
OVMS
Open Vehicle Monitoring System

www.openvehicles.com

OVMS Development
Guide v2.5.3 (5th February 2017)

For OVMS Hardware Module v2/v2.5 and Firmware v3.x.x

1

http://www.openvehicles.com/

History

v2.5.3 5th February 2017 Added new car model variables (12v)
v2.5.2 1st January 2017 Added new car model variables
v2.5.1 16th August 2013 Make car_tbattery signed integer
v2.3.0 30th April 2013 Extensions
v2.0.1 28th January 2013 Extensions and clarifications
v2.0.0 9th January 2013 Initial version written

WELCOME 5
DEVELOPMENT OVERVIEW 5

VEHICLE FIRMWARE DEVELOPMENT TOOLS 6
DEVELOPMENT ENVIRONMENT 6
DEVELOPMENT TOOLS 6
GITHUB 10
COMPILE AND FLASH YOUR FIRST FIRMWARE 10
CHIPS USED 11
ARCHITECTURE AND TOOL HINTS 11

VEHICLE MODULE DIAG PORT 13
THE DIAG PORT 13
USING THE DIAG PORT FOR DEBUG LOGGING 14

VEHICLE FIRMWARE OVERVIEW 15
CODE MODULES 15
THE POLLING MAIN LOOP 16
LED CONTROL 16

OVMS VEHICLE MODULES 17
OVMS V2 AND PLUG-IN VEHICLE MODULES 17
VEHICLE.H AND VEHICLE.C 17
IMPLEMENTING A NEW VEHICLE MODULE 19
A NOTE ON VEHICLE ROM CODE 21
A NOTE ON VEHICLE RAM DATA 22
INITIALISING THE CAN BUS 23
TRANSMITTING ON THE CAN BUS 24

THE OVMS VIRTUAL VEHICLE 26

2

WHAT IS THE OVMS VIRTUAL VEHICLE? 26
GLOBAL DATA STORAGE 26

Vehicle Identification..26

GPS STATUS 27
Tire Pressure Monitoring System..28

Driving Status..29

Vehicle Environment..29

Battery Status..32

Charging Status...32

VEHICLE MODULE DEVELOPMENT CHECKLISTS
 36
DEVELOPMENT CHECKLISTS 36

VEHICLE-SPECIFIC EXTENSIONS 38
NET_MSG COMMAND HANDLERS 38
NET_SMS SMS HANDLERS 38
NET_SMS SMS EXTENSIONS 39

OVMS SERVER DEVELOPMENT 40

OVMS APP DEVELOPMENT 41

CONCLUSIONS 42

3

Welcome

The OVMS (Open Vehicle Monitoring System) team is a group of enthusiasts
who are developing a means to remotely communicate with our cars, and are
having fun while doing it.

The OVMS module is a low-cost hardware device that you install in your car
simply by installing a SIM card, connecting the module to your car’s Diagnostic
port connector, and positioning a cellular antenna. Once connected, the OVMS
module enables remote control and monitoring of your car.

This document presents an overview of the development tools and techniques
you will need to work on the OVMS system. You might be extending what OVMS
does already (either for general consumption, or for your own private use),
adding support for a new vehicle, or using the OVMS framework to implement
something completely different. Whatever your purpose, please remember that
OVMS is an Open Source project without restrictions, that has got to where it is
today by the contributions of so many; so please try to share what you yourself
do with it.

Development Overview

OVMS development can be divided into three main parts:

1. Vehicle Firmware Development – working on the module inside vehicles.
2. Server Development – working with the OVMS server code.
3. App Development – working with the remote Apps that access the vehicle

information.

While some information presented here is specific to a particular area of
development, in general we try to cover all three parts.

4

Vehicle Firmware Development Tools

Development Environment

The development environment of choice is the Microchip MPLAB X IDE and
MPLAB C18 compiler. This is available for free on Linux, Mac and Windows – but
be aware that the Windows C18 compiler is restricted in that optimisations do not
work correctly unless you purchase the commercial version of the compiler. For
that reason, we recommend either Linux or Mac for development.

http://www.microchip.com/pagehandler/en-us/family/mplabx/

You will need a JAVA runtime, MPLAB X IDE and C18 (not XC8) compiler. Note
that Microchip is migrating to the XC range of compilers, but OVMS uses the
Microchip C18 compiler – you may need to hunt a bit on the Microchip site to find
it, but it will be there.

In addition, you may find the free Microchip CAN timing calculator useful:

http://intrepidcs.com/support/mbtime.htm

Development tools

You will need the following tools:

 An OVMS v2 module

OVMS v2 Module (on fasttech.com)

5

http://www.fasttech.com/products/0/10000001/1000300-ovms-car-module-v2
http://intrepidcs.com/support/mbtime.htm
http://www.microchip.com/pagehandler/en-us/family/mplabx/

 A compatible GSM antenna

OVMS GSM Antenna (on fasttech.com)

 A compatible GPS antenna (optional, depends on vehicle type)

OVMS GPS Antenna (on fasttech.com)

 A compatible 2G/3G SIM (with data)

OVMS uses 2G GPRS data, but will work with 3G SIMs. You will need to
obtain this from a local cellular provider. There are too many to list here,
but this forum thread on TMC should give you some pointers:

OVMS Installation thread (on TMC)

Alternatively, you can use the hassle-free GeoSIM that OVMS has
partnered with:

Hassle-free SIMs with GPRS data for OVMS

6

http://www.globalsimcard.co.uk/index.php?aID=202
http://www.teslamotorsclub.com/showthread.php/7716-OVMS-Installation
http://www.fasttech.com/products/1080/10000001/1020200-universal-gps-antenna-sma-connector
http://www.fasttech.com/products/1080/10000001/1000500-openvehicles-ovms-gsm-antenna

 An OVMS vehicle-specific cable

OVMS Tesla Roadster Vehicle Cable (from fasttech.com)

OVMS Generic OBDII Vehicle Cable (from fasttech.com)

You can either make this up yourself (the wiring is pretty simple – just 12V
power, GND, CAN-L and CAN-H) or use either the Tesla Roadster or
Generic OBDII cables.

 A Microchip firmware flash tool (PICKIT3 recommended for development)

Microchip PICKIT2 clone (from fasttech.com)

Microchip PICKIT3 clone (from fasttech.com)

7

http://www.fasttech.com/products/0/10000018/1002100-pickit-3-compatible-programmerdebugger
http://www.fasttech.com/products/0/10000018/1002200-pickit-2-compatible-programmerdebugger
http://www.fasttech.com/products/0/10000001/1139300-odb-ii-to-db9-data-cable-for-ovms
http://www.fasttech.com/products/0/10000001/1000400-ovms-data-cable-for-tesla-roaster-1x2x

 A USB/RS232 adaptor cable (or RS232 port on your computer)

You will need a way of connecting your computer to the DB9 RS232 DIAG
port on the OVMS module. If your laptop already has a RS232 port, then
you can connect directly, otherwise you will need to source a USB/RS232
adaptor.

Search for USB RS232 (on fasttech.com)

 A USB/CAN bus adaptor, or USB/OBDII dongle (optional, but required for
CAN bus message reverse engineering)

Example USB/CAN adaptor (from canusb.com)

8

http://www.canusb.com/
http://www.fasttech.com/search?RS232%20USB

Example OBDLINK-SX (from scantool.net)

GITHUB

The source code for OVMS vehicle firmware is publicly available on a system
called GITHUB. This is a cloud server hosting projects using the GIT source code
revision control system.

https://github.com/markwj/Open-Vehicle-Monitoring-System

You should create yourself an account on github, then use the FORK function to
get yourself a copy of the project into your own repository. You will want to
download your own forked repository from github to your local computer.

Detailed operation of GIT and GITHUB is beyond the scope of this document, but
a general summary of the recommended method of working is that you will fork
yourself your own clone of the master OVMS GITHUB project and then work on
your own fork. From time to time, you can refresh your copy with the upstream
master. You can also submit your improvements / extensions back to the
upstream master by a PUSH request (or merely creating a patch and submitting
it for review and inclusion with the master project).

Compile and Flash your First Firmware

A simple summary is:

1. Start MPLAB X IDE.

9

https://github.com/markwj/Open-Vehicle-Monitoring-System
http://www.scantool.net/obdlink-sx.html

2. Open the OVMS.X project from your OVMS github fork (under ‘vehicle’
directory).

3. Select configuration “V2 Experimental”. Right click on the project, to get to
project settings, and customize it for the flash tool you are using (eg;
pickit2 or pickit3). You will probably want to choose the “Preserve device
EEPROM” setting, to avoid overwriting your vehicle settings in EEPROM
every time you flash the device.

4. Click “Clean and Build” and ensure the compile completes successfully.

5. Connect your PICKIT to the vehicle module, choosing 5V power from the
programmer (or power it directly from 12V via the vehicle port). Then, click
“Make and Program Device” to flash the device with your code.

Congratulations, you just did your first firmware build & flash!

Chips Used

The OVMS v2 module uses the following chips:

 Microcontroller: Microchip PIC18F2685

http://www.microchip.com/wwwproducts/Devices.aspx?
dDocName=en026328

 Cellular Modem & GPS: SIMCOM SIM908

http://www.simcom.us/product_detail.php?cid=1&pid=38

Architecture and Tool Hints

 MPLAB X needs a restart from time to time... e.g. if suddenly the editor
highlights strange missing symbols, or if the editor refuses to save some
files...

 PIC18F implements a harvard architecture = RAM and ROM use different
addressing schemes.

o String constants are ROM, so need to be copied over into some
RAM buffer before using them as RAM * arguments. Use e.g.
strcpypgm2ram() for this. (pgm = program memory)

o sprintf etc. use ROM templates and RAM arguments.

10

http://www.simcom.us/product_detail.php?cid=1&pid=38
http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en026328
http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en026328

o Always look for special lib functions using name extensions like
"pgm2ram", these should be used if possible (optimized).

 PIC18F is little endian, i.e.
o int 0x1234 = { 0x34, 0x12 }
o long 0x11223344 = { 0x44, 0x33, 0x22, 0x11 }
o Bit fields are packed right to left

 The stack is small, really. The call stack allows for just 31 levels, and the
software stack is limited to one bank = 256 Byte.

o Be aware that ISR code must be callable in any application depth,
and the vehicle CAN ISR will need at least two call levels (due to
the framework).

o Avoid deep nesting of calls, try to inline code or use macros as
often as possible!

o Avoid complex and large arguments to calls! This especially applies
to varargs calls like sprintf() – these will not produce a stack
overflow, but you will get really strange behaviour...

o The debugger is no real help in stack problems. See below for
stack overflow debug code.

o Bottom line is: KISS – keep it small & simple

 PIC18F has 3328 Bytes of RAM. You know what that means, don't you ;-)
o To be precise, it's SRAM. So it will keep content over a reset, even

over a short power down. To make use of this, you need to define
your static/global vars undefined. You can use the car_type[]
variable to distinguish between init and reset situations (see vehicle
initialisation).

 PIC18F has no FPU (floating point unit). All float operations are done in
software, so you better avoid using them in time critical situations... like
interrupt handlers for example.

 C18 is not ISO standard compliant in some important ways! See user
guide for details.

 C18 is configured to "no integer promotions" for the OVMS firmware. That
means "byte * byte = byte" / "int * int = int" etc., so you need explicit type
casts at some unexpected places!

 The C18 library printf/scanf family does not support float/double
arguments! atof() also is not functional. If you need float parsing / output
you have to implement it. For example by scaling integers:

11

o // Format scaled int into two ints for sprintf
// ...example: sprintf(buf, "%d.%02u", FMTINT(val,100))
#define FMTINT(f,d) (f) / (d), ((f) >= 0) ? ((f) % (d)) : (-(f) % (d))
#define FMTUINT(f,d) (f) / (d), (f) % (d)

 C18 supports bit fields of only max 8 bits length

 C18 is a dumb compiler. If you write too complex expressions, especially
with floats involved, it will fail without telling you, silently producing broken
code.

o Example: This is too complex for C18:
stddev = sqrt(((float)sqrsum/n) - SQR((float)sum/n));
...as a result, sprintf() will fail somewhere else in the code...
...resolving was:
float f = ((float)sqrsum/n) - SQR((float)sum/n);
stddev = sqrt(f);

 C18 is also not very good at optimizations. It will especially completely fail
to do any kind of loop unrolling, even factoring out simple constant
expressions will fail in many (most?) cases.

 It will also fail to eliminate unused local variables and unused functions.

 Bottom line: Code simple and optimize yourself.

Stack depth debugging

The software stack (function parameters and local variables) is maintained in
register FSR1, the hardware call stack usage can be examined in register
STKPTR.

The deepest call depth normally will occur in your CAN ISR code. Introduce
some global variables like...

UINT MAX_FSR1 = 0;
UINT8 MAX_STKPTR = 0;

...then add this to your ISR(s):
 if (FSR1 > MAX_FSR1)
 MAX_FSR1 = FSR1;
 if ((STKPTR&0x1f) > MAX_STKPTR)
 MAX_STKPTR = (STKPTR&0x1f);

Now you can inspect or output the MAX_* vars to check your stack usage.

12

Vehicle Module DIAG Port

The DIAG port

The OVMS v2 module includes a
port labeled DIAG. This port offers
an RS232 compatible tap into the
communications link between the
PIC microcontroller and SIMCOM
modem. It can be used to monitor
these communications, as well as
issue arbitrary commands. As it is a
tap, either the commands from the
PIC microcontroller, and/or SIMCOM modem, can be spoofed for diagnostics,
debugging and testing. The OVMS firmware also contains a special DIAG
SETUP mode that can be accessed via this port. The port is not used for
anything during normal day-to-day operation, and is only there for development
and diagnostics purposes.

To connect to the DIAG port:

 Connect your PC to the DIAG port using a standard serial cable or serial
to USB adaptor. Communication parameters are 9600 8N1, no
handshake.

 You will need a terminal emulator on your PC. For Linux/Mac, you can use
cu or screen. For Windows, you can use Minicom, or any of its more
modern replacements.

 Note: The OVMS module needs +12V power input to function properly. It
may appear to power up at +5V from the PICKIT flash tool, but the modem
side really requires +12V to operate correctly. This also applies to the
DIAG port. The best approach is to power the module through the vehicle
port.

As the DIAG port taps the communication between the microcontroller
(PIC18F2685) and the GPRS/GPS modem (SIM908), you can see the modem
output and send commands to it any time. You can also see the microcontroller
output, but only indirectly via the modem’s command echo. During normal boot

13

up modem initialization, OVMS disables the modem’s echo mode, so you need to
enable it again by sending "ATE<CR>" (you might consider assigning that to a
macro key in your terminal emulator).

The OVMS firmware also supports a special DIAG boot mode (if compiled in) that
allows you to configure the module and test commands via the DIAG port. To
boot into DIAG mode, just send the magic word "SETUP<CR>" to the module
while it's booting up (you might consider assigning that to the next macro key).
The timing for how/when this is done is fairly critical, so we have prepared a little
youtube video on this:

http://www.youtube.com/watch?v=-24PoWtHVzk

So you've got about 20 seconds after powering the module / reset to send the
magic word. You may send the word as often as you want, the module will
normally respond to it after the first modem init (i.e. after "Call Ready" / "GPS
Ready"). If it does not, reboot.

Once you're in DIAG mode, enter:

 "HELP" to list available commands (also lists SMS and MSG commands)
 "DIAG" to see a short status overview
 "S command" to execute an SMS command
 "M command" to execute a MSG command

In DIAG mode, all SMS and MSG outputs are sent to the DIAG port instead of
the GPRS network. MSG output will not be encrypted.

Using the DIAG Port for debug logging

Besides implementing some sort of "DEBUG" command, you can also use the
DIAG port for direct debug outputs. To do so, just send a comment to the
modem: "# hello world!\r\n". After enabling echos you will see the output on your
terminal (you can include "ATE1" in your output to enable echos automatically).

Be aware that your debug outputs will be sent back to the microcontroller comm
port and might confuse some ongoing request / response protocol. So, this kind
of debug log should only be used during development, not in a production build.

Good style is to check for an empty receive buffer before, so your outputs will not
disturb a modem response and/or diag command input.

14

http://www.youtube.com/watch?v=-24PoWtHVzk

Also, keep in mind your output is read by the modem as well, so any character
sequence like "AT..." in your output will be interpreted as a command.

Code example:

BOOL vehicle_zoe_ticker1(void) {
…
 // Send vehicle debug status to serial port every 3 seconds:
 if ((net_buf_mode == NET_BUF_CRLF) && (net_buf_pos == 0)
 && ((can_granular_tick % 3) == 0)) {
 char *s;
 s = net_scratchpad;
 s = stp_rom(s, "ATE1\r#RZ1:");
 s = stp_sx(s, " ds3=", car_doors3);
 s = stp_i(s, " vps=", vehicle_poll_state);
 s = stp_i(s, " soc=", zoe_soc);
 s = stp_l(s, " odo=", zoe_odometer);
 s = stp_rom(s, "\r\n");
 net_puts_ram(net_scratchpad);
 }
…

Vehicle Firmware Overview

Code Modules

The vehicle firmware code is split into modules, with each module in its own
source code file (usually, by convention, <module>.h and <module>.c). The
modules are:

 Primary Modules:

o ovms
Main module implementing the initialization process and main loop.

o net
Network/Modem communications layer (state machine)

o net_sms
Standard framework SMS commands and utils

o net_msg
Standard framework MSG commands and utils (network protocol)

15

o vehicle
Vehicle plug-in framework controller

 Auxiliary modules:

o params
EEPROM read/write utils (storing modem config parameters)

o inputs
Hardware-independent input framework (internally used)

o led
Hardware-independent LED framework (internally used)

o utils
General utility library

o diag
DIAG/SETUP mode framework

 Vehicle Modules

o vehicle_none
Default (stub) vehicle plug-in module

o vehicle_*
Other vehicle plug-in modules are named with the vehicle type
(e.g.; vehicle_teslaroadster, vehicle_twizy, etc)

 Support modules:

o UARTIntC
Support library implementing UART communications

o crypt_base64
Support library implementing base64 encoding and decoding

o crypt_hmac
Support library implementing HMAC digests

o crypt_md5
Support library implementing MD5 digests

16

o crypt_rc4
Support library implementing RC4 cryptography

The Polling Main Loop

After boot time initialization, the main loop controls initialization and polling for
each module in the firmware. Typically, each module implements a _initialise()
function (e.g. net_initialise(), vehicle_initialise(), etc) called during initialization,
and a _ticker() function (e.g. net_ticker(), vehicle_ticker(), etc) called once a
second. In addition, there are _ticker10th() hooks for 1/10th second tickers, and a
_poll() hook to tell the net module that there is modem data ready and waiting.

LED Control

The LEDs are controlled by the led module, with simple calls to set specific
status (green) and fault (red) codes. The module is implemented in that the caller
just requests a status or fault code, and the module itself will control the flashing
of the LEDs from that point on (until the status or fault code is changed).

17

OVMS Vehicle Modules

OVMS v2 and Plug-In Vehicle Modules

Version v2 of the OVMS firmware introduces support for a plug-in architecture for
vehicle modules. With this architecture, support for multiple vehicles can be
included in a single vehicle firmware, switched at run-time by module parameter.

vehicle.h and vehicle.c

The code files vehicle.h and vehicle.c implement the plug-in vehicle module
system. Let’s look at the shared variables delivered by this framework:

 unsigned int can_granular_tick

This is an internal ticker used to generate 1min, 5min, etc, ticker calls – it
can be read and used in the _ticker1() hook to implement other forms of
granular ticker.

 unsigned char can_datalength
unsigned char can_databuffer[8]

These variables are typically used to store the number of valid can bytes,
and the bytes themselves, by vehicle module _poll0() or _poll1() reception
of CAN data hooks. They are for the use of the vehicle module.

 unsigned char can_minSOCnotified

The minSOC notified flag – used by vehicle module to implement
notification when SOC falls below a defined level.

 unsigned char can_mileskm

A flag to indicate whether the user has requested miles or kilometers as
their preferred units (to save the vehicle module having to look this up in a
parameter – especially during handling of a CAN interrupt). It is set by the
framework to either ‘M’ or ‘K’.

 unsigned char* vehicle_version

18

A pointer to be set by the vehicle module to a version string to indicate the
version of the vehicle module code.

 unsigned char* can_capabilities

A pointer to be set by the vehicle module to a capability string to indicate
the capabilities of the vehicle mode code.

In addition to the global variables, there are a number of hooks. These can be
set, during vehicle module initialization, to allow the vehicle module to hook into
specific system events. The convention is that if a function is not NULL then it is
called at the appropriate time. If it returns TRUE then it is considered to have
completed the operation and the default action should not be run at all. If it
returns FALSE then it is an indication that the default action should run as well.

 BOOL (*vehicle_fn_init)(void)

The module initialization function.

 BOOL (*vehicle_fn_poll0)(void)

The CAN RX callback function to receive CAN bus data on channel 0.

 BOOL (*vehicle_fn_poll1)(void)

The CAN RX callback function to receive CAN bus data on channel 1.

 BOOL (*vehicle_fn_ticker1)(void)

A callback hook called once per second.

 BOOL (*vehicle_fn_ticker10)(void)

A callback hook called once every 10 seconds.

 BOOL (*vehicle_fn_ticker60)(void)

A callback hook called once every 60 seconds.

 BOOL (*vehicle_fn_ticker300)(void)

A callback hook called once every 300 seconds.

19

 BOOL (*vehicle_fn_ticker600)(void)

A callback hook called once every 600 seconds.

 BOOL (*vehicle_fn_ticker)(void)

A callback hook called once every second, as part of the main framework.

 BOOL (*vehicle_fn_ticker10th)(void)

A callback hook called 10 times every second.

 BOOL (*vehicle_fn_idlepoll)(void)

A callback hook called very often (typically whenever the main loop is idle
and not calling other callbacks and is idle waiting for a timer or incoming
data).

 BOOL (*vehicle_fn_commandhandler)(BOOL msgmode, int code, char*
msg)

A callback hook for incoming net_msg protocol commands. This can be
used to override or implement standard and vehicle specific commands.

 BOOL (*vehicle_fn_smshandler)(BOOL premsg, char *caller, char
*command, char *arguments)

A callback hook for incoming net_sms SMS commands. This can be used
to override or implement standard and vehicle specific SMS commands.

 BOOL (*vehicle_fn_smsextensions)(char *caller, char *command, char
*arguments)

A callback hook for incoming net_sms SMS commands. This can be used
to supplement standard and vehicle specific SMS command responses
with additional information.

Implementing a New Vehicle Module

It is generally best to implement a new vehicle module in co-operation with the
core OVMS maintainers. They can assist you with a consistent naming

20

convention, and changing the master github project to include a stub of your
vehicle code.

To implement a new vehicle module, you will need the following:

1. A short descriptive name of the vehicle, as the vehicle_* file name (e.g.;
twizy, teslaroadster, thinkcity, etc).

2. A short descriptive upper-case #define for the vehicle module. This is
typically the same (or similar) to #1.

3. A 2 character type code for the vehicle (e.g.; RT, TR, TC, etc).
4. A 2 character subtype code for specific vehicle modules (e.g. 1S for Tesla

Roadster v1.x Sport, 2N for Tesla Roadster v2.x Non-Sport, etc).

Let’s imagine a car called the Futura-Electric, with three versions (10kWh,
20kWh and 40kWh batteries). We are going to use one vehicle module for all
three versions (as they are so similar), and find the actual version by looking at
messages on the CAN bus. For this car, we’re going to use short descriptive
name “futura”, #define “#FUTURA”, 2 character vehicle type code “FE”, and 2
character subtype code 10, 20 or 40.

Now, to implement this vehicle in OVMS:

1. We edit ovms.dev and include:

//#define OVMS_CAR_FUTURA

This lets us know we have a new vehicle type, but it is commented-out so
it is not included in all firmwares. We’re going to let the vehicle firmware
configuration itself include it.

2. Edit the project properties, configurations, C compiler pre-processor
directives, to include OVMS_CAR_FUTURA in the “V2 experimental” and
“V2 production” builds.

3. Create a blank vehicle_futura.c file in the project.

4. In the project explorer, choose each configuration one-by-one, right-click
on vehicle_futura.c and exclude it from the build in all configurations
except the ones we’ve #defined it in (“V2 experimental” and “V2
production”).

5. Change vehicle.c – just above the “#ifdef OVMS_CAR_NONE”, include a
new block for our new vehicle:

21

#ifdef OVMS_CAR_FUTURA
 else if (memcmppgm2ram(p, (char const rom far*)"FE", 2) == 0)
 {
 void vehicle_futura_initialise(void);
 vehicle_futura_initialise();
 }
#endif

6. Implement the stub of the vehicle in vehicle_futura.c as:

#include <stdlib.h>
#include <delays.h>
#include <string.h>
#include "ovms.h"
#include "params.h"

#pragma udata overlay vehicle_overlay_data

#pragma udata

BOOL vehicle_futura_initialise(void)
 {
 char *p;

 car_type[0] = 'F'; // Car is type NONE
 car_type[1] = 'E';
 car_type[2] = 0;
 car_type[3] = 0;
 car_type[4] = 0;

 net_fnbits |= NET_FN_INTERNALGPS; // Require internal GPS

 return TRUE;
 }

Then, Make Clean and Build… We should end up with a new vehicle module that
does nothing but uses the OVMS internal GPS to at least report the vehicle
location. You can even now configure the module with the SMS MODULE
command, to choose vehicle type “FE”, and then SMS “GPS?” to show the
current GPS position.

22

As you can see, there are quite a few steps to be done, and you must co-operate
with other vehicles in the system. This is why it is generally best to implement a
new vehicle module in co-operation with the core OVMS maintainers. They can
assist you with a consistent naming convention, and changing the master github
project to include a stub of your vehicle code.

A note on Vehicle ROM code

All plug-in vehicle modules included in the same firmware must share the limited
ROM (code) space of the PIC18F2685 microcontroller. This means you must
take care with how you code – keep things clean and simple. At the moment, we
can include all vehicle modules in the same firmware, but this may change
longer-term and we may include different sets of vehicles in different firmware
(e.g. firmware #1 for RT, TR, TC, firmware #2 for O2, VA, FE, etc).

We can support an unlimited number of plug-in vehicle modules in the firmware,
but may need to have multiple firmware sets to support dozens of different
vehicles.

A note on Vehicle RAM data

All plug-in vehicle modules included in the same firmware must share the limited
RAM space of the PIC18F2685 microcontroller. As we only have 3,328 bytes of
RAM, this could be a major problem. If vehicle #1 uses 50 bytes, vehicle #2 200
bytes, vehicle #3, 150 bytes – the total would be 800 bytes! That would severely
limit the number of vehicles that can be supported.

However, there is a neat trick to avoid this. Only one vehicle module can be
running at any one time, so we can put all the vehicle module data in the same
place. That is the purpose of the

#pragma udata overlay vehicle_overlay_data

directive that you saw in the sample code above. Any variables declared after
that directive, but before the “#pragma udata” directive that follow, will be put in
the vehicle_overlay_data section of ram – and each vehicle’s data will be put at
the same place in ram! It behaves like a C UNION, split over different source
files. Each vehicle gets its own space to store its data, but the total amount of
ram allocated is only equal to the largest amount of ram that the biggest module
requires. In our example above, vehicle #2 requires 200 bytes of ram and that
will be the size of vehicle_overlay_data. The result behaves like this:

23

union
 {
 … vehicle1_data …;
 … vehicle2_data …;
 … vehicle3_data …;
 }

The drawback is that this overlayed data structure cannot be initialized by the C
runtime (how could it initialize it if vehicle #1 required a different initialization to
vehicle #2?). In practice, you should initialize overlayed data yourself in the
_initialise() function that is called during module initialization (which is when you
are the selected vehicle).

As the PIC18F microprocessors limit each udata section to a maximum of 256
bytes, there is a second overlay section also available, to allow each vehicle to
use up to 2x256 = 512 bytes of overlay data:

#pragma udata overlay vehicle_overlay_data2

Initialising the CAN bus

You should initialize the CAN bus however you require during module
initialization. A typical implementation of this is:

 CANCON = 0b10010000; // Initialize CAN
 while (!CANSTATbits.OPMODE2); // Wait for Configuration mode

 // We are now in Configuration Mode
 RXB0CON = 0b00000000; // RX #0 mask and filters
 RXM0SIDL = 0b10100000;
 RXM0SIDH = 0b11111111;
 RXF0SIDL = 0b00000000;
 RXF0SIDH = 0b00100000;

 RXB1CON = 0b00000000; // RX #1 mask and filters
 RXM1SIDL = 0b11100000;
 RXM1SIDH = 0b11111111;

 BRGCON1 = 0x01; // SET BAUDRATE to 500 Kbps
 BRGCON2 = 0xD2;
 BRGCON3 = 0x02;

24

 CIOCON = 0b00100000; // CANTX pin will drive VDD when recessive
 if (sys_features[FEATURE_CANWRITE]>0)
 {
 CANCON = 0b00000000; // Normal mode
 }
 else
 {
 CANCON = 0b01100000; // Listen only mode, Receive bufer 0
 }

 // Hook in...
 vehicle_fn_poll0 = &vehicle_futura_poll0;

Note that we are using RXB0 (RX channel #0) and hence the vehicle_fn_poll0()
hook for the framework to call us (during the can rx interrupt handler, so take
care).

Also note the use of sys_features[FEATURE_CANWRITE]>0 to control whether
the CAN bus is to be initialized in normal or listen-only mode.

The vehicle_futura_poll0() function looks like this:

BOOL vehicle_futura_poll0(void)
 {
 can_datalength = RXB0DLC & 0x0F; // number of received bytes
 can_databuffer[0] = RXB0D0;
 can_databuffer[1] = RXB0D1;
 can_databuffer[2] = RXB0D2;
 can_databuffer[3] = RXB0D3;
 can_databuffer[4] = RXB0D4;
 can_databuffer[5] = RXB0D5;
 can_databuffer[6] = RXB0D6;
 can_databuffer[7] = RXB0D7;

 RXB0CONbits.RXFUL = 0; // All bytes read, Clear flag

 // Implement the handling of the incoming data in can_databuffer
 // (length can_datalength) here…

 return TRUE;
 }

25

You can refer to the PIC18F2685 data sheet and other vehlcle_* module source
code for examples of how to manage the data coming in the CAN bus.

Transmitting on the CAN bus

We transmit on the CAN bus, typically in _ticker*() functions. We do not generally
recommend doing this in the _poll*() functions, as that is in the CAN reception
interrupt handler.

The code to transmit looks like this:

if (sys_features[FEATURE_CANWRITE]>0)
 {
 while (TXB0CONbits.TXREQ) {} // Loop until TX is done
 TXB0CON = 0;
 TXB0SIDL = (arb_id & 0x07)<<5;
 TXB0SIDH = (arb_id>>3);
 TXB0D0 = 0x01;
 TXB0D1 = 0x02;
 TXB0D2 = 0x03;
 TXB0D3 = 0x04;
 TXB0D4 = 0x05;
 TXB0D5 = 0x06;
 TXB0D6 = 0x07;
 TXB0D7 = 0x08;
 TXB0DLC = 0b00001000; // data length (8)
 TXB0CON = 0b00001000; // mark for transmission
 }

Note that before transmitting, you should use the loop on TXB0CONbits.TXREQ
to ensure the controller is ready to transmit.

Also note that you should only transmit if sys_features[FEATURE_CANWRITE]
is >0. The reason for this is that the CAN bus will be in listen-only mode if this is
==0. In that case, you can’t transmit, so TXB0CONbits.TXREQ will never go
true, and you will loop forever (or until the hardware watchdog timer fires and the
module is rebooted).

26

The OVMS Virtual Vehicle

What is the OVMS Virtual Vehicle?

OVMS supports multiple vehicles by implementing a virtual vehicle. The
parameters and behavior of each real vehicle are mapped to this virtual vehicle,
and that is what is used by the Apps.

The plug-in vehicle modules typically read data from the vehicle’s CAN bus, and
update the global data storage values of the virtual vehicle, to reflect that state.
They convert the physical vehicle status to virtual vehicle status.

In addition, the plug-in vehicle modules should issue notifications whenever
certain events occur (such as a charge being interrupted).

Global Data Storage

The data storage for the virtual vehicle is defined in some shared global variables
in the ovms.h module. These variables are as follows:

Vehicle Identification

The vehicle identification parameters are concerned with the identification of the
vehicle and the environment of the OVMS hardware in the vehicle.

 unsigned char ovms_firmware[3]

Stores the version of the OVMS firmware. This parameter is set by the
ovms.c module itself, during initialization. It may be read by vehicles, but is
typically not written. The parameter itself is 3 decimal bytes (e.g.;
0x02,0x01,0x01 denotes version v2.1.1).

 unsigned char car_type[5]

Stores the vehicle type currently identified, as a 1 to 4 character, zero-
terminated, ASCII string. This is typically set during initialization of the
vehicle plug-in module, and often updated to better reflect the specific
vehicle model based on CAN bus messages.

 unsigned char car_vin[18]

27

Stores the vehicle VIN (normally detected on the CAN bus).

 unsigned char car_12vline

The power of the 12 volt system in the car. This is expressed in units of
0.1 volts (so a value of 121 denotes 12.1volts). This parameter is normally
maintained by the ‘inputs’ module, based on using an ADC reading the
12V power line to the module, but vehicle plug-in modules can update it if
they have a more accurate method.

 unsigned char car_12vline_ref

The reference voltage of the 12 volt battery in the car. This is a union
containing either a countdown timer (values 0..15) or the reference voltage
in units of 0.1 volts (so a value of 121 denotes 12.1volts). This is taken 15
minutes after 12V charging ends and is used to detect and alert for an
under voltage condition on the 12V battery.

 unsigned int car_12v_current

The current level of the 12 volt system in the car (normally the current
output of the DC converter). This is expressed in units of 0.1 amps.

 unsigned char car_gsmcops[9]

The GSM provider currently being used, as a zero-terminated string of
between 1 and 8 characters. This value is usually maintain by the ‘net’
module directly.

GPS Status

The GPS status parameters are concerned with the physical location of the
vehicle, and are usually determined by a GPS unit.

The OVMS hardware module has a built-in GPS unit that can be enabled on
demand, or the GPS location can be read from a GPS unit in the vehicle itself.
The determination of which to use is set by global variable ‘net_fnbits’. If bit0 of
net_fnbits is unset, then the OVMS GPS unit will not be used, and it will be up to
the car module to provide GPS location (usually from values read from the CAN
bus). If bit0 of net_fnbits is set, then the OVMS GPS unit will be controlled by the
‘net’ module and these GPS status values updated automatically, without the
plug-in vehicle module having to do anything.

28

Usually, the plug-in vehicle module makes the decision as to whether to enable
OVMS GPS based on the capabilities of the vehicle itself.

Here are the parameters themselves:

 unsigned char car_gpslock

This is set to 0 if there is no good GPS lock, or 1 if the GPS is providing
location data.

 signed char car_stale_gps

This is set to -1 if there is no GPS data, 0 if there is data, but it is stale (ie;
perhaps shows outdated information), and >0 if GPS location data is
correct and up-to-date. Vehicle modules may use this as a timer to detect
stale data; so it is common to see it count down from high numbers – so
long as it is >0, then the GPS data should be considered valid.

 signed long car_latitude

The latitude of the vehicle, as a signed long integer (4 bytes). To convert a
floating decimal latitude, multiply by 2048*3600.

 signed long car_longitude

The longitude of the vehicle, as a signed long integer (4 bytes). To convert
a floating decimal longitude, multiply by 2048*3600.

 unsigned int car_direction

The direction of the vehicle, to the nearest degree between 0 and 359.

 signed int car_altitude

The altitude of the vehicle, specified in integer metres.

Tire Pressure Monitoring System

The status of the vehicle’s tire pressure monitoring system is stored in several
parameters:

29

 signed char car_stale_tpms

An indication whether the TPMS values are present, or stale. A value -1
indicates no TPMS present, 0 is TPMS present but values stale, and >0 is
TPMS present and values are correct and up-to-date. Vehicle modules
may use this as a timer to detect stale data; so it is common to see it
count down from high numbers – so long as it is >0, then the TPMS data
should be considered valid.

 signed char car_tpms_t[4]

TPMS tire temperatures. Values are in celcius, offset by 40 (so, for
example, 10 celcius would be stored as 50). The array elements are for
the four wheels front-right [0], rear-right [1], front-left [2] and rear-left [3].

 unsigned char car_tpms_p[4]

TPMS pressures. Values are in PSI multiplied by 0.2755. The array
elements are for the four wheels front-right [0], rear-right [1], front-left [2]
and rear-left [3].

Driving Status

The driving status of the vehicle is stored in the following parameters:

 unsigned char car_doors1 [bit 7]

A bit used to signal whether the car is turned on or off. Set to 1 if the car
ignition switch is ON, otherwise 0.

 unsigned char car_speed

The vehicle speed, in vehicle units (either mile-per-hour, or kilometers-per-
hour, depending on the module configuration).

 unsigned int car_trip

The vehicle trip counter, defined in units of 0.1 miles. Note that the
interpretation of this parameter is currently under discussion, and may
change – we anticipate changing the units to vehicle units at some point in
the future.

30

 unsigned long car_odometer

The vehicle odometer, defined in units of 0.1 miles. Note that the
interpretation of this parameter is currently under discussion, and may
change – we anticipate changing the units to vehicle units at some point in
the future.

 unsigned char car_drivemode

The current drive mode, i.e. selected engine profile. This has no common
specification, can be stored in vehicle-specific encoding.

 unsigned int car_power

Current power level at the battery, defined in units of 0.1 kW. Use positive
figures for discharging, negative for charging.

 unsigned long car_energy_used

Energy used on the current trip so far, defined in units of 1 Wh.

 unsigned long car_energy_recd

Energy recovered on the current trip so far, defined in units of 1 Wh. This
may be used for charging energy count as well.

Vehicle Environment

The temperatures in and around the vehicle are stored in the following
parameters:

 signed char car_stale_ambient

An indication whether the ambient temperature value is valid or stale. A
value -1 indicates no ambient temperature can be measured, 0 is ambient
temperature is measured but value is stale, and >0 is ambient temperature
is measured and value is correct and up-to-date. Vehicle modules may
use this as a timer to detect stale data; so it is common to see it count
down from high numbers – so long as it is >0, then the ambient
temperature should be considered valid.

31

 signed char car_ambient_temp

Ambient temperature, in degres celcius.

 signed char car_stale_temps

An indication whether the three internal temperatures are valid or stale. A
value -1 indicates no internal temperatures can be measured, 0 is internal
temperatures are measured but values are stale, and >0 is internal
temperatures are measured and values are correct and up-to-date.
Vehicle modules may use this as a timer to detect stale data; so it is
common to see it count down from high numbers – so long as it is >0, then
the three internal temperatures should be considered valid.

 signed char car_tpem

The temperature of the PEM (electronics controlling the power entering /
leaving the battery), specified in degrees celcius.

 unsigned char car_tmotor

The temperature of the MOTOR, specified in degrees celcius.

 signed int car_tbattery

The temperature of the BATTERY, specified in degrees celcius.

The environment of the vehicle itself is stored in the following parameters:

 unsigned char car_doors1 [bit 0]

This bit is set to 1 if the front left door is OPEN, else 0.

 unsigned char car_doors1 [bit 1]

This bit is set to 1 if the front right door is OPEN, else 0.

 unsigned char car_doors2 [bit 6]

This bit is set to 1 if the bonnet is OPEN, else 0.

 unsigned char car_doors2 [bit 7]

32

This bit is set to 1 if the trunk is OPEN, else 0.

 unsigned char car_doors1 [bit 2]

This bit is set to 1 if the charge port is OPEN, else 0.

 unsigned char car_doors1 [bit 6]

This bit is set to 1 if the vehicle handrake is ON, else 0.

 unsigned char car_doors2 [bit 5]

This bit is set to 1 if the vehicle headlights or ON, else 0.

 unsigned char car_doors3 [bit 0] "CarAwake"

This bit is set to 1 to indicate the vehicle is awake, and operational, else 0.

 unsigned char car_doors3 [bit 1] "CoolingPump"

This bit indicates that cooling systems are working.

 unsigned char car_doors3 [bit 6] "CtrlLoggedIn"

On vehicles supporting controller access, this bit indicates that the OVMS
is logged into the controller.

 unsigned char car_doors3 [bit 7] "CtrlCfgMode"

On vehicles supporting controller tuning, this bit indicates that the
controller is currently in configuration mode (i.e. "pre-operational mode" for
a CANopen controller like SEVCON Gen4).

 unsigned char car_doors2 [bit 4]

This bit is set to 1 if the car supports a valet mode and that mode is
ENABLED, else 0.

 unsigned char car_doors2 [bit 3]

This bit is set to 1 if the car is LOCKED, else 0.

33

 unsigned char car_lockstate

Set to 4 if vehicle is locked, or 5 if unlocked. Note that this parameter is
deprecated and will be removed in future versions of the OVMS virtual
vehicle. In preference, car_doors [bit 3] should be used to determine lock
state of the vehicle.

 unsigned char car_doors4 [bit 2]

This bit is set to 1 if the car alarm is SOUNDING, else 0.

The virtual vehicle includes a parking timer, to indicate whether the vehicle is
parked, and for how long:

 unsigned long car_time

Time (in seconds), as measured by the car. The 0 value of this can be
whatever the car module desires. It is acceptable to merely initialize this to
zero and increment it by 1 for every ticker1() received. Alternatively, a
more accurate method is to read the real time clock from the vehicle CAN
bus (if available) and update from there.

 unsigned long car_parktime

The time (in seconds) that the vehicle was parked, or 0 if not parked.

Battery Status

The status of the battery is stored in the following parameters:

 unsigned char car_SOC

The state of charge of the vehicle battery (expressed as a percentage,
with 0 denoting empty and 100 denoting full). Note that most vehicle
batteries are not linear, and there is considerable variance and guesswork
in calculating capacity – this is, at best, a guess.

 unsigned int car_idealrange

The vehicle ideal range, specified in miles. Note that this can be
calculated by taking the manufacturer’s published estimate for range (over
available SOC) and multiplying by car_SOC/100. Note that the

34

interpretation of this parameter is currently under discussion, and may
change – we anticipate changing the units to vehicle units at some point in
the future.

 unsigned int car_estrange

The vehicle estimated range, specified in miles. Driving patterns are not
consistent, and most calculations of estimated range are performed by
using past driving habits (which may or may not be an indication of future
driving habits). This is, at best, a guess. Note that the interpretation of this
parameter is currently under discussion, and may change – we anticipate
changing the units to vehicle units at some point in the future.

Charging Status

The charging status is monitored by a large number of parameters:

 unsigned char car_doors1 [bit 3]

This bit is set to 1 if the pilot signal is present, else 0. This would normally
indicated that the vehicle is connected to external power and either
charging or ready to charge.

 unsigned char car_doors1 [bit 4]

This bit is set to 1 if the vehicle is currently charging, else 0.

 unsigned char car_linevoltage

This indicates the line voltage (in units of 1 volt) that the vehicle is
currently charging at. If not currently charging then the value should be
ignored as irrelevant (and probably set to 0 by the vehicle module).

 unsigned char car_chargecurrent

This indicates the line current (in units of 1 amp) that the vehicle is
currently charging at. If not currently charging then the value should be
ignored as irrelevant (and probably set to 0 by the vehicle module).

 unsigned char car_chargemode

This value indicates the charge/drive mode that the vehicle is currently in.

35

It is one of 0 (standard), 1 (storage), 3 (range) or 4 (performance). For
vehicles that don’t support such modes, it should be set to 0.

 unsigned char car_charge_b4

This value is currently not used, and should be set to 0 and ignored by
Apps.

 unsigned char car_chargestate

The current charging state (or result of last charge). It is one of 1
(charging), 2 (top off), 4 (done), 13 (preparing to charge), or 21-24
(stopped charging).

 unsigned char car_chargesubstate

The current charging sub-state (or result of last charge). It is one of 2
(scheduled start), 3 (by request), 5 (timerwait), 7 (connect power cable),
14 (interrupted).

 unsigned char car_chargelimit

The charge current limit (in units of 1 amp) currently in effect. This is used
by some vehicles to limit the charge current available.

 unsigned int car_chargeduration

The charge duration (in minutes) for the current / just completed charge.

 unsigned int car_chargekwh

The charge kWh put into the battery for the current / just completed
charge.

 unsigned int car_cac100

An indication of battery health, storing the Calculated Amp Hour capacity
(or some other suitable metric) of the battery in units of 0.01Amp. For
example, a battery with a CAC of 160Ah would be stored as 16000.

 unsigned char car_soh

State of battery health in percent (0-100). This can be calculated from the

36

cac100 (or vice versa) or read from the battery management system. The
BMS may have another concept of "battery health" than just capacity.

 signed int car_chargefull_minsremaining

During charging, and if supported, the number of minutes of charging
remaining until the battery is 100% full (for the current charge mode). Or,
the value -1 if not supported or car not charging.

 signed int car_chargelimit_minsremaining

During charging, and if supported, the number of minutes of charging
remaining until the charge reaches a predefined limit. Or, the value -1 if
not supported or car not charging.

 unsigned int car_chargelimit_rangelimit

The range limit (in vehicle units) for car_chargelimit_minsremaining. Or,
the value -1 if no range limit defined.

 unsigned char car_chargelimit_soclimit

The SOC% limit for car_chargelimit_minsremaining. Or, the value -1 if no
SOC% limit defined.

Some vehicles may support a delayed timer charge mode. We have started to
support this in OVMS, as these parameters:

 signed char car_stale_timer

An indication whether the charging timer is valid or stale. A value -1
indicates no charging timer is supported, 0 is charging timer is working but
value is stale, and >0 is charging timer is supported and value is correct
and up-to-date. Vehicle modules may use this as a timer to detect stale
data; so it is common to see it count down from high numbers – so long as
it is >0, then the charging timer should be considered valid.

 signed char car_timermode

Set to 0 for charge on-plugin, or 1 for timer-delayed.

 unsigned int car_timerstart

37

The time that charging is scheduled to start. This is specified as the
number of minutes past midnight UTC less 1. For example, 59 is 1am
GMT, 1439 (is midnight GMT).

38

Vehicle Module Development Checklists

Development Checklists

You can use these checklists to know what vehicle parameters the OVMS
system supports, and how you can map a specific vehicle to these.

Parameter Purpose Vehicle Support Notes

Vehicle Identification
car_type Vehicle type identified
car_vin Vehicle VIN

Parameter Purpose Vehicle Support Notes

GPS Status
Vehicle GPS Does the vehicle have a built-in

GPS? If so, complete the
following.

car_gpslock Set to record GPS lock
car_stale_gps Denotes GPS data staleness
car_latitude Latitude of the vehicle
car_longitude Longitude of the vehicle
car_direction Direction of the vehicle
car_altitude Altitude of the vehicle

Parameter Purpose Vehicle Support Notes

Tire Pressure Monitoring System
TPMS Does the vehicle have a TPMS?

If so, complete the following.
car_stale_tpms Denotes TPMS data staleness
car_tpms_t The temperatures of each wheel
car_tpms_p The pressures of each wheel

Parameter Purpose Vehicle Support Notes

Driving Status
car_doors1 [bit7] Set if the car ignition is ON
car_speed The speed of the vehicle
car_trip The vehicle trip counter
car_odometer The vehicle odometer

Parameter Purpose Vehicle Support Notes

Vehicle Environment

39

Parameter Purpose Vehicle Support Notes
car_stale_ambient Ambient temperature staleness
car_ambient_temp Ambient temperature
car_stale_temps Other Temperature staleness
car_tpem Temperature of the PEM
car_tmotor Temperature of the MOTOR
car_tbattery Temperature of the BATTERY
car_doors1 [bit 0] Set if front left door OPEN
car_doors1 [bit 1] Set if front right door OPEN
car_doors2 [bit 6] Set if bonnet is OPEN
car_doors2 [bit 7] Set if trunk is OPEN
car_doors1 [bit 2] Set if charge port is OPEN
car_doors1 [bit 6] Set if handbrake is ON
car_doors2 [bit 5] Set if headlights ON
car_doors3 [bit 0] Set if vehicle is AWAKE (or if not

supported just follow ignition)
car_doors3 [bit 1] Set if cooling pump is active
car_doors3 [bit 6] Set if module is logged into the

motor controller
car_doors3 [bit 7] Set if motor controller is in

configuration mode
car_doors2 [bit 4] Set if valet mode is ENABLED
car_doors2 [bit 3] Set if vehicle is LOCKED
car_lockstate 4=locked, 5=unlocked

(deprecated)
car_doors4 [bit 2] Set if alarm SOUNDING
car_time Time (in seconds)
car_parktime Time (seconds) vehicle parked

Parameter Purpose Vehicle Support Notes

Battery Status
car_SOC State of charge percentage
car_idealrange Ideal range
car_estrange Estimated range
car_cac100 Calculated Amp Hour capacity

Parameter Purpose Vehicle Support Notes

Charging Status
car_doors1 [bit 3] Set if pilot signal ON
car_doors1 [bit 4] Set if vehicle CHARGING
car_linevoltage Line voltage while charging
car_chargecurrent Line current while charging
car_chargemode Vehicle Mode
car_chargestate Charging state
car_chargesubstate Charging sub-state
car_chargelimit Charge current limit
car_chargeduration Charge duration (minutes)
car_chargekwh Charge kWh put into battery
car_chargefull_minsremainin
g

Mins remaining for full charge

40

Parameter Purpose Vehicle Support Notes
car_chargelimit_minsremaini
ng

Mins remaining for limited charge

car_chargelimit_rangelimit Desired range for limited charge
car_chargelimit_soclimit Desired SOC% for limited charge
car_stale_timer Charge timer staleness
car_timermode Charge timer mode
car_timerstart Charge timer schedule

41

Vehicle-Specific Extensions

NET_MSG Command Handlers

A vehicle module that requires to override or implement a new NET_MSG
command can hook in to vehicle_fn_commandhandler.

BOOL (*vehicle_fn_commandhandler)
(BOOL msgmode, int code, char* msg)

Once implemented, the hook will be called whenever a NET_MSG message is
received by the module.

 msgmode is TRUE if the GPRS system is currently sending responses
that can be added to by the vehicle module, or FALSE otherwise.

 code is the message request code.
 msg is the message request body.

If the vehicle module handles the message request, it should return TRUE.
Otherwise, it should return FALSE to allow the NET_MSG system to handle it.

NET_SMS SMS Handlers

A vehicle module that requires to override or implement a new NET_SMS SMS
command can hook in to vehicle_fn_smshandler.

BOOL (*vehicle_fn_smshandler)
(BOOL premsg, char *caller, char *command, char *arguments)

Once implemented, the hook will be called whenever a NET_SMS message is
received by the module.

 premsg is TRUE if the hook is called at the start of SMS message
processing (before any other default SMS handling).

 caller is the caller telephone number.
 command is the SMS command.
 arguments are the arguments to the SMS command.

42

If the vehicle module handles the SMS command it should return TRUE.
Otherwise, it should return FALSE to allow the NET_SMS system to handle it.

NET_SMS SMS Extensions

A vehicle module that requires to supplement a standard SMS response to a
NET_SMS SMS command can hook in to vehicle_fn_smsextensions.

BOOL (*vehicle_fn_smsextensions)
(char *caller, char *command, char *arguments)

Once implemented, the hook will be called whenever a NET_SMS message is
handled by the module, after the standard response.

 caller is the caller telephone number.
 command is the SMS command.
 arguments are the arguments to the SMS command.

If the vehicle module extends the SMS command it should return TRUE.
Otherwise, it should return FALSE to allow the NET_SMS system to handle it.

43

OVMS Server Development

44

OVMS App Development

45

Conclusions

46

	Welcome
	Development Overview

	Vehicle Firmware Development Tools
	Development Environment
	Development tools
	GITHUB
	Compile and Flash your First Firmware
	Chips Used
	Architecture and Tool Hints
	Stack depth debugging

	Vehicle Module DIAG Port
	The DIAG port
	Using the DIAG Port for debug logging

	Vehicle Firmware Overview
	Code Modules
	The Polling Main Loop
	LED Control

	OVMS Vehicle Modules
	OVMS v2 and Plug-In Vehicle Modules
	vehicle.h and vehicle.c
	Implementing a New Vehicle Module
	A note on Vehicle ROM code
	A note on Vehicle RAM data
	Initialising the CAN bus
	Transmitting on the CAN bus

	The OVMS Virtual Vehicle
	What is the OVMS Virtual Vehicle?
	Global Data Storage
	Vehicle Identification

	GPS Status
	Tire Pressure Monitoring System
	Driving Status
	Vehicle Environment
	Battery Status
	Charging Status

	Vehicle Module Development Checklists
	Development Checklists

	Vehicle-Specific Extensions
	NET_MSG Command Handlers
	NET_SMS SMS Handlers
	NET_SMS SMS Extensions

	OVMS Server Development
	OVMS App Development
	Conclusions

