CA

WEB TECHNO CONFERENCE

Rails Asset Pipeline
Production Techniques

Leonard Teo, Ballistiq
@leonardteo
leonard@ballistig.com

www.ballistig.com
www.leonardteo.com

ballistig»

Why should | care about the Asset
Pipeline?
Use preprocessors easily: SCSS/SASS, Less,

Coffeescript, Slim, Haml

Performance improvements. Automatic
concatenation and compression of asset files.
Minification and Gzip where appropriate.

Sanity saving during development. All javascripts
and CSS are laid out nicely.

Cache busting.

Easy reuse and library integrations using
Rubygems. E.g. Bootstrap gem

What’s the problem?

It’'s complex until you ‘get it’. Unfortunately
it’s more complex than it needs to be.

Newcomers to Rails are weirded out by it.

Front-end designers/devs who aren’t L33T just
freak out with it (JS+Coffescript+SCSS+LESS in
the same project!?1?1?1?),

Hardcore backend devs don’t appreciate it as
much as they should.

What it’s for / not for

* Use it for: Don’t use it for:
— Anything Ul/UX related — Large stuff
— Ul images, icons * Videos
— Javascripts — User content
— CSS * Avatars

* Images and files uploaded
by users

The Asset Pipeline

= =95

Rails Asset Pipeline

IN DEVELOPMENT

Asset Pipeline Bare Basics

* When you start a Rails project, the asset
pipeline is enabled by default.

* The module is called Sprockets (gem).
Sprockets == Rails asset pipeline.

* Assets are in /app/assets/
— /app/assets/javascripts
— /app/assets/stylesheets
— /app/assets/images

Demo

Rails new project
Scaffold some controllers

Show each individual JS/CSS file in
development

Precompile assets

S
S
S

now how JS and CSS are now a single file
now SCSS quickly

now Coffeescript quickly

Manifests

A manifest is a single CSS or JS file that will take

all the assets that you define in it and compile it
into a single asset file.

Source files and libraries:
* jQuery

* Bootstrap
 DataTables
* PLUpload

* App-specific code

Manifest Gotcha

* When you create a new manifest, you MUST
declare it in production.rb.

* |f not, it will NOT precompile and you WILL get
a 500 server error when you deploy.

Preprocessors/Transcompilation

* (CSS:
— SCSS (default)
— SASS
— Less
— ERB
¢ JS:
— Coffeescript
— ERB
* You are not forced to use these. You can use

vanilla CSS and JS. Different preprocessors and
templating engines can coexist.

Manually Integrating a Library

Bootstrap
* Demo:
— Show how to manually integrate a 3" party library
(Bootstrap):

— Copy files to respective directories in:
» /vendor/assets/javascripts
e /vendor/assets/stylesheets
» /vendor/assets/images

— Change paths of images in CSS to /assets/

— Show how to use <%= asset_path %> in CSS with
ERB extension

The FAST way - Rubygems

* Rails enables you to store assets as part of its
plugin/gem architecture.

* There are MANY gems available for common
libraries such as:

— Bootstrap

— Zurb

— Datatables

— Etc. Just google it and you’ll likely find it

— Be careful that some Gems are NOT maintained.
Check what version of the library the Gem is at.

Rubygems Bootstrap Demo

Gem “twitter-bootstrap-rails”
Rails generate bootstrap:install static
Rails g bootstrap:layout application fixed

Rails g bootstrap:themed [Resource name]

Controller/Action specific javascripts

[Demo]

Issue: Not all javascript should be run on specific
controllers. Some libraries don’t check if an element exists
before executing and will throw an error.

Options:
— Check if the element exists using S(‘#..").length (I don’t like this)

— Methods for checking controller/action/namespace:

1. Pass the controller and action into the layout in the <body> tag as
data attributes. You can also pass the namespace if you wish.

2. Global functions to check what the controller/action/namespace is.

3. If... blocks to only execute the JS if the user is in the correct
namespace/controller/action.

Rails Asset Pipeline

PRECOMPILATION

Precompilation

Precompilation command:
— bundle exec rake assets:precompile

Creates /public/assets directory

To undo, just ‘rm —rf /public/assets” or "bundle
exec rake assets:clean

In development, when you precompile assets, it
creates a directory on /public which is served
(unless you configure it to serve from a different
path). This means that any CSS/Javascripts are
run TWICE.

Rails Asset Pipeline

DEPLOYMENT OPTIONS

1. Precompile assets on server on
deployment (this is bad)

In Capistrano, you uncomment ‘load ‘deploy/assets’” in
Capfile.

Basically it runs the assets precompilation on the server
when you deploy.

It’s VERY computationally intensive. Can knock out a micro
EC2 instance.

Assets might not be changed. Why precompile again?

It can take down your site while it is precompiling
GENYE &)

You have to install all dependencies on the server —
therubyracer, libv8. When you deploy a new rails version
sometimes it upgrades these and it can add 30+ minutes to
your deploy time.

2. Precompile on server only if you
have to (also bad)

 There is a capistrano recipe to only

precompile if there are actually changes to the
files.

* http://stackoverflow.com/questions/
9016002/speed-up-assetsprecompile-with-
rails-3-1-3-2-capistrano-deployment

e Can still bog the server down as you are
compiling server-side.

3. Precompile assets locally and rsync
them to the server
e Capistrano recipe will precompile the assets
locally then upload them:

* http://keighl.com/post/fast-rails-assets-
precompile-capistrano

* Pretty good solution if you control asset
precompilation manually

4. Deploy on another branch

Create a ‘production’ branch of your code.

When deploying, merge master into production,
precompile assets, commit and push, then cap deploy .

Fastest deploy time as all compilation is done locally. It just
has to check out the files and restart the app.

Don’t need rubyracer/libv8 on server. "bundle install —
without test assets development’

Can be painful as you now have an extra branch. Be careful
not to commit stuff to the production branch, then merge
production into master and have /public/assets/ in your
master branch.

| use this method because it means that I’'m in full control
of precompilation and what goes into production.

5. Configuration

Deploy from Master

Change development.rb
— config.assets.prefix = "/dev-assets”

Change application.rb
— config.assets.initialize_on_precompile = false

Enables you to develop without the conflict
of /public/assets

Precompile assets and commit code as
needed.

CDN to serve assets

* Using Cloudfront, set up a new distribution and
configure it to get assets from your app. If your
app is serving at “www.leonardteo.com” make

that the origin.

* |In production.rb ,set:
config.action_controller.asset_host = “http://
xxx.cloudfront.net”

* See this guide:
http://blog.codeship.io/2012/05/18/Assets-
Sprites-CDN.html

Rails Asset Pipeline

REUSE

Creating your own reusable library

[Demo]
Create a rails plugin using:

— ‘rails plugin new [name]
In your plugin root, create the folder structures to store your assets:

— ./vendor/assets/javascripts/[name]/

— ./vendor/assets/images/[name]/

— ./vendor/assets/stylesheets/[name]/
Use manifest files for stylesheets and javascripts.
Remember to add the Engine class that inherits from Rails::Engine!
Always namespace so that you don’t conflict with your app stylesheets.
In your application, add the gem and configure it to read from github
repository.
In your application manifest files, you can now require the stylesheets and
javascripts.

Rails Asset Pipeline

QUESTIONS?

If we have time...

BONUS FRONT END STUFF

Slim templating

* Take a good look at
Slim (slim-lang.com)
as an alternative to
ERB.

* Very light syntax.
* HtmI2Slim to

convert existing
ERB templates.

doctype html
html
head
title Slim Examples
meta name="keywords" content="template language"
meta name="author" content=author
javascript:
alert('Slim supports embedded javascript!')

body
hl Markup examples

#content
p This example shows you how a basic Slim file looks like.

== \,’:lf\lfi

- unless items.empty?
table
- for item in items do
tr
td.name = item.name
td.price = item.price
- else
p
| No items found. Please add some inventory.
Thank you!

div id="footer"
= render "footer'
| Copyright © #{year} #{author}

Static Websites - Middleman

If you need to create a
static website or mini-site
(e.g. marketing site for your
app), don’t roll a Rails app!
Use Middleman!

middlemanapp.com

Take advantage of asset
pipeline, preprocessors,

layouts, ERB/slim/whatever.

Single command-line build
will compile everything into
a static HTML site (even
with .php files if you need)
for deployment.

MIDDLEMAN

es developing websites si

We’re hiring!

* Looking for a front-end designer ninja

 Email us!
— hr@ballistig.com

Credits / Contact

e Thanks to the Rails team for an awesome framework.

 To the dedicated people on Stack Overflow answering
guestions on the Asset Pipeline.

Peer reviewers: Marc-Andre Lafortune, Martin Provencher.

Please give feedback!
https://joind.in/7970

Contact:

leonard@ballistig.com
@leonardteo

