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1. Introduction

To numerically evaluate the performances of clustering methods, simu-
lated data sets are often used. Simulated data sets have knowncluster structures
so that we can evaluate the performance of a clustering method by checking the
agreement between the true partition and the partition obtained by the clustering
method. They are also easy to generate, and we can control the noise (e.g. noisy
variables, outliers, missing values, and measurement errors, etc.) and produce
as many replicates as we want. Furthermore they can be used to determine the
situations in which a clustering method works well or doesn’t work well.

The qualities of simulated data sets depend on cluster generating algo-
rithms. Many cluster generating methods have been proposed(e.g. Milligan
1985; Gnanadesikan, Kettenring, and Tsao 1995; Zhang, Ramakrishnan, and
Livny 1997; Guha, Rastogi, and Shim 1998; Waller, Kaiser, Illian, and Manry
1998; Waller, Underhill, and Kaiser 1999; Tibshirani, Walther, and Hastie
2001). Milligan (1985) and Waller et al. (1999) systematically addressed the
problem of cluster generation. Milligan generated clusters from an experimen-
tal design point of view: the factors include the number of clusters, the number
of dimensions (variables), sizes of clusters, outliers, noisy variables, and mea-
surement errors. In the design, cluster centers and boundaries are generated one
dimension at a time. Cluster boundaries are separated by a random quantity in
the first dimension. However there is no constraint on the isolation among
clusters in other dimensions. Multivariate normal distributions with diagonal
covariance matrices are used to generate data points. Data points are rejected if
they fall outside the cluster boundaries.

The main limitation of Milligan’s (1985) method is that the degree of
separation among clusters is not controlled. The degree of separation among
clusters is one of the most important factors to check the performances of clus-
tering methods. If a clustering method could work well for closely-spaced clus-
ters, then it is reasonable to believe that this method is better than other clus-
tering methods. If a clustering method could not work well for well-separated
clusters, then it is reasonable to believe that its performance is worse than other
clustering methods. Therefore it is desirable to control thedegree of separation
among clusters. Waller et al. (1999) proposed a index calledindicator validity
to control the average separation among clusters. In this article we use a sep-
aration index proposed by Qiu and Joe (2006) to directly control the degree of
separation between clusters and the nearest neighboring clusters.

It is quite common in real data sets that covariance matricesare not diag-
onal and clusters are separated in high-dimensional space but are overlapping
in each pair of dimensions. By a random rotation, we can improve Milligan’s
(1985) method so that clusters might not be visualized by pair-wise scatterplots
of variables. However it is not straightforward to improve Milligan’s (1985)
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method so that the covariance matrices can have different shapes, diameters and
orientations, while the degree of separation is controlledto a specified value. At
first thought, we can control the degree of separation by specifying the lengths
of the gaps between clusters in the first dimension rather thanrandomly generat-
ing the lengths of the gaps. But the gap is equivalent to our degree of separation
only when the covariance matrices of clusters are diagonal (case of uncorrelated
variables).

We improve the cluster generation method proposed in Milligan (1985)
so that the degree of separation between clusters and the nearest neighboring
clusters could be set to a specified value while the cluster covariance matrices
can be arbitrary positive definite matrices, and so that clusters generated might
not be visualized by pair-wise scatterplots of variables.

The remaining sections of the article are organized as follows. Section 2
presents the cluster generating algorithm. Section 3 describes a factorial exper-
iment design to systematically generate simulated data sets. Section 4 gives a
verification of the simulated data sets. An illustration of the use of the design
for comparing methods of estimating the number of clusters is given in Section
5. Section 6 contains a summary and proposes possible future research topics.
Technical details are included in Appendices.

2. Algorithm for Generation of Random Clusters

2.1 Overall Algorithm

In this subsection, we give the overall algorithm for generation of random
clusters. We will describe the details in later subsections.

Step 1 Specify the number of non-noisy dimensionsp1, the number of clusters
K, the degree of separationJ0 between any cluster and its nearest neigh-
boring cluster, the tuning parameterα for the separation index, the num-
ber of noisy variablesp2, the number or ratio of outliers, the lower bound
λmin of the eigenvalues for random covariance matrices, the ratio rλ of
the upper bond of the eigenvalues to the lower bound of the eigenvalues
for random covariance matrices, and the range of cluster sizes[nL, nU ].

Step 2 Generate cluster centers and random covariance matrices inthep1 non-
noisy dimensions so that neighboring clusters have population separation
indexJ0 (details are given in Section 2.3).

Step 3 Generate sizes of each cluster randomly from the range[nL, nU ] and
generate memberships of each data point.

Step 4 Generate the mean vector and covariance matrix of the noisy variables
(details are given in Section 2.4).
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Step 5 Apply a random rotation to the cluster means and covariance matrices
in Step 2 (details are given in Section 2.5).

Step 6 From Steps 4 and 5, we have cluster means and covariance matrices for
all K clusters.

Step 7 Generate random vectors for each of theK clusters from a given family
of elliptical distributions.

Step 8 Calculate the population separation index matrices and projection direc-
tions for pairs of clusters via the population mean vectors and covariance
matrices.

Step 9 Calculate the sample separation index matrices and projection direc-
tions via the sample mean vectors and covariance matrices.

Step 10 Generate outliers. The memberships of outliers are assignedas zero
(details are given in Section 2.4).

2.2 Degree of Separation

The key concept in the algorithm is the degree of separation. We use
the degree of separation based on the separation index proposed by Qiu and Joe
(2006). Other separation indices (e.g., Blashfield 1976; Atlas and Overall 1994;
Donoghue 1995; Steinley 2003, 2004) could be used instead. Theadvantage of
Qiu and Joe’s separation index is that it directly measures the magnitude of the
gap or data-sparse area between each pair of clusters. We also tried a probability
of overlap between two cluster distributions but this is notas geometrically
interpretable.

DenoteLk andUk as the lower and upperα/2 percentiles of projected
clusterk, respectively. The quantile version of the separation indexis defined
as

J(a) =
L2 − U1

U2 − L1

wherea is the projection direction. Figure 1 illustrates thatJ(a) directly mea-
sures the gap or data-sparse area between two clusters.

If two clusters are generated fromp-dimensional elliptical distributions
with densitiesfk(x) = |Σk|−1/2hp((x−µk)

′
Σ

−1
k (x−µk)), k = 1, 2, derived

from a spherical densityhp(y
′y) with marginal variances of 1 and means of 0,

the separation index function of a projection directiona can be rewritten as

J12(a) =
aT (µ2 − µ1) − qα/2

(√
aTΣ1a +

√
aTΣ2a

)

aT (µ2 − µ1) + qα/2

(√
aTΣ1a +

√
aTΣ2a

) ,
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Figure 1. Illustration of the concept of the separation index.Lk andUk are the lower and upper
α/2 percentiles of projected clusterk, respectively.L2 > U1 indicates that two clusters are
separated;L2 < U1 indicates that two clusters are overlapping.

whereµk andΣk, k = 1, 2, are the mean vectors and covariance matrices for
the two clusters,α ∈ (0, 0.5) is a tuning parameter indicating the percentage of
data in the extremes to downweight,qα/2 is the upperα/2 quantile of the uni-
variate margin ofhp(y

′y). If the distributions of two clusters are multivariate
normal distributions, thenqα/2 = zα/2, wherezα/2 is the upperα/2 quantile of
the univariate standard normal distribution.

Let J∗
12 be the optimal separation index between clusters1 and2, i.e.,

J∗
12 = J12(a

∗), wherea∗ is the optimal projection direction which maximizes
J12 (Appendix A briefly describes how to computea∗). Similarly, letJ∗

k1k2

be
optimal separation index between clustersk1, k2.

Let J∗
k1 min = mink2=1,...,K,k2 6=k1

J∗
k1k2

, whereK is the number of clus-
ters. Thedegree of separationthen can be measured by the separation indices
J∗

k min, k = 1, . . . , K. If J∗
k min, k = 1, . . . , K, are all close to zero, then

the cluster structure is close. IfJ∗
k min, k = 1, . . . , K, are all quite large,

then the cluster structure is well-separated. However it isdifficult to make
a clear-cut decision on whether a cluster structure is “close”, “separated”, or
“well-separated”. For the factorial experiment design in Section 3, we regard
a cluster structure asclose if J∗

k min = 0.010, k = 1, . . . , K, as separated
if J∗

k min = 0.210, k = 1, . . . , K, and aswell-separatedif J∗
k min = 0.342,

k = 1, . . . , K. The value0.010 is the separation index between two clus-
ters, which are generated from two univariate normal distributionsN (0, 1) and
N (A, 1), whereA = 4. The values0.210 and0.342 are the separation indices
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corresponding toA = 6 andA = 8 respectively. The tuning parameterα is
equal to0.05 when calculating these separation indices.

Essentially, theJ∗
k min values of 0.01, 0.21 and 0.342 were chosen to

match behavior we expect from clustering methods for close,separated and
well-separated. In the case of closely-spaced clusters, weexpect clustering
methods to have difficulties in determining the number of clusters (especially if
there are some noisy variables), and in the case of well-separated clusters, we
expect good clustering methods to manage fine. Our choices ofJ∗

k min to match
three levels of cluster separation did work out well for the simulation study in
Section 5, as well as for other results in Qiu’s PhD thesis.

2.3 Allocating Cluster Centers and Generating Covariance Matrices

If there are more than two clusters, then it is not easy to allocate the clus-
ter centers so that the separation indices (J∗

k min, k = 1, . . . , K) between any
cluster and its nearest neighboring cluster are all equal toJ0, except for the
trivial cases where cluster covariance matrices are all equal to a multiple of the
identity matrix. To overcome this difficulty, we first allocatecluster centers on
the vertices of an equilateral simplex and then adjust the length of the simplex
edge so that the minimum separation among clusters is equal to the specified
valueJ0. Finally we scale covariance matrices (but keep their shapesand orien-
tations) so that the separations between any cluster and itsnearest neighboring
cluster are also equal to the specified valueJ0.

A simplexin a p1-dimensional space containsp1 + 1 verticesv1, . . .,
vp1+1. Thesep1+1 vertices are linearly dependent. However all its proper sub-
sets are linearly independent. A simplex is a line segment, atriangle, and a tetra-
hedron in one-, two-, and three-dimensional space respectively. The lengths of
the simplex edges are not necessarily equal.

With the following cluster-center-allocation algorithm,we can obtain
mean vectors and covariance matrices of clusters so that thepopulation sep-
aration indicesJ∗

k min, k = 1, . . . , K, are all equal toJ0.

Cluster-Center-Allocation Algorithm

Step (a) GenerateK covariance matricesΣk in p1 dimensions,k = 1, . . . , K.

Step (b) Construct ap1-dimensional equilateral simplex whose edges have length
2. The first two vertices arev1 = −e1 andv2 = e1 respectively, where
the p1 × 1 vector e1 = (1, 0, . . . , 0)T . Denote thej-th vertex asvj ,
j = 1, . . . , p1 + 1. A method for construction of the other vertices is
given below.

Step (c) If K ≤ p1 + 1, then take the firstK vertices of the simplex as initial



Generation of Random Clusters 321

cluster centers. IfK > p1 + 1, then we start adding vertices from the
following sequence aftervp1+1 until all K cluster centers are allocated:

v2 + 2 ∗ e1, . . . , vp1+1 + 2 ∗ e1, v2 + 4 ∗ e1, . . . , vp1+1 + 4 ∗ e1,

v2 + 6 ∗ e1, . . . , vp1+1 + 6 ∗ e1, . . . , . . . , . . . ,

Essentially this just keeps on adding points on a shifted symmetric sim-
plex.

Step (d) Calculate the separation index matrixJ∗
K×K .

Step (e) Scale the length of the simplex edge by a scalarc1 so that the minimum
separation indexmini6=j J∗

ij among pairs of clusters is equal toJ0.

Step (f) Compute the separation indices,J∗
k min, k = 1, . . . , K, between a clus-

ter and its nearest neighboring cluster, and obtaink∗ = arg max
k=1,...K

J∗
k min.

If J∗
k∗ min > J0, then go to Step (g). Otherwise scaling is complete.

Step (g) Scale the covariance matrixΣk∗ by a scalarc2 so thatJ∗
k∗ min = J0.

Go back to Step (f).

The vertices of ap-dimensional equilateral simplex, whose edge length
is L = 2 and first two vertices arev1 = −e1 andv2 = e1, are not unique.
In the following, we provide a set of such vertices. Suppose that we already
obtain the coordinates of the verticesv1, . . . ,vk−1, 2 < k ≤ p + 1. Then the
coordinates of the vertexvk is obtained by:

vki = v̄ki, i = 1, . . . , k − 2,

vkj = 0, j = k, . . . , p,

vk,k−1 =

{
4 − 1

k − 1

k−1∑

i=1

(vi − v̄k−1)
T (vi − v̄k−1)

}1/2

,

(2.1)

wherev̄k−1 = 1
k−1

∑k−1
i=1 vi = (v̄k−1,1, . . . , v̄k−1,p)

T . Appendix B gives the
derivation of this formula.

The eigenvalues and eigenvectors determine the diameter, shape and ori-
entation corresponding to a positive-definite covariance matrix Σ. Therefore,
we generate random positive-definite covariance matrices bygenerating ran-
dom eigenvalues and eigenvectors. The relation between ap × p positive-
definite covariance matrixΣ and its eigenvalues and eigenvectors isΣ =
QΛQT , whereΛ = diag (λ1, . . . , λp), λ1 ≥ λ2 ≥ . . . ≥ λp > 0 are eigenval-
ues ofΣ, and thej-th column of the matrixQ is the normalized eigenvector of
Σ corresponding to the eigenvalueλj . Note thatQ is ap×p orthogonal matrix
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such thatQQT = Ip andQT Q = Ip, whereIp is thep-dimensional identity
matrix.

We can generatep eigenvalues uniformly from a bounded interval whose
lower bound is positive. In our experience, the range[λmin = 1, λmax = 10]
can give reasonable variability for the diameters of clusters. Therefore, we set
λmin = 1 andrλ = λmax/λmin = 10 for the simulated data sets mentioned in
the subsequent sections.

To generate ap × p orthogonal matrixQ, we can first generate ap ×
p lower triangle matrixM whose diagonal elements are all non-zero. Then
we use the Gram-Schmidt Orthogonalization (Kotz and Johnson1983, Vol. 3,
pp. 478) to transform the lower triangle matrixM to an orthogonal matrix.

Note that other methods can be used to generate random positive definite
covariance matrices. For example, we can generate covariance matrices based
on correlation matrices (e.g., Waller et al. 1999; Joe 2006).

2.4 Constructing Noisy Variables and Outliers

There is no unified definition of a noisy variable. Milligan (1985) as-
sumed that noisy variables are uniformly distributed and are independent of
each other and of non-noisy variables. For the cluster generating, we assume
that noisy variables are normally distributed and independent of non-noisy vari-
ables. However, noisy variables are not necessarily independent of each other.

Like Milligan (1985), we require that the variations of noisyvariables
in the generated data sets are similar to those of non-noisy variables. If noisy
variables have smaller variations than those of non-noisy variables, then we
implicitly downweight noisy variables. Hence the data setswould be less chal-
lenging.

Denote thep1 × p1 matrix Σ
∗ as the covariance matrix of non-noisy

variables and thep2×p2 matrixΣ0 as the covariance matrix of noisy variables.
One possible way to make the variations of noisy variables similar to those of
non-noisy variables is to make the ranges of eigenvalues ofΣ0 similar to those
of Σ∗.

If we assume that data points in non-noisy dimensions are from a mix-
ture of distributions with the density functionf(x) =

∑K
k=1 πkfk(x), where

0 ≤ πk ≤ 1 and
∑K

k=1 πk = 1, then the covariance matrixΣ∗ of the mixture
of distributions isΣ∗ =

∑K
k=1 πkΣk +

∑
k<k′ πkπ

′
k (µk − µk′) (µk − µk′)T ,

whereµk andΣk are the mean vector and covariance matrix of thek-th compo-
nent of the mixture of distributions. We can randomly generate the eigenvalues
of Σ0 from the interval[λ∗

p1
, λ∗

1], wherep1 is the number of non-noisy vari-
ables,λ∗

p1
andλ∗

1 are the minimum and maximum eigenvalues of the matrix
Σ

∗. In this way, the variations of noisy variables would be similar to those of
non-noisy variables.
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The mean vectorµ∗ =
∑K

k=1 πkµk of the mixture of distributions can
be used to generate thep2 × 1 mean vectorµ0 of the noisy variables. For
example, we can randomly generate thep2 elements ofµ0 from the interval
[min1≤j≤p1

µ∗
j , max1≤j≤p1

µ∗
j ].

Once we generate the mean vectors and covariance matrices ofnon-noisy
and noisy variables, we can randomize the labels of variables to make the gen-
erated data sets closer to real data sets.

Outliers, like noisy variables, are frequently encountered in real data sets,
and they may affect the recovery of true cluster structures.Therefore any clus-
ter generating algorithm should provide a function to produce outliers for sim-
ulated data sets.

For simplicity, we generate outliers from a distribution whose marginal
distributions are independent uniform distributions. The outliers are generated
for the whole data set instead of for each cluster. The range ofthej-th marginal
uniform distribution depends on the range of non-outliers in thej-th dimension.
We set the range as[µ̂j − 4σ̂j , µ̂j + 4σ̂j ], whereµ̂j andσ̂j are the sample mean
and standard deviation of thej-th variable respectively.

2.5 Rotating Data Points

In most cases, we could not detect the numbers of clusters of real data
sets in high-dimensional spaces by lower-dimensional scatterplots of variables.
However, the simulated data sets produced by the methods mentioned in the
cluster analysis literature do not always have this property. For example, we can
easily detect the numbers of clusters in data sets generatedby Milligan (1985)
from the scatterplots of the first variable versus any one of other variables. The
data sets generated by our algorithm might have the same problem.

To improve the simulated data sets so that we could not detectthe num-
bers of clusters by pair-wise scatterplots of variables, wecan simply transform
these data sets by random rotations. To rotate a data pointx, we can apply
the transformationy = Qx, whereQ is an orthogonal matrix. We can use
the method proposed in Section 2.3 to generate an orthogonal matrix. We only
rotate non-noisy variables and do not rotate noisy variables because otherwise
it is possible that noisy variables are no longer noisy afterrotation. Hence the
rotation leads to simulated data sets that are more representative of real data
sets. For evaluation by simulation of some aspects of clustering algorithms, the
rotation step might not be needed.

2.6 An Illustration of the Cluster-Center-Allocation Algorithm

Suppose that we would like generate a data set that has5 clusters in
a 2-dimensional space with close structure (J0 = 0.01). We first generate 5
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(random) covariance matrices using the method described insubsection 2.3,
after specifyingλmin = 1 andrλ = 10. The covariance matrices are:

(
6.11 0.46
0.46 4.63

)
,
(

4.98 0.86
0.86 6.11

)
,
(

7.70 1.90
1.90 3.19

)
,
(

8.43 −0.02
−0.02 8.38

)
,
(

5.76 0.10
0.10 6.24

)
.

Then we construct an equilateral simplex and a shifted equilateral simplex with
edges length2 in a 2-dimensional space (see Figure 2).

The initial separation index matrix isA1. After scaling the lengths of the
simplices by a factor5.35, the separation index matrix becomesA2 with the
minimum (non-diagonal) value equal toJ0 = 0.01.

A1 =

−1.00 −0.64 −0.63 −0.45 −0.47
−0.64 −1.00 −0.58 −0.67 −0.66
−0.63 −0.58 −1.00 −0.47 −0.67
−0.45 −0.67 −0.47 −1.00 −0.68
−0.47 −0.66 −0.67 −0.68 −1.00

,

A2 =

−1.00 0.08 0.1 0.34 0.32
0.08 −1.00 0.17 0.03 0.04
0.10 0.17 −1.00 0.31 0.03
0.34 0.03 0.31 −1.00 0.01
0.32 0.04 0.03 0.01 −1.00

.

Next, we scale covariance matrices so that the separations between any cluster
and its nearest neighboring cluster are also equal toJ0. BecauseJ∗

1min =
0.08 = arg maxk=1,...,5 J∗

k min, we scale the covariance matrix of cluster 1 by
a scalar1.63. ThenJ∗

3min = 0.03 = arg maxk=1,...,5 J∗
k min, and we scale

covariance matrix of cluster 3 by a scalar1.20. The final separation index matrix
becomes: 


−1.00 0.01 0.01 0.29 0.26
0.01 −1.00 0.15 0.03 0.04
0.01 0.15 −1.00 0.30 0.01
0.29 0.03 0.30 −1.00 0.01
0.26 0.04 0.01 0.01 −1.00


 .

3. A Factorial Experiment Design

One application of our cluster generating algorithm is to systematically
study the performances of clustering-related methods (such as clustering meth-
ods or methods to estimate the number of clusters), which could be affected by
factors such as (1) the number of clusters; (2) the degree of separation; (3) the
numberp1 of non-noisy variables; and (4) the numberp2 of noisy variables. To
know the impact of these factors, a factorial experiment design like in Milligan
(1985) is needed. Our cluster generating algorithm can generate data sets with
desired cluster structures for factorial experiment designs.

For example, we can consider a factorial experiment design containing
four factors listed in Table 1. The number of clusters and number of non-noisy
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Figure 2. A equilateral simplex and a shifted equilateral simplex with edge length 2.

Table 1. The factors and their levels in a factorial experiment design

Factors Levels
Number of clusters 3, 6, 9
Degree of separation close, separated, well-separated
Number of non-noisy variablesp1 4, 8, 20
Number of noisy variablesp2 1, 0.5p1, p1

Totally 3 × 3 × 3 × 3 = 81 cells in the design.

variables were considered in Milligan’s (1985) design. We add the degree of
separation as a factor because by intuition, it will affect alot the performances
of clustering-related methods. It is well-known (e.g. Gordon 1981, Section
2.4.5; Milligan 1989; Gnanadesikan et al. 1995) that noisy variables may mask
true cluster structure. Therefore we explicitly add the number of noisy vari-
ables as a factor. Unlike Milligan (1985), the cluster size and outlier are not
considered in this design.

As mentioned in subsection 2.2, we regard a cluster structure ascloseif
J∗

k min = 0.010, k = 1, . . . , K, asseparatedif J∗
k min = 0.210, k = 1, . . . , K,

and aswell-separatedif J∗
k min = 0.342, k = 1, . . . , K.

Following Milligan (1985), we generate three replicates for each cell of
the design. So the design produces3 × 3 × 3 × 3 × 3 = 3 × 81 = 243
simulated data sets. When generating these243 data sets, we setα = 0.05,
λmin = 1, andrλ = 10. We randomly generate cluster sizes from the intervals
[10p, 10p + 100], wherep is the total number of variables (including both
noisy and non-noisy variables). The number of outliers is setto be zero. The
data points are generated from mixtures of multivariate normal distributions.

Note that for generating random vectors with non-normal distributions,
the methods given in Cario and Nelson (1997) and Devroye (1986) can be used.
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4. Verification of Simulated Data Sets

Once we generate a simulated data set with a specified separation index
J0, we need to verify if the sample separation indicesJ∗

k min, k = 1, . . . , K, are
close toJ0, whereK is the number of clusters in the data set.

For the design discussed in Section 3, there are81 data sets each for
close, separated and well-separated cluster structures. For the81 data sets with
close cluster structures, we put all the estimated separation indicesĴ∗i

k min, k =
1, . . . , Ki, i = 1, . . . , 81, into a setSĴc. Similarly, we obtain the setSĴs for
data sets with separated cluster structures and the setSĴw for data sets with
well-separated cluster structures. We expect that all elements in the setsSĴc,
SĴs, andSĴw are close to0.010, 0.210, and0.342 respectively.

Let S be any one of the setsSĴc, SĴs, andSĴw. Denotesi as thei-th
element of the setS andm as the number of elements in the setS. The estimates
of the bias and mean-squared error (MSE) for the specified degreeof separation
J0 are defined aŝbias (S) = S − J0, M̂SE (S) = V̂ar (S) + b̂ias (S)2, where
S = m−1

∑m
i=1 si andV̂ar (S) = (m − 1)−1

∑m
i=1(si − S)2, are the sample

mean and variance of the setS respectively. The specified degree of separation
J0 can take values0.010, 0.210, or 0.342.

Table 2 lists the results for the setsSĴc, SĴs, andSĴw. We can see that the
sample degrees of separation of the data sets are close to thespecified degree of
separation.

In addition to the separation indices between clusters and the nearest
neighbors, the separation indices between clusters and their otherdirect neigh-
boring clusterscan also provide useful information about the degree of sepa-
ration of the cluster structure in a data set. In our algorithm, a clusterk2 is a
direct neighboring clusterof the clusterk1 if the distance between the two clus-
ter centers is equal toL, whereL is the edge length of the symmetric simplices.

Let N (k) be the set of vertices that are neighbors of vertexk (or set
of clusters that are direct neighbors of clusterk). When we generate the81
data sets with population separation indexJ0, we recorded the separation in-
dices between clusters and their farthest direct neighboring clustersĴ∗i

k max =

maxk′∈N (k) Ĵ∗i
k,k′ , whereKi is the number of clusters of thei-th data set,i =

1, . . . , 81. We denote these separation indices as thefarthest separation in-
dices. We also record the median of the separation indices betweenclusters and
their direct neighboring clusterŝJ∗i

k med = median k′∈N (k)Ĵ
∗i
k,k′ , whereKi is

the number of clusters of thei-th data set,i = 1, . . . , 81. We denote these sep-
aration indices as themedian separation indices. We put all the sample farthest
separation indices of the81 data sets with close cluster structures into the set
SĴcf . Similarly, the setSĴsf for separated,SĴwf for well-separated. Similarly,
we put the sample median separation indices into the setsSĴcm, SĴsm, and
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Table 2. The sample means and standard deviations of the setsS
Ĵc

, S
Ĵs

, andS
Ĵw

as well as the
corresponding estimates of biases and squared roots of MSEs ofJ0.

J0 mean (sd) bias
√

MSE
0.010 0.013 (0.023) 0.003 0.023
0.210 0.213 (0.020) 0.003 0.020
0.342 0.345 (0.017) 0.003 0.018

SĴwm respectively. The means and standard deviations of these sets are listed
in Tables 3 and 4.

Table 3 shows that the median separation indices tend to be close to the
specified degree of separation. This is desirable since we wantthe separation
indices between clusters and their direct neighboring clusters to be as close to
the specified degree of separation as possible.

However, the farthest separation indices in Table 4 tend to be much larger
than the specified separation indices; this is because ifK > p, then not all
cluster centers can be neighboring vertices of a simplex.

5. Illustration of Use of Factorial Experiment Design

In this section, we use the243 simulated data sets generated by the design
proposed in Section 3 to compare the performances of four number-of-cluster-
estimation methodsCH, Silhouette, Hartigan, andKL (see Tibshirani et al.,
2001). We use amodified kmeansclustering method to obtain partitions. In this
modified kmeansmethod, we first obtain10 partitions by usingkmeansmethod
given the number of clusters. Then we choose as the final partition the partition
which has the minimum average within cluster distance.

For theCH, SilhouetteandKL methods, we first obtain19 partitions with
consecutive numbers of clusters starting from2 and ending with20. Then we
choose the number of clusters which optimizes theCH index,Silhouetteindex,
or KL index. For theHartigan method, we obtain a sequence of partitions with
the number of clusters starting from2 until theHartigan index is less than or
equal to10.

To measure the performances of these number-of-cluster-estimation meth-
ods, we record the numbers and sizes of underestimates and overestimates. De-
noteδ as the differencêK−K, whereK is the true number of clusters (i.e., the
number of component distributions of the mixture of normal distributions used
to generate the data set) andK̂ is the estimated number of clusters. IfK̂ < K,
then the size of underestimate is−δ. If K̂ > K, then the size of overestimate
is δ. We also calculate the values of five external indices (Rand index, Hubert
and Arabie’s adjusted Rand index, Morey and Agresti’s adjusted Rand index,
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Table 3. Means and standard deviations of the median separation indices.

J0 mean (sd) set
0.010 0.076 (0.053) S

Ĵcm

0.210 0.267 (0.048) S
Ĵsm

0.342 0.397 (0.043) S
Ĵwm

Table 4. Means and standard deviations of the farthest separation indices.

J0 mean (sd) set
0.010 0.167 (0.113) S

Ĵcf

0.210 0.348 (0.094) S
Ĵsf

0.342 0.466 (0.083) S
Ĵwf

Fowlkes and Mallows index, and Jaccard index (Milligan 1986)) to measure the
agreements between the obtained partitions with the true partitions. The closer
to 1 the values of the external indices are, the better the agreements are. The
perfect agreement has index value1.

The total numbers and sizes of underestimates and overestimates of the
number of clusters for the243 data sets are summarized in Table 5. The second
and third columns are the total numbers (sizes) of underestimates and overesti-
mates of the number of clusters for the243 data sets in which noisy variables are
deleted, while the fourth and fifth columns are results obtained with all noisy
variables.

The average values and corresponding standard errors of the five external
indices are summarized in Tables 6 and 7. Tables 5, 6 and 7 showthat the mag-
nitude of gaps will affect the recovery of the true cluster structures. As the mag-
nitude of gaps decreases, the performances of the number-of-cluster-estimation
methods get worse. Also noisy variables will affect the recovery of the true
cluster structures. This simulation study also shows that the generated data sets
are challenging. TheHartigan andKL methods do poorly with overestimation
even for separated cluster structures and no noise. TheCH method does not
overestimate but underestimates the number of clusters when the clusters are
close and when there is noise (this property is not bad as these are the situations
where we expect it is harder to find boundaries among clusters). Overall, the
Silhouettemethod is best but can overestimate as well as underestimate.

In several previous simulation studies (e.g., Brusco and Cradit 2001; Mil-
ligan 1988; Steinley 2004), the results of the simulation studies were analyzed
via ANOVA. To see the effect of the different factors, we alsocalculate the
ANOVA tables. Although the values for different external indices sometimes
are quite different, the patterns of the values of the external indices across dif-
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Table 5. The numbers and sizes of underestimates and overestimates for the243 data sets (m−

ands− are total the number and size of underestimates whilem+ ands+ are the total number
and size of overestimates). The clustering method used is a modifiedkmeansmethod.

method without noise with noise
m

−
(s

−
) m+ (s+) m

−
(s

−
) m+ (s+)

close cluster structure
CH 36 (189) 0 (0) 61 (271) 0 (0)
Silhouette 8 (29) 10 (13) 18 (84) 7 (14)
Hartigan 0 (0) 81 (1251) 0 (0) 81 (1023)
KL 6 (31) 28 (179) 9 (40) 41 (392)

separated cluster structure
CH 0 (0) 0 (0) 22 (101) 0 (0)
Silhouette 0 (0) 0 (0) 10 (52) 6 (34)
Hartigan 0 (0) 81 (827) 0 (0) 81 (975)
KL 1 (4) 17 (100) 9 (46) 31 (261)

well-separated cluster structure
CH 0 (0) 2 (2) 17 (91) 1 (1)
Silhouette 0 (0) 2 (2) 9 (48) 3 (13)
Hartigan 0 (0) 81 (758) 0 (0) 81 (978)
KL 1 (7) 10 (63) 10 (52) 28 (226)

ferent number-of-cluster-estimation methods are similar. So we only consider
the factor effects on the Hubert and Arabie’s adjusted Rand index.

Table 8 has a partial ANOVA table for a linear model that includes all
4 factors shown in Table 1 plus the number-of-cluster estimation methods, and
up to third order interactions. Note the the summary table isinformative, even
though the homoscedasticity assumption for the linear model is not valid. The
main effects are all highly statistically significant, and more meaningful is the
effect size, given in the last column. The effect sizeη2 (Kirk 1982; Tabachnick
and Fidell 1989) is the proportion of variance in the dependent variable that is
attributed to a factor or interaction. That is,η2 = SSfactor/SStotal. Table 8
includes also the few interactions with the largest F ratiosandη2.

We can see from the ANOVA table that as expecteda priori, that the
factor degree of separation has a large effect size; also thenumber of non-noisy
variables and the number-of-cluster estimation methods have large effects on
the adjusted Rand index.

6. Discussion

In this article, we use the degree of separation among clusters based on
the separation index proposed by Qiu and Joe (2006) to develop a cluster gen-
erating algorithm which can generate clusters with a specified degree of separa-
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Table 6. The average values (corresponding standard errors) of the five external indices∗ for the
243 data sets without noisy variables.

method HA MA Rand FM Jaccard
close cluster structure

CH 0.54 (0.32) 0.54 (0.32) 0.78 (0.18) 0.68 (0.22) 0.53 (0.28)
Silhouette 0.74 (0.17) 0.74 (0.17) 0.90 (0.11) 0.81 (0.11) 0.68 (0.15)
Hartigan 0.32 (0.09) 0.33 (0.09) 0.83 (0.08) 0.73 (0.06) 0.24 (0.06)
KL 0.65 (0.23) 0.65 (0.23) 0.88 (0.11) 0.73 (0.16) 0.58 (0.21)

separated cluster structure
CH 0.98 (0.01) 0.98 (0.01) 1.00 (0.00) 0.99 (0.01) 0.97 (0.01)
Silhouette 0.98 (0.01) 0.98 (0.01) 1.00 (0.00) 0.99 (0.01) 0.97 (0.01)
Hartigan 0.50 (0.17) 0.50 (0.16) 0.86 (0.09) 0.62 (0.11) 0.40 (0.14)
KL 0.90 (0.19) 0.90 (0.19) 0.97 (0.08) 0.92 (0.13) 0.87 (0.21)

well-separated cluster structure
CH 1.00 (0.01) 1.00 (0.01) 1.00 (0.00) 1.00 (0.01) 1.00 (0.02)
Silhouette 1.00 (0.01) 1.00 (0.01) 1.00 (0.00) 1.00 (0.01) 1.00 (0.01)
Hartigan 0.53 (0.18) 0.53 (0.18) 0.87 (0.09) 0.64 (0.12) 0.43 (0.16)
KL 0.94 (0.17) 0.94 (0.17) 0.98 (0.07) 0.96 (0.12) 0.93 (0.19)

∗ HA, MA, Rand, FM, and Jaccard represent Hubert and Arabie’s adjusted Rand index, Morey and Agresti’s
adjusted Rand index, Rand index, Fowlkes and Mallows index,and Jaccard index, respectively.

tion. An application to the estimation of the number of clusters shows that the
generated cluster structures are challenging.

The design proposed in Section 5 is just a simple example of an exper-
iment design which is based on our random cluster generationalgorithm pro-
posed in Section 2. Other designs can be considered. For example, we can add
cluster size and proportion of outliers as two additional factors in the design.

We didn’t mention all the details of the random cluster generation al-
gorithm. More detailed information can be found in the help files of the R
packageclusterGenerationthat we wrote to implement the random cluster gen-
eration algorithm proposed in this article.clusterGenerationallows the user to
have more control over several factors. For example, the user is allowed (1)
to generate cluster size randomly from a range; (2) or to generate clusters with
equal size; or (3) to specify each cluster size.

Currently, we assume that all variables are continuous typeand clusters
are symmetric about their centers. To make the generated cluster structures
closer to real data sets, we will investigate in our future research on how to gen-
erate cluster structures with mixed-type variables and clusters of other shapes.
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Table 7. The average values (corresponding standard errors) of the five external indices∗ with
noisy variables

method HA MA Rand FM Jaccard
close cluster structure

CH 0.37 (0.30) 0.37 (0.30) 0.69 (0.17) 0.57 (0.22) 0.40 (0.26)
Silhouette 0.65 (0.25) 0.66 (0.25) 0.86 (0.15) 0.75 (0.16) 0.61 (0.21)
Hartigan 0.30 (0.07) 0.31 (0.07) 0.83 (0.08) 0.44 (0.06) 0.23 (0.04)
KL 0.47 (0.27) 0.47 (0.27) 0.83 (0.12) 0.58 (0.21) 0.41 (0.24)

separated cluster structure
CH 0.80 (0.32) 0.80 (0.32) 0.90 (0.17) 0.86 (0.21) 0.79 (0.30)
Silhouette 0.86 (0.27) 0.86 (0.27) 0.94 (0.14) 0.90 (0.18) 0.85 (0.26)
Hartigan 0.43 (0.14) 0.43 (0.14) 0.85 (0.08) 0.56 (0.10) 0.33 (0.12)
KL 0.68 (0.34) 0.68 (0.34) 0.90 (0.13) 0.75 (0.26) 0.65 (0.35)

well-separated cluster structure
CH 0.84 (0.31) 0.84 (0.31) 0.92 (0.16) 0.89 (0.21) 0.84 (0.30)
Silhouette 0.90 (0.25) 0.90 (0.25) 0.95 (0.13) 0.94 (0.16) 0.90 (0.24)
Hartigan 0.44 (0.16) 0.45 (0.15) 0.85 (0.09) 0.57 (0.11) 0.35 (0.13)
KL 0.71 (0.34) 0.71 (0.34) 0.90 (0.14) 0.78 (0.25) 0.69 (0.35)

∗ HA, MA, Rand, FM, and Jaccard represent Hubert and Arabie’s adjusted Rand index, Morey and Agresti’s
adjusted Rand index, Rand index, Fowlkes and Mallows index,and Jaccard index, respectively.

Appendix

A. Finding the Optimal Projection Direction

In this section, we give a brief description on how to find the optimal
projection direction for the optimization problem

a∗ = arg max
aT (µ

2
−µ

1
)>0

J12(a). (A.1)

A detailed proof can be found in Qiu and Lee (2005). The idea is tofirst trans-
form the constrained optimization problem (A.1) into an unconstrained opti-
mization problem

min
y

g(y), (A.2)

where

g(y) =
√

g1(y) +
√

g2(y),
g1(y) = yT y + 1,
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Table 8. ANOVA for Hubert and Arabie’s adjusted Rand index

Df Sum Sq Mean Sq F value η2

#C= No. of clusters 2 0.785 0.392 17 0.007
DS= Degree of Separation 2 14.504 7.252 314 0.137
#NNV = No. of non-noisy vars. 2 16.113 8.056 349 0.152
#NV = No. of noisy variables 2 1.218 0.609 26 0.011
#CEM= #Cluster est. method 3 21.597 7.199 312 0.203
#C× #NNV 4 7.469 1.867 81 0.070
DS× #NNV 4 1.855 0.464 20 0.017
#C× #CEM 6 7.250 1.208 52 0.068
DS× #CEM 6 2.865 0.478 21 0.027
#NNV × #CEM 6 3.352 0.559 24 0.032
Residuals 808 18.661 0.023

g2(y) =
(
y + V −1

22 v21

)T
V 22

(
y + V −1

22 v21

)
+ c2,

c2 = v11 − vT
21V

−1
22 v21,

andV = QT
2 QT

1 Σ2Q1Q2 =

(
v11 v12

v21 V 22

)
,

Q1 is a p × p nonsingular matrix such thatQT
1 Σ1Q1 = IG, Q2 is a p × p

orthogonal matrix such thatQT
2

[
QT

1 (µ2 − µ1)
]

= c1e1, e1 is ap × 1 vector
whose elements are all equal to zero except the first element isequal to1, c1 =

‖QT
2 QT

1 (µ2 − µ1)‖ > 0, and the norm‖z‖ is defined as
√

zT z.
We can show that the objective function of this unconstrained optimiza-

tion problem (A.2) is a strictly convex function if thep× p covariance matrices
Σ1 andΣ2 are positive definite and that thep × 1 mean vectorsµ1 andµ2 are
different. Thus the optimization problem (A.2) has a unique critical point and
the unique critical point is the minimum point. Hence the optimization problem
(A.1) has the unique maximum point.

We can use the Newton-Raphson method to obtain the minimum point of
(A.2). The initial value ofy can be taken asµ2 − µ1.

B. Generating Vertices of ap-Dimensional Simplex

We first describe how to obtain the third vertex for thep-dimensional
simplex. Since the simplex is equilateral, we have(v3 − v1)

T (v3 − v1) =

4, (v3 − v2)
T (v3 − v2) = 4. By adding the two equations, we can obtain

vT
3 v3−2v3v̄2 = 4− 1

2

∑2
i=1 vT

k vk, wherev̄2 = 1
2

∑2
i=1 vk = (v̄21, . . . , v̄2p)

T .
Let v31 = v̄21 and v33 = · · · = v3p = 0. Then we can getv2

32 = 4 −
1
2

∑2
i=1 vT

k vk + v̄2
21 + 2v32v̄22. Note that̄v22 = 0. Hence
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v32 =
{

4 −
[

1
2

∑2
k=1 vT

k vk − v̄T
2 v̄2

]}1/2

=
{

4 − 1
2

∑2
k=1 (vk − v̄2)

T (vk − v̄2)
}1/2

.

By using the same technique, we can obtain the coordinates ofthek-th vertex
vk givenv1, . . . ,vk−1, 2 < k ≤ p + 1 (see Formula (2.1)).
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