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1. Introduction

This document describes the mathematical model underlying the optimization algorithms imple-
mented in Owl. This code is a Python application optimizing retirement planning using linear
programming. The goal of these calculations is to optimize the financial aspects of retirement
planning, considering the types of savings accounts, income tax, contributions, return rates, Roth
conversions, and desired income amongst many other things.

The approach is described here mathematically and the Python implementation follows the
structure and notation presented in this document. The intent of this document is to provide a
guide to the source code for any individual desiring to extend the model to other cases.
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2. Indices, variables, and parameters

In the next sections, the indices, variables, and parameters are described in detail. Then the model
constraints are introduced. For implementation in a linear programming solver, index mapping
functions are introduced to map all variables into a single one-dimensional array that is optimized
subject to inequality and equality constraints expressed in matrix form. Finally, the constraint
matrices are built and so are some useful objective functions.

2.1 Indices

For all indices, we will follow the C array style (starting at 0), rather than the traditional mathe-
matical standard starting at 1. This will facilitate the final sequential mapping of all the variables
into a single one-dimensional array, and serve as a direct reference for better understanding the
code implementation.

The indices used and their range are defined here, while we also introduce the characteristics
and dimensions of the problem. Upper bounds on indices are indicated by the letter N , with the
index name as a subscript, e.g., Ni for index i.

i Individual. i runs from 0 to Ni − 1 where Ni = 2 for couples, or Ni = 1 for single
individuals. The first individual to pass is denoted by id while the survivor is is.

j Type of savings account. j goes from 0 to Nj−1, for taxable, tax-deferred, and tax-exempt
accounts respectively. Therefore Nj = 3.

k Type of asset class. k goes from 0 to Nk − 1, for S&P 500, Baa corporate bonds, Treasury
notes, and cash, respectively. Nk = 4. More asset classes could be considered at the cost
of increasing the complexity of the problem while not generating much more insights.

n Year being modeled. Period being modeled runs from the beginning of year 0 to the end of
year Nn−1, and therefore Nn+1 years are considered. Year Nn is the first year following
the passing of all individuals in the plan. The time period for all decision variables is
annual. For spouses, the end of year nd − 1 is the year in which the first individual passes
while the survivor will decease at the end of year Nn − 1 of the plan.

t Federal income tax bracket. t goes from 0 to Nt − 1, from low to high. There are Nt = 7
federal income tax brackets.
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2.2 Variables

We will use lowercase roman letters to represent variables. All variables are assumed to take only
non-negative values (≥ 0 inequality).

bijn Balance for individual i in savings account j at the beginning of year n. When we consider
each asset class k, the variable bijkn is used instead.

din Deposit of year-n net spending surplus in taxable account of individual i. These deposits
are coming from the surplus sn, distributed to spousal taxable accounts depending on
parameter η.

ftn Fraction of tax bracket t filled, so that taxable ordinary income Gn can be expressed as

Gn =
∑
t

ftn∆̄tn, (2.1)

0 ≤ ftn ≤ 1. (2.2)

A definition of ∆ can be found in the section describing the parameters below.

gn Net spending in year n.

sn Surplus of funds during year n, most likely caused by required minimum distributions
(RMDs) or influx of money from big-ticket items (inheritance, gifts, sale of a house, etc.).

wijn Withdrawal from account j belonging to individual i at the beginning of year n. For the
(j = 1) tax-deferred savings account, wi1n is referred to as a distribution for tax purposes
as it is a taxable withdrawal, and will always satisfy required minimum distributions.

xin Roth conversion performed by individual i during year n. These events are taxable as
ordinary income.

2.3 Parameters

For more easily distinguishing parameters from variables, all parameters will be expressed either
in Greek letters or using caligraphic fonts. Parameter values are either set by the user, historical
data, or by the tax code.

βij Initial balances in savings accounts. These amounts are used to initialize bij0.

τkn Annual rate of return for asset class k in year n. A time series of annual return rates for
each class of asset. Here, inflation and the rate of return of (k = 3) cash are assumed to
be the same. In other words, investing in cash yields constant dollars (just inflation).

Tijn When the allocation ratios αijkn are prescribed, it is more convenient to express the return
rates as

Tijn =
∑
k

αijknτkn. (2.3)
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γn Cumulative inflation at the beginning of year n computed as the product

γn =

n−1∏
n′=0

(1 + τ3n′), (2.4)

with γ0 := 1, and where n′ is a dummy index. As the time span of interest goes from the
first year to the end of the last year, variable γn will have Nn + 1 elements. Parameters
indexed for inflation will be indicated by a bar on top as in σ̄n.

σn Standard deduction. It can be adjusted for inflation as follows

σ̄n = σnγn, (2.5)

and can be modified for additional exemptions after 65 of age, for example. It is a simple
time series which can include any foreseeable changes in the tax code, or change in filing
status due to the passing of one spouse for n ≥ nd.

ξn Spending profile. This is a time series that multiplies the desired net spending amount. It
is ξn = 1 for a flat profile, or can be a smile profile allowing for more money at the start
of retirement. Parameter ξn can also contain spending adjustments typically made at the
passing of one spouse. The smile can be implemented using a cosine superimposed over a
gentle linear increase such as in

ξn = 1 + a1 ∗ cos(2nπ/(Nn − 1)) + a2n/(Nn − 1), (2.6)

and then normalized by factor Nn/(
∑

n ξn) to be sum-neutral with respect to a flat profile.
Values of a1 = 15% and a2 = 12% provide curves that are similar to realistic spending
profiles reported in the literature. See Fig. 2.1 for an example. At the passing of one
spouse, both profiles are reduced by a factor χ for n ≥ nd, and the normalizing factor
needs to be adjusted accordingly.

χ Factor to reduce spending profile after the passing of one spouse. It is typically assumed
to be 0.6.

ρin Required minimum distribution for individual i in year n. Expressed in fractions which
are determined from IRS tables. These tables are simple if spouses are less than 10 years
apart, but a little more complex otherwise, as the age of both spouses need to be taken into
account. Current implementation only supports spouses being less that 10 years apart.
An error message is generated in these cases and the calculation is aborted.

Γtn Bound for Federal income tax bracket. We define Γ(−1)n := 0, so that Γ0n is the upper
bound for the 10% tax bracket in year n. As the filing status can change for couples, and
so can the tax code, Γtn will be changing over n.

∆tn Difference between upper bound Γt and lower bound Γt−1 of a federal income tax bracket,

∆tn = Γtn − Γ(t−1)n. (2.7)

Once adjusted for inflation, the taxable income can be expressed as in Eq. (2.1). These
data are 7 time series. The filing status changes after the passing of one spouse (n ≥ nd)
and these brackets are adjusted accordingly.
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Figure 2.1: Example of a spending profile with 15% cosine factor and a 12% linear profile.

θtn Tax rate for tax bracket t in year n. Using Nt time series allows to adjust income tax
rates in foreseeable future. For example, in 2024 the rates (in decimal) are .10, .12, .22,
.24, .32, .35, and .37. It is speculated that the rates will revert back to 2017 rates in 2026
with .10, .15, .25, .28, .33, .35, and .396. See Eq. (2.19) for its use.

αijkn Desired asset allocation for savings account j of individual i in assets class k during year
n. Allocation ratios come in many flavors as they could be specified globally between
individuals and accounts as αkn, for example. When specified by the user, allocation
ratios typically involve two values, one at the beginning of the plan αijk0 and the other at
the end αijkNn−1 . Then, intermediate values are interpolated either using a linear relation,

αijkn = a+
n

Nn − 1
(b− a), (2.8)

or an s-curve as in

αijkn = a+
(b− a)

2
(tanh((n− n1)/n2) + 1), (2.9)

where n1 is the number of years ahead when inflection point will occur, and n2 is the
width (in years) of the transition. Constants n1 and n2 can be adjusted by the user.
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Default values are n1 = 15, and n2 = 5, meaning that the transition center will occur in
15 years, taking place from 15 − 5 years to 15 + 5 years from now. Using a = αijk0 and
b = αijkNn−1 is an approximation as values of ±1 are only reached at ±∞ for a hyperbolic
tangent. More precise bounds a′ and b′ for matching the desired start and end values can
be determined by solving a 2× 2 system of equations leading to

a′ = (a− k12b
′)/k11

b′ = ((b− (k21/k11)a)/(k22 − (k21/k11)k12), (2.10)

where

k11 =
1

2
(1 + tanh(n1/n2))

k12 =
1

2
(1− tanh(n1/n2))

k21 =
1

2
(1− tanh((Nn − 1− n1)/n2))

k22 =
1

2
(1 + tanh((Nn − 1− n1)/n2)). (2.11)

These interpolation functions allow the allocation ratios to gradually change or glide during
retirement. Fig. (2.2) provides an example of an s-curve gliding allocation ratios.

It is also possible to have a coarser granularity on the portfolio by having an asset allocation
scheme defined on a sum of accounts. For example, allocation can be coordinated between
accounts leading to αikn, or even between spouses as αkn. For any of these cases, it is
assumed that weights are always properly scaled so that∑

k

αijkn = 1,

or
∑
k

αikn = 1,

or
∑
k

αkn = 1, (2.12)

depending on the scheme selected.

Λ±
in Big-ticket item requested by individual i in year n. These are large expenses or influx of

money that can be planned. Therefore, Λ± can be positive (e.g., sell a house, inheritance)
or negative (e.g., buy a house, large gifts).

πin Sum of pension benefits for individual i in year n. These amounts are typically specified
along with the ages at which these benefits begin. Owl currently assumes that pensions
are not indexed for inflation, but that functionality can easily be added.

ζin Social security benefits for individual i in year n. Starting age and the passing of one
individual for spouses will determine the time series. ζ̄in is the same series adjusted for
inflation.
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Figure 2.2: Example of an allocation portfolio with 60/40% stocks/bonds transitioning to 70/30% using
an s-curve.

ϵNn Desired amount to leave as a bequest at the end of the final year of the plan, Nn − 1,
which is the beginning of year Nn. This amount is the after-tax value of the estate for the
heirs expressed in today’s dollars. See parameter ν for the heirs tax rate.

κijn Sum of contributions to savings account j made by individual i during year n. We assume
that contributions are made at half-year to balance regular contributions. In practice, a
contribution amount κijn is specified in which case the contribution to each asset class is

κijkn = αijknκijn. (2.13)

ωin Sum of wages obtained by individual i during year n. Do not confuse wages ω with
withdrawals w.

µ Dividend return rate in taxable accounts. Average is little above 2% for S&P 500.

ν Heirs income tax rate to be applied on the tax-deferred portion of the estate. This is not
an estate tax but rather the federal income marginal tax rate for the heirs.
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ϕj Fraction of savings account j that is left to surviving spouse is as a beneficiary at the
death of individual id, the first spouse to pass.

ψ Income tax rate on long-term capital gain and qualified dividends, typically 15%.

η Spousal ratio for surplus deposits, which goes from 0 to 1, as the fraction that goes to the
i = 1 second spouse’s account. Therefore, a surplus sn in year n will result in a deposit d
in the taxable account of individual i as

d0n = (1− η)sn

d1n = ηsn. (2.14)

This choice is such that we can set a value depending on the surviving individual η = is
for n ≥ nd, after the passing of id. Default value is (Ni − 1)/2, i.e., 0.5 for couples and
0 for single individuals. When the beneficiary of the savings accounts is not the other
spouse, i.e., when ϕj ̸= 1,∀j, it is recommended that η be set to id so that all surplus get
deposited to id’s accounts, thus avoid loopholes when optimizing for the final bequest.

Mn Costs of Medicare and its Income Related Monthly Adjusted Adjustment (IRMAA). As
this additional adjustment is a step function, it would have to be computed using binary
variables and mixed-integer linear programming. In the current tax code, this adjustment
depends on the modified adjusted gross income (MAGI) from 2 years earlier. For the
MAGI, we simply use Gn−2 + σ̄n−2 (i.e., gross taxable income plus standard deduction
from 2 years ago) and ignore the additional IRS rules around tax-free interests which are
insignificant in most cases.

There are q = 5 levels of step adjustments adjusted for inflation, L̄qn = Lqγn and each
of them introduce an annual additional Medicare cost of C̄qn = Cqγn, also adjusted for
inflation. One could use binary variables zinq and the following big M constraint

σ̄n−2 − L̄qn ≤ zinqM −Gn−2 ≤M − L̄qn + σ̄n−2, (2.15)

so that the IRMAA adjustments can be computed as

Mn =
∑
iq

ziqnC̄qn. (2.16)

If the plan does not have data from 2 years ago as Medicare starts, it will use last year’s
or this year’s MAGI instead, in that order.

While this approach has been implemented and tested, the robustness of the big M ap-
proach is not guaranteed and an easier approach is to implement a self-consistent loop
that optimizes the spending or bequest, and updates the Medicare/IRMAA premiums
accordingly. Therefore, the value will be computed from the MAGI as Mℓ

n(Gn−2+ σ̄n−2),
where the value is at iteration ℓ. After only a few iterations, the solution is converging
to within a dollar over the sum of all variables in the plan. This approach, however, does
not guarantee convergence as there can be cases where the premiums affect the solution
which can oscillate between two solutions, but these cases are detected and a slight change
in parameters solves this issue. As these premiums are introduced as parameters in the
constraints, there is no direct optimization being performed on Medicare costs.
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2.4 Intermediate variables

We use intermediate variables for conciseness or clarity, but they are ultimately replaced in the
final formulation. All intermediate variables are in uppercase letters.

Gn Taxable ordinary income in year n. Sum of wages, pension, social security benefits, all
withdrawals from tax-deferred accounts, including Roth conversions, and gains from secu-
rities (i.e., all gains except those from the (k = 0) equities) in the (j = 0) taxable account,
including contributions κ, minus the standard deduction,

Gn =
∑
i

[ωin + .85ζ̄in + πin]− σ̄n +∑
i

[wi1n + xin] +∑
ik

[(1− δ(k, 0))(bi0n − wi0n + din + .5κi0n)αi0knτkn] (2.17)

Social security is indexed for inflation and is assumed to be taxed at 85%. We use a discrete
Kronecker δ function for selecting gains from non-equity assets in taxable accounts. These
gains are all taxed as ordinary income. Here, we assumed that withdrawals and deposits
in the taxable account are taking place at the beginning of the year, while contributions,
if any, are taking place in mid-year.

Qn Qualified dividends and long-term capital gains obtained in year n. They only involve gains
occurring in taxable savings accounts (j = 0) that were obtained from equities (k = 0),
or sales of stocks due to withdrawals from taxable savings accounts. For simplicity, we
assume that all equity sales only generate long-term capital gains and that all dividends
are qualified, resulting in

Qn =
∑
i

αi00n [(bi0n − wi0n + din + .5κi0n)µ+ wi0nmax(0, τ0n−1)] . (2.18)

A formulation where only a fraction of dividends are qualified can easily be implemented
with the addition of another parameter. Notice that we are using return rates from the
previous year. The first terms on the right-hand side represent the amount of equities
(k = 0) in the (j = 0) taxable savings account plus half the yearly contributions. The
last terms account for withdrawals w of equities assumed to have been purchased a year
ago. It does not account for losses, but a market drop would most likely result in stock
purchase rather than sale. For withdrawals, we make the assumption of selling the most
recent stocks which would not be accurate in situations where the taxable savings account
is being depleted slowly. An implementation keeping track of stock purchases and sales is
beyond the goal of providing a guide for retirement decisions.

Tn Amount of income tax paid on taxable ordinary income Gn in year n. This is the taxes
paid on ordinary income expressed as the sum of the amounts paid in each tax bracket as

Tn =
∑
t

ftn∆̄tnθtn. (2.19)
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Notice that Gn is also defined by Eq. (2.1), and that optimal values of ftn have to minimize
Tn when either the bequest or the desired net spending are maximized. As the product
∆̄tnθtn does not guarantee to be ordered monotonically, a more practical choice is to use
the combined variable F̄tn = ftn∆̄tn in the optimization. Given that the rates on tax
brackets θtn are always increasing monotonically, we are then naturally filling in the lower
brackets first when optimizing. In that case

Tn =
∑
t

F̄tθtn. (2.20)

Un Amount of income tax paid on long-term capital gains and qualified dividends in year n,

Un = ψQn. (2.21)

Although it is not always the case, we assume that qualified dividends and long-term
capital gains are taxed at the same preferential rate ψ.
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3. Formulation with imposed asset
allocation ratios

We first present the case where the sums of assets in each savings accounts bijn are known over
which we assume a prescribed asset allocation ratios. The amount in each asset class k for bijkn
is simply obtained from αijknbijn in this case. This formulation assumes that the accounts are
always balanced. This is a reasonable assumption given the auto-balancing feature offered by many
financial service providers.

The benefit of this approach is that it has less variables and that only the sums of all asset
classes in each savings account need to be known. The rate of return of the account is then simply
the product of the account balance with the sum of the rates of return weighted according to the
desired allocation ratio. This approach allows us to eliminate k by summing over it and rewrite∑

k

bijkn+1 =
∑
k

bijkn(1 + τkn) + . . . , (3.1)

for the annual evolution of account balances from year n to year n+ 1 as the simpler expression

bijn+1 = bijn
∑
k

αijkn(1 + τkn) + . . . ,

= bijn(1 + Tijn) + . . . , (3.2)

where

Tijn :=
∑
k

αijknτkn. (3.3)

This is a consequence that the allocation ratios are normalized to unity, i.e.,∑
k

αijkn = 1. (3.4)

In this formulation where the αijkn are prescribed, we will use Tijn to add the market returns to
the savings balances.

3.1 Constraints

Required minimum distributions (RMDs) Withdrawals from the (j = 1) tax-deferred sav-
ings accounts must be larger or equal than the required minimum distributions, and therefore,

wi1n − ρinbi1n ≥ 0. (3.5)
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As bijn are the balances at the beginning of year n, they are also the balances at December 31
of the previous year, which is the amount from which the IRS bases the RMDs. Eq. (3.5) has to
hold for each year n and each individual i, and therefore, there are i × Nn such equations (even
when ρin = 0). These constraints avoid paying the 50% penalty on amounts not withdrawn when
RMDs are required. Note that aggregate rules need to be considered separately as this approach
only considers the sum of assets in a class with similar tax treatment (e.g., IRA and 401k).

Income tax brackets Taxable ordinary income is divided in tax brackets as defined in Eq. (2.1),
i.e.,

Gn =
∑
t

ftn∆̄tn,

0 ≤ ftn ≤ 1. (3.6)

Given this definition, all bracket fractions f must be positive and smaller than or equal to 1,
imposing an upper bound on f . Because θt > θt′ when t > t′, we can exploit this monotonically
increasing series of rates with t to have the minimization algorithm naturally fill the lower tax
brackets. For that purpose, we need to introduce the combined variable

F̄tn = ftn∆̄tn, (3.7)

implying that

Gn =
∑
t

F̄tn, (3.8)

with
0 ≤ F̄tn ≤ ∆̄tn. (3.9)

Then, income tax is easily calculated by Eq. (2.20),

Tn =
∑
t

F̄tθtn.

Account balances Contributions are assumed to be made at half-year to better represent pe-
riodic contributions made throughout the year. As we already mentioned, the account balance
at the end of a year is the same as the balance at the beginning of the following year. Changes
include contributions κ, distributions and withdrawals w, conversions x, surplus deposits d, and
growth τ on the account through the year. For each spouse i, we track each savings account j sep-
arately, and tax-deferred accounts are coupled to the corresponding tax-exempt account through
Roth conversions.

The timing of Roth conversions, withdrawals, and deposits brings additional coupling between
these variables, and is worth a detailed discussion. First, the financial aspects, and then the algo-
rithmic ones. For the former, some financial advisors would recommend making Roth conversions
at the beginning of the year, while making withdrawals at the end. Obviously, financial simulators
would always yield higher numbers when using this scenario, as the moneys needed to pay the reg-
ular bills stayed in the bank until the end of the year. More realistically, however, it would be more
accurate to assume withdrawals at mid-year, to better represent evenly distributed withdrawals.
So, financially, conversions at the beginning of the year, and withdrawals at mid-year make good
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sense. Conversions are also typically best when timed with a market downturns in the year, which
are obviously not always at the beginning of the year.

Now, let’s look at the optimization side of these transactions. During years of positive returns,
a direct withdrawal from the tax-deferred account at mid-year will always be unfavorable when
compared to a Roth conversion at the beginning of the year, followed by a tax-exempt withdrawal
later in the same year. This is because the second scenario involves gains which are tax-free over
the half-year, while the first one does not. Moving account withdrawals at the beginning of the
year, and the conversions in mid-year can solve this artificial bias.

To solve these spurious scenarios, it would be desirable to make the following exclusions between
surplus sn, withdrawals wijn, and conversions xin:

sn XOR wi0n,

sn XOR wi2n,

xin XOR wi2n,

for j ̸= 1, i.e., for all withdrawals except those from tax-deferred accounts. For example, to favor
tax-deferred withdrawals in most reasonable situations, it is desirable to make Roth conversions
and tax-exempt distributions exclusive events by introducing binary variables zin ∈ {0, 1} with the
following constraints:

0 ≤ zinM − xin ≤M,

0 ≤ zinM + wi2n≤M. (3.10)

Here, M is a large number such as 107, just slightly larger than what x and w can possibly be.
Another approach could be to perform Roth conversions at mid-year, while withdrawals could

be made at the beginning of the year, and surplus deposits, if needed due to RMDs or receiving
large sums of money, could be made at the end of the year. Let’s formulate this approach in more
detail and investigate for potential problems. Timing controls which terms get multiplied by the
rate of return (1 + τkn) for a particular asset k. Therefore, our current choice would yield

bij(n+1) = [bijn − wijn + .5κijn](1 + Tijn) + [δ(j, 2)− δ(j, 1)]xin(1 + Tijn/2)
+ δ(j, 0)din + .5κijn, (3.11)

where we use discrete Kronecker δ functions for selecting the specific accounts involved in Roth
conversions. These conversions are made such that asset allocation ratios in the sending and
receiving accounts are unchanged.

Bringing all variables to the left-hand side, this gets rewritten as

bij(n+1) − (bijn − wijn)(1 + Tijn)
− [δ(j, 2)− δ(j, 1)]xin(1 + Tijn/2)− δ(j, 0)din = κijn(1 + Tijn/2). (3.12)

When j = 0, this equation introduces a path to shelter negative returns by performing an over-
withdrawal from the taxable account at the beginning of the year followed by a deposit in the same
account at the end of the year. This can be removed by using another binary variable, thus making
these events exclusive by using the same strategy as Eq. (3.10).

A much simpler approach, while not so natural, is to move all transactions to be synchronous at
the beginning or at the end of the year thus avoiding undesirable movements of funds. If we select
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the beginning of the year, this leads to

bij(n+1) − bijn(1 + Tijn)
− [δ(j, 0)din − wijn + (δ(j, 2)− δ(j, 1))xin](1 + Tijn) = κijn(1 + Tijn/2). (3.13)

This is the current approach used in Owl.
The initial balances βij are one of the main inputs of the model. The initial savings account

balances are imposed through additional constraints as

bij0 = βij . (3.14)

At this point, we assume that all accounts are balanced according to the desired allocation ratios
αijkn.

We also introduce another constraint that might look unnecessary, but helps convergence, and
prevents overdrafts during the year of passing of the first spouse. As withdrawals and conversions
are at the beginning of the year we impose that

wijn + δ(j, 1)xin ≤ bijn. (3.15)

Roth Conversions Roth conversions cannot be larger than the balance at the beginning of the
year in the account:

xijn ≤ bi1n. (3.16)

This constraint, however, is naturally satisfied when bijn ≥ 0 non-negativity bounds are enforced.
Additional maximum Roth conversion constraints xmax can be imposed by the user and then the
previous equation becomes

xin ≤ min(bi1n, xmax). (3.17)

Net spending For calculating the net spending gn, we consider the cash flow of all withdrawals,
wages, social security and pension benefits, and big-ticket items. Then we subtract potential surplus
sn and all taxes and Medicare premiums paid:

gn =
∑
i

[ωin + ζ̄in + πin] +
∑
ij

wijn +
∑
i

Λ±
in − sn − Tn − Un −Mℓ

n. (3.18)

When both spouses are alive, surplus sn gets deposited in the taxable accounts according to variable
η as described in Eq. (2.14),

din = [δ(i, 0)(1− η) + δ(i, 1)η]sn. (3.19)

Otherwise, for n ≥ nd, variable η gets redefined as η = δ(1, is).
Notice how big-ticket items Λ± contribute directly to the cash flow. Replacing intermediate

variables and bringing all variables to the left-hand side, we get

gn −
∑
ij

wijn + sn +
∑
t

F̄tnθtn

+ψαi00n

∑
i

[µ(bi0n − wi0n + din) + wi0n max(0, τ0n−1)] =
∑
i

[ωin + ζ̄in + πin]

+
∑
i

[Λ±
in − .5ψαi00nµκi0n]

−Mℓ
n. (3.20)
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Notice that we do not consider market losses as we use max(0, τ), and that rates from only the
previous year are used. Tax-loss harvesting is beyond the scope of this model, as is the tracking
of stocks purchased over the years. For clarity, we did not express Mℓ

n(Gn + σ̄n) in terms of
the modified adjusted gross income (MAGI), but this term is there to indicate that there is a
self-consistent loop solving for it and that we are at iteration ℓ.

We want the net spending to be predictable and smooth. We use

gn/ξ̄n = g0/ξ̄0, (3.21)

where the net spending is adjusted for inflation and where we use the time series of parameter ξn
allowing for additional adjustments to the overall desired spending. Note that ξ̄0 = ξ0 as γ0 = 1.
This spending profile is used to lower the desired income by a reduction factor χ after the passing of
one spouse and/or to allow for more realistic spending profiles, such as the smile profile described
above. Eq. (3.21) can be rewritten as

gnξ0 − g0ξ̄n = 0, (3.22)

for the constraints to be enforced. Once g0 is determined, the whole time series of net spending is
determined.

Taxable ordinary income We connect the two definitions for Gn stated above in Eqs. (2.1) and
(2.17), ∑

t

ftn∆̄tn =
∑
i

[ωin + .85ζ̄in + πin]

+
∑
i

[wi1n + xin]

+
∑
ik

[(1− δ(k, 0))(bi0n − wi0n + din + .5κi0n)αi0knτkn]− σ̄n, (3.23)

and re-arrange to move variables to the LHS as follows∑
t

∆̄tnftn −
∑
i

[wi1n + xin]

−
∑
ik

[(1− δ(k, 0))(bi0n − wi0n + din)αi0knτkn] =
∑
i

[ωin + .85ζ̄in + πin]− σ̄n

+.5
∑
ik

[(1− δ(k, 0))αi0knτknκi0n].(3.24)
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4. Mapping of decision variables

At this point, one can use one of the many algebraic modeling languages such as AMPL, GAMS,
MOSEK, AIMMS, and Gurobi, and code the equations above using that language, but most of
these applications are proprietary and require a license and additional software installation. These
languages allow the problem to be stated at a high level and steps to cast the problem in a form
suitable for solution are performed automatically. There are also object-oriented language exten-
sions, such as Python’s Pyomo and PuLP that can ease the process of solving these problems. For
completeness, however, we present here a simple index mapping approach that allows solving this
problem using a generic linear programming solver.

Using a simple interface for mapping sparse objects to dense ones, the approach described here
has been successfully tested with both the HiGHS open-source solver and the MOSEK proprietary
solver. To cast the problem in a form suitable for a linear programming solver, we will use a single
block vector represented by the array y[q()] with index-mapping functions q(). While this process
can be achieved using slicing and reshaping in some programming languages, we will present a
generic approach suitable for most programming languages. The detailed approach presented here
also allows us to determine the size of the problem to solve. We proceed alphabetically for all
variables, and continue to use the convention of having index 0 for representing the first element.

To bring all variables in a single block vector, we will simply use two generic index mapping
functions defined as

q∗(C, ℓ1, ℓ2, ℓ3;N1, N2, N3) := C + ℓ1N2N3 + ℓ2N3 + ℓ3, (4.1)

and
qC(C,N1, N2, N3) := C +N1N2N3, (4.2)

with the constraint that 0 ≤ ℓi < Ni.

Account balances (b) For storing the savings account balances appropriately, variable bijn needs
to have one more entry (Nn + 1) to store the end-of-life estate value. Therefore, we use

y[qb(i, j, n)] = bijn, (4.3)

where
qb(i, j, n) = q∗(Cb, i, j, n;Ni, Nj , Nn + 1) (4.4)

and where n exceptionally runs from 0 to Nn inclusively, and therefore qb runs from Cb = 0 to
Cd − 1, where

Cd = qC(Cb, Ni, Nj , Nn + 1) = [NiNj(Nn + 1)].
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Surplus deposits (d) For the surplus deposits in the taxable savings accounts din we will use

y[qd(i, n)] = din, (4.5)

where
qd(i, n) = q∗(Cd, i, n, 0;Ni, Nn) (4.6)

with qd running from Cd to Cf − 1, where

Cf = qC(Cd, Ni, Nn, 1) = [Ni(Nj(Nn + 1) +Nn)].

Tax bracket fractions (f) For tax bracket fractions ftn we will use

y[qf (t, n)] = ftn, (4.7)

where
qf (t, n) = q∗(Cf , t, n, 0;Nt, Nn, 1) (4.8)

with qf running from Cf to Cg − 1, where

Cg = qC(Cf , Nt, Nn, 1) = [Ni(Nj(Nn + 1) +Nn) +NtNn].

Net spending (g) For net spending gn we will use

y[qg(n)] = gn, (4.9)

where
qg(n) = q∗(Cg, n, 0, 0;Nn, 1, 1) = Cg + n, (4.10)

with qg running from Cg to Cs − 1, where

Cs = qC(Cg, Nn, 1, 1) = [Ni(Nj(Nn + 1) +Nn) + (Nt + 1)Nn].

Surplus (s) Surplus can be generated if big-ticket items are received (inheritance, sale of a house,
etc.) or due to RMDs. Surplus s is then deposited to taxable savings accounts according to variable
η. We will use

y[qs(n)] = sn, (4.11)

where
qs(n) = q∗(Cs, n, 0, 0;Nn, 1, 1) = Cs + n, (4.12)

with qs running from Cs to Cw − 1, where

Cw = qC(Cs, Nn, 1, 1) = [Ni(Nj(Nn + 1) +Nn) + (Nt + 2)Nn].

Withdrawals (w) For withdrawals wijn we will use

y[qw(i, j, k, n)] = wijn, (4.13)

where
qw(i, j, n) = q∗(Cw, i, j, n;Ni, Nj , Nn) (4.14)

with qw running from Cw to Cx − 1, where

Cx = qC(Cw, Ni, Nj , Nn) = [Ni(Nj(2Nn + 1) + (Nt + 2)Nn].
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Roth conversions (x) Finally, for Roth conversions xin we will use

y[qx(i, n)] = xin, (4.15)

where
qx(i, n) = q∗(Cx, i, n, 0;Ni, Nn, 1) (4.16)

with qx running from Cx to C∗ − 1, where

C∗ = qC(Cx, Ni,Nn, 1) = [Ni(Nj(2Nn + 1) + (Nt +Ni + 2)Nn].

Adding Nz = 2 binary variables zinz adds NzNiNn more decision variables. With Ni = 2, Nj =
3, Nk = 4, Nt = 7 we have 27Nn + 6 variables. For a 30-year plan, this results in 816 decision
variables. If the time resolution is increased to months, that would result in 9,726 variables which
is still solvable by today’s standards.

4.1 Reverse mapping of indices

The inverse functions for the index-mapping functions will be derived for the most complex case
encountered in this paper. If we have

z = q∗(C, i, j, k, n;Ni, Nj , Nk, Nn) := C + iNjNkNn + jNkNn + kNn + n, (4.17)

then (i, j, k, n) = q−1
∗ (z;Ni, Nj , Nk, Nn, C) is obtained from

n = mod(mod(mod(z − C,NjNkNn), NkNn), Nn),

k = mod(mod(z − C − n,NjNkNn), NkNn)/Nn,

j = mod(z − C − n− kNn, NjNkNn)/(NkNn),

i = (z − C − n− kNn − jNkNn)/(NjNkNn). (4.18)

While this holds for all cases presented in the previous section, this can be easily simplified for cases
having fewer active indices. However, some modern languages can accomplish this mapping rather
easily by providing reshape() functions.
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5. Building constraint matrices

Let’s first define generic index-mapping functions I and J as

Il(n) = Cl + n,

Il(i, n;Nn) = Cl + iNn + n,

Il(i, j, n;Nj , Nn) = Cl + iNjNn + jNn + n, (5.1)

. . . = . . .

and so on, which would cumulatively increase row count Cl at each new instance l, similar to how
we proceeded in the previous section. This allows us to build rectangular matrices by iteratively
adding rows. These constraint matrices have C∗ columns but will have less rows, forming an
underdetermined system to be optimized using linear programming.

5.1 Inequality constraints

Required minimum distributions (RMDs) We rewrite the inequality constraint on required
minimum distributions Eq. (3.5) using matrix Auy ≤ u starting with the following NiNn rows,

Au[I0(i, n), qw(i, 1, n)] = −1

Au[I0(i, n), qb(i, 1, n)] = ρin,

u[I0(i, n)] = 0, (5.2)

∀i ∈ {0, . . . , Ni − 1},
∀n ∈ {0, . . . , Nn − 1},

and all other elements in the same rows of Au being 0. Notice that while b has Nn + 1 elements,
the constraints for b go from 0 to Nn − 1 as there is no RMD required in the last year of the plan
Nn. See Eq. (4.4).

Income tax brackets Similarly, we add NtNn more rows to matrix Auy ≤ u to express the
inequality constraint in Eq. (3.6) setting an upper limit on fractions ftn ≤ 1. Instead of using f ,
however, we will use Ftn = ftn∆̄tn of the same dimensions and therefore,

Au[I1(t, n), qF (t, n)] = 1,

u[I1(t, n)] = ∆̄tn, (5.3)

∀t ∈ {0, . . . , Nt − 1},
∀n ∈ {0, . . . , Nn − 1},
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and all other elements in the same rows of Au being 0.

5.2 Equality constraints

Account balances For the equality constraint on account balances expressed in Eq. (3.12), we
will define an equality constraint matrix Aey = v starting with NiNjNn rows as

Ae[J0(i, j, n), qb(i, j, n+ 1)] = 1,

Ae[J0(i, j, n), qb(i, j, n)] = −(1 + Tijn),
Ae[J0(i, j, n), qx(i, n)] = −(δ(j, 2)− δ(j, 1))(1 + Tijn),

Ae[J0(i, j, n), qw(i, j, n)] = (1 + Tijn),
Ae[J0(i, j, n), qd(i, n)] = −δ(j, 0)(1 + Tijn), (5.4)

∀i ∈ {0, . . . , Ni − 1},
∀j ∈ {0, . . . , Nj − 1},
∀n ∈ {0, . . . , Nn − 1},

where v is
v[J0(i, j, n)] = κijn(1 + Tijn/2). (5.5)

The initial account balances expressed in Eq. 3.14 are imposed through

Ae[J1(i, j, k), qb(i, j, 0)] = 1,

v[J1(i, j, k)] = βijk, (5.6)

∀i ∈ {0, . . . , Ni − 1},
∀j ∈ {0, . . . , Nj − 1},

(5.7)

leading to NiNj additional rows to Ae.

Net spending For the equality constraint on net spending expressed in Eq. (3.20), we add Nn

more rows to Aey = v as

Ae[J2(n), qg(n)] = 1,

Ae[J2(n), qw(i, j, n)] = −1 + δ(j, 0)ψαi00n(max(0, τ0n−1)− µ),

Ae[J2(n), qd(i, n)] = 1 + ψµαi00n,

Ae[J2(n), qF (t, n)] = θtn,

Ae[J2(n), qb(i, 0, n)] = ψµαi00n,

∀t ∈ {0, . . . , Nt − 1},
∀i ∈ {0, . . . , Ni − 1},
∀j ∈ {0, . . . , Nj − 1},
∀n ∈ {0, . . . , Nn − 1},
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where v is
v[J2(n)] =

∑
i

[ωin + ζ̄in + πin + Λ±
in − .5ψµαi00nκi0n]−Mℓ

n. (5.8)

The condition of having a predictable net spending expressed as an equality in Eq. (3.22) adds
Nn − 1 more rows to Aey = v as

Ae[J3(n), qg(0)] = −ξ̄n,
Ae[J3(n), qg(n)] = ξ0,

v[J3(n)] = 0, (5.9)

∀n ∈ {1, . . . , Nn}.

Taxable ordinary income Finally, for the equality constraint in Eq. (3.24) establishing taxable
ordinary income, we add Nn rows to Aey = v as follows

Ae[J4(n), qF (t, n)] = 1,

Ae[J4(n), qw(i, 1, n)] = −1,

Ae[J4(n), qb(i, 0, n)] = (1− δ(k, 0))αi0knτkn, (5.10)

Ae[J4(n), qw(i, 0, n)] = −(1− δ(k, 0))αi0knτkn,

Ae[J4(n), qd(i, n)] = (1− δ(k, 0))αi0knτkn,

Ae[J4(n), qx(i, n)] = −1,

∀t ∈ {0, . . . , Nt − 1},
∀i ∈ {0, . . . , Ni − 1},
∀k ∈ {0, . . . , Nk − 1},
∀n ∈ {0, . . . , Nn − 1},

with

v[J4(n)] =
∑
i

[ωin + .85ζ̄in + πin] + .5
∑
ik

[(1− δ(k, 0))αi0knτknκi0n]− σ̄n. (5.11)

5.3 Other considerations

Beneficiaries Tax-exempt and tax-deferred accounts have special tax rules that allow giving part
or the entire value of tax-exempt accounts to a spouse who can then consider it as his/her own.
These accounts typically use percentages to designate beneficiaries. Let ϕj be the fraction of the
account j that a spouse id wishes to leave to his/her surviving spouse is in the year nd−1 < Nn−1
following the year of passing. To account for that event in year nd, Eq. (3.13) needs to be rewritten
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as

bij(n+1) = (1− δ(n, nd − 1)δ(i, id))

×
{
[bijn − wijn + δ(j, 0)dij ] (1 + Tijn) + [(δ(j, 2)− δ(j, 1))xin + κijn] (1 + Tijn/2)

}
+(ϕjδ(n, nd − 1)δ(i, is))

×
{
[bidjn − widjn + δ(j, 0)didn] (1 + Tidjn)

+ [(δ(j, 2)− δ(j, 1))xidn + κidjkn] (1 + Tidjn/2)
}
. (5.12)

The first multiplier () on the right-hand side will always be one except for id in year nd − 1 when
it will be zero. This will result in emptying all accounts for id for years nd and beyond. The
second special multiplier () before the second set of curly braces {} will always be zero except for
the surviving spouse is in year nd − 1, who will then inherit a fraction ϕj of account j that was
scheduled to go into id’s j account at the beginning of year nd.

Rewriting the last equation as a constraint results in

bij(n+1)

−(1− δ(n, nd − 1)δ(i, id))

×
{
[bijn − wijn + δ(j, 0)din] (1 + Tijn) + [(δ(j, 2)− δ(j, 1))xikn] (1 + Tijn/2)

}
−(ϕjδ(n, nd − 1)δ(i, is))

×
{
[bidjnwijn + δ(j, 0)din] (1 + Tidjn) + [(δ(j, 2)− δ(j, 1))xidkn] (1 + Tidjn/2)

}
= [(1− δ(n, nd − 1)δ(i, id))κijn(1 + Tidjn/2)

+ (ϕjδ(n, nd − 1)δ(i, is))κidjn] (1 + Tidjn/2). (5.13)

We are now ready to replace Eq. (5.4) for Aey = v by

Ae[J0(i, j, n), qb(i, j, n+ 1)] = 1,

Ae[J0(i, j, n), qb(i, j, n)] = −(1− δ(n, nd − 1)δ(i, id))(1 + T ijn),
Ae[J0(i, j, n), qw(i, j, n)] = (1− δ(n, nd − 1)δ(i, id))(1 + Tijn),
Ae[J0(i, j, n), qd(i, j, n)] = −(1− δ(n, nd − 1)δ(i, id))δ(j, 0)(1 + Tijn),
Ae[J0(i, j, n), qx(i, n)] = −(1− δ(n, nd − 1)δ(i, id))(δ(j, 2)− δ(j, 1)), (1 + Tijn/2),

when Ni = 2 and i = is,

Ae[J0(i, j, n), qb(id, j, n)] = −(ϕjδ(n, nd − 1)δ(i, is))(1 + Tidjn),
Ae[J0(i, j, n), qw(id, j, n)] = (ϕjδ(n, nd − 1)δ(i, is))(1 + Tidjn),
Ae[J0(i, j, n), qd(id, n)] = −(ϕjδ(n, nd − 1)δ(i, is))δ(j, 0)(1 + Tidjn),
Ae[J0(i, j, n), qx(id, n)] = −(ϕjδ(n, nd − 1)δ(i, is))(δ(j, 2)− δ(j, 1))(1 + Tidjn/2),

∀i ∈ {0, . . . , Ni − 1},
∀j ∈ {0, . . . , Nj − 1},
∀n ∈ {0, . . . , Nn − 1},
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where v is

v[J0(i, j, n)] = (1− δ(n, nd − 1)δ(i, id))κijn(1 + Tijn/2)
+(ϕjδ(n, nd − 1)δ(i, is))κidjn(1 + Tidjn/2). (5.14)

While the last two equations may look cumbersome, their net effect is only to include a few more
terms when n = nd − 1.

Assets allocation ratios When asset allocation ratios α are imposed, they should also be applied
to how contributions amounts κijn are invested, such that

κijkn = αijknκijn. (5.15)

For other allocation schemes, just substitute αijkn = αikn or αkn depending on the scheme selected.
Assets allocation have been handled easily by assuming that the accounts are always rebalanced

and only using a single multiplier T , defined as

Tijn =
∑
k

αijknτkn, (5.16)

to compute to return on the total balance of each savings account.

Spousal deposits and withdrawals In order to keep the problem linear, a simple constraint
that can be imposed on surplus deposits to be made in taxable savings accounts is to specify a
spousal ratio η such as

d0n = ηd1n. (5.17)

A similar spousal ratio can be imposed on withdrawals from tax-deferred accounts

w01n = ηw11n, (5.18)

but this can cause drawing from an account empty while the other spousal account is not.
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6. Objective functions

The objective function is a simple scalar defined as c · y that will be minimized.

Maximum net spending There are a few ways by which a retirement plan can be optimized. For
maximizing the net spending under the constraint of a desired bequest, we introduce the following
relation

En =
∑
ij

(1− νδ(j, 1))bijn, (6.1)

which is the value of the estate in nominal dollars at year n, taking into consideration the heir’s
marginal income tax rate on the (j = 1) tax-deferred account. In this situation, the concept of
surplus deposit remains valid to handle surplus income.

For a desired bequest ϵNn
, expressed in today’s dollars, the final amount in year Nn will need

to be
ENn = ϵ̄Nn = ϵNnγNn . (6.2)

Fixing a bequest value amounts to adding the following constraint∑
ij

bijNn
(1− νδ(j, 1)) = ϵNn

γNn
, (6.3)

which would add one more row to Aey = v as

Ae[I(0), qb(i, j,Nn)] = (1− νδ(j, 1))

v[I(0)] = ϵNn
γNn

(6.4)

∀i ∈ {0, . . . , Ni − 1},
∀j ∈ {0, . . . , Nj − 1},

(6.5)

where I(0) is used only to provide the proper row offset Cl. See Eq. (5.1).
For maximizing the net spending under the constraint of a fixed bequest, one has simply to

minimize the inner product c · y, where c is

c[qg(0)] = −1, (6.6)

and 0 otherwise. See Eq. 3.22.
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Maximum bequest If, on the other hand, one would like to maximize the bequest under the
constraint of a desired net spending go, one would add the following row to Aey = v

Ae[I(0), qg(0)] = 1,

v[I(0)] = go. (6.7)

The objective function would then be derived from Eq. (6.1) as minimizing the inner product
c · y, where c is

c[qb(i, j,Nn)] = −(1− νδ(j, 1)), (6.8)

∀i ∈ {0, . . . , Ni − 1},
∀j ∈ {0, . . . , Nj − 1},

(6.9)

and 0 otherwise.
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