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• Interested in the association between X and the binary variable Y. 

• Measure Y using an instrument that is not always accurate, and obtain Y*.

• A third variable, Z, is related to the misclassification mechanism. 
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Diagnosed, MI* = 1
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Diagnosed, MI* = 1

Not diagnosed, MI* = 2
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• Interested in the association between Risk Factors and the binary variable MI. 

• Measure MI using self-reported medical diagnoses, and obtain MI*.

• A third variable, gender, is related to the misclassification mechanism. 
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Primary interest: Estimating β
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Secondary interest: Estimating γ

Observation in 
target population

Has outcome 1, 
Y = 1

Has outcome 2, 
Y = 2

X

Observed outcome 1, Y* = 1

Observed outcome 2, Y* = 2

Z

Observed outcome 1, Y* = 1

Observed outcome 2, Y* = 2

Z

Misclassification model

Primary interest: Estimating β



Complete data log-likelihood

• Y (true outcome) is a latent variable, but let’s pretend we know it:
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Expectation Step Maximization Step

Estimation with the EM Algorithm
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Label switching
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• Label switching: When a mixture model likelihood is invariant under 
relabeling of the mixture components, resulting in multimodal 
likelihood functions.
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• Suppose we have a single predictor X and a single predictor Z:
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• Suppose we have a single predictor X and a single predictor Z:



Label switching

• There are two sets of parameters that yield the exact same 
likelihood value.
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Label switching

• There are two sets of parameters that yield the exact same 
likelihood value.
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Correcting label switching

• There is a quantity that has different values when each parameter 
set is used to compute it:
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Correcting label switching
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Correcting label switching
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Assumption: 
Outcome categories are 

correctly classified at 
least 50% of the time.

• Apply to EM estimates.



Applied Example

• Goal: Understand the risk factors for MI.
• MI is suspected to be misdiagnosed differentially based on patient age and 

gender. 

• Data from 2020 MEPS survey.
30
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• Model for true MI: MI ~ Smoking Status + Exercise Habits + Age

• Model observed MI given true MI: MI* | MI ~ Age + Gender



Applied Example

• Model for true MI: MI ~ Smoking Status + Exercise Habits + Age

• Model observed MI given true MI: MI* | MI ~ Age + Gender
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Effects are 
attenuated 

when we do not 
account for 

misclassification 
of MI



Applied Example

• Model for true MI: MI ~ Smoking Status + Exercise Habits + Age

• Model observed MI given true MI: MI* | MI ~ Age + Gender
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Estimated Specificity
P( no MI* | no MI )

Estimated Sensitivity
P( MI* | MI )

Men 94.4% 76.3%

Women 97.1% 59.1%



Want to use this method?

• You’re in luck!

• COMBO R Package (coming soon to 
a CRAN repository near you).
• Correcting Misclassified Binary 

Outcomes
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Conclusions and Next Steps

• We can use the proposed EM algorithm to estimate associations
when a binary outcome is potentially misclassified.
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Conclusions and Next Steps

• Extensions:

• Outcomes with 
more than 2 
categories.

• More than one 
outcome 
“stage”. 
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Thank you!

Kimberly A. Hochstedler - kah343@cornell.edu
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Notation cheat sheet and more info on 
“COMBO” available at: bit.ly/R_COMBO

mailto:kah343@cornell.edu

