
THE UNIVERSITY OF CAMBRIDGE 

Portable FM Radio 
Using Atmel ATMEGA644P, Si4703 and Nokia 

5100 LCD Display 
 

Martin Marinov 

 

  



MARTIN MARINOV 

Usage and functions 
  

 

 

SPECIFICATIONS 

Frequency range 87.5 – 108 MHz 
Tuning step 100 KHz 

Stereo Supported 
RDS Features Radio Text and Program Service 

Idle power usage 25 mA 
Peak power usage 41 mA 

Battery life 16 h on two AA batteries 
LCD Backlights Turns off if buttons are not used 

Price of hardware parts £35.14 

SEEK LEFT 

Finds the previous 
broadcasting FM 

station 

TUNE LEFT 

Lowers the current 
frequency with 0.1 MHz 

SCROLL LEFT 

Scrolls the radio text 
from the RDS one 

character to the left 

LOWER VOLUME 

Lower the volume 
output on the 

headphones 

SEEK RIGHT 

Finds the next 
broadcasting FM 
station 

TUNE RIGHT 

Increases the current 
frequency with 0.1 MHz 

SCROLL RIGHT 

Scrolls the radio text 
from the RDS one 
character to the right 

INCREASE VOLUME 

Increases the volume 
output on the 
headphones 

SIGNAL STRENGTH 

Shows the signal 
strength. The range is 
20 to 60 dBμV 

RADIO TEXT 

Can contain song that is 
currently playing or 
show that is running  

SCALE 

Current frequency on 
the FM scale 

PROGRAM SERVICE 

Name of station via RDS 

VOLUME LEVEL 

Shows the output 
volume level 0 to 15 

RDS INDICATOR 

If RDS is being received, 
this icon will show up 

STEREO INDICATOR 

If STEREO is available, 
this icon will show up 



Hardware 
 

 



The enclosure of the unit was produced from a project 

box via laser cutting. The display and the keyboard are 

centred onto the face of the box and bolted in place 

with two bolts each. There is a hole on the top of the 

unit for headphone output (1). The Si4703 FM Radio 

IC has amplified headphones output built in, so there 

was no need to worry about audio. Furthermore the 

headphones act as an aerial so there was no need for 

an external antenna. The IC itself is super glued into 

place. There is a programming header port on the side 

of the unit (2) so that the Atmel microcontroller could 

be reprogrammed without opening the enclosure. The 

battery compartment is bolted to the back side on the 

outside of the box. The power supply for the project is 

provided by two AA batteries. 

 

The components are fitted to a breadboard stuck to the back of the inside of the enclosure with a 

double sided tape. The breadboard hosts the Atmel microcontroller and the small electrical 

components – the resistors and capacitors. There is a ribbon cable connecting the keyboard and the 

PORTA of the microcontroller. The Nokia LCD and the FM Radio IC have wires soldered to them and 

tucked into the breadboard. 

 

This design makes the components easily changeable and all of the expensive ones can be salvaged 

and returned for use on future projects. 

2. 

1. 



MARTIN MARINOV 

Software 
The software could be found on Github1. It is released open source with no particular license and 

without any warranty. The Makefile2 can be used to compile the code, program the microcontroller 

and set the fuses. The fuses values for the hardware configuration showed above are 0x99 for hfuse 

and 0xE2 for lfuse. Prerequisites are having AVR Libc3 installed. The Makefile assumes that the USB 

debugger is connected to the ttyUSB0 serial port. You need to change that if this is not the case with 

your setup. The possible targets for the Makefile are: 

 make all – compiles the executable main.hex 

 make program – sends the executable using avrdude over to ttyUSB0 

 make fuses – sets the fuses to hfuse = 0x99 and lfuse = 0xE2 

 make clean – cleans the compilation artifacts 

The quickest way to get everything up and running (once the hardware is properly connected) is to 

type in make fuses followed by a make program. 

The firmware is divided in modules a.k.a. drivers. It allows taking parts of the project and integrating 

them within different context. The different modules are outlined below. 

The Si4703 Driver (fm.c) 
The code is based on Sparkfun’s Arduino driver from Github4. The driver establishes I2C conversation 

between the microprocessor and the Si4703. The commands are executed by writing and reading the 

registers of the Si4703 which are transmitted over the I2C connection. 

The Hardware Configuration should be written to config.h. The driver expects the following pre-

processor defines to be present in the file:   

 FM_RESET - the pin that the reset is connected to 

 FM_PORTRESET - the port of the above pin 

 FM_DDRRESET - the DDR of the above pin 

 FM_SDIO  - the pin where the sdio is connected to 

 FM_PORTSDIO - the port of the above pin 

 FM_DDRSDIO - the DDR of the above pin 

The following defines are required by i2c.c. Have a look at it for more information 

 TW_DDR, TW_PIN, TW_PORT, TW_SCK, TW_SDA 

The pins that the radio is connected to don't need to be pre-initialized, the fm_turn_on function will 

do that for you. 

The API itself is: 

/* Sets up the pins, turns on the radio and starts the i2c conversation  */ 

 uint8_t fm_turn_on(void); 

                                                           
1
 https://github.com/martinmarinov/AATMEGA644PandSi4703 

2
 Based on http://www.cl.cam.ac.uk/teaching/1314/P31/code/workbook1_Makefile  

3
 http://www.nongnu.org/avr-libc/ 

4
 https://github.com/sparkfun/Si4703_FM_Tuner_Evaluation_Board  

https://github.com/martinmarinov/AATMEGA644PandSi4703
http://www.cl.cam.ac.uk/teaching/1314/P31/code/workbook1_Makefile
http://www.nongnu.org/avr-libc/
https://github.com/sparkfun/Si4703_FM_Tuner_Evaluation_Board


MARTIN MARINOV 

  

/* Set frequency. The frequency is an integer of the real frequency in MHz 

multiplied by 10. For example if you want to tune to 91.8 MHz, you would set 

channel == 918 */ 

 uint8_t fm_setChannel(uint16_t channel); 

  

 /* Sets the output volume on the headphones. Values are from 0 to 15 */ 

 uint8_t fm_setVolume(uint16_t volume); 

  

/* Returns the current FM channel, RSSI level in dBμV and a boolean flag 

indicating whether stereo signal is currently present. */ 

 uint16_t fm_getChannel(uint8_t * rssi, uint8_t * stereo); 

  

/* Finds the next frequency that has an RSSI higher than a predefined 

threshold. This effectively attempts to tune to the next/previous valid FM 

broadcast. 

If you want to seek up, set seek_up == 1, if you want to seek down, set 

seek_up == 0. Function returns 1 on success */ 

 uint8_t fm_seek(uint8_t seek_up); 

  

/* Read the RDS value and return the Program Service (string of 9 chars, 

including the last null) and Radio Text (string of 65 chars, including the 

last null). 

Returns either RDS_NO or RDS_AVALABLE or RDS_FAKE. RDS_FAKE means that the PS 

will contain a string that shows the current frequency in MHz to display in 

case of no RDS is available. */ 

 int fm_readRDS(char* ps, char* rt); 

 

 /* auto discover the address of the device. For debugging purposes 

 returns the i2c address or 0xFF for an error 

 radio won't work after this command */ 

 uint8_t fm_get_isc_address(void); 

  

/* A string utility that takes a channel and prints it into the string with 

an offset start. */ 

 int str_putrawfreq(char * str, uint16_t freq, int start); 

The driver was heavily modified in the part concerning the RDS (Radio Data Text) functionality. The 

original driver had some very buggy support of RDS Program Service. The current implementation 

could be extended to decode any information that the RDS could be carrying. It provides access to 

the CRC corrected 8 bytes transmitted. This could be used to obtain the current RDS group that is 

being broadcast and decode specific features. For reference, see the USING RDS/RBDS WITH THE 

Si4701/035 document and the G Laroche6 website. 

The Keypad Driver (buttons.c) 
The keypad has 12 usable buttons. There are 3 control wires (D, E and F) and 4 output wires (G, H, J 

and K). When a control wire is set to high, a button press can trigger a physical contact between the 

control wire and one of the output wires. In order to determine which button has been actually 

pressed, the driver needs to try switching on and off all of the control wires one by one. 

The hardware configuration file config.h needs to contain the following pre-processor defines: 

 BUTTONS_PORT – the port to which the keypad is connected 

 BUTTONS_DDR – the DDR of this port 

 BUTTONS_PIN – the PIN of this port 

                                                           
5
 https://support.silabs.com/attach/BCA/BCA-764/35383_AN243%20Using%20RDS_RBDS.pdf  

6
 http://www.g.laroche.free.fr/english/rds/fonctions/fonctions_rds.htm 

https://support.silabs.com/attach/BCA/BCA-764/35383_AN243%20Using%20RDS_RBDS.pdf
http://www.g.laroche.free.fr/english/rds/fonctions/fonctions_rds.htm


MARTIN MARINOV 

The ports that the keypad is connected to don't need to be pre-initialized, the buttons_init will do 

that for you. The driver assumes that the keypad is connected to pins 0 to 6 on the BUTTONS_PORT 

port. Pins 0 to 2 should be connected to the three control wires of the keypad (see section Hardware 

for an example). 

The API is: 

/* read from config BUTTONS_PORT and BUTTONS_DDR. Buttons should be connected 

from 0 to 6 */ 

 void buttons_init(void); 

 

 /* returns 1 on success and 0 on failure 

 val is the char 

 event is an event BUTTONS_UP or BUTTONS_DOWN 

 if function returns 0, the value of val and state is undefined */ 

 uint8_t buttons_poll(uint8_t * val, uint8_t * event); 

The Nokia LCD Driver (lcd.c) 
The communication to the Nokia 5100 LCD display is done via SPI. The driver is based on nokia_lcd.c7. 

The configuration file config.h needs to contain 

 SPI_PORT, SPI_DDR, SPI_PIN, SPI_SCK, SPI_MISO and SPI_MOSI 

in order to initialize the SPI communication. The lcd.c also defines PIN_LED which specifies which pin 

is used to control the display backlight. This is currently hardcoded to PB0. 

The original driver is heavily modified so that it can support frame buffering. Basically a buffer is kept 

in memory and different operations are undertaken ontop of it. This allows a smooth synchronized 

animation. The buffer is sent to the LCD with the lcd_repaint function. Therefore the normal way to 

draw a new frame on the screen (without reusing whatever is in the buffer) is: 

lcd_clear(); // clear the frame buffer 

/* do some drawing here */ 

lcd_repaint(); // show whatever we have drawn so far on the LCD 

My experiments show that this allows for smooth animation up until about 10 frames per second. 

Although updates can go way quicker than that, the LCD cannot keep up updating its pixels fast 

enough and things become blurry. 

The supported API is: 

 /* A bitmap that can store several images to be shown on screen */ 

 typedef struct bitmap bitmap_t; 

 static struct bitmap { 

  uint8_t width; 

uint8_t height; // row number 0 to 5 

  uint8_t images; // how many frames does this bitmap have 

  uint8_t data[]; // the actual pixel data 

 }; 

 

/* If state == 1, backlight is turned on, otherwise backlight is turned off 

*/ 

 void lcd_backlight(uint8_t state);      

  

 /* Send the frame buffer to the LCD */ 

                                                           
7
 http://www.cl.cam.ac.uk/teaching/1314/P31/nokia/nokia_lcd.c 

http://www.cl.cam.ac.uk/teaching/1314/P31/nokia/nokia_lcd.c


MARTIN MARINOV 

 void lcd_repaint(void); 

  

/* Show a single char in black of size 5x8 px using the in-built 5x8 px font. 

Y is row number (0 to 5). X is a pixel (0 to 83) */ 

 void lcd_char(uint8_t character, uint8_t x, uint8_t y); 

  

/* Show a single char in white of size 10x16 px using the in-built 5x8 px 

font (scaled by 2). Y is row number (0 to 5). X is a pixel (0 to 83) */ 

 void lcd_charlargewhite(uint8_t character, uint8_t x, uint8_t y); 

  

/* Show a null terminated string in black. Y is row number (0 to 5). X is a 

pixel (0 to 83)  */ 

 void lcd_string(uint8_t *characters, uint8_t x, uint8_t y); 

  

/* Show a null terminated string in white. Y is row number (0 to 5). X is a 

pixel (0 to 83)  */ 

 void lcd_stringwhite(uint8_t *characters, uint8_t x, uint8_t y); 

  

/* Show a null terminated string. Each char is 10x16 px (the in-built 5x8 px 

font scaled by 2) */ 

 void lcd_stringlarge(uint8_t *characters, uint8_t x, uint8_t y); 

  

 /* Show a byte. See remarks for y in lcd_char */ 

 void lcd_uint8(uint8_t val, uint8_t x, uint8_t y); 

  

 /* Show a short. See remarks for y in lcd_char */ 

 void lcd_uint16(uint16_t val, uint8_t x, uint8_t y); 

  

 /* Show a short in binary. See remarks for y in lcd_char */ 

 void lcd_uint16bin(uint16_t val, uint8_t x, uint8_t y); 

  

 /* Show a byte in hexadecimal. See remarks for y in lcd_char */ 

 void lcd_uint8hex(uint8_t val, uint8_t x, uint8_t y); 

  

 /* Show a byte in binary. See remarks for y in lcd_char */ 

 void lcd_uint8bin(uint8_t val, uint8_t x, uint8_t y); 

  

 /* Clear frame buffer */ 

 void lcd_clear(void); 

  

 /* Initialize SPI connection with the LCD */ 

 void lcd_init(void); 

  

 /* Draw a bitmap. Y is row number (0 to 5). X is a pixel (0 to 83) */ 

 void lcd_bitmap(bitmap_t * bit, uint8_t id, uint8_t x, uint8_t y); 

 

/* Efficiently fills a rectangle in black. Width is in pixels from 0 to 83 

and height is in pixels from 0 to 47. */ 

 void lcd_fillrect(uint8_t x, uint8_t y, uint8_t width, uint8_t height); 

  

/* Efficiently fills a rectangle in white. Width is in pixels from 0 to 83 

and height is in pixels from 0 to 47. */ 

 void lcd_clearrect(uint8_t x, uint8_t y, uint8_t width, uint8_t height); 

  

 /* Make an individual pixel black */ 

 void lcd_setpixel(uint8_t x, uint8_t y); 

The frame buffer format is each byte spans 8 vertical pixels where each bit addresses a particular 

pixel. This means that each pixel takes space of only one bit. This fact is exploited by the lcd_fillrect 

and lcd_clearrect functions that do clever bit arithmetic to do as little operations as possible onto the 

underlying array. 

The bitmap format also expects the same pixel format. It also contains some metadata as number of 

rows and width in pixels of the bitmap that needs to be drawn. A bitmap can contain several 



MARTIN MARINOV 

“frames” for an animation or a dynamic icon (such as the sound and RSSI icons). A bitmap could be 

generated using The BMP Designer that was specifically developed for the project. 

The Main Loop (main.c) 
The main loop is the “glue” that holds together all of the parts and utilizes the APIs exposed by the 

different modules. It constantly polls the keypad driver and the RDS information from the fm_driver 

and repaints the screen if needed. There is a dedicated method called drawScreen that takes care of 

the actual drawing of the UI content by utilizing the LCD API. Also, the main loop is responsible for 

toggling the LCD backlight on on a key press and off after a timeout. This is how it works in pseudo 

code: 

 while (1) 

 { 

  if (counter timeout) 

   FM backlight off; 

  else  

   counter tick; 

   

  if (buttons_poll(&letter, &state) && state == BUTTONS_PRESSED) { 

   counter reset; 

   FM backlight on; 

 

   switch(letter) { 

   case '1': 

    FM seek up; break; 

   case '3': 

    FM seek down; break; 

   case '#': 

    FM raise volume; break; 

   case '*': 

    FM lower volume; break; 

   case '6': 

    FM increase frequency; break; 

   case '4': 

    FM decrease frequency; break; 

   case '9': 

    Scroll FM Radio Text right; break; 

   case '7': 

    Scroll FM Radio Text left; break; 

   } 

  

   Redraw screen;     

 

  } else if (fm_readRDS(rdsname, rdsrt)) 

    Redraw screen; 

} 

The BMP Designer 
The bitmap designer was made as a Java application that can produce a bitmap structure that could 

be directly copied/pasted into the c code and rendered with the LCD library function lcd_bitmap. The 

GUI is intuitive, it allows for importing a coloured image and using dithering it makes it look like a 

grayscale. Alternatively, bitmaps could be designed click by click manually (as most of the graphics 

used in the project were). 

The application does not use external libraries and can be shipped as an executable jar file so it will 

work on any OS that supports Java just by double clicking on it (or running it with the java –jar 

command). 



MARTIN MARINOV 

 

Problems Encountered 

Wrong board 
I originally ordered a Si4703 via eBay but instead I received a DTMF decoder. They have a striking 

visual resemblance since both of them have an audio jack and the same number of inputs/outputs. I 

only found out about the problem when I started connecting it to the Atmel microcontroller and 

discovered that the outputs were different. I had to reorder another Si4703 with special delivery, this 

time via Sparkfun and wait for it to arrive again. In the meantime, I worked on the keyboard and the 

Nokia LCD display. 

I2C 
There was an issue with the I2C that took me about two days to discover. I was having troubles 

getting any response from the device. I wasn’t sure the wiring was correct. After I measured that 

indeed there was some activity happening over the wires, I thought I was sending the data to the 

wrong I2C address. I wrote a function that will do auto discovery and try all of the possible I2C 

addresses (128 in total) to see which one will the Si4703 respond to. 

I managed to find the correct one but the tuner still failed to respond properly. The communication 

was happening and no error codes were produced. The values I was getting from the Si4703 did not 

make sense so something was corrupting them. I thought the board was not working but then I 

added an I2C delay after each call to the I2C write and read and this fixed the issue and the 

communication started working without data being corrupted. 

Keypad Bounce 
Designing the driver for the keypad was a challenge because of the so-called “bounce” of the keypad 

buttons. When a button is pressed or released, there change of the state of the output wire is not 

instantaneous from low to high but rather has a few changes from low to high to low to high as 

shown in the diagram below. 



MARTIN MARINOV 

Expected 
 

Observed 

  
 

       
 

 

The buttons_poll function logic records the state of the last event and uses it to compare it with the 

current one in order to return a correct event value – a rising edge (BUTTONS_DOWN) or a falling 

edge (BUTTONS_UP) or no change (BUTTONS_PRESSED or 0 depending on current state). This means 

that the main loop can decide to only perform an action when the button is being held 

(BUTTONS_PRESSED) so that even if there is bounce, this will not affect the responsiveness. 

For example, if the user wants to turn up the volume, they would hold the volume up button 

(currently button #). If there is any bounce, the volume will still go up – as the user wants to. This is 

also true for tuning – if they want to arrive at a particular frequency (using button 6) they will keep 

the button pressed which will keep generating the BUTTONS_PRESSED events. The bounce can only 

affect some fine gestures required because there is no guarantee, for example, that a quick press of 

the button won’t trigger a double click rather than just one click. Fortunately operating an FM radio 

does not require such a sensitive control as shown from my experience with the unit. 

Fonts 
I had a desire to show the station name with a bigger font so it is clearly visible from a distance. This 

required a larger font. The font that comes with the Nokia LCD screen driver is 5 pixels wide and 8 

pixels high. Because of efficiency and the fact that each byte on the frame buffer represents 8 

vertical pixels, it is more efficient to have font heights in multiples of 8 (the same applies for 

bitmaps). 

I decided to create my own font with height 16 pixels. For this reason, I modified the BMP designer 

to use fonts build in the computer to generate C code that could be used as a font on the Nokia LCD 

screen. Unfortunately if I wanted 10 pixels wide font, each character would take up 2 * 10 = 20 bytes. 

Some radio stations have non-alphanumeric characters in their names, so I had to span a large 

number of characters. The built-in font has 96 characters. This would have meant that I had to store 

1900 bytes of data (the current font only takes up 450 bytes). 

This was too much for the Atmel and the program failed to compile. Keep in mind that there are also 

other bitmaps as well. So the simplest solution was to use the font that is already built in (the 5 pixels 

by 8 pixels one) but to scale it on-the-fly to 10x16 pixels by interpolation. This approach was used in 

the final product. 

Further developments 

Reducing CPU cycles 
The current setup uses the 8MHz clock speed of the Atmel microcontroller. I believe it could be 

possible to achieve the same level of usability with a lower clock speed. This in theory could lower 

the power consumption. The challenge would be to change the values that are dependent on the 

clock speed and test which would be the lowest clock speed that would still support the same level of 

interactivity as what the product currently has. 



MARTIN MARINOV 

Using Interrupts 
The current implementation uses continuous polling of the buttons driver and the fm driver to 

receive key press events and RDS change events. This means that the Atmel microcontroller does not 

go to sleep at all. It should be possible to redesign the drivers to make use of interrupts and plan 

sleeping cycles for the CPU so that power could be conserved. Furthermore, the Power Reduction 

Register could be utilized in this context to conserve even more power. 

There is an easy way to set up a pin change interrupt to be triggered on a button pressed. The 

challenge would be detecting the exact button that was pressed since this would require turning 

on/off some of the control wires. This would generate further interrupts. Therefore a possible 

solution would be to use a finite state machine to decide what the current interrupt means. Some 

care needs to be taken in order to deal with the bounce issue described in Keypad Bounce. 

The RDS polling could be also made using interrupts. The Si4703 has two GPIO pins that could be set 

up to go to a high state when RDS data is available or when the STEREO indicator changes. This could 

be again detected using a pin change interrupt. 

There would be some issues, though. One of them would be that the screen won’t refresh, so the 

RSSI value would be out of date. Another issue would be the procedure to turn off the backlight of 

the LCD that depends on a counter. Both of these issues could be solved by using a timer to wake up 

the device from time to time and execute the above procedures. 

I did not have time to start implementing the suggestions above. If the product is to be made 

commercially, an interrupt based implementation could be favourable since it would allow for 

reduced power usage and better timing of the LCD being left in an on state (which currently depends 

on the speed at which the main loop executes which varies with the state of the radio and buttons). 

Measurements 

Power Consumption 
The Power Reduction Register is used and pull up registers are used on all inputs in order to attempt 

to reduce power consumption. There were no measurable difference between having those power 

optimizations on or off but I kept them on for completeness. One explanation is that those probably 

make huge difference during sleep modes but since the project is not using any, this does not make a 

big difference. 

The biggest power consumer is the LCD backlight since it is composed of four LEDs. There is therefore 

logic for turning it off after a few seconds when any keys have not been pressed. My measurements 

show that that the power consumption is drastically different with the backlight on and off: 

 ON OFF 
Backlight 41 mA 25 mA 

The unit runs on two AA batteries. The most basic (non-alkaline zinc-carbon) ones have capacity 

between 400 and 900 milliamp-hours. This would give between 11.2 and 25.2 hours of runtime8 if 

                                                           
8
 According to http://ncalculators.com/electrical/battery-life-calculator.htm 

http://ncalculators.com/electrical/battery-life-calculator.htm


MARTIN MARINOV 

the device runs with its LCD backlight off (assuming 25mA power consumption). My experiment 

showed that the unit was able to run for about 16 hours and a half on the cheapest AA batteries I 

could find (9p each) which includes a few minutes with the LCD backlight on. This still beats my 

commercial PURE DAB & FM radio (in FM mode) which can run for about 12 hours. As outlined in 

Using Interrupts, I believe this could be improved even further. 

Price 
This is the breakdown of the price for the different components (if bought in bulk and just a single 

unit). It outlines the current setup. If the product is to be released commercially, it could be printed 

on a board and miniaturized even further which would reduce the numbers below. The prices do not 

include delivery charges. It does not include labour price nor does it include price for assembling 

(soldering, hot gluing, using sticky tape, bolting, drilling, laser cutting). Therefore those numbers are 

just for guideline: 

Component Quantity needed Price for 1 unit (in £) Price for 100+ units (in £) 

Breadboard 1 2.41 1.93 
Resistors and Capacitors 9+3 0.15 0.12 
Hook-up Wire 1 1.53 1.22 
Project Box 1 2.41 1.93 
2AA Battery Holder 1 0.92 0.73 
ATMEGA644P 1 5.32 3.02 
Evaluation Board for Si4703 1 12.16 9.72 
LCD 84x48 - Nokia 5110 1 6.07 4.86 
12 Button Keypad 1 2.41 1.93 
5pin Break Away Headers 1 0.11 0.09 

 Total 35.14 26.87 

Conclusion 
It looks like the setup has the potential to be brought down to a price range suitable for the 

consumer market. More research needs to be done on how much the cost could be reduced by 

printing the whole circuit on a single board. It is a nice product that has a good reception (compared 

to tuners built in mobile phones) and could be made portable. It has longer battery life than some 

other competitor products. 

Unfortunately there is a tendency to switch to digital DAB radio broadcasting which would render 

such a product obsolete. But building it is still a nice exercise. 

Acknowledgements 
I would like to thank Brian Jones9 for providing me with the required hardware, support, helping out 

with the laser cutter and providing initial code to base our projects on. Thanks for staying overtime 

to assist us. 

I would also like to thank Dr. Ian Wassell10 for preparing the documentation for the course. 

                                                           
9
 http://www.cl.cam.ac.uk/research/dtg/www/people/bdj23/ 

10
 http://www.cl.cam.ac.uk/research/dtg/www/people/ijw24/ 

http://www.cl.cam.ac.uk/research/dtg/www/people/bdj23/
http://www.cl.cam.ac.uk/research/dtg/www/people/ijw24/

