
Avatica
An extensible, open source, ODBC and JDBC driver

Julian Hyde, 2013-12-19

Problem statement

• Today, many database engines and client
applications are written in Java.	

• But, some important client applications
require ODBC.	

• Maintaining a high-quality, portable ODBC
driver is a lot of work (especially for
projects whose developers mainly use Java).

Avatica

Java VM

C client

Avatica
ODBC driver

Avatica
RPC server

Avatica
remote JDBC

driver

Java client

Avatica 
RPC 

Protocol

Avatica
local JDBC

driver

Java VM

Java app

Avatica SPI

Provider X

Client Server

Proposed solution:
Avatica

• Database connectivity stack: ODBC driver, RPC
protocol, remote JDBC driver, local JDBC driver.	

• Start the project with a proven, portable ODBC
driver (e.g. psqlODBC).	

• Share the ongoing maintenance among projects.
(Apache Phoenix, Apache Drill, Facebook Presto,
Cascading & Optiq have expressed interest.)	

• Currently just a proposal.

RPC protocol

• Language-independent	

• Reasonably time- and space-efficient	

• Easy to implement an RPC server	

• Extensible (for example: a particular database might wish to
send extra metadata to the client)	

• Built from off-the-shelf components	

• Options: Apache Thrift; Protobuf; Postgres protocol; ZeroMQ

ODBC driver
• Avatica ODBC driver speaks Avatica RPC protocol.	

• Common customizations are made on the server:
typical provider does not need to modify ODBC
driver.	

• Allow a provider to extend ODBC driver and
extend wire protocol, if necessary.	

• Proposal: Extend psqlODBC (Postgres ODBC
driver), adding support for Avatica RPC protocol.

Avatica Server impl

• AvaticaServer implements RPC protocol in
Java.	

• To use it, each database must implement
the provider SPI.	

• SPI is similar to JDBC (but simpler).	

• SPI also powers a local JDBC driver.

How to add a provider
• Suppose you have written a database, ProviderX.	

• First, implement the provider SPI:	

• Specify provider name, version	

• Statement methods: prepare, execute and close	

• Implement calls for supported metadata (e.g. getTables)	

• Next, run provider test and fix your SPI implementation.	

• ODBC, remote JDBC, local JDBC should now work!	

• Most projects will never need to touch the ODBC driver or protocol.

Status
• Local JDBC driver in use by Optiq and Apache Drill: github.com/julianhyde/optiq	

• ODBC driver, RPC protocol, and RPC server are just proposals	

• Project lead: @julianhyde (Optiq / Hortonworks)	

• Other members: 	

• Apache Drill	

• Apache Phoenix	

• Cascading	

• Get involved on the optiq mailing list:  
https://groups.google.com/forum/#!forum/optiq-dev

http://github.com/julianhyde/optiq
https://groups.google.com/forum/#!forum/optiq-dev

