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1. Introduction

To numerically evaluate the performances of clusteringhods, simu-
lated data sets are often used. Simulated data sets have khster structures
so that we can evaluate the performance of a clustering méthohecking the
agreement between the true partition and the partitiorimddeby the clustering
method. They are also easy to generate, and we can contraiges(e.g. noisy
variables, outliers, missing values, and measurementseretc.) and produce
as many replicates as we want. Furthermore they can be usetetorihe the
situations in which a clustering method works well or doegr@rk well.

The qualities of simulated data sets depend on cluster gergalgo-
rithms. Many cluster generating methods have been prop@sgdMilligan
1985; Gnanadesikan, Kettenring, and Tsao 1995; Zhang, R&hakn, and
Livny 1997; Guha, Rastogi, and Shim 1998; Waller, Kaiserfiliand Manry
1998; Waller, Underhill, and Kaiser 1999; Tibshirani, Wialt, and Hastie
2001). Milligan (1985) and Waller et al. (1999) systemdtjcaddressed the
problem of cluster generation. Milligan generated clusfesm an experimen-
tal design point of view: the factors include the number obttrs, the number
of dimensions (variables), sizes of clusters, outlierssyhgariables, and mea-
surement errors. In the design, cluster centers and boesdae generated one
dimension at a time. Cluster boundaries are separated bydamaquantity in
the first dimension. However there is no constraint on theaismé among
clusters in other dimensions. Multivariate normal disitibns with diagonal
covariance matrices are used to generate data points. Diata pre rejected if
they fall outside the cluster boundaries.

The main limitation of Milligan’s (1985) method is that thegiee of
separation among clusters is not controlled. The degreepafragon among
clusters is one of the most important factors to check thespaances of clus-
tering methods. If a clustering method could work well farsgly-spaced clus-
ters, then it is reasonable to believe that this method igb#tan other clus-
tering methods. If a clustering method could not work wetlell-separated
clusters, then it is reasonable to believe that its perfogaas worse than other
clustering methods. Therefore it is desirable to controlibgree of separation
among clusters. Waller et al. (1999) proposed a index calldidator validity
to control the average separation among clusters. In thicdeawe use a sep-
aration index proposed by Qiu and Joe (2006) to directlyrobiite degree of
separation between clusters and the nearest neighbotisigid.

It is quite common in real data sets that covariance mataoesot diag-
onal and clusters are separated in high-dimensional spacard overlapping
in each pair of dimensions. By a random rotation, we can ingidilligan’s
(1985) method so that clusters might not be visualized bs\pisie scatterplots
of variables. However it is not straightforward to improvallan’s (1985)
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method so that the covariance matrices can have differapesh diameters and
orientations, while the degree of separation is contrabeaspecified value. At
first thought, we can control the degree of separation by Bpegithe lengths
of the gaps between clusters in the first dimension rathertdratomly generat-
ing the lengths of the gaps. But the gap is equivalent to ogiredeof separation
only when the covariance matrices of clusters are diagaaak(of uncorrelated
variables).

We improve the cluster generation method proposed in Mitli¢l985)
so that the degree of separation between clusters and thesheaighboring
clusters could be set to a specified value while the clustear@wce matrices
can be arbitrary positive definite matrices, and so thatetagienerated might
not be visualized by pair-wise scatterplots of variables.

The remaining sections of the article are organized as fall@&ection 2
presents the cluster generating algorithm. Section 3 de=xca factorial exper-
iment design to systematically generate simulated dasa Sefction 4 gives a
verification of the simulated data sets. An illustration of tise of the design
for comparing methods of estimating the number of clustegivien in Section
5. Section 6 contains a summary and proposes possible figseanch topics.
Technical details are included in Appendices.

2. Algorithm for Generation of Random Clusters

2.1 Overall Algorithm

In this subsection, we give the overall algorithm for getiereof random
clusters. We will describe the details in later subsections

Step 1 Specify the number of non-noisy dimensigns the number of clusters
K, the degree of separatiofy between any cluster and its nearest neigh-
boring cluster, the tuning parameteifor the separation index, the num-
ber of noisy variableg,, the number or ratio of outliers, the lower bound
Amin Of the eigenvalues for random covariance matrices, the ratof
the upper bond of the eigenvalues to the lower bound of thengajues
for random covariance matrices, and the range of clustesBiz, ny].

Step 2 Generate cluster centers and random covariance matritiesin non-
noisy dimensions so that neighboring clusters have pdpulaeparation
index Jy (details are given in Section 2.3).

Step 3 Generate sizes of each cluster randomly from the rgnge ny/] and
generate memberships of each data point.

Step 4 Generate the mean vector and covariance matrix of the naisghles
(details are given in Section 2.4).
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Step 5 Apply a random rotation to the cluster means and covariareteices
in Step 2 (details are given in Section 2.5).

Step 6 From Steps 4 and 5, we have cluster means and covariance métrice
all K clusters.

Step 7 Generate random vectors for each of Kielusters from a given family
of elliptical distributions.

Step 8 Calculate the population separation index matrices an@gtion direc-
tions for pairs of clusters via the population mean vectosevariance
matrices.

Step 9 Calculate the sample separation index matrices and prajedirec-
tions via the sample mean vectors and covariance matrices.

Step 10 Generate outliers. The memberships of outliers are assigaeero
(details are given in Section 2.4).

2.2 Degree of Separation

The key concept in the algorithm is the degree of separation. ugé
the degree of separation based on the separation indexggopy Qiu and Joe
(2006). Other separation indices (e.g., Blashfield 197@&sind Overall 1994;
Donoghue 1995; Steinley 2003, 2004) could be used insteadadvantage of
Qiu and Joe’s separation index is that it directly measuresrtagnitude of the
gap or data-sparse area between each pair of clusters. \eiedsa probability
of overlap between two cluster distributions but this is astgeometrically
interpretable.

DenoteL; andUj, as the lower and upper/2 percentiles of projected
clusterk, respectively. The quantile version of the separation indealefined
as

Ly — Uy
J(a) = -

wherea is the projection direction. Figure 1 illustrates thidiz) directly mea-
sures the gap or data-sparse area between two clusters.

If two clusters are generated fropadimensional elliptical distributions
with densitiesfy (z) = [Zk|~Y2h, (2 — py) S5z — ), b = 1,2, derived
from a spherical density, (y'y) with marginal variances of 1 and means of 0,
the separation index function of a projection directibnan be rewritten as

a®(py — py) — QQ/2(\/GT21¢1 + \/aT22a)

Ji2(a) = ,
12(a) aT(uz—ul)—an/Q(\/aTEla +vaT3a)
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J(a)=d1/d2=(L2-U1)/(U2-L1)

Figure 1. lllustration of the concept of the separation index.andU,, are the lower and upper
«/2 percentiles of projected clustét respectively. L, > U; indicates that two clusters are
separatedl.. < U, indicates that two clusters are overlapping.

wherep,, andX;, k£ = 1,2, are the mean vectors and covariance matrices for
the two clustersq € (0,0.5) is a tuning parameter indicating the percentage of
data in the extremes to downweight,/, is the uppexr/2 quantile of the uni-
variate margin of,(y'y). If the distributions of two clusters are multivariate
normal distributions, theq,, > = z, /2, Wherez,, /, is the uppery/2 quantile of

the univariate standard normal distribution.

Let J}, be the optimal separation index between clusteasd?2, i.e.,

Jiy = Ji2(a*), wherea* is the optimal projection direction which maximizes
J12 (Appendix A briefly describes how to compui€). Similarly, let.J;; , be
optimal separation index between clusteysks.

Let J; i = Milg,=1, . K k#k J5 5, WhereK is the number of clus-
ters. Thedegree of separatiothen can be measured by the separation indices
Siminr B = 1,..., K. If J: .,k =1,...,K, are all close to zero, then
the cluster structure is close. Iff .,k = 1,..., K, are all quite large,
then the cluster structure is well-separated. However difficult to make
a clear-cut decision on whether a cluster structure is &loseparated”, or
“well-separated”. For the factorial experiment design ict®a 3, we regard

a cluster structure asloseif J; . = 0.010, k¥ = 1,..., K, asseparated
if J i, = 0210, k = 1,..., K, and aswell-separatedf J; . = 0.342,
k = 1,...,K. The value0.010 is the separation index between two clus-

ters, which are generated from two univariate normal distronsN (0, 1) and
N (A4,1), whereA = 4. The value$).210 and0.342 are the separation indices
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corresponding td = 6 and A = 8 respectively. The tuning parameteris
equal t00.05 when calculating these separation indices.

Essentially, theJ; . values of 0.01, 0.21 and 0.342 were chosen to
match behavior we expect from clustering methods for clgsparated and
well-separated. In the case of closely-spaced clustersexpect clustering
methods to have difficulties in determining the number ofteliss(especially if
there are some noisy variables), and in the case of wellratshclusters, we
expect good clustering methods to manage fine. Our choicgs gf to match
three levels of cluster separation did work out well for thaudation study in
Section 5, as well as for other results in Qiu’s PhD thesis.

2.3 Allocating Cluster Centers and Generating Covariance Matrices

If there are more than two clusters, then it is not easy teatthe clus-
ter centers so that the separation indicg§ (., £ = 1,..., K) between any
cluster and its nearest neighboring cluster are all equahta@xcept for the
trivial cases where cluster covariance matrices are atilgqua multiple of the
identity matrix. To overcome this difficulty, we first allocatkister centers on
the vertices of an equilateral simplex and then adjust thgtkeof the simplex
edge so that the minimum separation among clusters is egubé tspecified
valueJy. Finally we scale covariance matrices (but keep their shapgsrien-
tations) so that the separations between any cluster andargst neighboring
cluster are also equal to the specified valye

A simplexin a p;-dimensional space contaips + 1 verticeswvy, ...,
vp,+1. Thesep; + 1 vertices are linearly dependent. However all its proper sub
sets are linearly independent. A simplex is a line segmerigragle, and a tetra-
hedron in one-, two-, and three-dimensional space respctiThe lengths of
the simplex edges are not necessarily equal.

With the following cluster-center-allocation algorithmje can obtain
mean vectors and covariance matrices of clusters so thaidpelation sep-
aration indices/;} .,k =1,..., K, are all equal ta/.

Cluster-Center-Allocation Algorithm
Step (a) Generatdl covariance matricexy, in p; dimensionsk =1,..., K.

Step (b) Construct @ -dimensional equilateral simplex whose edges have length
2. The first two vertices are; = —e; andvs = e respectively, where
the p; x 1 vectore; = (1,0,...,0)”. Denote thej-th vertex asv;,
j =1,...,p1 + 1. A method for construction of the other vertices is
given below.

Step (¢) If K < py + 1, then take the firsk vertices of the simplex as initial
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cluster centers. I > p; + 1, then we start adding vertices from the
following sequence aftar,, . until all K cluster centers are allocated:

vo+2%er, ..., Upy1t+2xe,vatdxe;, ...,vp41+4*eq,
vo+6xer, ..., V41 +6xer, ..., ey e

Essentially this just keeps on adding points on a shifted sgtriensim-
plex.

Step (d) Calculate the separation index matd¥., s .

Step (e) Scale the length of the simplex edge by a scalao that the minimum
separation indexain;; J; among pairs of clusters is equal fg.

Step (f) Compute the separationindicek, ;.. k = 1,..., K, between a clus-
ter and its nearest neighboring cluster, and obtais arg max_Jj . .
k=1,..K

If Ji. i > Jo, then go to Step (g). Otherwise scaling is complete.

Step (g) Scale the covariance matr®,. by a scalak; so thatJ;. . = Jo.
Go back to Step (f).

The vertices of @-dimensional equilateral simplex, whose edge length
is L = 2 and first two vertices are; = —e; andwvs = ej, are not unigue.
In the following, we provide a set of such vertices. Suppos¢ e already
obtain the coordinates of the vertices,...,v;_1,2 < k < p+ 1. Then the
coordinates of the verteix, is obtained by:

Vi = Uiy, 1=1,...,k—2,
Ukj:()’j:k7"’7p7

k—1 1/2
1 _ T _
Vg o1 = {4 ———» (vi — V1) (vi— 'Uk—l)} ,

i=1

(2.1)

wherev,_1 = 2 S8 v = (Br_1,1,...,Tk-1,)" . Appendix B gives the
derivation of this formula.

The eigenvalues and eigenvectors determine the diamedge simd ori-
entation corresponding to a positive-definite covariance&im&. Therefore,
we generate random positive-definite covariance matricegeoygrating ran-
dom eigenvalues and eigenvectors. The relation between<a positive-
definite covariance matriXx and its eigenvalues and eigenvectorXis-
QAQ", whereA = diag (AMsooAp), AL > A > .0 > X\, > 0 are eigenval-
ues ofX, and thej-th column of the matrix@ is the normalized eigenvector of
3 corresponding to the eigenvalig. Note thatQ is ap x p orthogonal matrix
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such thalQQ” = I, andQ’Q = I, wherel, is thep-dimensional identity
matrix.

We can generatgeigenvalues uniformly from a bounded interval whose
lower bound is positive. In our experience, the rapgg, = 1, Amax = 10]
can give reasonable variability for the diameters of chisst@herefore, we set
Amin = 1 @andry = Apax/Amin = 10 for the simulated data sets mentioned in
the subsequent sections.

To generate @ x p orthogonal matrix(?, we can first generate ja x
p lower triangle matrixM whose diagonal elements are all non-zero. Then
we use the Gram-Schmidt Orthogonalization (Kotz and Johd8&3, Vol. 3,
pp. 478) to transform the lower triangle matfl{ to an orthogonal matrix.

Note that other methods can be used to generate randonvpaifinite
covariance matrices. For example, we can generate coearraatrices based
on correlation matrices (e.g., Waller et al. 1999; Joe 2006)

2.4 Constructing Noisy Variables and Outliers

There is no unified definition of a noisy variable. Milligan (19&ts-
sumed that noisy variables are uniformly distributed arelindependent of
each other and of non-noisy variables. For the cluster g¢ingr we assume
that noisy variables are normally distributed and indepandf non-noisy vari-
ables. However, noisy variables are not necessarily inttbgre of each other.

Like Milligan (1985), we require that the variations of noiggriables
in the generated data sets are similar to those of non-naisghles. If noisy
variables have smaller variations than those of non-no#iakles, then we
implicitly downweight noisy variables. Hence the data setsild be less chal-
lenging.

Denote thep; x p; matrix X* as the covariance matrix of non-noisy
variables and thg, x po matrix 3 as the covariance matrix of noisy variables.
One possible way to make the variations of noisy variabledlai to those of
non-noisy variables is to make the ranges of eigenvaludsdimilar to those
of X*.

If we assume that data points in non-noisy dimensions ara &anix-
ture of distributions with the density functiofixz) = Zszl e frx(x), where
0 <m <landY ;7 = 1, then the covariance matr* of the mixture
of distributions is2* = S0 T2 + g Tk (e — ) (1 — )T
wherep,, andX;, are the mean vector and covariance matrix ofitfte compo-
nent of the mixture of distributions. We can randomly getesthe eigenvalues
of 3y from the interval[\; , Aj], wherep, is the number of non-noisy vari-
ables,\; and A} are the minimum and maximum eigenvalues of the matrix
¥*. In this way, the variations of noisy variables would be $amio those of
non-noisy variables.

’
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The mean vectop* = szzl T, Of the mixture of distributions can
be used to generate thg x 1 mean vectorn, of the noisy variables. For
example, we can randomly generate theelements ofu, from the interval
(miny<j<p, pf, maxi<j<p, p-

Once we generate the mean vectors and covariance matrices-oiisy
and noisy variables, we can randomize the labels of vagablenake the gen-
erated data sets closer to real data sets.

Outliers, like noisy variables, are frequently encourdeénereal data sets,
and they may affect the recovery of true cluster structurbégrefore any clus-
ter generating algorithm should provide a function to pemlautliers for sim-
ulated data sets.

For simplicity, we generate outliers from a distributionagle marginal
distributions are independent uniform distributions. Théiers are generated
for the whole data set instead of for each cluster. The rantfeegftth marginal
uniform distribution depends on the range of non-outlieithej-th dimension.
We set the range a8, — 45, [1; + 46;], whereji; andg; are the sample mean
and standard deviation of theth variable respectively.

2.5 Rotating Data Points

In most cases, we could not detect the numbers of clustersabtata
sets in high-dimensional spaces by lower-dimensionatexgadts of variables.
However, the simulated data sets produced by the methodSamed in the
cluster analysis literature do not always have this prgp&ar example, we can
easily detect the numbers of clusters in data sets gendratiftiligan (1985)
from the scatterplots of the first variable versus any oneloérotariables. The
data sets generated by our algorithm might have the samé&prob

To improve the simulated data sets so that we could not détectum-
bers of clusters by pair-wise scatterplots of variablescaresimply transform
these data sets by random rotations. To rotate a data powe can apply
the transformatiory = Qx, where@ is an orthogonal matrix. We can use
the method proposed in Section 2.3 to generate an orthogatekmae only
rotate non-noisy variables and do not rotate noisy vargabérause otherwise
it is possible that noisy variables are no longer noisy aftéation. Hence the
rotation leads to simulated data sets that are more reqetisenof real data
sets. For evaluation by simulation of some aspects of cingtalgorithms, the
rotation step might not be needed.

2.6 An lllustration of the Cluster-Center-Allocation Algorithm

Suppose that we would like generate a data set that hassters in
a 2-dimensional space with close structwig & 0.01). We first generate 5
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(random) covariance matrices using the method describedibsection 2.3,
after specifying\n;n, = 1 andry, = 10. The covariance matrices are:

6.11 0.46 498 0.86 770 1.90 843  —0.02 576 0.10
046 4.63/)° \0.86 6.11)° \1.90 3.19/)° \—0.02 838 /7 \0.10 6.24)
Then we construct an equilateral simplex and a shifted egugbsimplex with
edges lengtl2 in a 2-dimensional space (see Figure 2).
The initial separation index matrix i4,. After scaling the lengths of the

simplices by a factob.35, the separation index matrix becomds with the
minimum (non-diagonal) value equal #§ = 0.01.

—-1.00 —-0.64 -0.63 —-0.45 —-047
-0.64 —-1.00 -0.58 —0.67 —0.66
A = -0.63 —0.58 —-1.00 —-047 -0.67
—-0.45 -0.67 -0.47 —-1.00 -0.68
—-0.47 -0.66 —-0.67 —0.68 —1.00

)

~1.00 008 01 034 032

0.08 —1.00 0.17 0.03 0.04

Ay = 010 017 —1.00 031  0.03

034 003 031 -100 0.01

032 004 003 001 —1.00
Next, we scale covariance matrices so that the separatengén any cluster
and its nearest neighboring cluster are also equalyto BecauseJ; ;, =
0.08 = arg maxy—1,...5 J} ;,» We Scale the covariance matrix of cluster 1 by
a scalarl.63. ThenJ3,;, = 0.03 = arg maxp=1__5J;;, and we scale
covariance matrix of cluster 3 by a scala0. The final separation index matrix

becomes:
—1.00 001 001 029 026

0.01 —-1.00 0.15 0.03 0.04
0.01 0.15 —1.00 0.30 0.01
0.29 0.03 0.30 —1.00 0.01
0.26 0.04 0.01 0.01  —1.00

3. A Factorial Experiment Design

One application of our cluster generating algorithm is tetegnatically
study the performances of clustering-related methods(aaclustering meth-
ods or methods to estimate the number of clusters), whicllddmuaffected by
factors such as (1) the number of clusters; (2) the degreepatration; (3) the
numberp; of non-noisy variables; and (4) the numbegrof noisy variables. To
know the impact of these factors, a factorial experimenighelgke in Milligan
(1985) is needed. Our cluster generating algorithm canrgeneéata sets with
desired cluster structures for factorial experiment desig

For example, we can consider a factorial experiment desigitaming
four factors listed in Table 1. The number of clusters and remalb non-noisy
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Vertex 3 Vertex 5
(0,1.73) (2,1.73)

(*130) (130) (330>
Vertex 1 Vertex 2 Vertex 4

Figure 2. A equilateral simplex and a shifted equilateral simplex with edggHeth

Table 1. The factors and their levels in a factorial experiment design

Factors Levels

Number of clusters 3,6,9

Degree of separation close, separated, well-separated
Number of non-noisy variables | 4, 8, 20

Number of noisy variables, 1,0.5p1, p1

Totally 3 x 3 x 3 x 3 = 81 cells in the design.

variables were considered in Milligan's (1985) design. \Wd ¢he degree of
separation as a factor because by intuition, it will affetdtahe performances
of clustering-related methods. It is well-known (e.g. Gordl981, Section
2.4.5; Milligan 1989; Gnanadesikan et al. 1995) that nomyables may mask
true cluster structure. Therefore we explicitly add the nemiif noisy vari-

ables as a factor. Unlike Milligan (1985), the cluster siné autlier are not
considered in this design.

As mentioned in subsection 2.2, we regard a cluster streieseloseif
Jimin = 0.010, k = 1,..., K, asseparatedf J; . =0.210,k=1,..., K,
and aswell-separatedf J; . =0.342,k=1,... K.

Following Milligan (1985), we generate three replicatesdach cell of
the design. So the design produ@s 3 x 3 x 3 x 3 = 3 x 81 = 243
simulated data sets. When generating thesedata sets, we set = 0.05,
Amin = 1, andry = 10. We randomly generate cluster sizes from the intervals
[10p, 10p + 100], wherep is the total number of variables (including both
noisy and non-noisy variables). The number of outliers idGé&e zero. The
data points are generated from mixtures of multivariatenadidistributions.

Note that for generating random vectors with non-normatitistions,
the methods given in Cario and Nelson (1997) and Devroyegl€éh be used.
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4. Verification of Simulated Data Sets

Once we generate a simulated data set with a specified sepairadiex
Jo, we need to verify if the sample separation indidgs, .k =1,..., K, are
close toJy, whereK is the number of clusters in the data set.

For the design discussed in Section 3, there&relata sets each for
close, separated and well-separated cluster structureshé81 data sets with

close cluster structures, we put all the estimated separatdices/;? . , k =
1,...,.K;,1=1,...,81,into a sets;... Similarly, we obtain the sef';, for

data sets with separated cluster structures and th§ sefor data sets with
well-separated cluster structures. We expect that all ehesnin the sets';
S andew are close t®.010, 0.210, and0.342 respectively.

Let S be any one of the set$;., Sj.» andew. Denotes; as thei-th
element of the sef andm as the number of elements in the SefThe estimates

of the bias and mean-squared error (MSE) for the specified defseparation

Jo are defined abias (S) = S — Jy, MSE (S) = Var (S) + bias (S)2, where
S=m Y™ s andVar (S) = (m —1)"1 37, (s; — 5)2, are the sample
mean and variance of the sgetrespectively. The specified degree of separation
Jo can take value8.010, 0.210, or 0.342.

Table 2 lists the results for the setg,, S;., andS;, . We can see that the
sample degrees of separation of the data sets are closedpdtified degree of
separation.

In addition to the separation indices between clusters hadearest
neighbors, the separation indices between clusters airtherdirect neigh-
boring clusterscan also provide useful information about the degree of-sepa
ration of the cluster structure in a data set. In our algorjth clusterks is a
direct neighboring clusteof the clustet; if the distance between the two clus-
ter centers is equal tb, whereL is the edge length of the symmetric simplices.

Let N(k) be the set of vertices that are neighbors of veitefor set
of clusters that are direct neighbors of clust¢r When we generate thl
data sets with population separation indgx we recorded the separation in-
dices between clusters and their farthest direct neighgmiustersf,ji =

max

maXy e \/(k) j,jfk,, whereK; is the number of clusters of theth data set; =
1,...,81. We denote these separation indices asféinthest separation in-
dices We also record the median of the separation indices betalasters and
their direct neighboring cluster& ., = median ) /3, WhereK; is

the number of clusters of theth data set; = 1,...,81. We denote these sep-
aration indices as thmedian separation indice$Ve put all the sample farthest
separation indices of th&l data sets with close cluster structures into the set
Sjcf- Similarly, the selSjsf for separatedewf for well-separated. Similarly,
we put the sample median separation indices into the Sgts, S ;. , and

Jsm

Js?
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Table 2. The sample means and standard deviations of th8 getS ; , andS ;,, as well as the
corresponding estimates of biases and squared roots of MSEs of

Jo mean (sd) bias VMSE

0.010| 0.013 (0.023) 0.003 0.023
0.210| 0.213(0.020) 0.003 0.020
0.342| 0.345(0.017) 0.003 0.018

Si.m respectively. The means and standard deviations of thesaetisted
in Tables 3 and 4.

Table 3 shows that the median separation indices tend toolse &b the
specified degree of separation. This is desirable since we tivargeparation
indices between clusters and their direct neighboringteisdo be as close to
the specified degree of separation as possible.

However, the farthest separation indices in Table 4 tene toibch larger
than the specified separation indices; this is becaugé i p, then not all

cluster centers can be neighboring vertices of a simplex.
5. lllustration of Use of Factorial Experiment Design

In this section, we use tl#3 simulated data sets generated by the design
proposed in Section 3 to compare the performances of four awofecluster-
estimation method€H, Silhouette Hartigan, andKL (see Tibshirani et al.,
2001). We use anodified kmeanglustering method to obtain partitions. In this
modified kmeansiethod, we first obtaim0 partitions by usindkmeansnethod
given the number of clusters. Then we choose as the final parthie partition
which has the minimum average within cluster distance.

For theCH, SilhouetteandKL methods, we first obtaii9 partitions with
consecutive numbers of clusters starting frdmnd ending witi20. Then we
choose the number of clusters which optimizesGheindex, Silhouettandex,
or KL index. For theHartigan method, we obtain a sequence of partitions with
the number of clusters starting froEnuntil the Hartigan index is less than or
equal tol0.

To measure the performances of these number-of-cludtiensggon meth-
ods, we record the numbers and sizes of underestimates arestwmnates. De-
noted as the differencé — K, whereK is the true number of clusters (i.e., the
number of component distributions of the mixture of normatributions used
to generate the data set) afdis the estimated number of clusters Af< K,
then the size of underestimate-i$. If &' > K, then the size of overestimate
is 6. We also calculate the values of five external indices (Raddx, Hubert
and Arabie’s adjusted Rand index, Morey and Agresti’s adifRand index,
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Table 3. Means and standard deviations of the median separation indices.

Jo mean (sd) set
0.010| 0.076 (0.053) S

Jem

0.210| 0.267 (0.048) S;

Jsm

0.342| 0.397 (0.043) S’

Jwm

Table 4. Means and standard deviations of the farthest separationsindice

Jo mean (sd) set

0.010| 0.167 (0.113) S,

0.210| 0.348(0.094) S,

0.342| 0.466 (0.083) S,

Fowlkes and Mallows index, and Jaccard index (Milligan 138 measure the
agreements between the obtained partitions with the trugipas. The closer
to 1 the values of the external indices are, the better the agretsnare. The
perfect agreement has index value

The total numbers and sizes of underestimates and overéssimithe
number of clusters for the43 data sets are summarized in Table 5. The second
and third columns are the total numbers (sizes) of undenagtis and overesti-
mates of the number of clusters for 3 data sets in which noisy variables are
deleted, while the fourth and fifth columns are results oleigiwith all noisy
variables.

The average values and corresponding standard errors oféhexternal
indices are summarized in Tables 6 and 7. Tables 5, 6 and 7tsladthe mag-
nitude of gaps will affect the recovery of the true clustenstures. As the mag-
nitude of gaps decreases, the performances of the numimdusiér-estimation
methods get worse. Also noisy variables will affect the weryp of the true
cluster structures. This simulation study also shows tleatjinerated data sets
are challenging. Thelartigan andKL methods do poorly with overestimation
even for separated cluster structures and no noise. CHhenethod does not
overestimate but underestimates the number of clusters tigeclusters are
close and when there is noise (this property is not bad ae Hreghe situations
where we expect it is harder to find boundaries among clust@wsgrall, the
Silhouettemethod is best but can overestimate as well as underestimate

In several previous simulation studies (e.g., Brusco ard/i€2001; Mil-
ligan 1988; Steinley 2004), the results of the simulationlistsi were analyzed
via ANOVA. To see the effect of the different factors, we atsdculate the
ANOVA tables. Although the values for different externatlices sometimes
are quite different, the patterns of the values of the exiénuices across dif-
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Table 5. The numbers and sizes of underestimates and overestimatesXé3 data setsr—
ands_ are total the number and size of underestimates whileands.. are the total number
and size of overestimates). The clustering method used is a mokiifiednsnethod.

method without noise with noise

m— (s—) my (s4) [ m—(s—) my (s4)

close cluster structure
CH 36 (189) 0 (0) 61 (271) 0(0)
Silhouette| 8 (29) 10 (13) | 18(84) 7(14)
Hartigan 0(0) 81 (1251)] 0(0) 81 (1023)
KL 6 (31) 28 (179) | 9 (40) 41 (392)
separated cluster structure
CH 0(0) 0 (0) 22 (101) 0(0)
Silhouette| 0 (0) 0 (0) 10 (52) 6 (34)
Hartigan 0(0) 81 (827) 0(0) 81 (975)
KL 1(4) 17 (100) | 9 (46) 31 (261)
well-separated cluster structure

CH 0(0) 2(2) 17 (91) 1(1)
Silhouette| 0 (0) 2(2) 9 (48) 3(13)
Hartigan 0(0) 81 (758) 0(0) 81 (978)
KL 1(7) 10 (63) 10 (52) 28 (226)

ferent number-of-cluster-estimation methods are simiBar we only consider
the factor effects on the Hubert and Arabie’s adjusted Radéx.

Table 8 has a partial ANOVA table for a linear model that inlds all
4 factors shown in Table 1 plus the number-of-cluster egtonanethods, and
up to third order interactions. Note the the summary tablef@mative, even
though the homoscedasticity assumption for the linear iedw®t valid. The
main effects are all highly statistically significant, andmmmeaningful is the
effect size, given in the last column. The effect siZgKirk 1982; Tabachnick
and Fidell 1989) is the proportion of variance in the depehganable that is
attributed to a factor or interaction. That &, = SSgactor/SStotal Table 8
includes also the few interactions with the largest F raiod?.

We can see from the ANOVA table that as expecdegriori, that the
factor degree of separation has a large effect size; alsouimber of non-noisy
variables and the number-of-cluster estimation methods hage effects on
the adjusted Rand index.

6. Discussion
In this article, we use the degree of separation among chubtsed on

the separation index proposed by Qiu and Joe (2006) to deeettuster gen-
erating algorithm which can generate clusters with a spédaifégree of separa-
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Table 6. The average values (corresponding standard errorg fiv¢hexternal indicésfor the
243 data sets without noisy variables.

method | HA MA Rand FM Jaccard
close cluster structure
CH 0.54 (0.32) 0.54(0.32) 0.78(0.18) 0.68(0.22) 0.53(0.28)

Silhouette| 0.74 (0.17) 0.74(0.17) 0.90(0.11) 0.81(0.11) 0.68 (0.15)
Hartigan | 0.32(0.09) 0.33(0.09) 0.83(0.08) 0.73(0.06) 0.24 (0.06)

KL 0.65(0.23) 0.65(0.23) 0.88(0.11) 0.73(0.16) 0.58(0.21)
separated cluster structure
CH 0.98 (0.01) 0.98(0.01) 1.00(0.00) 0.99 (0.01) 0.97(0.01)

Silhouette| 0.98 (0.01) 0.98(0.01) 1.00(0.00) 0.99 (0.01) 0.97 (0.01)
Hartigan | 0.50 (0.17) 0.50 (0.16) 0.86 (0.09) 0.62(0.11) 0.40 (0.14)

KL 0.90(0.19) 0.90(0.19) 0.97(0.08) 0.92(0.13) 0.87(0.21)
well-separated cluster structure
CH 1.00(0.01) 1.00(0.01) 1.00(0.00) 1.00(0.01) 1.00 (0.02)

Silhouette| 1.00 (0.01) 1.00(0.01) 1.00(0.00) 1.00(0.01) 1.00 (0.01)
Hartigan | 0.53 (0.18) 0.53(0.18) 0.87 (0.09) 0.64(0.12) 0.43 (0.16)
KL 0.94(0.17) 0.94(0.17) 0.98(0.07) 0.96(0.12) 0.93(0.19)

* HA, MA, Rand, FM, and Jaccard represent Hubert and Arabidjisséed Rand index, Morey and Agresti's
adjusted Rand index, Rand index, Fowlkes and Mallows inded,Jaccard index, respectively.

tion. An application to the estimation of the number of ctustshows that the
generated cluster structures are challenging.

The design proposed in Section 5 is just a simple example of p@rex
iment design which is based on our random cluster generatgorithm pro-
posed in Section 2. Other designs can be considered. For éxangcan add
cluster size and proportion of outliers as two additionatdas in the design.

We didn't mention all the details of the random cluster gatien al-
gorithm. More detailed information can be found in the helpsfibf the R
packageclusterGenerationhat we wrote to implement the random cluster gen-
eration algorithm proposed in this articldusterGeneratiorallows the user to
have more control over several factors. For example, theigsdlowed (1)
to generate cluster size randomly from a range; (2) or torggéaelusters with
equal size; or (3) to specify each cluster size.

Currently, we assume that all variables are continuous &yykclusters
are symmetric about their centers. To make the generateteclatructures
closer to real data sets, we will investigate in our futuseegch on how to gen-
erate cluster structures with mixed-type variables anstels of other shapes.
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Table 7. The average values (corresponding standard errorsg @izéhexternal indicéswith
noisy variables

method | HA MA Rand FM Jaccard
close cluster structure
CH 0.37(0.30) 0.37(0.30) 0.69(0.17) 0.57(0.22) 0.40 (0.26)

Silhouette| 0.65 (0.25) 0.66 (0.25) 0.86 (0.15) 0.75(0.16) 0.61 (0.21)
Hartigan | 0.30 (0.07) 0.31(0.07) 0.83(0.08) 0.44(0.06) 0.23(0.04)

KL 0.47 (0.27) 0.47(0.27) 0.83(0.12) 0.58(0.21) 0.41(0.24)
separated cluster structure
CH 0.80(0.32) 0.80(0.32) 0.90(0.17) 0.86(0.21) 0.79(0.30)

Silhouette| 0.86 (0.27) 0.86(0.27) 0.94(0.14) 0.90(0.18) 0.85 (0.26)
Hartigan | 0.43 (0.14) 0.43(0.14) 0.85(0.08) 0.56 (0.10) 0.33(0.12)

KL 0.68 (0.34) 0.68(0.34) 0.90(0.13) 0.75(0.26) 0.65 (0.35)
well-separated cluster structure
CH 0.84 (0.31) 0.84(0.31) 0.92(0.16) 0.89(0.21) 0.84(0.30)

Silhouette| 0.90 (0.25) 0.90(0.25) 0.95(0.13) 0.94(0.16) 0.90 (0.24)
Hartigan | 0.44 (0.16) 0.45(0.15) 0.85(0.09) 0.57 (0.11) 0.35 (0.13)
KL 0.71(0.34) 0.71(0.34) 0.90(0.14) 0.78(0.25) 0.69 (0.35)

* HA, MA, Rand, FM, and Jaccard represent Hubert and Arabijisséed Rand index, Morey and Agresti's
adjusted Rand index, Rand index, Fowlkes and Mallows inded,Jaccard index, respectively.

Appendix

A. Finding the Optimal Projection Direction

In this section, we give a brief description on how to find théiropl
projection direction for the optimization problem

a* = arg max Jia(a). (A.1)
a® (py—p,)>0

A detailed proof can be found in Qiu and Lee (2005). The idea fgdbtrans-
form the constrained optimization problem (A.1) into an amstrained opti-
mization problem

min g(y), (A.2)
y

where

9y) = Va1 (y) + Va2 (y),
g(y) =yTy+1,




332 W. Qiu and H. Joe

Table 8. ANOVA for Hubert and Arabie’s adjusted Rand index

Df SumSq MeanSq Fvalue 7?

#C = No. of clusters 2 0.785 0.392 17 0.007
DS = Degree of Separation 2 14504 7.252 314 0.137
#NNV = No. of non-noisy vars] 2  16.113 8.056 349 0.152
#NV = No. of noisy variables 2 1.218 0.609 26 0.011
#CEM = #Cluster est. method 3 21.597 7.199 312 0.203
#C x #NNV 4 7.469 1.867 81 0.070
DS x #NNV 4 1.855 0.464 20 0.017
#C x #CEM 6 7.250 1.208 52 0.068
DS x #CEM 6 2.865 0.478 21 0.027
#NNV x #CEM 6 3.352 0.559 24 0.032
Residuals 808  18.661 0.023

92(y) = (y + V521’021)T Vs (y+ Vzval) + ca,
co = v11 — v Vs va1,

TAHT U111 V12
andV = Q; Q1 £:Q,Q, = ( Vo1 Voo ) ;
Q, is ap x p nonsingular matrix such th@®?>,Q, = Ig, Q,isap x p
orthogonal matrix such tha&®? [QT (1, — p11)] = cieq, e is ap x 1 vector
whose elements are all equal to zero except the first elemequi tol, ¢; =
1QY QT (uy — py)|| > 0, and the nornj| z|| is defined as/=7z.

We can show that the objective function of this unconstiimgtimiza-
tion problem (A.2) is a strictly convex function if thex p covariance matrices
3, andX, are positive definite and that thex 1 mean vectorg:,, andu, are
different. Thus the optimization problem (A.2) has a uniqtigoal point and
the unique critical point is the minimum point. Hence theimjation problem
(A.1) has the unique maximum point.

We can use the Newton-Raphson method to obtain the minimimh qfo
(A.2). The initial value ofy can be taken ag, — p;.

B. Generating Vertices of ap-Dimensional Simplex

We first describe how to obtain the third vertex for thelimensional
simplex. Since the simplex is equilateral, we hgwg — v;)” (v3 —v;) =
4, (v3 —v9)T (v3 —vy) = 4. By adding the two equations, we can obtain
0503—203’52 = 4—% Z?:l ’U%’Uk, wherevy, = % Z?:l v = (’1721, e ﬁgp)T.
Letvgy = 9 anduvsg = -+ = vy, = 0. Then we can get3, = 4 —
132 wlvy, + 53, + 2v32792. Note thati, = 0. Hence



Generation of Random Clusters 333

1/2
Vg9 = {4 - [% Zizl vivg — 6562} }

= {4 — 52k (vp —2)" (vh — 172)}
By using the same technique, we can obtain the coordinatié® éfth vertex
v givenvy,...,vi-1,2 < k < p+ 1 (see Formula (2.1)).

1/2
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