by the Luhn algorithm is with the exchange of
some pairs of digits. Specifically it will not detect 22 < - > 55, 33 < - > 66 or 44 < - > 77. The
trace to verify this is as follows:�
AllTwinErrors:

let base = 10 in
let a, b in set {0, ..., base-1} be st a <> b in
let pass = {a, b} in set {{2, 5}, {3, 6}, {4, 7}} in
let expected = LUHN‘luhn([a, a], base) in
checkResult([b, b], expected, base, pass);
� �

The trace generates all possible pairs of values for the base, and then creates a pair from one value
and checks that a substitution with a pair of the other is detected as a change. Note that the pass
value is true for the cases that should not be detected.

The final trace to test the algorithm checks that a prefix of an arbitrary number of zero characters
does not affect the check digit value:�
ZeroPadding:

let base = 16 in
let input = [x | x in set {0, ..., base-1}] in
let expected = LUHN‘luhn(input, base) in
let number in set {1, ..., 8} in
let padding = [p-p | p in set {1, ..., number}] in
checkOK(padding ˆ input, expected, base);
� �

37

VDM Combinatorial Testing Guidelines

The call to checkOK verifies that the check digit produced from the original input is the same as
that produced for the same with a varying prefix of between 1 and 8 zeros.

4.1.4 Real World Luhn, the ACME Example
The sections above describe a formal specification of the standard Luhn algorithm, and traces that
can be used to verify that the specification is correct, compared to the published algorithm.

It is always useful to have a formal specification of an algorithm, but in the real world, imple-
mentations are often created by programmers (with the best of intentions) on a rather less formal
basis. In some cases, their implementations are not correct, though they may still pass the simple
ad-hoc levels of testing that are usually performed.

The authors are familiar with a particular case of an invalid Luhn implementation written by
the ACME3 Company. ACME is in the business of tracking the movement of a large number of
parcels around the country. Each parcel is marked with a (hexadecimal) barcode, and these have
a base-16 Luhn check digit. ACME employees use barcode scanners to check parcels in and out
of depots and delivery vans, and the software in the scanners checks the Luhn check digit on each
one. The same Luhn software is used to create the barcodes for new parcels.

Unfortunately, the Luhn implementation used by ACME had a fault. The software was origi-
nally written in Visual Basic for base-10 and subsequently extended to cover base-16. But inter-
nally, a VB library to convert decimal characters to numbers was silently ignoring hexadecimal
characters. This meant that although the barcodes produced by the software could be checked by
the scanners, the check digits produced were not the standard check digits.

This went unnoticed for some considerable time. But eventually the software used to produce
the barcodes had to be updated as part of a planned system enhancement, leaving the barcode
scanners unchanged. The informal specifications of the system stated that it used the Luhn base-16
algorithm, and that was duly re-implemented (correctly) in the upgrade.

Of course, when the new barcodes were checked with the old scanners, the check digits some-
times failed - not always, because the invalid algorithm was only incorrectly handling hexadecimal
characters, but it was still a serious problem.

This caused a great deal of confusion about which implementation was correct! It led to the cre-
ation of the formal model above and this was used to demonstrate that the ACME implementation
was at fault.

But what was the invalid algorithm? And what were its error detection characteristics? This
had to be discovered by careful reverse engineering of the ACME Visual Basic code, and was
captured in an ACME variant of the formal model, which we present in this section.

The ACME Total Function

The error in the ACME implementation was tracked back to the total function that is used to
multiply and add the digits of the input. First we show the standard algorithm for the core of the
total function:

3Not their real name!

38

CHAPTER 4. COMBINATORIAL TESTING EXAMPLES

�
-- The standard algorithm:
let multipler = (len data) mod 2 + 1,

code = hd data,
product = code * multipler

in
sumDigits(product, base)
� �

The sumDigits function adds the digits of its argument in the given base (e.g. the sum of 123 in
base 10 is 1 + 2 + 3 = 6). Here is the equivalent in the ACME implementation:�
-- The ACME algorithm:
let multipler = (len data) mod 2 + 1,

code = hd data,
product = code * multipler

in
if hasNonDecimals(product, base)
then code
else sumDigits(product, base)
� �

Notice that the ACME algorithm has an extra test for hasNonDecimals. This function is true
if there are any characters other than 0-9 in the product, such as A-F. If there are none, then the
result of the ACME total function will be exactly the same as the standard; but if there are
non-decimal characters, the function returns the code value - i.e. the unmultiplied and unsummed
input value. Obviously this is wrong.

Using this new specification, we could show that it seemed to produce ACME check digits that
agree with the old ACME software, both with and without hexadecimal characters. But how could
we test this specification further with traces, if we were not sure of the error detection characteris-
tics of the ACME algorithm?

Clearly, without a complete analysis of the ACME algorithm we could not predict its error de-
tection characteristics. But by using the traces for the standard algorithm, we could easily discover
whether the ACME version was detecting the same, or more, or fewer error cases. The results were
as follows:

FirstN and FirstN 16: These traces still operate correctly under the ACME variant because they
are testing for violation of constraints in the specification rather than checking individual
check digit values. This tells us that the ACME algorithm does produce something that
meets all of the pre- and postconditions defined.

AllOneDigitErrors: This trace produces no errors with the standard algorithm, because it is ca-
pable of detecting all single digit errors. However, the ACME variant produces six errors.
On closer examination, we find that it cannot detect substitutions of 3 < - > 6, 5 < - > A, 7
< - > B.

39

VDM Combinatorial Testing Guidelines

AllAdjacentTranspositions: This trace has two exceptions that are not detected by the standard
algorithm, 0 < - > F and F < - > 0. The ACME variant has these two exceptions as well,
but in addition it has 40 others.

AllTwinErrors and ZeroPadding: These traces behave in the same way as the standard algo-
rithm.

So, with the help of a formal model and combinatorial testing, we could show the ACME company
not only that their implementation was at fault, but that the invalid implementation was significantly
weaker at error detection than the standard algorithm (and we could characterise its weaknesses).

4.2 The Basket Service Model

4.2.1 Background
The Basket Service model describes the behaviour of a simple client-server system that manages a
basket of retail items4. Initially a basket is empty, and can have multiple items added and cancelled
(removed), before finally the entire basket is settled (the customer pays for the items) or cancelled.

4.2.2 The Structure of the Specification
The Basket Service is modelled by a single class, called BasketService, which includes the
current basket in its state:�
types
public Product = seq1 of char;

private BasketItem ::
iid : nat -- Unique per basket
product : Product
amount : real;

private Basket ::
items : [seq of BasketItem]

inv basket ==
basket.items <> nil =>

let ids = { item.iid | item in seq basket.items } in
card ids = len basket.items;

instance variables
basket : Basket := mk_Basket(nil);
� �

4This is a simplified version of a far more complex ARTS transaction system.
See https://en.wikipedia.org/wiki/Association for Retail Technology Standards

40

CHAPTER 4. COMBINATORIAL TESTING EXAMPLES

The client-server messages are modelled by record types for each transaction type, either adding
or cancelling an item from the basket, or cancelling or settling the entire basket. For example:�
public AddItemRequest ::

uid : nat
product : Product
amount : real;

public CancelItemRequest ::
uid : nat
iid : nat;

public CancelBasketRequest ::
uid : nat;

public SettleBasketRequest ::
uid : nat;

public Response ::
type : <OK> | <FAILED> | <SEQERR>
sid : nat
message : [seq of char]
iid : [nat]
total : real;
� �

In addition to the simple values that populate the basket, the requests carry a uid (a user message
ID), and responses include a sid (a server message ID). The protocol requires that both user IDs
and server IDs are incremented for every message sent or received. Responses also include the
total amount of the basket so far (which may be zero, if it is empty).

The processing of each message type is specified as a pair of operations, like addItem and
addItemImpl. The first is the public interface which checks the arguments passed and the mes-
sage sequencing before calling the second operation; the second is private, assumes the arguments
are correct, and performs the core processing of the request. The postcondition on the first opera-
tion defines the overall behaviour in detail; the precondition on the second operation verifies that
the arguments are valid. For example, the cancelItem operations are as follows:�
public cancelItem: CancelItemRequest ==> Response
cancelItem(request) ==
(

if lastuid <> nil and request.uid <> lastuid + 1
then return seqerrResponse("Invalid sequence")
else
(
lastuid := request.uid;

if basket.items = nil
then return errorResponse("Basket is empty", nil)

41

VDM Combinatorial Testing Guidelines

else if request.iid not in set basketItems(basket)
then return errorResponse("No such item", request.iid)
else return cancelItemImpl(request)

)
)
post

cases RESULT.type:
<SEQERR> ->

basket = basket˜ -- sid changes, nothing else
and lastuid = lastuid˜
and iid = iid˜
and sid = sid˜ + 1,

<FAILED> ->
basket = basket˜ -- lastuid and sid change
and lastuid = request.uid
and iid = iid˜
and sid = sid˜ + 1,

<OK> ->
lastuid = request.uid
and iid = iid˜
and sid = sid˜ + 1
and len basket.items = len basket˜.items - 1
and RESULT.total = basketTotal(basket.items)
and RESULT.iid not in set basketItems(basket)

end;

private cancelItemImpl: CancelItemRequest ==> Response
cancelItemImpl(request) ==
(

basket.items := [item | item in seq basket.items & item.iid <> request.iid];
return okResponse(request.iid)

)
pre lastuid = request.uid

and basket.items <> nil
and request.iid in set basketItems(basket);
� �

Notice how the main public operation performs basic checks and then delegates to the private
“Impl” operation, which actually performs the update. The main operation has a detailed post-
condition that considers each possible result type and states the changes in the system state and
message counters that result. You can see that if the result is <OK>, then the basket is edited to
remove a single item and return the new basket total.

From a combinatorial testing perspective, this style of specification allows us to make lots of
experimental calls to the public interface operations, in the confidence that the constraints will very
precisely check that the operations are modifying the state of the server correctly. Although note
that the server only checks the sequence of the user message IDs; it is still up to the “caller” to
check that the server message IDs returned are in sequence.

4.2.3 Testing Approach
The obvious way to create a simple test of this model is to write a sequence of public interface
calls, and check that the return response from each is as expected. For example:

42

CHAPTER 4. COMBINATORIAL TESTING EXAMPLES

�
public testAdHoc: () ==> seq of bool
testAdHoc() == let s = new BasketService() in return
[
s.cancelItem(mk_BasketService‘CancelItemRequest(0, 99))

= mk_BasketService‘Response(<FAILED>, 1, "Basket is empty", nil, 0),
s.cancelBasket(mk_BasketService‘CancelBasketRequest(1))

= mk_BasketService‘Response(<FAILED>, 2, "Basket is empty", nil, 0),
s.addItem(mk_BasketService‘AddItemRequest(2, "apples", -99))

= mk_BasketService‘Response(<FAILED>, 3, "Amount invalid", nil, 0),
s.addItem(mk_BasketService‘AddItemRequest(3, "apples", 1.23))

= mk_BasketService‘Response(<OK>, 4, nil, 1, 1.23),
s.addItem(mk_BasketService‘AddItemRequest(99, "pears", 2.34))

= mk_BasketService‘Response(<SEQERR>, 5, "Invalid sequence", nil, 1.23),
s.addItem(mk_BasketService‘AddItemRequest(4, "pears", 2.34))

= mk_BasketService‘Response(<OK>, 6, nil, 2, 3.57),
s.cancelItem(mk_BasketService‘CancelItemRequest(5, 1))

= mk_BasketService‘Response(<OK>, 7, nil, 1, 2.34),
s.cancelItem(mk_BasketService‘CancelItemRequest(6, 99))

= mk_BasketService‘Response(<FAILED>, 8, "No such item", 99, 2.34),
s.settleBasket(mk_BasketService‘SettleBasketRequest(7))

= mk_BasketService‘Response(<OK>, 9, nil, nil, 2.34)
]
post elems RESULT = {true};
� �

This test operation returns a sequence of booleans, each one made from an assertion that a call
to a particular public operation will return a particular Response message. The postcondition
effectively asserts that the whole test passes.

As discussed above, this type of ad-hoc testing is perfectly valid, but there are very many paths
through the server behaviour that are not exercised by such tests. Here, combinatorial traces can
give us a great deal more testing power. The Basket Service model lends itself to the process style
of combinatorial testing, discussed in 3.1. But we also have to consider creating supporting test
operations that maintain the “client” state of the system in order to make sensible sequences of
interface calls on the server with a trace. See 3.2.

To create test operations, we need to be able to track the server message ID (to check that
returned values are continuous) as well as creating a contiguous client message ID for new requests.
We also need to be able to track the item IDs returned when new items are added to the basket,
so that the cancelItem operation can select items that are in the basket. Lastly, it would be useful
to be able to create errors in the IDs, so that we can check this behaviour as well. This leads to a
Tests class with state and operations as follows:�
class Tests

-- State for the combinatorial tests.
instance variables

SID : nat := 0;
UID : nat := 0;
iids : set of nat := {};
server : BasketService := new BasketService();

operations
private addItemTest: bool * BasketService‘Product * real ==> BasketService‘Response
addItemTest(ok, product, amount) ==
(
if ok then UID := UID + 1;

43

VDM Combinatorial Testing Guidelines

let response = server.addItem(mk_BasketService‘AddItemRequest(UID, product, amount)) in
(

if response.type = <OK> then iids := iids union {response.iid};
checkSID(response.sid);
return response

)
);

private checkSID: nat ==> ()
checkSID(s) == SID := s
pre s = SID + 1;
� �

So the addItemTest operation (conditionally) increments the client UID value and uses this to
build a Request. If the result is <OK>, the IID returned is added to the set. The server SID is
checked and updated, and the response is returned so that the tests from the trace show the result
details.

Similar test operations are created for the other server interface operations, which similarly use
the state data to prepare their requests. For example, the cancelItemTest operation includes
a line to select an arbitrary IID to cancel, or return nil if there are no items in the basket (i.e. skip
the operation):�

if iids <> {} then
let iid in set iids in

... -- call cancelItem(iid)
else return nil
� �

Given that all of the server interface operations check their actions in detail, it is tempting to create
a combinatorial test that just tries all of the operations in every possible order, including with a
false argument to cause error cases:�
traces

TryEverything: ||
(
addItemTest(true, "apples", 1.23),
addItemTest(false, "pears", 4.56),
cancelItemTest(true),
cancelItemTest(false),
cancelBasketTest(true),
cancelBasketTest(false),
settleBasketTest(true),
settleBasketTest(false)

);
� �
This approach does have some value. It produces 8! tests (40,320). For example test number 1234
is as follows:

44

CHAPTER 4. COMBINATORIAL TESTING EXAMPLES

> runtrace TryEverything 1234
Generated 40320 tests in 0.001 secs.
Test 1234 = addItemTest(true, "apples", 1.23);

cancelItemTest(true);
settleBasketTest(true);
cancelItemTest(false);
cancelBasketTest(true);
cancelBasketTest(false);
settleBasketTest(false);
addItemTest(false, "pears", 4.56)

Result = [mk_Response(<OK>, 1, nil, 1, 1.23),
mk_Response(<OK>, 2, nil, 1, 0),
mk_Response(<OK>, 3, nil, nil, 0),
nil,
mk_Response(<FAILED>, 4, "Basket is empty", nil, 0),
mk_Response(<SEQERR>, 5, "Invalid sequence", nil, 0),
mk_Response(<SEQERR>, 6, "Invalid sequence", nil, 0),
mk_Response(<SEQERR>, 7, "Invalid sequence", nil, 0), PASSED]

Excluded 40319 tests
Executed in 0.024 secs.
All tests passed

Although this permutation approach might show up some corner cases, most of the permutations
do not represent a realistic call sequence of a client (like this example!). At most a permutation
will add one item to the basket and only settle one basket. To be more realistic, we need more
basket activity before it is either settled or cancelled. That could be achieved by adding more
addItemTest or settleBasketTest calls to the trace, but even if we only add two, that
takes the total number of permutation up to 10! (3,628,800), which will take a very long time to
execute.

A more considered approach yields a larger number of realistic test sequences. Here, we build
a trace using a typical sequence of actions from a client, some of which are alternated or optional
(to cover varying possibilities). At the end, the whole sequence is duplicated ({2}) to produce tests
that complete one basket and then another:�
TwoBaskets:

(
addItemTest(true, "apples", 1.23) |
addItemTest(false, "apples", 1.23);
(cancelItemTest(true) |

cancelItemTest(false))?;

addItemTest(true, "pears", 2.34) |
addItemTest(false, "pears", 2.34);
(cancelItemTest(true) |

cancelItemTest(false))?;

(cancelBasketTest(false) |
settleBasketTest(false))?;

45

VDM Combinatorial Testing Guidelines

cancelBasketTest(true) |
settleBasketTest(true)

) {2}
� �
This trace means that we always start by adding, or failing to add an item; then we either cancel or
fail to cancel it, or we skip this step; then we add or fail to add a second item; then we cancel or
fail to cancel or we skip; then we fail to cancel the basket or fail to settle the basket; and lastly we
successfully cancel or settle the basket; and overall we repeat all combinations of these sequences
twice.

This produces far more realistic test sequences and expands to 46,656 tests. Here is one selected
for illustration:

> runtrace TwoBaskets 4321
Generated 46656 tests in 0.001 secs.
Test 4321 = addItemTest(true, "apples", 1.23);

skip;
addItemTest(true, "pears", 2.34);
skip;
skip;
cancelBasketTest(true);
addItemTest(true, "apples", 1.23);
cancelItemTest(true);
addItemTest(false, "pears", 2.34);
cancelItemTest(true);
skip;
cancelBasketTest(true)

Result = [mk_Response(<OK>, 1, nil, 1, 1.23),
(),
mk_Response(<OK>, 2, nil, 2, 3.57),
(),
(),
mk_Response(<OK>, 3, nil, nil, 0),
mk_Response(<OK>, 4, nil, 1, 1.23),
mk_Response(<OK>, 5, nil, 1, 0),
mk_Response(<SEQERR>, 6, "Invalid sequence", nil, 0),
nil,
(),
mk_Response(<OK>, 7, nil, nil, 0), PASSED]

Excluded 46655 tests Executed in 1.486 secs.
All tests passed

You can see that this is a more rational client call sequence (though only just!). So by composing
a trace that is focussed on more realistic behaviour, we have managed to produce a comparable
number of tests to the full permutation approach (of the order of 40K), but each one should be
adding more value than a random permutation of interface calls. Of course, both traces can be
used in the full test suite.

46

Appendix A

Combinatorial Testing Syntax

traces definitions = ‘traces’, [named trace, { ‘;’, named trace }] ;

named trace = identifier, { ‘/’, identifier }, ‘:’, trace definition list ;

trace definition list = trace definition term, { ‘;’, trace definition term } ;

trace definition term = trace definition, { ‘|’, trace definition } ;

trace definition = trace binding definition
| trace repeat definition ;

trace binding definition = trace let def binding
| trace let best binding ;

trace let def binding = ‘let’, local definition, { ‘,’, local definition },
‘in’, trace definition ;

trace let best binding = ‘let’, multiple bind, [‘be’, ‘st’, expression],
‘in’, trace definition ;

trace repeat definition = trace core definition, [trace repeat pattern] ;

trace repeat pattern = ‘*’
| ‘+’
| ‘?’
| ‘{’, numeric literal, [‘,’, numeric literal, ‘}’] ;

trace core definition = trace apply expression
| trace concurrent expression
| trace bracketed expression ;

trace apply expression = call statement ;

47

VDM Combinatorial Testing Guidelines

trace concurrent expression = ‘||’, ‘(’, trace definition,
‘,’, trace definition,
{ ‘,’, trace definition }, ‘)’ ;

trace bracketed expression = ‘(’, trace definition list, ‘)’ ;

48

Appendix B

Tool Support

B.1 Overture GUI

The Overture IDE includes a perspective that is intended for working with combinatorial tests in a
specifiction. The features available are described in Chaper 10 of the Overture User Guide.

B.2 Visual Studio Code GUI

There is a new experimental VDM extension for Visual Studio Code available that supports com-
binatorial testing 1. The interface should be intuitive and consistent with normal VS Code usage.

1https://github.com/jonaskrask/vdm-vscode

49

VDM Combinatorial Testing Guidelines

B.3 VDMTools UI
VDMTools2 includes traces support through interpreters. The interpreter window that provides a
REPL interface accepts the traces command to run a trace, although the tool does not have a
GUI dedicated to traces.

B.4 Command Line Tools
Although the IDEs above are convenient for developing combinatorial tests, to push the tools to
the limit of what is possible it is better to use a command line interface. This allows more memory
to be allocated to the process running the traces without the IDE occupying space itself.

B.4.1 Overture Command Line
The following command line options are available for working with traces. Many of them have
already been illustrated in section 2.

2https://github.com/vdmtools/vdmtools

50

APPENDIX B. TOOL SUPPORT

runtrace <name> [test number] This command runs the named trace, and without fur-
ther arguments will expand the trace and execute all of the tests. If a test number is provided,
one single test will be executed.

debugtrace <name> [test number] This is the same as the runtrace command, but
if the test execution process encounters a constraint violation, like a precondition or postcon-
dition failure, execution will trip into the debugger rather than recording the test as having
failed.

filter <%age> | <reduction type> This command can be used to set the percentage
of trace reduction, or the trace reduction type. This affects subsequent runtrace execu-
tions (assuming no trace number is given).

B.4.2 VDMJ Command Line
VDMJ3 is very similar to Overture, but the tool has some extra commands and the combinatorial
expansion of tests is more efficient. It is likely that VDMJ can execute larger traces than Overture.
The following extra or modified commands are available:

runtrace <name> [start test [end test]] This is the same as Overture, except a
start-end test number range can be given.

debugtrace <name> [start test [end test]] This is the same as Overture, ex-
cept a start-end test number range can be given.

savetrace [<file> | off] Trace execution output can be directed to a file using this
command. All trace output goes to the file until the command is repeated with an “off”
option. Without arguments, the command indicates where output is currently redirected.

seedtrace <number> This command allows trace reduction to be seeded with a particular
value.

runalltraces [<class/module name>] This option either runs all visible traces or all
traces within the named class or module. This is useful when there is a large number of
traces in a specification.

B.4.3 VDMTools Command Line
It is possible to execute traces in VDMTools from the command line, using the vdmde and vppde
commands.

traces <name> This command expands the named trace and runs all of the tests.

3https://github.com/nickbattle/vdmj/releases

51

VDM Combinatorial Testing Guidelines

52

Appendix C

Example Model Listings

The VDM models listed in this appendix are described in detail in Chapter 4

C.1 The LUHN Check Digit Model

class LUHN
--
-- A specification of the standard Luhn base-N check digit algorithm.
--
types

--
-- A type describing valid character mappings. The map must be injective, and it
-- must map arbitrary characters onto the set {0, ..., N-1}, where N is the base
-- of the algorithm.
--
public Mapping = inmap char to nat
inv m == rng m = {0, ..., card rng m - 1};

functions
--
-- Generate the Luhn check character from a string using a particular base and char map.
-- The precondition says that all of the input characters must be in the mapping and
-- the range of the map must match the base. The postcondition says the result must also
-- be in the coding map.
--
public luhns: seq1 of char * nat1 * LUHN‘Mapping -> char -- Non empty list input
luhns(string, base, mapping) ==

is subclass responsibility;

--
-- Generate the Luhn check digit from a sequence of numbers in a particular base. There is
-- a precondition to check that the input values are within the base. The check digit
-- RESULT is defined as correct by the postcondition if the total plus the check digit
-- would encode to zero.
--
public luhn: seq1 of nat * nat1 -> nat -- Non empty list input
luhn(data, base) ==

is subclass responsibility;

--
-- Sum the digits of a number in a particular base.

53

VDM Combinatorial Testing Guidelines

--
protected sumDigits: nat * nat1 -> nat
sumDigits(n, base) ==

if n < base
then n
else (n rem base) + sumDigits(n div base, base)

measure n;

end LUHN

class LUHN_STD is subclass of LUHN
functions

--
-- Generate the Luhn check character from a string using a particular base and char map.
-- The precondition says that all of the input characters must be in the mapping and
-- the range of the map must match the base. The postcondition says the result must also
-- be in the coding map.
--
public luhns: seq1 of char * nat1 * LUHN‘Mapping -> char -- Non empty list input
luhns(string, base, mapping) ==

let encoded = [mapping(string(i)) | i in set inds string] in
(inverse mapping)(luhn(encoded, base))

pre (elems string subset dom mapping) and (card rng mapping = base)
post RESULT in set dom mapping;

--
-- Generate the Luhn check digit from a sequence of numbers in a particular base. There is
-- a precondition to check that the input values are within the base. The check digit
-- RESULT is defined as correct by the postcondition if the total plus the check digit
-- would encode to zero.
--
public luhn: seq1 of nat * nat1 -> nat -- Non empty list input
luhn(data, base) ==

let remainder = total(data, base) mod base in
(base - remainder) mod base

pre forall i in set inds data & data(i) < base
post RESULT < base and (total(data, base) + RESULT) mod base = 0;

--
-- Perform the Luhn digit totalling algorithm for a sequence in a given base. The
-- precondition just checks that the data is within the base. The measure checks
-- that the recursion is always dealing with a shorter and shorter list.
--
private total: seq of nat * nat1 -> nat
total(data, base) ==

if data = []
then 0
else total(tl data, base) +

let multipler = (len data) mod 2 + 1, -- ...1, 2, 1, 2. Rightmost is always 2
code = hd data,
product = code * multipler

in
LUHN‘sumDigits(product, base)

pre forall i in set inds data & data(i) < base
measure len data; -- Length is strictly decreasing.

end LUHN_STD

54

APPENDIX C. EXAMPLE MODEL LISTINGS

class LUHN_ACME is subclass of LUHN
functions

--
-- Generate the Luhn check character from a string using a particular base and char map.
-- The precondition says that all of the input characters must be in the mapping and
-- the range of the map must match the base. The postcondition says the result must also
-- be in the coding map.
--
public luhns: seq1 of char * nat1 * LUHN‘Mapping -> char -- Non empty list input
luhns(string, base, mapping) ==

let encoded = [mapping(string(i)) | i in set inds string] in
(inverse mapping)(luhn(encoded, base))

pre (elems string subset dom mapping) and (card rng mapping = base)
post RESULT in set dom mapping;

--
-- Generate the Luhn check digit from a sequence of numbers in a particular base. There is
-- a precondition to check that the input values are within the base. The check digit
-- RESULT is defined as correct by the postcondition if the total plus the check digit
-- would encode to zero.
--
public luhn: seq1 of nat * nat1 -> nat -- Non empty list input
luhn(data, base) ==

let remainder = total(data, base) mod base in
(base - remainder) mod base

pre forall i in set inds data & data(i) < base
post RESULT < base and (total(data, base) + RESULT) mod base = 0;

--
-- Perform the Luhn digit totalling algorithm for a sequence in a given base. The
-- precondition just checks that the data is within the base. The measure checks
-- that the recursion is always dealing with a shorter and shorter list.
--
private total: seq of nat * nat1 -> nat
total(data, base) ==

if data = []
then 0
else total(tl data, base) +

let multipler = (len data) mod 2 + 1, -- ...1, 2, 1, 2. Rightmost is always 2
code = hd data,
product = code * multipler

in
-- This is an ACME variation of the Luhn-N algorithm, where we take the
-- mapped code rather than the sum of the digits if the product contains
-- non-decimal characters. The official algorithm just has
-- "sumDigits(product, base)" here.

if hasNonDecimals(product, base)
then code
else LUHN‘sumDigits(product, base)

pre forall i in set inds data & data(i) < base
measure len data; -- Length is strictly decreasing.

--
-- Check whether a number has non-decimal digits in a particular base.
--
private hasNonDecimals: nat * nat1 -> bool
hasNonDecimals(n, base) ==

if n = 0
then false

55

VDM Combinatorial Testing Guidelines

else if n rem base > 9
then true
else hasNonDecimals(n div base, base)

measure n;

end LUHN_ACME

class Test
--
-- Tests for the Luhn algorithm.
--
values

--
-- These maps convert characters to their encoding for the luhns function.
-- The coding here is just the hexadecimal or decimal value of the character. They
-- must be injective maps because their inverse is used to reverse the translation.
--
private charToCodeMap16 : LUHN‘Mapping =

let hex = "0123456789ABCDEF" in
{ hex(a) |-> (a-1) | a in set inds hex };

private charToCodeMap10 : LUHN‘Mapping =
let decimal = "0123456789" in

{ decimal(a) |-> (a-1) | a in set inds decimal };

--
-- Change this to the STD or ACME engine to test that variant.
--
private engine : LUHN = new LUHN_STD();

functions
--
-- A couple of convenience functions for bases 10 and 16 strings.
--
private luhn10: seq1 of char -> char
luhn10(s) == engine.luhns(s, 10, charToCodeMap10)
pre elems s subset dom charToCodeMap10;

private luhn16: seq1 of char -> char
luhn16(s) == engine.luhns(s, 16, charToCodeMap16)
pre elems s subset dom charToCodeMap16;

traces
--
-- Generate all the possible 1, 2, 3 and 4 digit sequences and check that the luhn
-- calculation completes without breaking any constraints.
--
FirstN:

let a,b,c,d in set dom charToCodeMap10 in
(

luhn10([a]) |
luhn10([a,b]) |
luhn10([a,b,c]) |
luhn10([a,b,c,d])

);

FirstN_16:
let a,b,c in set dom charToCodeMap16 in
(

luhn16([a]) |
luhn16([a,b]) |

56

APPENDIX C. EXAMPLE MODEL LISTINGS

luhn16([a,b,c])
);

--
-- The Luhn algorithm will detect any single-digit error, as well as almost all
-- transpositions of adjacent digits. It will not, however, detect transposition
-- of the two-digit sequence 0N to N0 (or vice versa) in base N+1.
--
-- See http://en.wikipedia.org/wiki/Luhn_algorithm
--
AllOneDigitErrors:

let base = 16 in
let input = conc [[a, a] | a in set {0, ..., base-1}] in -- 00112233 etc
let expected = engine.luhn(input, base) in
let pos in set inds input in
let replacement in set {0, ..., base-1} \ {input(pos)} in
let corrupt = input(1, ..., pos-1) ˆ [replacement] ˆ input(pos+1, ..., len input) in

checkFail(corrupt, expected, base);

AllAdjacentTranspositions:
let base = 16 in
let a, b in set {0, ..., base-1} be st a <> b in
let pass = (a = 0 and b = base-1) or (a = base-1 and b = 0) in
let expected = engine.luhn([a, b], base) in

checkResult([b, a], expected, base, pass);

--
-- It will detect 7 of the 10 possible twin errors (it will not detect
-- 22 <> 55, 33 <> 66 or 44 <> 77).
--
-- See http://en.wikipedia.org/wiki/Luhn_algorithm
--
AllTwinErrors:

let base = 10 in
let a, b in set {0, ..., base-1} be st a <> b in
let pass = {a, b} in set {{2, 5}, {3, 6}, {4, 7}} in
let expected = engine.luhn([a, a], base) in

checkResult([b, b], expected, base, pass);

--
-- Because the algorithm operates on the digits in a right-to-left manner and zero
-- digits affect the result only if they cause shift in position, zero-padding the
-- beginning of a string of numbers does not affect the calculation.
--
-- See http://en.wikipedia.org/wiki/Luhn_algorithm
--
ZeroPadding:

let base = 16 in
let input = [x | x in set {0, ..., base-1}] in -- 0123456789...
let expected = engine.luhn(input, base) in
let number in set {1, ..., 8} in -- Between 1 and 8 leading zeros
let padding = [p-p | p in set {1, ..., number}] in

checkOK(padding ˆ input, expected, base); -- They should all pass

operations
--
-- These operations support the traces above
--
checkFail: seq1 of nat * nat * nat ==> bool
checkFail(data, expected, base) ==

return engine.luhn(data, base) <> expected -- Expect failure
post RESULT = true;

checkOK: seq1 of nat * nat * nat ==> bool

57

VDM Combinatorial Testing Guidelines

checkOK(data, expected, base) ==
return engine.luhn(data, base) = expected -- Expect success

post RESULT = true;

checkResult: seq1 of nat * nat * nat * bool ==> bool
checkResult(data, expected, base, pass) ==

if pass
then checkOK(data, expected, base)
else checkFail(data, expected, base);

end Test

C.2 The Basket Service Model

class BasketService
--
-- A simplifed model of a basket transaction service.
--
types

public Product = seq1 of char;

public AddItemRequest ::
uid : nat
product : Product
amount : real;

public CancelItemRequest ::
uid : nat
iid : nat;

public CancelBasketRequest ::
uid : nat;

public SettleBasketRequest ::
uid : nat;

public Response ::
type : <OK> | <FAILED> | <SEQERR>
sid : nat
message : [seq of char]
iid : [nat]
total : real;

private BasketItem ::
iid : nat -- Unique per basket
product : Product
amount : real;

private Basket ::
items : [seq of BasketItem]

inv
basket ==

basket.items <> nil =>
let ids = { item.iid | item in seq basket.items } in

card ids = len basket.items;

instance variables
sid : nat := 0; -- Server message id

58

APPENDIX C. EXAMPLE MODEL LISTINGS

lastuid : [nat] := nil; -- Last client message id
iid : nat := 0; -- Last basket item id
basket : Basket := mk_Basket(nil);

operations
public addItem: AddItemRequest ==> Response
addItem(request) ==
(

if lastuid <> nil and request.uid <> lastuid + 1
then return seqerrResponse("Invalid sequence")
else
(

lastuid := request.uid;
return addItemImpl(request)

)
)
post

cases RESULT.type:
<SEQERR> ->

basket = basket˜
and lastuid = lastuid˜
and iid = iid˜
and sid = sid˜ + 1,

<FAILED> ->
basket = basket˜ -- lastuid and sid change
and lastuid = request.uid
and iid = iid˜
and sid = sid˜ + 1,

<OK> ->
lastuid = request.uid
and iid = iid˜ + 1
and sid = sid˜ + 1
and if basket˜.items = nil

then
len basket.items = 1
and RESULT.total = request.amount
and let item = basket.items(1) in

item.iid = iid
and item.product = request.product
and item.amount = request.amount

else
len basket.items = len basket˜.items + 1
and RESULT.total = basketTotal(basket.items)
and let item = basket.items(len basket.items) in

item.iid = iid
and item.product = request.product
and item.amount = request.amount

end;

private addItemImpl: AddItemRequest ==> Response
addItemImpl(request) ==
(

if request.amount < 0
then errorResponse("Amount invalid", nil)
else
(

iid := iid + 1;

let newItem = mk_BasketItem(iid, request.product, request.amount) in
if basket.items = nil
then basket.items := [newItem]
else basket.items := basket.items ˆ [newItem];

59

VDM Combinatorial Testing Guidelines

return okResponse(iid)
)

)
pre lastuid = request.uid;

public cancelItem: CancelItemRequest ==> Response
cancelItem(request) ==
(

if lastuid <> nil and request.uid <> lastuid + 1
then return seqerrResponse("Invalid sequence")
else
(

lastuid := request.uid;

if basket.items = nil
then return errorResponse("Basket is empty", nil)
else if request.iid not in set basketItems(basket)

then return errorResponse("No such item", request.iid)
else return cancelItemImpl(request)

)
)
post

cases RESULT.type:
<SEQERR> ->

basket = basket˜ -- sid changes, nothing else
and lastuid = lastuid˜
and iid = iid˜
and sid = sid˜ + 1,

<FAILED> ->
basket = basket˜ -- lastuid and sid change
and lastuid = request.uid
and iid = iid˜
and sid = sid˜ + 1,

<OK> ->
lastuid = request.uid
and iid = iid˜
and sid = sid˜ + 1
and len basket.items = len basket˜.items - 1
and RESULT.total = basketTotal(basket.items)
and RESULT.iid not in set basketItems(basket)

end;

private cancelItemImpl: CancelItemRequest ==> Response
cancelItemImpl(request) ==
(

basket.items := [item | item in seq basket.items & item.iid <> request.iid];
return okResponse(request.iid)

)
pre lastuid = request.uid

and basket.items <> nil
and request.iid in set basketItems(basket);

public cancelBasket: CancelBasketRequest ==> Response
cancelBasket(request) ==
(

if lastuid <> nil and request.uid <> lastuid + 1
then return seqerrResponse("Invalid sequence")
else
(

60

APPENDIX C. EXAMPLE MODEL LISTINGS

lastuid := request.uid;

if basket.items = nil
then return errorResponse("Basket is empty", nil)
else cancelBasketImpl(request)

)
)
post

cases RESULT.type:
<SEQERR> ->

basket = basket˜ -- sid changes, nothing else
and lastuid = lastuid˜
and iid = iid˜
and sid = sid˜ + 1,

<FAILED> ->
basket = basket˜ -- lastuid and sid change
and lastuid = request.uid
and iid = iid˜
and sid = sid˜ + 1,

<OK> ->
lastuid = nil -- Reset to "no basket" state, except for sid
and iid = 0
and sid = sid˜ + 1
and basket.items = nil

end;

private cancelBasketImpl: CancelBasketRequest ==> Response
cancelBasketImpl(request) ==
(

lastuid := nil;
iid := 0;
basket.items := nil;
return okResponse(nil)

)
pre lastuid = request.uid and basket.items <> nil;

public settleBasket: SettleBasketRequest ==> Response
settleBasket(request) ==
(

if lastuid <> nil and request.uid <> lastuid + 1
then return seqerrResponse("Invalid sequence")
else
(

lastuid := request.uid;

if basket.items = nil
then return errorResponse("Basket is empty", nil)
else settleBasketImpl(request)

)
)
post

cases RESULT.type:
<SEQERR> ->

basket = basket˜ -- sid changes, nothing else
and lastuid = lastuid˜
and iid = iid˜
and sid = sid˜ + 1,

<FAILED> ->
basket = basket˜ -- lastuid and sid change
and iid = iid˜

61

VDM Combinatorial Testing Guidelines

and sid = sid˜ + 1,

<OK> ->
lastuid = nil -- Reset to "no basket" state, except for sid
and iid = 0
and sid = sid˜ + 1
and basket.items = nil

end;

private settleBasketImpl: SettleBasketRequest ==> Response
settleBasketImpl(request) ==
(

let response = okResponse(nil) in -- total basket here
(

lastuid := nil;
iid := 0;
basket.items := nil;
return response

)
)
pre lastuid = request.uid and basket.items <> nil;

--
-- Common operations and functions
--
operations

private errorResponse: seq1 of char * [nat] ==> Response
errorResponse(message, item) ==
(

sid := sid + 1;
return mk_Response(<FAILED>, sid, message, item, basketTotal(basket.items))

);

private seqerrResponse: seq1 of char ==> Response
seqerrResponse(message) ==
(

sid := sid + 1;
return mk_Response(<SEQERR>, sid, message, nil, basketTotal(basket.items))

);

private okResponse: [nat] ==> Response
okResponse(item) ==
(

sid := sid + 1;
return mk_Response(<OK>, sid, nil, item, basketTotal(basket.items))

);

functions
private basketItems: Basket -> set of nat
basketItems(b) ==

if b.items = nil
then {}
else { item.iid | item in seq b.items };

private basketTotal: [seq of BasketItem] -> real
basketTotal(items) ==

if items = nil or items = []
then 0
else sum(items);

private sum: [seq of BasketItem] -> real
sum(items) ==

if items = nil or items = []
then 0

62

APPENDIX C. EXAMPLE MODEL LISTINGS

else (hd items).amount + sum(tl items)
measure len items;

end BasketService

class Tests
--
-- Tests of the basket service.
--
operations

public testAdHoc: () ==> seq of bool
testAdHoc() == let s = new BasketService() in return
[

s.cancelItem(mk_BasketService‘CancelItemRequest(0, 99))
= mk_BasketService‘Response(<FAILED>, 1, "Basket is empty", nil, 0),

s.cancelBasket(mk_BasketService‘CancelBasketRequest(1))
= mk_BasketService‘Response(<FAILED>, 2, "Basket is empty", nil, 0),

s.addItem(mk_BasketService‘AddItemRequest(2, "apples", -99))
= mk_BasketService‘Response(<FAILED>, 3, "Amount invalid", nil, 0),

s.addItem(mk_BasketService‘AddItemRequest(3, "apples", 1.23))
= mk_BasketService‘Response(<OK>, 4, nil, 1, 1.23),

s.addItem(mk_BasketService‘AddItemRequest(99, "pears", 2.34))
= mk_BasketService‘Response(<SEQERR>, 5, "Invalid sequence", nil, 1.23),

s.addItem(mk_BasketService‘AddItemRequest(4, "pears", 2.34))
= mk_BasketService‘Response(<OK>, 6, nil, 2, 3.57),

s.cancelItem(mk_BasketService‘CancelItemRequest(5, 1))
= mk_BasketService‘Response(<OK>, 7, nil, 1, 2.34),

s.cancelItem(mk_BasketService‘CancelItemRequest(6, 99))
= mk_BasketService‘Response(<FAILED>, 8, "No such item", 99, 2.34),

s.settleBasket(mk_BasketService‘SettleBasketRequest(7))
= mk_BasketService‘Response(<OK>, 9, nil, nil, 2.34)

]
post elems RESULT = {true};

--
-- State for the combinatorial tests.
--
instance variables

SID : nat := 0;
UID : nat := 0;
iids : set of nat := {};
server : BasketService := new BasketService();

operations
private addItemTest: bool * BasketService‘Product * real ==> BasketService‘Response
addItemTest(ok, product, amount) ==
(

if ok then UID := UID + 1;

let response = server.addItem(mk_BasketService‘AddItemRequest(UID, product, amount)) in
(

if response.type = <OK> then iids := iids union {response.iid};
checkSID(response.sid);
return response

)
);

private cancelItemTest: bool ==> [BasketService‘Response]
cancelItemTest(ok) ==
(

if iids <> {} then let iid in set iids in

63

VDM Combinatorial Testing Guidelines

(
if ok then UID := UID + 1;

let response = server.cancelItem(mk_BasketService‘CancelItemRequest(UID, iid)) in
(

if response.type = <OK> then iids := iids \ {response.iid};
checkSID(response.sid);
return response

)
)
else return nil

);

private cancelBasketTest: bool ==> BasketService‘Response
cancelBasketTest(ok) ==
(

if ok then UID := UID + 1;

let response = server.cancelBasket(mk_BasketService‘CancelBasketRequest(UID)) in
(

if response.type = <OK> then (iids := {}; UID := 0);
checkSID(response.sid);
return response

)
);

private settleBasketTest: bool ==> BasketService‘Response
settleBasketTest(ok) ==
(

if ok then UID := UID + 1;

let response = server.settleBasket(mk_BasketService‘SettleBasketRequest(UID)) in
(

if response.type = <OK> then (iids := {}; UID := 0);
checkSID(response.sid);
return response

)
);

private checkSID: nat ==> ()
checkSID(s) ==
(

SID := s;
)
pre s = SID + 1;

traces
TryEverything: ||

(
addItemTest(true, "apples", 1.23),
addItemTest(false, "pears", 4.56),
cancelItemTest(true),
cancelItemTest(false),
cancelBasketTest(true),
cancelBasketTest(false),
settleBasketTest(true),
settleBasketTest(false)

);

TwoBaskets:
(

addItemTest(true, "apples", 1.23) | addItemTest(false, "apples", 1.23);
(cancelItemTest(true) | cancelItemTest(false))?;

64

APPENDIX C. EXAMPLE MODEL LISTINGS

addItemTest(true, "pears", 2.34) | addItemTest(false, "pears", 2.34);
(cancelItemTest(true) | cancelItemTest(false))?;

(cancelBasketTest(false) | settleBasketTest(false))?;

cancelBasketTest(true) | settleBasketTest(true)
) {2}

end Tests

65

VDM Combinatorial Testing Guidelines

66

References

[Bicarregui&94] Juan Bicarregui and John Fitzgerald and Peter Lindsay and Richard Moore
and Brian Ritchie. Proof in VDM: A Practitioner’s Guide. FACIT, Springer-
Verlag, 1994. 245 pages. ISBN 3-540-19813-X.

This book is a tutorial on the process of formal reasoning in VDM. It dis-
cusses how to go about about building proofs and provides the most complete
set of proof rules for VDM-SL to date.

[Clarke&20] Edmund M. Clarke and William Klieber and Miloš Nováček and Paolo Zu-
liani. Model Checking and the State Explosion Problem, pages 1–30. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

[Clarke&99] E. Clarke and O. Grumberg and D. Peled. Model Checking. The MIT Press,
1999.

[Larsen&10] Peter Gorm Larsen and Kenneth Lausdahl and Nick Battle. Combinatorial
Testing for VDM. In Proceedings of the 2010 8th IEEE International Con-
ference on Software Engineering and Formal Methods, pages 278–285, IEEE
Computer Society, Washington, DC, USA, September 2010. ISBN 978-0-
7695-4153-2.

[Nie&11] Nie, Changhai and Leung, Hareton. A Survey of Combinatorial Testing.
ACM Comput. Surv., 43(2):11:1–11:29, February 2011.

[Paulson97] Lawrence C. Paulson. Generic Automatic Proof Tools. In Robert Veroff,
editor, Automated Reasoning and its Applications: Essays in Honor of Larry
Wos, pages 23–47, MIT Press, Cambridge, MA, USA, 1997.

67

	Introduction
	What is Combinatorial Testing?
	The Structure of this Document

	Working with Traces
	Basic Trace Constructs
	Using Variables
	Tests with Errors
	Trace Reduction
	How does Trace Expansion Work?
	Language Considerations
	Traces in VDM-SL
	Traces in VDM++ and VDM-RT
	Expansion and Execution Considerations

	Combinatorial Testing Patterns
	Data and Process Traces
	Traces and Test Operations
	Common Patterns
	Sets for ``let'' bindings
	Bracketing operations with headers and trailers
	Graph searching by traces
	Building data in stages
	Oracle functions
	Using positive and negative sense checks

	Avoiding Test Explosions

	Combinatorial Testing Examples
	The Luhn Check Digit Model
	Background
	The Structure of the Specification
	Testing Approach
	Real World Luhn, the ACME Example

	The Basket Service Model
	Background
	The Structure of the Specification
	Testing Approach

	Combinatorial Testing Syntax
	Tool Support
	Overture GUI
	Visual Studio Code GUI
	VDMTools UI
	Command Line Tools
	Overture Command Line
	VDMJ Command Line
	VDMTools Command Line

	Example Model Listings
	The LUHN Check Digit Model
	The Basket Service Model

