
ocaml+twt 0.90 quick reference

This sheet tries to concisely demonstrate most syntax forms
recognized by the ocaml+twt preprocessor. If you need more
details, check the examples included with the distribution. All
structural whitespace in the following examples is significant:
if a line is indented here, it must be indented in your source.

Applications

List.iter
Printf.printf "%d\n"
lst

List.map
function Some x -> x
List.filter
function
| Some x -> true
| None -> false
lst

(if b then (+) else (-))
x
y

Sequences

Nothing special:

statement-1
statement-2
...

let

Let looks more like it would in a procedural language:

let x = 1
sequence

let rec f x =
sequence
and g x =
sequence
and h y =
sequence
sequence

let x = match y with
| pat1 -> csq1
| pat2 -> csq2
sequence

let x = 1
let y = 2
sequence

You can’t put a let and its consequent on one line (e.g. let
x = y in f x).

if-then-else

if condition then expression

if condition then
sequence

if condition then expression else expression

if condition then
sequence

else
sequence

if condition then
sequence

else if condition then
sequence

else
sequence

fun

Nothing special, but you don’t need parentheses if the fun is
on its own line:

fun x y -> expression
fun x y ->
sequence

Pattern matching

All patterns occurring on their own line must be indented and
have pipes:

function Some x -> true | None -> false

match expression with
| pattern -> expression
| pattern ->

sequence
| pattern -> expression

A match or function may appear on the same line as a let:

let x = function
| pattern -> expression
...

sequence

Exception handling

Nothing special, given the above forms for pattern matching:

try expression with Exception -> expression

try
sequence

with
| Exn1 -> expression
| Exn2 ->

sequence

Records, lists, and arrays

The preprocesor ignores anything within curly braces or square
brackets, including newlines. Thus, indentation within these
operators doesn’t matter, you still have to use ; to separate
items, and complicated expressions must be parenthesized.

type point = { x : int; y : int }
type point = {

x : int;
y : int

}

if condition then
[1; 2]
else
[2;

1]

let x = [elem1; elem2]
sequence

let x = [elem1;
elem2;
...]

sequence

let x =
{ field1 = value1;
field2 = value2;
... }

sequence

Loops

Don’t use done:

for i = 1 to 10 do expression

for i = 1 to 10 do
sequence

while condition do expression

while condition do
sequence

Modules

Don’t use end:

module A = struct
type point = { x : int;

y : int }

let origin = { x = 0; y = 0 }

let reflect_x { x = a; y = b } =
{ x = 0 - a;
y = b }

The local module syntax is supported, but the struct must
start on its own line. For functors, module Name = functor
... -> must appear as one line. See the modules.ml exam-
ple for details.
Module signatures are the same, except without end:

module A : sig
type point = { x : int;

y : int }
val origin : point
val reflect_x : point -> point

Objects

Don’t use end. Method and initializer bodies are any other
sequence. See the objects.ml example for details.

class shape =
object
method virtual area : unit -> float

class circle =
object (self)
inherit shape
val r = 1.0
method area () =
3.14159 *. r *. r

Union types

The syntax rules for pattern matching apply:

type shape =
| Square
| Circle
| Triangle

Combining expressions

Because ocaml+twt is a line-oriented preprocessor, the fol-
lowing general rule applies when combining expressions on
the same line:

If an expression spans multiple lines, it must start on
its own line.

For example, the following will not work:

let lst2 = List.map
string_of_float
lst1

sequence

The multi-line application in this example must start on a new
line, rather than on the same line as its containing expression.
(Alternatively, you could just make it one parenthesized line.)
There are a few exceptions to this rule: loops, local module
structures, and immediate objects must always start on their
own line (even if they are only one line), match and function
may appear on the same line as a let (even if their patterns
are on individual lines), and records, lists, and arrays may
span multiple lines as previously described.

