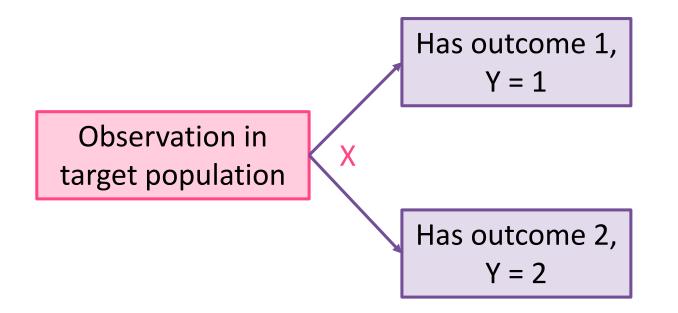
Statistical inference for association studies in the presence of binary outcome misclassification

Kimberly A. Hochstedler and Martin T. Wells Cornell University

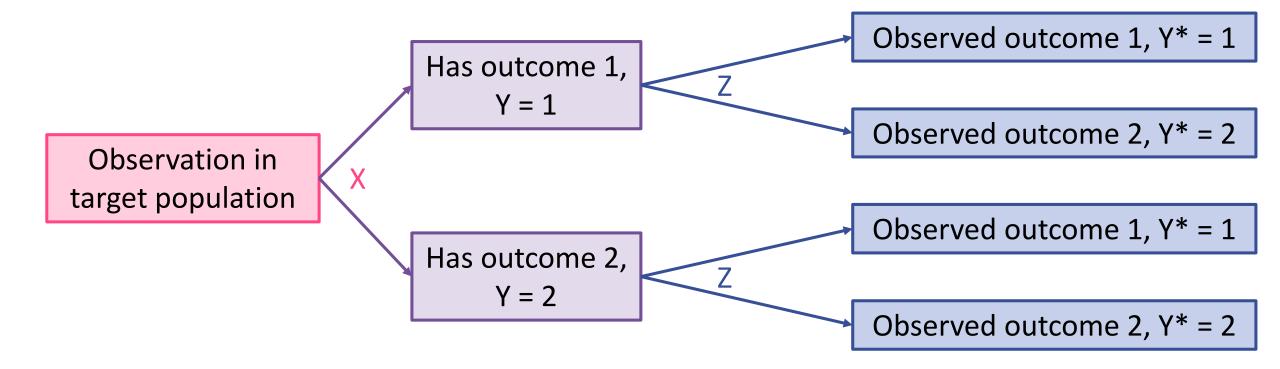
Problem setting

• Interested in the association between X and the **binary variable** Y.



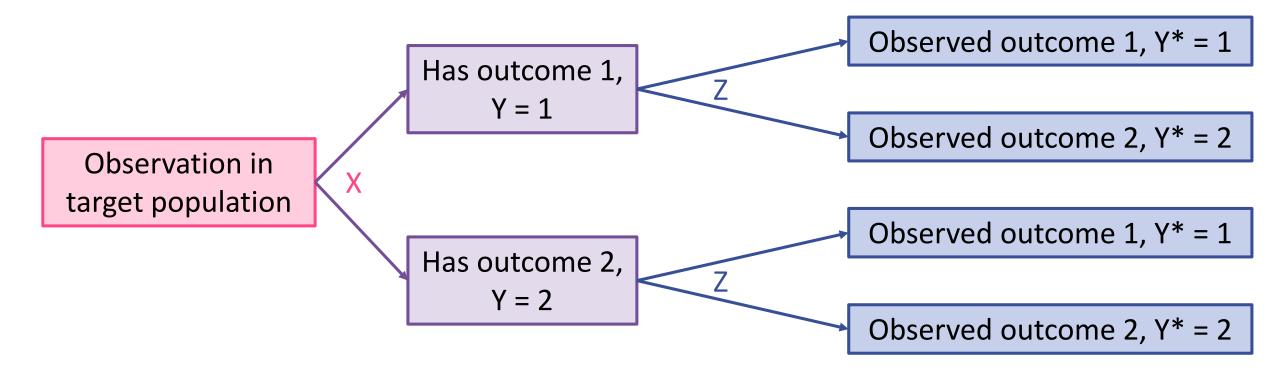
Problem setting

- Interested in the association between X and the **binary variable** Y.
- Measure Y using an instrument that is **not always accurate**, and obtain Y*.



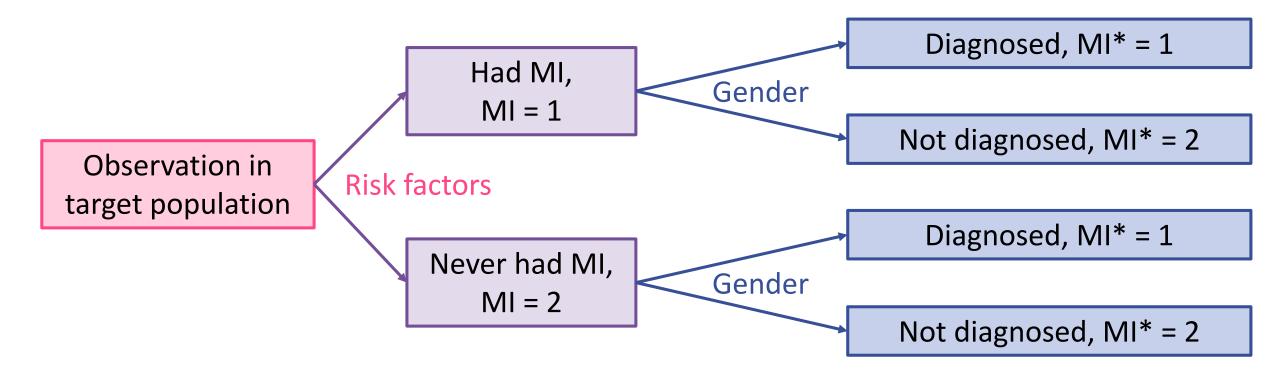
Problem setting

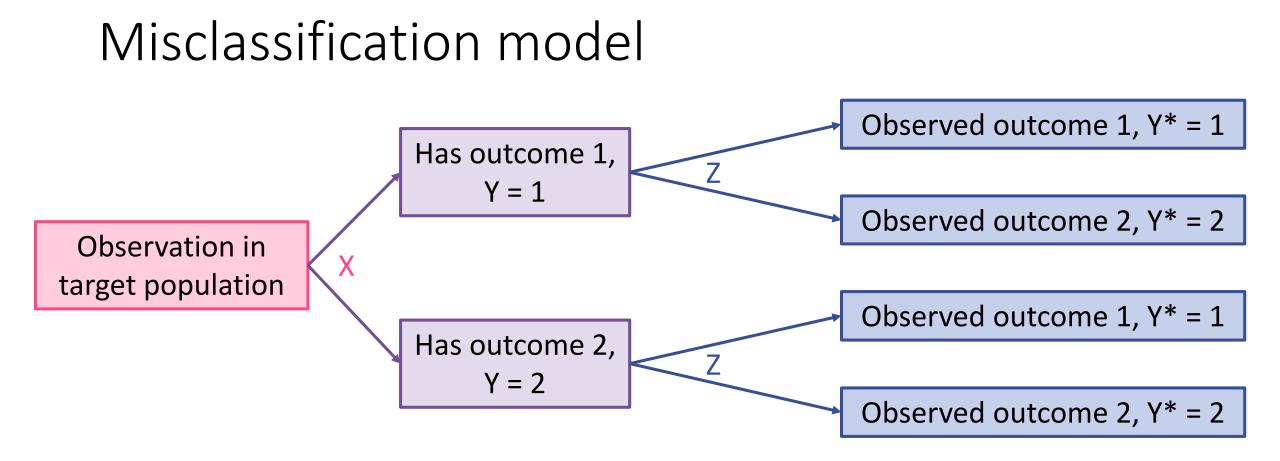
- Interested in the association between X and the **binary variable** Y.
- Measure Y using an instrument that is **not always accurate**, and obtain Y*.
- A third variable, Z, is related to the misclassification mechanism.



Example

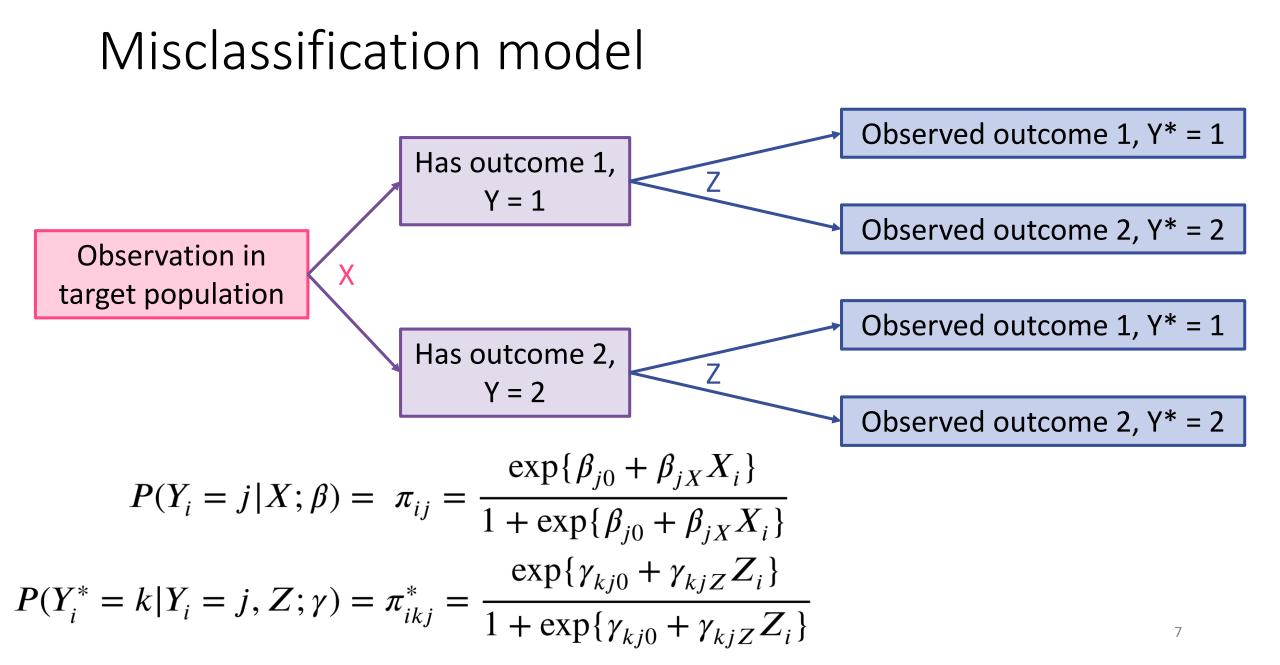
- Interested in the association between Risk Factors and the binary variable MI.
- Measure MI using **self-reported medical diagnoses**, and obtain MI*.
- A third variable, gender, is related to the misclassification mechanism.

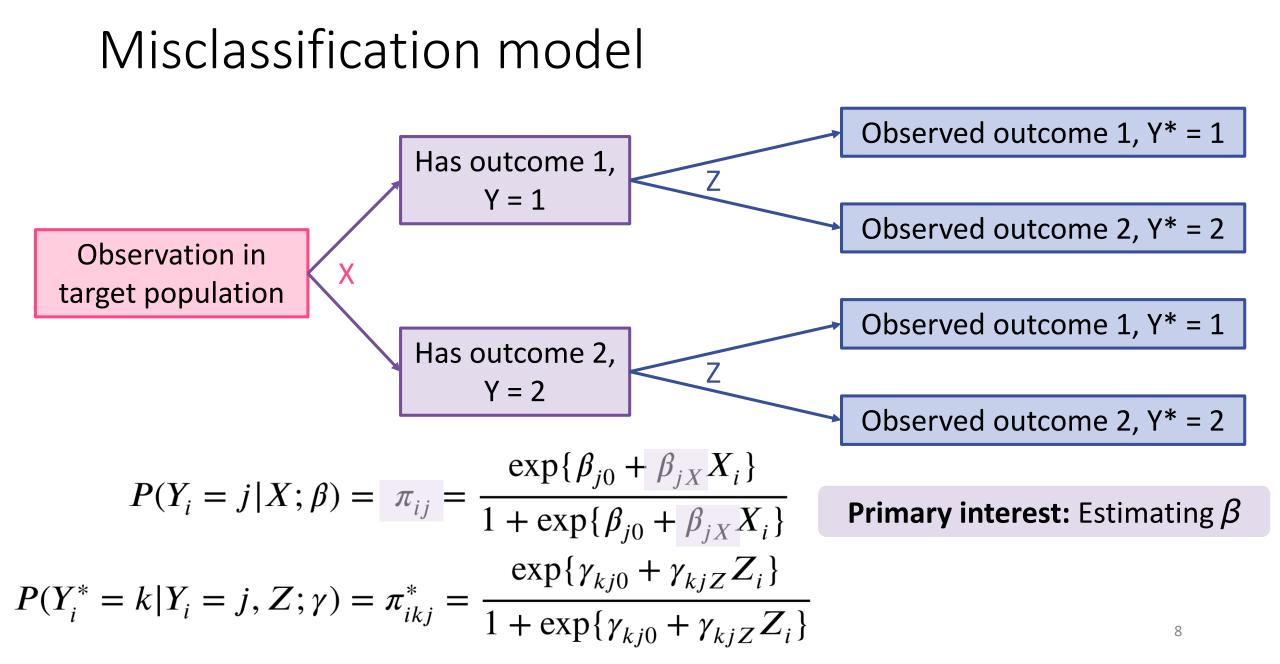


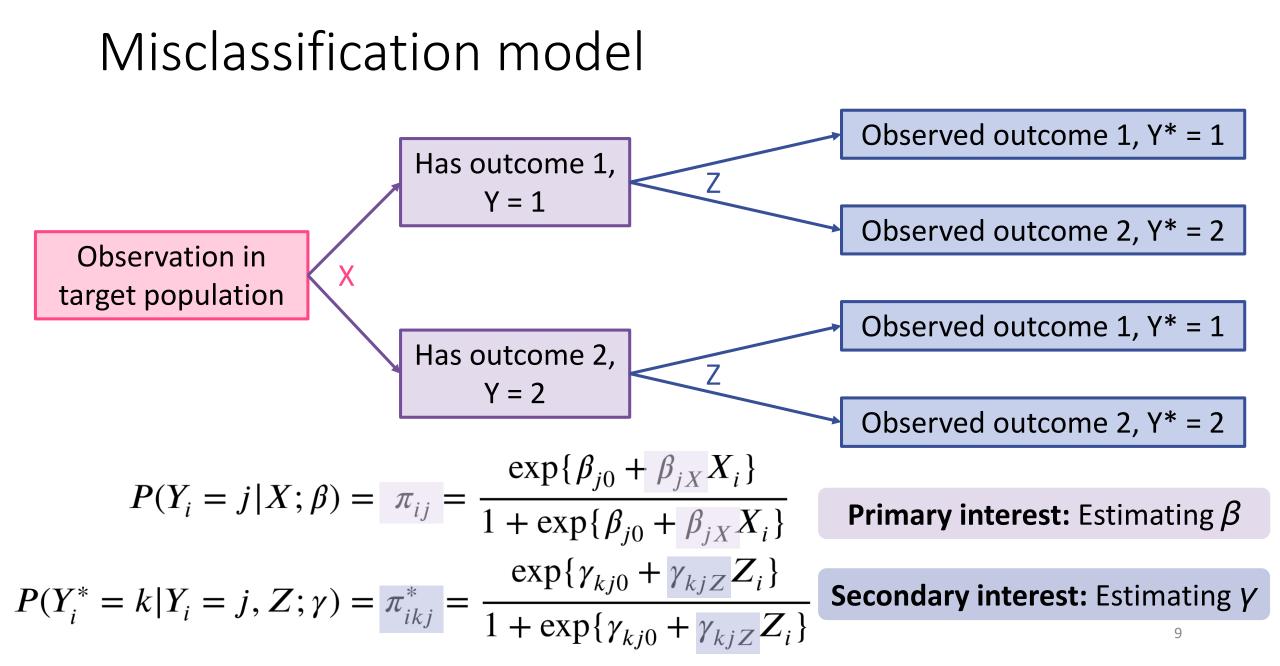


True outcome mechanism: $logit \{ P(Y = j | X; \beta) \} = \beta_{j0} + \beta_{jX} X$

Observation mechanism: $logit \{ P(Y^* = k | Y = j, Z; \gamma) \} = \gamma_{kj0} + \gamma_{kjZ} Z$







$$\ell_{complete}(\beta,\gamma;X,Z) = \sum_{i=1}^{N} \left[\sum_{j=1}^{2} y_{ij} \log\{P(Y_i = j | X_i)\} + \sum_{j=1}^{2} \sum_{k=1}^{2} y_{ij} y_{ik}^* \log\{P(Y_i^* = k | Y_i = j, Z_i)\} \right]$$

$$\ell_{complete}(\beta,\gamma;X,Z) = \sum_{i=1}^{N} \left[\sum_{j=1}^{2} y_{ij} \log\{P(Y_i = j | X_i)\} + \sum_{j=1}^{2} \sum_{k=1}^{2} y_{ij} y_{ik}^* \log\{P(Y_i^* = k | Y_i = j, Z_i)\}\right]$$
$$y_{ij} = \mathbb{I}\{Y_i = j\}$$

$$\ell_{complete}(\beta,\gamma;X,Z) = \sum_{i=1}^{N} \left[\sum_{j=1}^{2} y_{ij} \log\{P(Y_i = j | X_i)\} + \sum_{j=1}^{2} \sum_{k=1}^{2} y_{ij} y_{ik}^* \log\{P(Y_i^* = k | Y_i = j, Z_i)\} \right]$$

$$y_{ij} = \mathbb{I}\{Y_i = j\}$$
True outcome portion

$$\ell_{complete}(\beta,\gamma;X,Z) = \sum_{i=1}^{N} \left[\sum_{j=1}^{2} y_{ij} \log\{P(Y_i = j | X_i)\} + \sum_{j=1}^{2} \sum_{k=1}^{2} y_{ij} y_{ik}^* \log\{P(Y_i^* = k | Y_i = j, Z_i)\} \right]$$

$$y_{ij} = \mathbb{I}\{Y_i = j\}$$
True outcome portion
Observed outcome, given true outcome portion

$$\ell_{complete}(\beta,\gamma;X,Z) = \sum_{i=1}^{N} \left[\sum_{j=1}^{2} y_{ij} \log\{P(Y_i = j | X_i)\} + \sum_{j=1}^{2} \sum_{k=1}^{2} y_{ij} y_{ik}^* \log\{P(Y_i^* = k | Y_i = j, Z_i)\} \right]$$

$$y_{ij} = \mathbb{I}\{Y_i = j\} \qquad \text{True outcome portion} \qquad \text{Observed outcome, given true outcome portion}$$

$$= \sum_{i=1}^{N} \left[\sum_{j=1}^{2} y_{ij} \log\{\pi_{ij}\} + \sum_{j=1}^{2} \sum_{k=1}^{2} y_{ij} y_{ik}^* \log\{\pi_{ikj}^*\} \right]$$

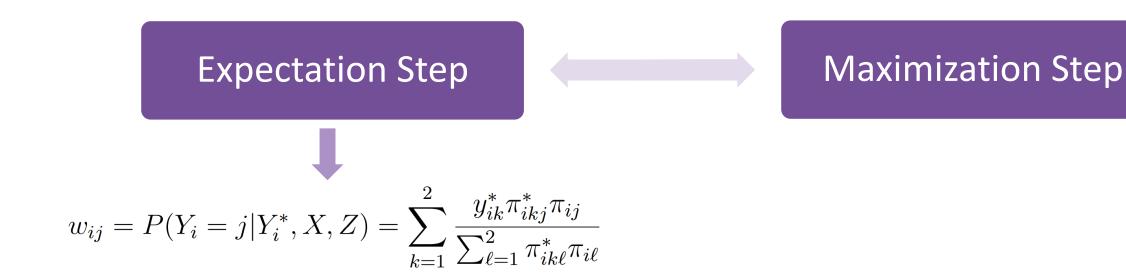
$$\ell_{complete}(\beta,\gamma;X,Z) = \sum_{i=1}^{N} \left[\sum_{j=1}^{2} y_{ij} \log\{P(Y_i = j | X_i)\} + \sum_{j=1}^{2} \sum_{k=1}^{2} y_{ij} y_{ik}^* \log\{P(Y_i^* = k | Y_i = j, Z_i)\} \right]$$

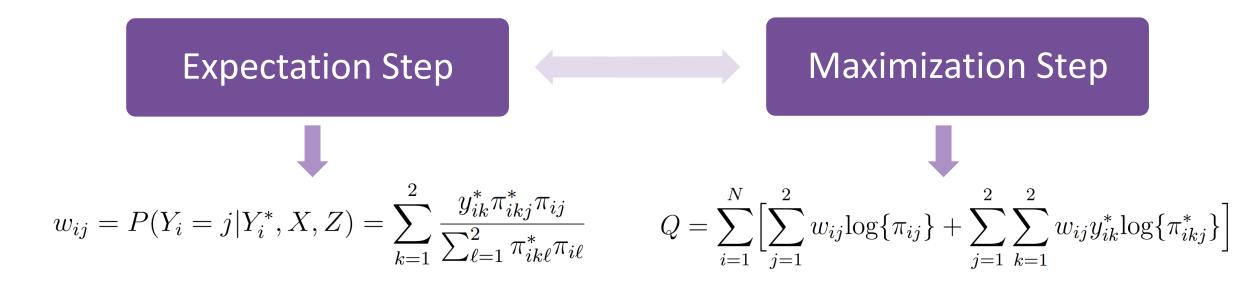
$$y_{ij} = \mathbb{I}\{Y_i = j\} \qquad \text{True outcome portion} \qquad \text{Observed outcome, given true outcome portion}$$

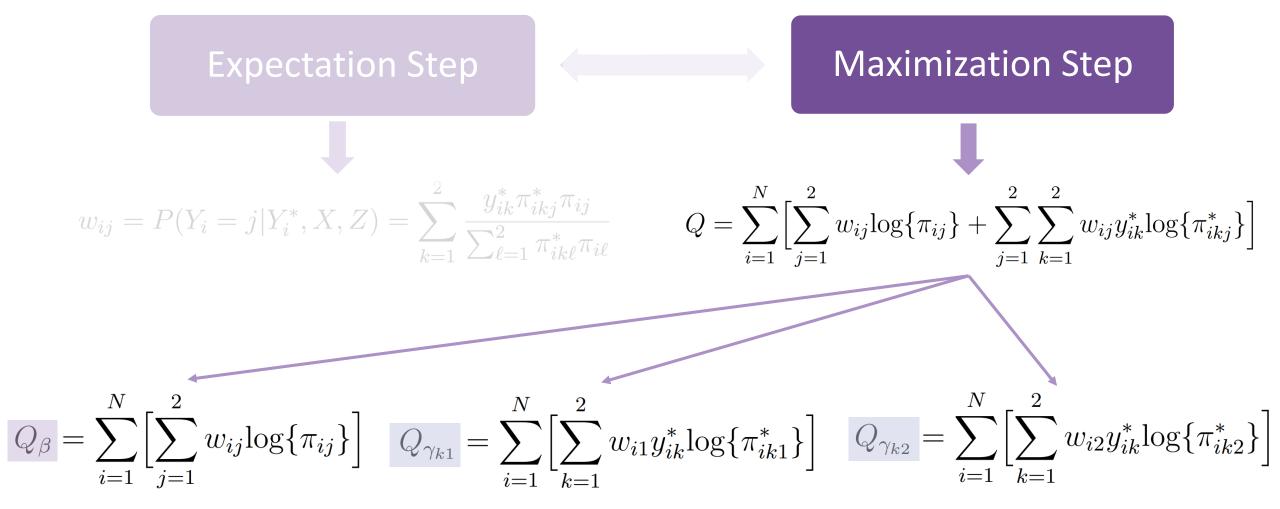
$$= \sum_{i=1}^{N} \left[\sum_{j=1}^{2} y_{ij} \log\{\pi_{ij}\} + \sum_{j=1}^{2} \sum_{k=1}^{2} y_{ij} y_{ik}^* \log\{\pi_{ikj}^*\} \right]$$

Expectation Step

Maximization Step







 Label switching: When a mixture model likelihood is invariant under relabeling of the mixture components, resulting in multimodal likelihood functions.

• Label switching: When a mixture model likelihood is invariant under relabeling of the mixture components, resulting in multimodal likelihood functions.

$$\ell_{complete}(\beta,\gamma;X,Z) = \sum_{i=1}^{N} \left[y_{i1} \log\{\pi_{i1}\} + y_{i2} \log\{\pi_{i2}\} + y_{i1}y_{i1}^* \log\{\pi_{i11}^*\} + y_{i1}y_{i2}^* \log\{\pi_{i21}^*\} + y_{i2}y_{i1}^* \log\{\pi_{i12}^*\} + y_{i2}y_{i2}^* \log\{\pi_{i22}^*\} \right]$$
$$\ell_{complete}(\beta,\gamma;X,Z) = \sum_{i=1}^{N} \left[y_{i2} \log\{\pi_{i2}\} + y_{i1} \log\{\pi_{i1}\} + y_{i2} \log\{\pi_{i2}\} + y_{i1} \log\{\pi_{i1}\} \right]$$

 $+ y_{i2}y_{i1}^* \log\{\pi_{i12}^*\} + y_{i2}y_{i2}^* \log\{\pi_{i22}^*\} + y_{i1}y_{i1}^* \log\{\pi_{i11}^*\} + y_{i1}y_{i2}^* \log\{\pi_{i21}^*\}\right]$

 \mathbf{M}

• Suppose we have a single predictor X and a single predictor Z:

$$\sum_{i=1}^{N} \left[y_{i1}\beta_0 + y_{i1}x_i\beta_X - (y_{i1} + y_{i2})\log\{1 + \exp\{\beta_0 + x_i\beta_X\}\} \right]$$

$$+ y_{i1}y_{i1}^*\gamma_{110} + y_{i1}y_{i1}^*z_i\gamma_{11Z} - (y_{i1}^* + y_{i2}^*)y_{i1}\log\{1 + \exp\{\gamma_{110} + z_i\gamma_{11Z}\}\}$$

$$+ y_{i2}y_{i1}^*\gamma_{120} + y_{i2}y_{i1}^*z_i\gamma_{12Z} - (y_{i1}^* + y_{i2}^*)y_{i2}\log\{1 + \exp\{\gamma_{120} + z_i\gamma_{12Z}\}\} \right]$$

$$=\sum_{i=1}^{N} \left[y_{i2}(-\beta_0) + y_{i2}x_i(-\beta_X) - (y_{i1} + y_{i2})\log\{1 + \exp\{-\beta_0 + x_i(-\beta_X)\}\} \right]$$

 $+ y_{i2}y_{i1}^*\gamma_{120} + y_{i2}y_{i1}^*z_i\gamma_{12Z} - (y_{i1}^* + y_{i2}^*)y_{i2}\log\{1 + \exp\{\gamma_{120} + z_i\gamma_{12Z}\}\}$ + $y_{i1}y_{i1}^*\gamma_{110} + y_{i1}y_{i1}^*z_i\gamma_{11Z} - (y_{i1}^* + y_{i2}^*)y_{i1}\log\{1 + \exp\{\gamma_{110} + z_i\gamma_{11Z}\}\}$

• Suppose we have a single predictor X and a single predictor Z:

$$\sum_{i=1}^{N} \left[y_{i1}\beta_0 + y_{i1}x_i\beta_X - (y_{i1} + y_{i2})\log\{1 + \exp\{\beta_0 + x_i\beta_X\}\} \right]$$

$$+ y_{i1}y_{i1}^*\gamma_{110} + y_{i1}y_{i1}^*z_i\gamma_{11Z} - (y_{i1}^* + y_{i2}^*)y_{i1}\log\{1 + \exp\{\gamma_{110} + z_i\gamma_{11Z}\}\}$$

+ $y_{i2}y_{i1}^*\gamma_{120} + y_{i2}y_{i1}^*z_i\gamma_{12Z} - (y_{i1}^* + y_{i2}^*)y_{i2}\log\{1 + \exp\{\gamma_{120} + z_i\gamma_{12Z}\}\}$

$$=\sum_{i=1}^{N} \left[y_{i2}(-\beta_0) + y_{i2}x_i(-\beta_X) - (y_{i1} + y_{i2})\log\{1 + \exp\{-\beta_0 + x_i(-\beta_X)\}\}\right]$$

 $+ y_{i2}y_{i1}^*\gamma_{120} + y_{i2}y_{i1}^*z_i\gamma_{12Z} - (y_{i1}^* + y_{i2}^*)y_{i2}\log\{1 + \exp\{\gamma_{120} + z_i\gamma_{12Z}\}\}$ + $y_{i1}y_{i1}^*\gamma_{110} + y_{i1}y_{i1}^*z_i\gamma_{11Z} - (y_{i1}^* + y_{i2}^*)y_{i1}\log\{1 + \exp\{\gamma_{110} + z_i\gamma_{11Z}\}\}$

• Suppose we have a single predictor X and a single predictor Z:

$$\sum_{i=1}^{N} \left[y_{i1}\beta_0 + y_{i1}x_i\beta_X - (y_{i1} + y_{i2})\log\{1 + \exp\{\beta_0 + x_i\beta_X\}\} \right]$$

$$+ y_{i1}y_{i1}^{*}\gamma_{110} + y_{i1}y_{i1}^{*}z_{i}\gamma_{11Z} - (y_{i1}^{*} + y_{i2}^{*})y_{i1}\log\{1 + \exp\{\gamma_{110} + z_{i}\gamma_{11Z}\}\}$$

+ $y_{i2}y_{i1}^{*}\gamma_{120} + y_{i2}y_{i1}^{*}z_{i}\gamma_{12Z} - (y_{i1}^{*} + y_{i2}^{*})y_{i2}\log\{1 + \exp\{\gamma_{120} + z_{i}\gamma_{12Z}\}\}$

$$=\sum_{i=1}^{N} \left[y_{i2}(-\beta_0) + y_{i2}x_i(-\beta_X) - (y_{i1} + y_{i2})\log\{1 + \exp\{-\beta_0 + x_i(-\beta_X)\}\} \right]$$

 $+ y_{i2}y_{i1}^{*}\gamma_{120} + y_{i2}y_{i1}^{*}z_{i}\gamma_{12Z} - (y_{i1}^{*} + y_{i2}^{*})y_{i2}\log\{1 + \exp\{\gamma_{120} + z_{i}\gamma_{12Z}\}\}$ $+ y_{i1}y_{i1}^{*}\gamma_{110} + y_{i1}y_{i1}^{*}z_{i}\gamma_{11Z} - (y_{i1}^{*} + y_{i2}^{*})y_{i1}\log\{1 + \exp\{\gamma_{110} + z_{i}\gamma_{11Z}\}\}$

• There are two sets of parameters that yield the exact same likelihood value.

 $\beta_0, \beta_X, \gamma_{110}, \gamma_{11Z}, \gamma_{120}, \gamma_{12Z}$

• There are two sets of parameters that yield the **exact same likelihood value**.

 $\beta_0, \beta_X, \gamma_{110}, \gamma_{11Z}, \gamma_{120}, \gamma_{12Z}$ $-\beta_0, -\beta_X, \gamma_{120}, \gamma_{12Z}, \gamma_{110}, \gamma_{11Z}$

Correcting label switching

• There is a quantity that has different values when each parameter set is used to compute it:

$$P(Y_i^* = k | Y_i = j, Z; \gamma) = \pi_{ikj}^* = \frac{\exp\{\gamma_{kj0} + \gamma_{kjZ} Z_i\}}{1 + \exp\{\gamma_{kj0} + \gamma_{kjZ} Z_i\}}$$

Correcting label switching

Algorithm 1 Correcting label switching in binary outcome misclassification models

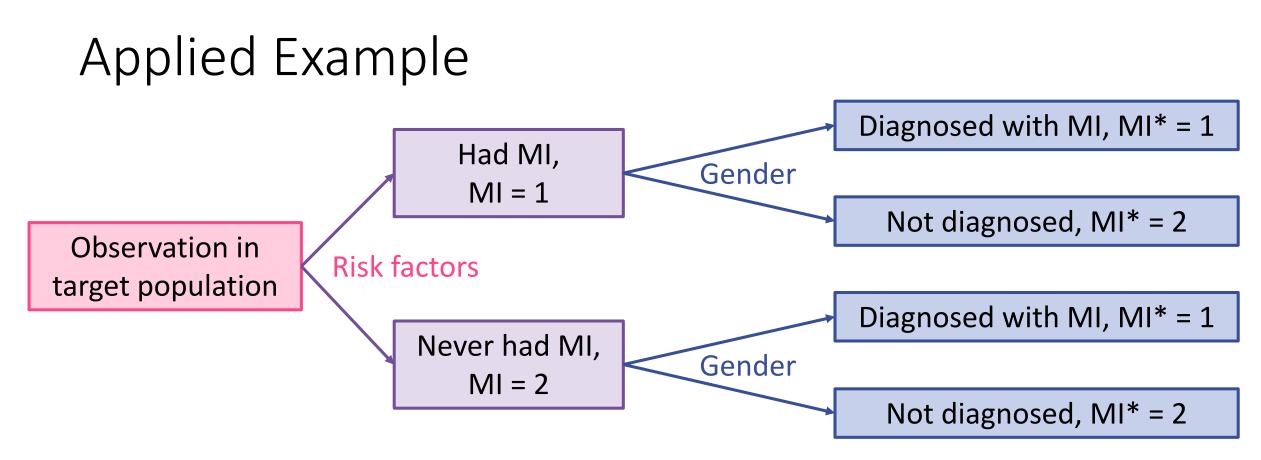
Compute average π_{jj}^* for all $j \in \{1, 2\}$ using $\hat{\beta}$ and $\hat{\gamma}$. if $\pi_{jj}^* > 0.50$ for all $j \in \{1, 2\}$ then $\hat{\beta}_{corrected} \leftarrow \hat{\beta}$ $\hat{\gamma}_{corrected} \leftarrow \hat{\gamma}$ else $\hat{\beta}_{corrected,k1} \leftarrow -\hat{\beta}$ $\hat{\gamma}_{corrected,k1} \leftarrow \hat{\gamma}_{k2}$ $\hat{\gamma}_{corrected,k2} \leftarrow \hat{\gamma}_{k1}$ end if

Correcting label switching

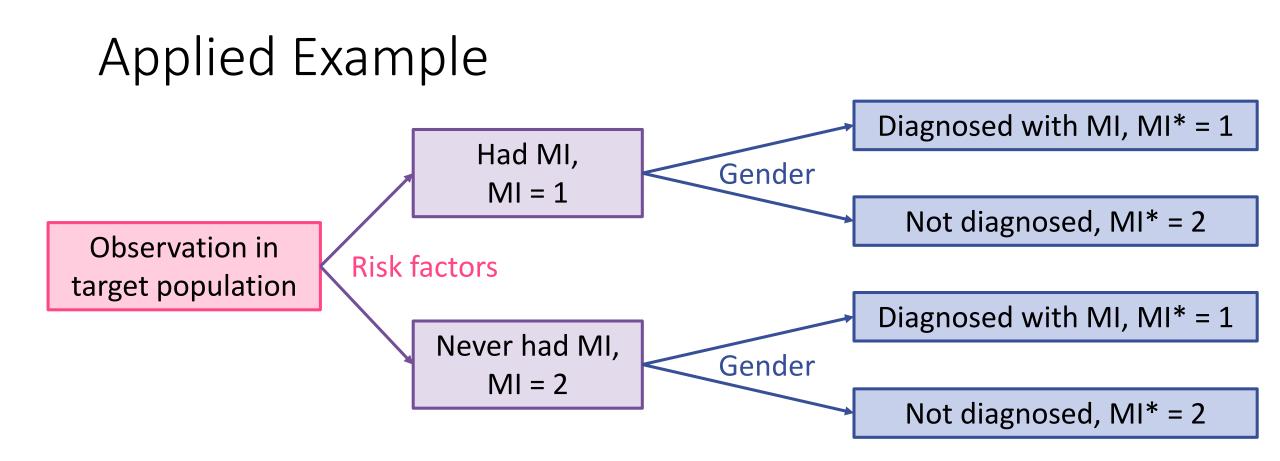
Algorithm 1 Correcting label switching in binary outcome misclassification models

Compute average π_{jj}^* for all $j \in \{1, 2\}$ using $\hat{\beta}$ and $\hat{\gamma}$. **if** $\pi_{jj}^* > 0.50$ for all $j \in \{1, 2\}$ **then** $\hat{\beta}_{corrected} \leftarrow \hat{\beta}$ $\hat{\gamma}_{corrected} \leftarrow -\hat{\beta}$ $\hat{\gamma}_{corrected,k1} \leftarrow -\hat{\gamma}_{k2}$ $\hat{\gamma}_{corrected,k2} \leftarrow -\hat{\gamma}_{k1}$ **end if Assumption: Outcome categories are correctly classified at least 50% of the time.**

• Apply to EM estimates.



- Goal: Understand the risk factors for MI.
 - MI is suspected to be misdiagnosed differentially based on patient age and gender.
 - Data from 2020 MEPS survey.



- Model for true MI: MI ~ Smoking Status + Exercise Habits + Age
- Model observed MI given true MI: MI* | MI ~ Age + Gender

Applied Example

- Model for true MI: MI ~ Smoking Status + Exercise Habits + Age
- Model observed MI given true MI: MI* | MI ~ Age + Gender

	EM		Naive Analysis		
	Est.	SE	Est.	SE	
eta_0	-4.374	0.065	-3.576	0.078	Effects are
β_{smoke}	1.544 0.303	0.107 0.126	0.635 0.184	0.109 0.084	attenuated
$eta_{exercise}\ eta_{age}$	0.303	0.120	0.184 0.059	0.084	when we do not
γ_{110}	2.969 -1.766	0.100 0.036	-	-	account for
$\gamma_{11,gender}$ $\gamma_{11,age}$	-0.198	0.005	-	-	misclassification
γ_{120}	-3.580 -0.818	0.112 0.108	-	-	of MI
$\gamma_{12,gender}$ $\gamma_{12,age}$	0.084	0.108	-	-	

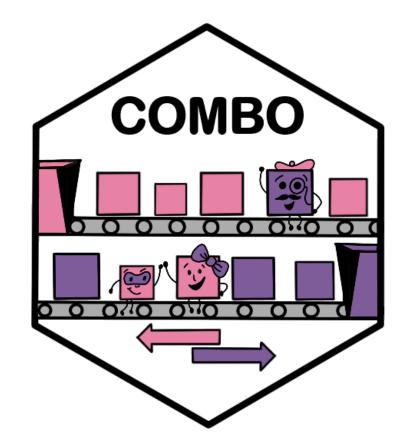
Applied Example

- Model for true MI: MI ~ Smoking Status + Exercise Habits + Age
- Model observed MI given true MI: MI* | MI ~ Age + Gender

	Estimated Specificity P(no MI* no MI)	Estimated Sensitivity P(MI* MI)
Men	94.4%	76.3%
Women	97.1%	59.1%

Want to use this method?

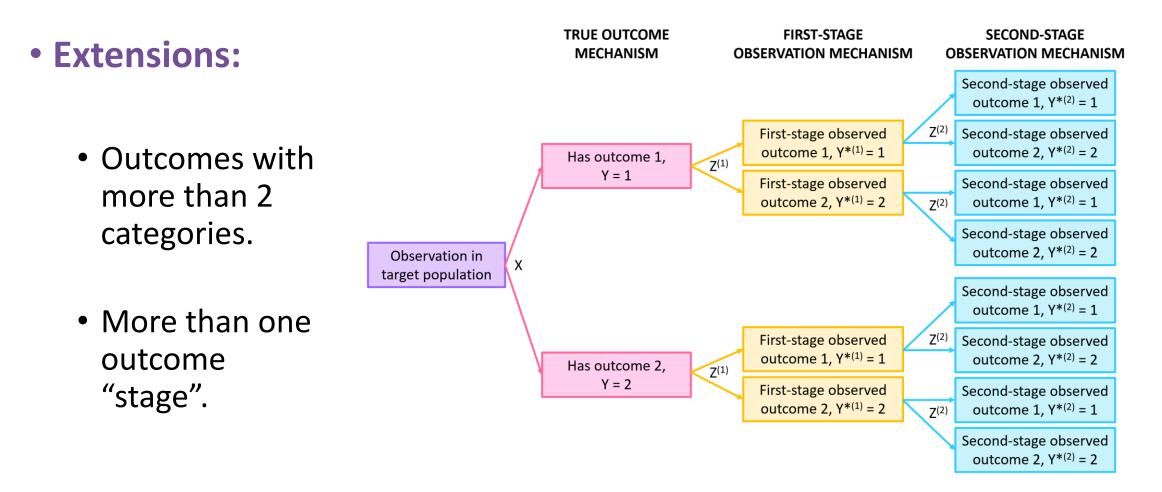
- You're in luck!
- COMBO R Package (coming soon to a CRAN repository near you).
 - Correcting Misclassified Binary Outcomes



Conclusions and Next Steps

• We can use the proposed EM algorithm to estimate associations when a binary outcome is potentially misclassified.

Conclusions and Next Steps



Kimberly A. Hochstedler - <u>kah343@cornell.edu</u>

Notation cheat sheet and more info on "COMBO" available at: **bit.ly/R_COMBO**