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Abstract

Line drawings are inherently simple, yet retain most of the information of a full

image. This suggest that line drawings, also called contour images, could be useful

as an intermediate representation for computer understanding of images. However,

extracting physically meaningful contours from photographs has proved to be difficult.

Recently, there has been significant progress in detecting contours. As one example,

the gPb algorithm (Arbeláez et al., 2010) uses local cues such as brightness, color,

and texture, along with global cues that interpret the image as a whole in order to

achieve high-performance contour detection.

However, contour detectors perform poorly near junctions. Junctions are points

where two or more contours meet, creating two or more regions near a single point.

Contour detectors, including gPb, assume that contours occur at the meeting of only

two regions. We find that this assumption breaks down near junctions, resulting in

poor performance. This is unfortunate because the location of junctions and the

orientation of the incident edges at a junction are useful in reasoning about the

geometric relationships between contours, and thus reasoning about the shape of the

object.

These two observations, that junctions carry significant information and that con-
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tour detectors perform poorly near junctions, suggest that finding a complete and

useful contour image requires complementing a contour detector with a junction de-

tector. However, while there has been substantial recent progress in contour detec-

tion, there has not been comparable work and progress on the problem of junction

detection.

We thus build and implement a junction detector. We are informed by the insight

that junction points are a generalization of contour points, and we adapt ideas from

the gPb contour detector in developing our algorithm. We also capture images of

objects, and run our implementation on our dataset. Although our results are qual-

itative, they suggest that our junction detector could be useful as a complement to

existing contour detection schemes.
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Chapter 1

Introduction

The simple but powerful summary of images that line drawings offer makes them

seductive—to the human eye in the form of cartoons and graphic art, and to computer

vision as an intermediate visual representation for scene analysis. In this work, we

suggest a technique for improving the extraction of line drawings from photographs.

As is evident in Figure 1, line drawings, also called contour images, carry almost as

much visual information as the original images but are less complex. This apparent

distillation of scene information makes contour images potentially useful in computer

interpretation of images. Although cartoonists and other visual artists can create line

drawings with ease, computer extraction of contours from photographs has proved to

be difficult.

We discover in our work that contour detectors are especially prone to error near

junctions, which are points where two or more contours meet. Every contour detector

assumes that contours are points where two regions meet, but the third region that

occurs near junctions of degree greater than two violates this assumption. Thus,
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Figure 1: Contour and boundary images carry significant visual information. Top row:
An image from the Berkeley Segmentation Dataset [24] and its object boundaries.
Bottom row: The bottom row is an image from our dataset and its contour image.
Junctions of degree three have been highlighted in red, and junctions of degree two
have been highlighted in blue.
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junction points and contour points near junctions will theoretically not be detected

well for any contour detector. One state-of-the-art contour detector is Arbeláez et

al.’s gPb algorithm [1]. gPb uses local cues such as brightness, color, and texture,

along with global cues that interpret the image as a whole. The gPb algorithm is

successful in robustly detecting contours from photographic images, but we show

experimentally that this contour detector does not perform well near junctions.

However, junction points are critical parts of the contour image. They have proved

useful on their own in object recognition [33], and previous work [2] suggests that

corners and junctions are the most significant parts of the contour image. Junctions

are also critical to reasoning about the three-dimensional interpretation of contours

[21]. For example, an object whose contour image has no junctions cannot have more

than one visible smooth surface in three dimensions. This is a simple example, but a

great deal of information about shape can be determined by reasoning about contours

and junctions.

Thus, in order to obtain a comprehensive contour image, the contour image gen-

erated by contour detectors must be completed by the output of a junction detector,

which is our motivation for this work. Our junction detection algorithm is informed

by the insight that junction points are a generalization of contour points, as contour

points are points where two regions meet, while junctions are points where two or

more regions meet. In addition, the problem of junction detection has not been stud-

ied as thoroughly as contour detection. Thus, in developing our algorithm, we adapt

ideas from the gPb contour detection algorithm, using similar local and global cues

in order to detect junctions from images.
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In order to evaluate our junction detection algorithm, we capture object-level im-

ages. We run our implementation on these images and show that the different cues

that we incorporate into our algorithm are useful for detecting junctions. Further-

more, although our algorithm requires many parameters that we do not have sufficient

data to optimize, we can still achieve promising results. Our algorithm detects many

false positives, but many true junctions are detected, and the angles detected at true

junctions are quite accurate.

1.1 Definitions

We define edges as points in the image at which a line can be drawn such that

image features change rapidly across the line. Image features, for our purposes, will

include brightness, color, and texture. Edges are an example of a low-level feature,

while high-level features are defined in terms of the object in the image. Contours

are points in the projected image of an object where there is a discontinuity of depth

or a discontinuity of surface orientation on the object. Contours and edges usually

but not necessarily correspond. For example, discontinuities in surface paint color,

such as the one highlighted in yellow in Figure 2, will be detected as edges but do not

meet the definition of contours. Also, discontinuities in surface orientation, such as

the one highlighted in green in Figure 2, will not always create sharp changes in image

features. If, as in our example, the surfaces that meet at the contour are of similar

brightness, color, and texture, the edge detector will not fire along the contour. While

edges are defined such that they can be detected using purely local information, in

order to detect contours, one must reason globally about the image. Reasoning about
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Figure 2: An image of a box and the output of a contour detector on this image
(the gPb algorithm [1]). Features have been circled in corresponding colors in both
images. Blue: A junction of degree three. Note the three wedge-like regions and poor
contour detector performance. Green: A surface orientation discontinuity creates a
contour, but does not create a strong edge. Note the similarity in image features
across the contour. Yellow: An edge that is created by a paint boundary and is thus
not a contour.

junctions is one way to reason globally about the image.

Object boundaries are defined to be points at which different objects are on either

side of a line drawn through the point. Contours are not always object boundaries, but

object boundaries are almost always contours. Contours are more useful for doing

object-level analysis, while object boundaries are more useful for doing scene-level

analysis. We use the term scene to refer to images with multiple objects in them.

The image in Figure 1 from the Berkeley Segmentation Dataset [24] (top row) is a

scene-level image, and the image from our dataset is an object-level image (bottom

row).
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Junctions can be defined at a low level as points at which two or more edges meet,

or at a higher level as points at which two or more contours meet. The resulting

neighborhood of a junction point will be comprised of two or more distinct wedges.

Again, the high- and low-level definitions usually, but not necessarily, coincide. The

degree of the junction is the number of edges or contours that meet at the junction.

“Terminal junctions” of degree one are possible [21] (see, for example, center of Figure

6), but we do not consider them in our work. We focus mostly on junctions of degree

three as the canonical case, but our work can be easily extended to junctions of

higher degrees, and to junctions of degree two. (We define junctions of degree two to

be points where the contour changes line label—see Section 2.3.1. Although junctions

of degree two are interesting, they are not as problematic for contour detectors.)

We define a contour image is an image where the value of each pixel gives the

probability of that point being a contour The contour image should also include

junctions. We define a segmentation of an image assigns each pixel to a region, where

regions correspond to objects or parts of objects.

1.2 Contour Detectors Near Junctions

Contour and boundary images are useful for applications such as object recognition

[19] and 3D shape reconstruction [16, 17]. Boundary images are closely related to

image segmentation, and segmentations of images are also used in object recognition

[18, 31]. There has been substantial progress in contour and boundary detection in

recent years [1, 14], to the extent that these contour detectors are robust enough

that the detected contour images can successfully be used as input for some practical
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applications.

When we attempt to reason about an object’s shape from its contour image, we

find that junctions are critically important [2]. But even the best contour detectors

consistently perform poorly near junctions, making the output less usable for ap-

plications. This failure is not surprising. Contour detectors rely on the idea that

contours are boundaries between two regions, but near junctions, there are three or

more regions. Comparing the blue circle (a junction) in Figure 2 to the yellow one (a

contour), we can see that the local neighborhoods around a junction and a contour

are very different. All contour detectors assume a model of a contour that is similar

to the yellow neighborhood. Because the junction and contour neighborhoods are sig-

nificantly different, every contour detector that assumes this model will not respond

strongly at junctions and at contour points near junctions.

1.3 Motivation for Detecting Junctions

These two observations, that junctions carry significant information and that con-

tour detectors perform poorly near junctions, suggest that finding a complete and

useful contour image requires complementing a contour detector with a junction de-

tector. The contour detector would find points where two regions meet, and the

junction detector would find points where three or more regions meet. With a com-

plete contour image, many interesting applications are available, such as reasoning

about the shape of objects using contour images extracted from photographs. Thus,

in this paper, we propose a junction detection algorithm.

We note that a contour neighborhood is just a special case of a junction neigh-
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borhood. Namely, the neighborhood of a junction of degree two where the regions

are separated by a straight line will be identical to the neighborhood of a contour.

Thus, one strategy for developing a junction detection algorithm is to take a high-

performance contour detector and generalize it. For our junction detection algorithm,

we start by modify Arbeláez et al.’s gPb boundary detector [1] by replacing the model

of the contour neighborhood with the model of the junction neighborhood. We also

incorporate new ideas that improve our junction detection.

As we develop, implement, and evaluate our junction detection algorithm, we

keep in mind that one of the primary guiding motivations for our work is to be able

to eventually reason about the shape of objects from natural images using contour

images.



Chapter 2

Prior Work

In this chapter, we begin by introducing the gPb boundary detector, as we will

adapt ideas from this algorithm. Next, we investigate the performance of gPb near

junctions and discuss possible applications of junction detection. These two discus-

sions motivate the need for a junction detector. Finally, we cover previous work on

junction detection.

2.1 The gPb Boundary Detector

We have defined edges as sudden changes in intensity, color, or texture, and noted

that boundaries often coincide with edges. One framework that has been successful in

incorporating all of these cues is the gPb boundary detector, developed by Arbeláez

et al [1]. We will keep this framework in mind when we develop our junction detector

because junctions, as previously mentioned, are a generalization of edges. Edges can

be thought of as degree-two junctions where the wedges cover π radians each.

9
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The gPb algorithm aims to output a value gPb(x, y, θ), which is the probability

that there is a boundary at the point (x, y) along the orientation θ for each point and

orientation. The basic building block of the gPb algorithm is a difference operator,

which is run at multiple scales on multiple channels (brightness, color, and texture)

of the image. The response of the difference operator is used to create an affinity

matrix whose elements indicate the likelihood that each pair of pixels are in the same

region. A spectral clustering technique is used to find soft, global segmentations of the

image. A gradient operator is applied to these segmentations, and these responses are

combined with the original gradient responses to find the final probability of boundary

at each point and orientation.

The gPb algorithm was originally developed for scene-level images, and was thus

originally conceived of as a boundary detector. We refer to it as a boundary detector

in its original context, but we use it as a contour detector, and refer to it as such

later on. We discuss the implications of this discrepancy later.

2.1.1 Local Cues: mPb

The first part of Arbeláez et al.’s boundary detector is introduced by Martin et

al. [23]. This portion of the algorithm is named Multiscale Probability of Boundary,

or mPb. In this first step, points that match the model of an edge are found.

Here, an edge (x, y, θ, r) is modeled as a point (x, y) for which we can draw a

line in the direction θ at a scale r such that the image features will be significantly

different on each side of the line. An approximation to the gradient is computed by

drawing a circle of radius r around each point, computing a histogram for the image
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features on each side of the line within the circle, and taking the difference between

the histograms. The radius r determines the scale of the edge that we want to detect.

For brightness, Martin et al. use the L∗ channel from the CIELAB color space. The

χ2 histogram difference function is used to compute the difference:

χ2(g, h) =
1

2

∑ (gi − hi)2

gi + hi

For color, the same process is done on the a∗ and b∗ channels. This computation is

visualized in Figure 3.

Finally, a similar idea is executed on a texture channel. To create the texture

channel, a bank of filters is convolved with the image at each point. At each point,

the filter response vector consisting of the responses to each filter is created. These

vectors are then clustered using k-means, and the centroids of the clusters are taken

as the dictionary of textons. Textons function as the centers of the histogram bins

in the texture channel. Thus, each point is associated with the texton it is closest

to, and histograms over the dictionary are created for the two semicircles. These

histograms are compared using the χ2 function again.

Thus we have the probability that there is an edge at each point, in each direc-

tion, at each scale, in each of our brightness, color, and texture channels. Let us

call this probability Ci(x, y, θ, r), where Ci is the ith channel (in this case we have

four channels). Our Multiscale Probability of Boundary is then defined as a linear

combination of these probabilities:

mPb(x, y, θ) =
∑
i

∑
r

ai,rCi(x, y, θ, r)

where ai,r are weights learned from human-labeled training data (the Berkeley Seg-

mentation Dataset [24]). The best scales, i.e. values of r, are also learned from the
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dataset.

2.1.2 Global Cues: sPb

The mPb detector, although relatively successful, only takes into account local

cues. Thus, in later work, Arbeláez et al. [1] build on mPb and arrive at the Spectral

Probability of Boundary, i.e. sPb. The general idea is to create an affinity matrix and

use a spectral clustering technique to create a soft segmentation of the image, using

global relationships between pixels. A gradient operator is used on the soft segmented

image in order to create a signal that can be used to incorporate these global cues.

First an affinity matrix is generated such that for two pixels i and j,

Wij = exp

(
−max

p∈ij
mPb(p)/ρ

)

where ij is the line segment connecting i and j and ρ is a constant. Then, we define

Dii =
∑
jWij and solve for the generalized eigenvectors {~v0, ~v1, . . . , ~vn} of the system

(D−W )~v = λD~v corresponding to the n+1 smallest eigenvalues λ0 ≤ λ1 ≤ . . . ≤ λn.

These eigenvectors hold contour information and can be interpreted as different soft

segmentations of the original image (see Figure 3).

These segmented images are used similarly to the way the L∗ channel, for example,

is used. Arbeláez et al. convolve the image with smoothed directional derivative filters

at multiple orientations at each point, but this is similar to using the previously

defined difference operator, which takes histogram differences between semicircles

around the point. Thus Arbeláez et al. define the second component of their edge
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i

j
k

Figure 3: Top left: An image of a mechanical part. The red and blue histograms
summarize intensities in the red and blue semicircles. The difference operator is
defined to be the difference between the histograms Top right: The combined response
of the difference operator on the channels at different scales, called mPb. Note that
points i and j have low affinity, while points j and k have high affinity. Bottom left:
Four eigenvectors from the spectral clustering of the affinity matrix, interpreted as
images. The result of the gradient operator on these images is called sPb. Bottom
right: The output of gPb on this image. Note that only magnitudes are visualized in
this figure, but gPb also outputs orientation information.
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detector:

sPb(x, y, θ) =
n∑
k=1

1√
λk
· ∇θ ~vk(x, y)

where ∇θ is the smoothed directional derivative at the orientation θ.

The final probability of boundary given by the algorithm is then a linear combina-

tion of mPb and sPb, where the weights bm and bs are learned from a human-labeled

dataset:

gPb(x, y, θ) = bmmPb(x, y, θ) + bssPb(x, y, θ).

Also, gPb(x, y) is defined at each point to be the maximum over all orientations:

gPb(x, y) = max
θ
gPb(x, y, θ)

Finally, in order to visualize the output and evaluate performance, the information

in gPb(x, y, θ) is thinned into one-pixel-wide lines.

2.2 gPb Near Junctions

Although the gPb boundary detector performs very well on the Berkeley Segmen-

tation Dataset [1], it has trouble near junctions. This observation and our exploration

of why this happens partially motivates our development of a separate junction de-

tection algorithm.

A model of a low-level junction is shown in Figure 4. The model consists of

three regions which meet at a point and are of different brightnesses. (We will only

discuss junctions where brightness varies, but this discussion generalizes to other

image features such as color and texture.) Although the wedges in this model are

maximally separated in the brightness channel, the gPb output fails to be useful
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near the junction, as we can see in Figure 4. The response’s magnitude along one

of the edges falls off sharply as the points approach the junction, and the detected

orientations change erratically.

We can see from our model junction why gPb has trouble near junctions. In Fig-

ure 4, we have drawn the semicircles for the gradient operator in the orientation for

which there should clearly be an edge at the point. The gPb algorithm assumes that

when we draw these two semicircles, the brightness should be homogeneous within

the semicircles, and different across the semicircles. However, at this point, the as-

sumption breaks down. Instead, we have two semicircles where one is of homogeneous

brightness, but the other consists of two parts of very different brightnesses. In every

case, we can number the regions 1, 2, and 3, in increasing order of their brightness.

Then, in every case, along the edge between region 2 and region 3, when we draw the

semicircles (as we have in Figure 4), the first semicircle will contain mostly points

from region 2, and the second semicircle will consist of mostly points from regions 1

and 3. Thus, because the brightness of region 2 will be some positive linear combina-

tion of the brightnesses of regions 1 and 3, the average brightness of the semicircles

will be very similar for some points along that edge. Although gPb does not rely on

average brightness over the semicircle and histograms the values instead, with the

smoothing of the histogram bins and noise, the algorithm is still subject to this kind

of error and does not perform well at these points.

In fact, almost every edge detection algorithm will have trouble near junctions,

because every edge detection algorithm has as an underlying assumption a model

of an edge as being a boundary between two different regions. When a third re-
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Figure 4: Top left: Our model of a junction. The red box indicates the small neigh-
borhood that we will focus on. Top right: The gradient operator near a junction.
Instead of only two regions as the gPb algorithm assumes, we have three regions
that get summarized by two histograms, resulting in a smaller histogram difference.
Bottom left: The response of the gPb operator near this junction. Darker values
represent stronger edge responses. Color indicates the best edge orientation found
for each point. Purple indicates a vertical angle, green indicates an angle π/8 coun-
terclockwise from vertical, and blue indicates an angle of π/4 counterclockwise from
vertical. This response is less than ideal. Bottom center: A non-maxima suppressed
output of the gPb operator. The result of these errors in magnitude and orientation
are made more clear by the visible gaps in the thinned output of the edge detector.
Bottom right: The response of the Canny edge detector [5] to this model. Most edge
detectors will not perform well near junctions.
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Figure 5: Left: A box and the output gPb on this image. Right: A mug and the
output gPb. Poorly detected junctions are circled in red.

gion is introduced near an edge point, this assumption fails. This has been noted

before. Beymer [4], for example, explores the properties of edge detectors based on

directional derivatives near junctions, using models that are similar to ours. Beymer

discovers that in almost every case, the edge detector will give incorrect results near

the junctions. His analysis is particular to the details of the derivative operators, but

the essential failure is the incorrectness of the assumed model of an edge. In Figure

4, we see the output of the classical derivative-based Canny edge detector [5] on our

junction model and its inaccuracies. Beymer proposes a solution to this problem in

derivative-based edge detectors, but his solution is not applicable to the gPb edge

detector.

Furthermore, gPb performs even more poorly near junctions in natural images,

leaving gaps where edges should intersect, which is demonstrated in Figure 5. This
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evidence should dissuade us from attempting to use the output of gPb or any other

edge detector as our sole evidence for junctions. This is called the edge-grouping ap-

proach, and it interprets detected edges a set of line segments, and looks for junctions

where they intersect. If we wish to localize junctions precisely and obtain a robust

answer for how the edges meeting at that junction behave, we cannot rely on this

approach too heavily. These observations also partially motivate the development of

our junction detection algorithm.

2.3 Applications of Junction Detection

The poor performance of boundary detectors near junctions cannot be overlooked

because of the importance of junctions in contour images. When we consider the

potential applications of a contour image in understanding the image, it becomes

clear that the contour image generated by a boundary detector is not sufficient, and

must be supplemented by a junction detector. These potential applications of a

junction detector not only motivate our algorithm, but also inform its development,

as we attempt to obtain output that would be useful for these applications.

2.3.1 Line Labeling

One of the primary applications of contour images that motivates our work is

line labeling. Finding a line labeling of a contour image can yield a great deal of

information about the shape of an object, but requires a robust detection of junctions

and contours. Malik [21] gives a description of line labelings for piecewise-continuous

objects, and we will briefly describe his work here, which defines line labels and



Chapter 2: Prior Work 19

explains why they are useful. This problem is interesting because finding a line

labeling requires robust detection of junctions. Futhermore, this is an attractive

possible application of junction detection because a line labeling generates additional

constraints on what configurations of junctions are possible, possibly providing cues

for revising the original detection of junctions.

Definition and Application of Line Labels

First, recall that contours are points in the projected image of an object where

there is a discontinuity of depth or a discontinuity of surface orientation on the object.

Each contour, then, can be described by one of the following line labels:

1. ‘+’ A convex discontinuity in the surface orientation.

2. ‘−’ A concave discontinuity in the surface orientation.

3. ‘→’ A depth discontinuity occuring at a convex edge.

4. ‘→→’ A depth discontinuity occuring at a smooth part of the surface where the

tangent plane contains the view vector.

A line labeling of a contour image affixes one of these labels to each of the contours.

Equivalently, we can think of the problem as one of junction labeling. The image

structure graph is a graph where the nodes are junctions, and nodes are connected

if their corresponding junctions are connected by a contour. Malik [21] gives an

algorithm that outputs a line labeling given an image structure graph.

Such a line labeling, then, is useful because it provides many more constraints

on the shape of the object than an unlabeled contour image. As just one example,
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Figure 6: Ideal contour images are shown in gray above the full images. Junctions are
marked by gold circles, and contours are labeled as described by Malik [21]. Left: A
mechanical part. Note the two “phantom junctions”. These points are junctions, as
the contour changes from being a discontinuity of surface orientation to a discontinuity
of depth in the image. These junctions are not detectable by low-level methods, and
require reasoning about the other junctions. Center: A mug. Note the junctions
of degree one. These are possible to detect using low-level processing, but require a
different approach than the one we use, which assumes junctions of degree at least
two. Right: A spray-paint can cap. Note the junctions of degree two. These are not
edges, as the nature of the contour can change.
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we know that the normal vectors to the surfaces that meet at a surface orientation

discontinuity must yield a cross product that projects to a vector that is in the

direction of the edge. In fact, Malik also presents a shape reconstruction algorithm

that works with a line-labeled contour image as input [22].

Relationship of Line Labeling to Junctions

The image structure graph is a prerequisite for any line labeling algorithm, and

in order to construct it, junctions and their connectivity must be accurately identi-

fied. Malik’s algorithm for generating a line labeling from an image structure graph

depends entirely on reasoning about how contours can come together. As just one

example, two surface orientation discontinuities and a single depth discontinuity can-

not meet at a degree-three junction. These kind of constraints allow a line labeling

to be generated. Thus, the algorithm critically depends on an accurate idea of the

location of junctions and their relationship to the contours.

Although Malik’s line labeling algorithm works with ideal image structure graphs

as input, it could potentially be modified to take image structure graphs where each

node represents a possible junction and the probability that the node is indeed a

junction. This could then take the output of our junction detection algorithm as

input directly. Work by Rosenfeld et al. [30] suggests that it is possible to take image

structure graphs with probabilities and compute the definite image structure graph

that is most likely to be true.

This kind of post-processing after the inital detection of junctions is attractive

because junction detection is difficult. Indeed, we see this kind of post-processing in
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many other junction detection algorithms [7, 32].

As a sidenote, we briefly justify our choice to focus on junctions of degree three.

Malik’s work [21] assumes that all vertices on an object will not have more than three

faces adjacent to it. Given this assumption and the generic viewpoint assumption

[13], we can then assume that all junctions will be of degree two or three. We will

also take Malik’s assumption in our work, as it will hold for many objects. However,

work by Cooper [8, 9] expands the junction catalog for more complex objects. We will

keep this possibility in mind, and when possible, leave our algorithm to be extensible

to junctions of degree four and higher.

2.3.2 Object Recognition

Another possible application of junction detection is object recognition. One

powerful framework for object recognition has been shape context. The shape context

descriptor introduced by Belongie et al. [3], refers to a descriptor that describes the

relative positions of other features at each feature. These features can simply be 2D

points as in Belongie et al.’s work, connected contour segments as in Lu et al.’s work

[19], regions as split up by contours as in Lim et al.’s work [18], or junctions as in

Wang et al.’s work [33].

Furthermore, a psychophysical study by Attneave [2] on the perception of contour

images suggests that junctions carry most of the information in the contour image.

Attneave’s cat (Figure 7) creates an image of a cat by connecting junctions of degree

two and three with straight lines, and thus illustrates this principle. This impor-

tance of the junctions suggests that improving the contour image around junctions is
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Figure 7: Attneave’s cat [2] demonstrates the importance of junctions by reducing an
image to its junctions of degree two and three connected by straight lines.

important for applications like object recognition with a shape context operator.

Another possible feature that could be used in a shape context-like operator is

line-labeled contours. Such a shape context operator could be potentially much more

powerful because line labels introduce significant constraints on the shape of the

object near the contour. As far as we know, this has not been pursued, most likely

because of the lack of a robust algorithm for generating line-labeled contours from

natural images.

2.4 Other Junction Detectors

Finally, before we proceed, we will briefly cover existing junction detection algo-

rithms. Although we motivate the development of our algorithm as a generalization

of the gPb edge detector, we are also influenced by other junction detectors. The

two main strategies in junction detection are template-matching and edge-grouping.

Template-matching algorithms attempt to match a local area around a point with a

model of a junction, and edge-grouping algorithms process the output of edge detec-

tors. Both strategies can also be used together.
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2.4.1 Template-Based Junction Detectors

Parida et al. [27] use a purely template-matching approach, using a model similar

to ours, but there are significant differences. Their junction template only works with

intensity images, and does not account for color and texture. Information that can

be obtained by considering the image globally is not used. Instead of accounting

for differences between wedges, Parida et al. focus on finding the wedges that will

yield the minimum description length of the neighborhood, which is a less direct way

of accounting for the properties that we look for in a junction. Also, their method

simplifies the image more than ours does, reducing wedges to single intensity values

rather than histograms. The algorithm’s focus is on detecting the correct degree of the

junction rather than the probability that a point is a junction. Finally, their method

does not take into account any sort of detected edges. Nevertheless, the model of the

junction and the method used to optimize the model were strong influences for our

work. Parida et al. use a dynamic programming approach to their optimization, and

our optimization problems also yield dynamic programming solutions with similar

structures.

2.4.2 Corner Detectors

Corner detectors are similar to template-matching junction detectors and have

received much more attention. Corner detectors, though, like the one developed by

Harris and Stephens [15] simply look for points that are different from their surround-

ings. Junction points as we have defined them will almost always be corner points,

but some corner points will not be junctions. For example, the center of a small black
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dot will be a corner point, but is certainly not a junction.

Both Regier [28, 29] and Trytten and Tuceryan [32] attempt to create compre-

hensive pipelines that takes grayscale images and outputs line labels. A critical com-

ponent of this is junction detection. Both pipelines use derivative-based edge and

corner detectors (similar to the Harris corner detector) to find contours and junctions

as the first step in processing natural iamges. As these edge and corner detectors

are not robust enough, both systems use post-processing and reasoning about what

configurations of contours are physically possible to improve their results.

Because edges and corners are low-level concepts while contours and junctions are

higher-level concepts driven by interpretation of an image as consisting of objects,

this kind of post-processing is most likely inevitable, and will continue to be helpful

in improving the outputs of contour and junction detectors. As we noted earlier line

labeling is attractive as post-processing for precisely this reason.

2.4.3 Edge-Grouping Junction Detectors

Examples of purely edge-grouping junction detection algorithms are Maire et al.’s

[20] and Matas and Kittler’s [25]. Both take the output of edge detectors, interpret

the edges as lines, find intersections of these lines, and determine whether these

intersections are junctions. Maire et al.’s is interesting because it uses the output of

the gPb boundary detector as its input. By finding junctions, it manages to improve

the performance of the edge detector meaningfully. This evidence buttresses our claim

that junction detection can aid in edge detection, even for a robust edge detector.

Matas and Kittler’s is also interesting, as further reasoning about the connectivity of
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junctions, using the output of their edge detector, is used to select which intersections

qualify as junctions.

One of the problems with using a purely edge-grouping based method is that most

edge detectors will have small gaps along contours. As a result, Maire et al.’s detector,

for example, fires along straight contours, even though there are no junctions present.

This is actually beneficial if we are interested in linking contours together, but not

beneficial if we are interested in finding intersections of contours rather than simply

piecing the contours together.

In this respect, Maire et al.’s junction detector bears significant resemblance to

contour grouping algorithms. Contour grouping algorithms attempt to connect edges

together into longer contours. There has been much work on this problem, [11, 10,

19, 34], and although we do not investigate these algorithms in detail, we find it

interesting for two reasons. First, finding gaps in contours is similar to the edge-

grouping approach to junction detection in general, because gaps in contours usually

occur when a junction breaks them apart. Second, the principles used in grouping

contours, such as parallelism and proximity [11], could also be used to group and

reason about junctions after they have been initially detected.

Cazorla et al. [6, 7] combine template-matching and edge-grouping. They build

off of Parida et al.’s work [27] for the template-based part of their approach, but

they also incorporate the output of an edge detector on the image in a way that is

similar to ours. Edges that lie along the angles between wedges are counted if they

are oriented along the radial line. We will incorporate a similar term in our junction

algorithm, which we will call “coincidence with edges.”
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Interestingly, though, Cazorla et al. [6, 7] also introduce a junction grouping algo-

rithm which reasons about the connectivity of the junctions in order to correct errors

in the original junction detection. This kind of post-processing is a persistent theme

in junction detection schemes.



Chapter 3

Junction Detection

We will introduce an algorithm, which we call gPj, for detecting junctions. Our

algorithm is informed by the gPb boundary detector, our discussion in Section 2.2 of

why the gPb boundary detector (and edge detectors in general) perform poorly near

junctions, and prior work on junction detection [7, 27]. The algorithm is guided and

motivated by our discussion in Section 2.3 of the applications of detected junctions,

such as line labeling.

3.1 Overview

Our model of a junction of degree k is a point at which we can find k radial angles

to divide the neighborhood around the point into k wedges with certain properties.

(This is depicted in Figure 8.) Our image features are brightness, color, and texture.

In addition, we find soft segmentations of the image following Arbeláez et al. [1], and

also use these as image features.

28
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We compute the extent to which the wedges fit our model and call this gPj, our

probability of junction. We expect the wedges to have three properties. Our first

property, difference between wedges, captures the idea that each wedge should be dif-

ferent from its neighbors in its image features. Second, homogeneity within wedges

captures the idea that each wedge should be homogeneous in its image features. Fi-

nally, the coincidence with edges term captures the idea that we should find strong

contours detected along the radial lines that we have chosen. These terms are com-

puted at different scales, then linearly combined to find the junction score for a given

neighborhood and choice of wedges. Our algorithm, then, finds the radial lines that

optimize the junction score and outputs the positions of these lines and the resulting

junction score at each point. Finally, we offer a dynamic program for computing the

optimal selection of radial lines.

Our algorithm incorporates template-matching and edge-grouping techniques. The

difference between wedges term, which is a generalization of the difference operator

from Arbeláez et al.’s work [1], and the homogeneity within wedges term are derived

from a template-based approach. On the other hand, the coincidence with edges term,

influenced by Cazorla et al.’s work [7] is derived from an edge-grouping approach.

3.2 Design Decisions

Recall that low-level junctions are defined to be points where two or more regions

of distinct image features meet at a single point, and high-level junctions are defined as

intersections of contours. We are primarily interested in detecting high-level junctions

for use in applications, and we are only interested in low-level junctions because they
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Figure 8: Top: A mechanical part. The image region we focus on is outlined in red.
Bottom left: Our junction detector looks for angles θ1, θ2, and θ3, assuming a degree-
three junction. The angles shown are optimal, as the wedges are maximally different
from each other and internally homogeneous. Bottom right: The output of the edge
detector gPb. Contours that coincide with the angles we choose also contribute to
the junction score. Contours are weighted by the degree to which they are aligned
with the angle of the radial line that they lie on. The orientation of the edge at point
i has been visualized with a white line. The edge at point i will have a large weight,
as the orientation at i and θ1 are similar.
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usually but not always coincide with high-level junctions. The difference of wedges

and homogeneity within wedges terms on the brightness, color, and texture channels

correspond directly to our concept of low-level junctions.

However, some high-level junctions are not low-level junctions. Furthermore, a

psychophysical study by McDermott [26] suggests that humans have difficulty recog-

nizing junctions without global context. Our usage of the soft segmentations as image

features and the coincidence with edges term contributes towards finding high-level

junctions. The soft segmentations and the contour detector output both incorporate

global information about the image.

Finally, junctions, like edges, can occur at different scales. Thus, we compute all

of our terms at different scales and combine the results linearly.

3.3 Image Features and Definitions

We describe our algorithm in more detail. The first step is to obtain brightness,

color, and texture channels as we do in the gPb algorithm. Let us call these channels

{C1, C2, C3, C4} where C1, C2, and C3 are the L∗, a∗, and b∗ channels, respectively,

in the CIELAB color space. Let C4 be the texture channel as described in Section

2.1. Also recall from Section 2.1 that using the output of the mPb part of the gPb

algorithm, we create an affinity matrix and perform a spectral clustering on the

image. From this, we obtain soft segmentations of the image. We treat these soft

segmentations as channels, and call them {C5, C6, . . . , Cm}. We also run the gPb

algorithm on the image and have boundary magnitude and orientation available at

each point.
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Given a point ~x0 in the image, we wish to determine the probability that the point

is a junction. We draw a circle of radius r around the point. Then, given two angles

α and β such that 0 ≤ α ≤ β < 2π, let us define the wedge W [ ~x0, α, β, r] to be the

set of points ~x such that if θ is the angle between the vector ~x − ~x0 and the x-axis,

the distance from ~x to ~x0 is less than r, and α ≤ θ < β. In other words, the wedge is

defined by the circle of radius r and the two radial lines at angles α and β. Now, let

us define H i
α,β to be the histogram of the kernel density estimate of the ith channel

for points in the wedge W [ ~x0, α, β, r]. (Figure 9 shows a graphical representation of

these definitions.)

H i
α,β,r[h] =

1

nW

∑
~x∈W [ ~x0,α,β,r]

K(h− Ci[~x])

where h goes from 1 to nH , where nH is the total number of bins in our histogram.

Also, nW is the number of points in the wedge, and K is a kernel density estimate

function. In our case, we will use a normalized Gaussian as our kernel density estimate

function in the brightness and color channels. In the texture channel, we will not use

any smoothing, so K will be the Dirac delta function. We refer to the work on the

gPb detector [23] for an explanation of why these are reasonable choices. Finally, we

must specify what we mean when we say that an angle is between α and β. We note

that at first we require 0 ≤ α ≤ β < 2π, and say that an angle θ is between α and

β if α ≤ θ < β. But we can expand our definition to allow “wrapping around” the

x-axis such that in the case where 0 ≤ β < α < 2π, H i
α,β,r is defined to be equivalent

to H i
α,2π+β,r.

For now, let us assume we are looking for junctions of degree k. We then look

for k distinct angles, ~θ = {θ1, θ2, . . . , θk}. Assume that the angles are sorted (so
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Figure 9: Left: Given a neighborhood of radius r and angles α and β, the points
belonging to the wedge Wα,β,r have been visualized in blue. Right: The histogram
summarizing Wα,β,r, called Hα,β,r is visualized. Smoothing has been applied to the
histogram.

θ1 < θ2 < . . . < θk). For notational convenience, we will consider the expression θk+1

as referring to θ1.

3.4 Terms

3.4.1 Difference Between Wedges

Now, we define our terms. The first, difference between wedges, captures the

degree to which the wedges are different from each other in a certain channel. This

term is the sum of the histogram differences between neighboring wedges. Note that

we are not concerned with wedges being different from each other if they are not

adjacent. We wish to maximize this term, similarly to how in the gPb algorithm, we

pick the orientation at each point that maximizes the histogram differences between
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the two semicircles. In our case, though, instead of two semicircles, we have k wedges.

(We drop the index into the channels i for notational convenience in the following

equation.) where d(H1, H2) is a difference function between two histograms. We

use the χ2 histogram difference operator, and again refer the reader to Martin et al.’s

work [23] for why this is a reasonable choice. Thus,

d(H1, H2) = χ2(H1, H2) =
1

2

nH∑
h=1

(H1[h]−H2[h])2

H1[h] +H2[h]

Note that our histograms are normalized to sum to 1, so the maximum value of our

difference function is 1, and the maximum value of dbW is 1. We will design all of

our terms to sum to 1 to make them easier to combine.

3.4.2 Homogeneity Within Wedges

The second term we define, homogeneity within wedges, captures the degree to

which the wedges are homogeneous. We will want to maximize this term. Recall

that for a histogram H, we have H[h] elements in the hth bin, and there are nH bins

in total. (Again, we omit the i.) where v(H) is a function that calculates some

measure of statistical dispersion in the histogram. In our case, we will simply choose

the statistical variance of the histogram. For the purposes of calculating this variance,

we interpret the histogram to range from 0 to 1. Thus, the center of the hth bin will

be (h− 0.5)/nH .

v(H) = 4 ·
nH∑
h=1

H[h] ·
(
h− 0.5

nH
− µ

)2


where µ is the mean of the histogram:

µ =
nH∑
h=1

H[h] · h− 0.5

nH
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Figure 10: Two choices of angles and the resulting histograms. Wedges and his-
tograms are visualized in corresponding colors. Left: A choice of angles that will not
yield a high junction score. The difference between wedges will not be very high,
as the red and blue wedges are nearly identical. The homogeneity within the yellow
wedge will be low (mean and standard deviation visualized below the histogram for
the yellow wedges). Right: The optimal choice of angles for maximizing our junction
score measure. The wedges are maximally different from each other as we can see by
comparing the histograms, and relatively homogeneous.

The maximum value of v(H) is 1, due to the normalizing factor of 4 in the function.

Thus, hwW will be between 0 and 1.

There many possible choices for the function v(H), and more complex methods

of evaluating the homogeneity of a region are available [12]. We choose statistical

variance because it is computationally simple and gives acceptable results.

3.4.3 Coincidence With Edges

The final term we define, coincidence with edges (cwE), counts the number of

edges detected by an edge detector that are located along the radial lines defined by

the chosen angles. The angles that we select correspond to boundaries between regions

in our model of the junction. Therefore, the edge detector should have detected edges
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Figure 11: The wedge Wθ1−τ,θ1+τ,r is highlighted in green. The detected edges (shown
in black) inside this wedge will contribute to the coincidence with edges term for θ1.

along this boundary that align with our selected angles. Although we note that edge

detectors do not behave as desired near junctions in Section 2.2, if our radius r is large

enough, we will still be able to glean usable data from the edge detector’s output.

Also, the edge detectors generally do not fire near junctions, producing fales negatives

rather than false positives. Thus, our count of edges that contribute to the junction

will be an underestimate, which is acceptable, as this term is used in conjunction

with other methods of determining whether a point is a junction.

Edges contribute to the cwE term according to a weight determined by the degree

to which they align with the radial line that they are near. Edge detectors will output,

at each location, the probability that there is an edge at each orientation. For gPb,

this probability is gPb(~x, θ). At each point, let us call the most likely orientation θ~x.

θ~x = arg max
θ
gPb(~x, θ)

Then, we will call the probability that there is an edge in the direction θ~x simply
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gPb(~x) = gPb(~x, θ~x). We are now ready to define our term (again, we drop the

channel index i):

cwE(~θ, r) =
1

k

k∑
j=1

1

nW

∑
~x∈Wθj−τ,θj+τ,r

|cos(θj − θ~x)| · gPb(~x)

where τ is a threshold parameter that we will let be determined by our quantization

of the angles and nW is the number of points in the wedge and is included as a

normalization factor. (Figure 11 shows a visualization of this term.) Note that

any edge detection algorithm could be used for this term, as all we require is the

probability that the edge exists and the orientation of the edge at each location in

the image. Also, we assume that the probabilities outputted by the edge detector are

between 0 and 1. Thus, as the magnitude of the cosine function is between 0 and 1,

the entire term will vary from 0 to 1.

3.5 Combination

Now, we combine our three terms at nr different scales. Let us call the chosen

scales ~r{r1, r2, . . . , rnr} We wish to choose angles that will maximize the differences

between the wedges, maximize the homogeneity within the wedges, and maximize

coincidence with edges. We can now define the expression that we wish to maximize

at each location in the image:

gPj(x, y, ~θ) = max
~θ

1

nr

∑
r∈~r

((
m∑
i=1

ai,r · dbW i(~θ, r)

)
+

(
m∑
i=1

bi,r · hwW i(~θ, r)

)
+
(
cr · cwE(~θ, r)

))
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where the ai,rs, bi,rs, and cr are positive parameters to be tuned. If these coefficients

are chosen such that they sum to 1, the entire expression gPj will be between 0 and

1, because each of the three terms have been shown to be between 0 and 1. Also, we

will call the optimal vector of angles ~θ∗

The final output of the algorithm, then, will be a probability that each point is

a junction, gPb, and a vector of angles, ~θ∗, that tells us the angles that the edges

incident to the junction are at.

3.6 Parameters

There are many parameters in this algorithm, and we briefly summarize them

here. The difference function for histograms is d(H1, H2) = χ2(H1, H2). The kernel

density estimates for the histograms use a Gaussian kernel for all of the channels other

than texture. The number of eigenvectors we pick, m, will be 16, and the number of

histogram bins, nH , will be 25. All of these choices follow Arbeláez et al. [1]. The

variance function for histograms is simply statistical variance.

The radii that determine the scales we run the algorithm at, {r1, r2, . . . , rnr}, and

the coefficients in the final linear combination are more significant, and will be tuned

by hand using our qualitative results. An interesting direction for future work would

be to learn these from labeled data.

Another possible parameter the shape of the wedges. Namely, Parida et al. [27]

add a hole in the middle of the neighborhood around each point. Thus, instead of

considering a disc of points around each point, Parida et al. consider a donut. Parida

et al. claims that this improves junction detection, and we consider the effects of this
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parameter in our experiments.

Finally, the degree of the junction, k, must be decided. First, let us revise our

notation. Let gPjk and ~θ∗k be the probability of junction and optimal angles when we

assume that the junction must be of degree k. Second, we note that in our work, we

limit our junctions to be of degree 3 or less. The objects in our dataset did not present

junctions of degree greater than 3, and such objects are not very common (also see

Section 2.3.1). Nevertheless, this is not a necessary limitation of the algorithm. There

are many possibilities for computationally finding the optimal junction degree, but

we leave this as an open issue for future work.

3.7 Implementation and Running Time

Now that we have defined our optimization problem, we will discuss how this can

be implemented efficiently. Note that we are return to discussing the problem on

the scale of a single point with a predetermined degree of the junction, k. Also, to

simplify matters, we will assume that we are only running the computation at one

scale, r. The first step in implementing the algorithm is to determine the resolution

of the quantization of the orientations. In other words, we must pick a value p such

that our possible orientations will be {0, 2π/p, 2 · 2π/p, . . . , (p− 1) · 2π/p}.

We reproduce the main terms to be computed below for reference:

dbW (~θ, r) =
1

k

k−1∑
j=1

(
d
(
Hθj ,θj+1,r, Hθj+1,θj+2,r

))
+

1

k
(d (Hθ1,θ2,r, Hθk,θ1,r))

hwW (~θ, r) =
1

k

k∑
j=1

1− v(Hθj ,θj+1,r)
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cwE(~θ, r) =
1

k

k∑
j=1

1

nW

∑
~x∈Wθj−τ,θj+τ,r

|cos(θj − θ~x)| · gPb(~x)

gPj(x, y, ~θ) = max
~θ

1

nr

∑
r∈~r

((
m∑
i=1

ai,r · dbW i(~θ, r)

)
+

(
m∑
i=1

bi,r · hwW i(~θ, r)

)
+
(
cr · cwE(~θ, r)

))

First, we note that the histograms, Hα,β can be precomputed for all α, β in O(p2 ·

r2) time, as each wedge has O(r2) points, and there are p possible values that α

and β can each take on. (Recall that r is the radius of the neighborhood that we

consider.) We can also define and precompute the homogeneity within wedges term

for individual wedges in time O(p2 ·r2 ·nH), as the variance function takes time O(nH)

time to compute (recall that nH is the number of bins in the histogram).

hww(α, β) = 1− v(Hα,β)

Similarly, we can precompute the coincidence with angles term for individual angles,

defining cwE(α) to be:

cwE(α) =
∑

~x∈Wα−τ,α+τ,r

|cos(θj − θ~x)| · gPb(~x)

for all angles α. This will take time O(p · r2) (a conservative overestimate). As a

sidenote, the threshold parameter τ is determined by our quantization:

τ =
2π

2p

This choice of τ ensures that each detected edge gets counted towards just one angle.

Thus all of our precomputations together will take time O(p2 · r2 · nH).
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3.7.1 Brute Force Algorithm

Assuming these precomputations, we can analyze the time complexity for calcu-

lating dbW , hwW , and cwE given a choice of angles, ~θ. dbW requires calculating our

histogram difference function k times, and hwW and cwE each require summing k

precomputed values. The histogram difference function, χ2, and takes O(nH) time.

Thus, having chosen an angle, the time complexity for computing all three terms will

be O(k · nH).

There are O(pk) possible values of ~θ. Thus, the brute force algorithm that simply

computes dBw + hwW + cwE for each possible value of ~θ and finds the maximum

will take time O(pk · k · nH), in addition to the O(p2 · r2 · nH) time required for

precomputation.

3.7.2 Dynamic Programming Algorithm

As an alternative to this exponential-time brute force algorithm, we can use a

dynamic programming solution. In order to introduce the dynamic program, we will

start by developing a dynamic program for minimizing a modified version of one term,

hwW . We call this modified dynamic program hwW ′, and it seeks to minimize the

expression
k−1∑
j=1

1− v(Hθj ,θj+1)

Note that in contrast to hwW , this expression omits the homogeneity of the final

wedge, 1 − v(Hθk,θ1). We will define the term hwW ′(α, β, `) to be the sum of the

variances of ` wedges that cover the angles in the interval [α, β). Thus our recursion
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is

hwW ′(α, β, `) = min
ϕ∈(α,β)

(hwW ′(α, ϕ, `− 1) + 1− v(Hϕ,β))

with a base case of

hwW ′(α, β, 1) = 1− v(Hα,β)

In order to solve for the expression that we actually desire, we must do another

minimization to recover the final term that we left out of hwW ′:

hwW = min
α,β

(hwW ′(α, β, k) + 1− v(Hβ,α))

The time complexity of computing the dynamic program is O(p3 · k), as α and

β each can take on p values, ` takes on k values, and the minimization varies over

O(p) values. (We assume that we have precomputed values of H and v as mentioned

earlier.) The final minimization is an additional O(p2) for a total time complexity of

O(p3 · k).

We can write a similar dynamic program, but because the dbW requires comparing

each wedge with its neighbors, it requires a more complex dynamic program that

yields a running time of O(p5 · k). Considering that the brute-force exponential

time algorithm takes time O(pk · k · nH), and that we are unlikely to be concerned

with junctions of degree 5 and higher, the brute-force algorithm will be faster than

computing the results of this dynamic program.

In light of this, we propose an alternative value to maximize. Instead of computing

the differences between the full wedges, we propose to approximate dbW using only

local computations. For each wedge, we will not assume that we know the size of

the neighboring wedges. Instead, we will simply take a small neighboring wedge from



Chapter 3: Junction Detection 43

each side and use the difference as an estimate for the differnce from the full wedge.

We will call our approximation difference next to wedge, or dnW .

dnW (~θ) =
k∑
j=1

1

2

(
d(Hθj−δ,θj , Hθj ,θj+1

) + d(Hθj ,θj+1
, Hθj+1,θj+1+δ)

)

where δ is a parameter that decides how large the neighboring wedge should be.

This calculation, then, behaves just like the calculation of the variance of the

wedges. We can define dnW (α, β) for a single wedge to be:

dnW (α, β) =
1

2
(d(Hα−δ,α, Hα,β) + d(Hα,β, Hβ,β+δ))

This term can be precomputed for all values of α and β in time O(p2).

We can now fold the computation of dnW , hwW , and cwE into a single dynamic

program, all of which involve only simple lookups into a precomputed table. The

dynamic program gPj′ gives us the best division into ` wedges of the angles between

α and β.

gPj′(α, β, `) = max
ϕ∈(α,β)

(gPj′(α, ϕ, `− 1) + a · dnW (ϕ, β) + b · (1− v(Hϕ,β)) + c · cwE(β))

where cwB(β) on a single angle is defined above. Recall that a, b, and c are tuned

coefficients for each term. The base cases are

gPj′(α, β, 1) = a · dnW (α, β) + b · (1− v(Hα,β)) + c · cwE(β)

Finally, we need to account for the final wedge:

gPj = max
α,β

(gPj′(α, β, k) + a · dnW (β, α) + b · (1− v(Hβ,α)) + c · cwE(α))

As before, the dynamic program takes time O(p3 · k) time to compute, as we are

still only doing lookups into precomputed tables inside the maximization. The final
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maximization takes time O(p2), so the overall time complexity of this algorithm is

O(p3 · k), plus the O(p2 · r2 · nH) required for precomputation. We should note that

this is only asymptotically faster than the brute-force exponential algorithm, which

has time complexity O(pk · k · nH), when the degree of the junction is higher than

three. Because our work only focuses on junctions of degree three and lower, we

use the brute-force algorithm, but keep in mind that the running time need not be

exponential if we wish to compute results for higher-degree junctions.

3.8 Further Optimization

We are left with a O(p3 · k) algorithm, then, which we must run on every point

in our image. This is not entirely unreasonable, but our implementation takes on

the order of 100 minutes to find degree-3 junctions in a 200 × 200 pixel image. For

reference, gPb on the same image on the same machine takes approximately one

minute. One option to significantly reduce the running time by a constant factor is

to not run the junction detection algorithm on image locations that are unlikely to be

junctions. In order to do this, we need a fast way to obtain a reasonable estimate of

the possible presence of a junction. The estimate does not need to be very accurate,

as long as it reduces the number of points we need to consider but retains all true

junctions.

One simple estimate that we offer is to simply sum up the number of edges that

coincide with all radial lines from a point within a radius. This is similar to our

coincidence with edges term, but we do not spend time finding angles for which

there are many coinciding edges. Instead, we simply consider all possible edges. To
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determine if a point ~x0 might be a junction, we compute:

est( ~x0) =
1

|N( ~x0)|
·
∑

~x∈N( ~x0)

(gPb(~x) · |cos(θ~x − θ~x− ~x0)|)

where N( ~x0) is the set of points within a radius r of ~x0, and θ~x− ~x0 is the angle from

the x-axis that the vector ~x − ~x0 makes. Computing this estimate is much faster,

as it is linear in the number of points in N( ~x0) at each point in the image. On our

reference machine, it takes on the order of 3 seconds to compute estimates for the

200× 200 pixel image. We thus compute each point’s estimated junction score, and

only process points whose estimated junction scores are above a threshold.
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Data

We captured 103 images of 21 different objects in natural lighting conditions

in a room. The objects were set against a white background. Each object was

photographed several times from different viewpoints. Objects were chosen that have

several identifiable junctions.

It is important to note the differences between our dataset and the Berkeley Seg-

mentation Dataset (BSDS) [24], which is the dataset used to tune the gPb boundary

detector. In the BSDS, as examples in Figure 14 demonstrate, the images are at

the level of scenes. There are many objects in each image. In contrast, our dataset

Figure 12: A mechanical part. Note that different viewpoints create images with
different kinds of junctions.

46



Chapter 4: Data 47

Figure 13: Example images from our dataset.
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Figure 14: Top row: Data from the Berkley Segmentation Dataset [24], which was
used to optimize and evaluate the gPb algorithm. Bottom row: Our images, which is
of objects rather than multiple-object scenes.

focuses on single objects against a plain background. This is because our work deals

with junctions at the object level. It is worth noting, then, that gPb, which is a

critical input into our algorithm, could perform better if it were tuned to our dataset,

or even another object-level database.

Although Maire et al. [20] use the BSDS to evaluate junction performance, we

choose not to. Maire et a take human-labeled contour images, find ground-truth

junctions from these, and evaluate junction performance on this datset. However,

because we are motivated by applications of junction detection on object-level images

rather than scene-level images, we chose not to use this evaluation metric. Also, Maire

et al. do not explicitly test for the angles of the incident edges at each junction.



Chapter 5

Results

We run the implementation of our junction detection algorithm and explore how

different parameters affect the output for images in our dataset. We also construct

simple models of junctions and also use these to evaluate the different components

of our algorithm. Although the parameter space is too large for us to optimize the

algorithm without labeled data, we experiment and report qualitative results. Al-

though not all of the terms are effective on all of the channels, the different terms

and channels that we use in our algorithm seem to work in concert with each other,

and are not overly redundant. Furthermore, we show that we can already achieve

promising junction detection output without extensive manipulation of the param-

eters. On our dataset, although we detect many false positives, most of the true

junction are detected. Furthermore, at true positives, the detected angles are almost

always accurate.

49
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5.1 Evaluation

Our algorithm was implemented in C++ and run on images from our dataset

along with computer-generated models of junctions.

We only focus on junctions of degree three. The objects whose images we work

with can only generate images that have junctions that have junctions of degree three

or less if we take images from a generic viewpoint. Junctions of degree two are less

interesting, because they are not as problematic for edge detectors (although a sharp

bend in the contour may reduce the edge score, there are still only two regions for

the edge detector to deal with). Junctions of degree one are very different from other

junctions, and our template would have to be modified to fit junctions of degree one.

5.1.1 Organization of Terms and Channels

In order to identify the contributions of the terms in our expression for gPj, which

we defined in Section 3.5, we run our algorithm using different terms on different

channels in isolation, effectively setting the coefficients for other terms to 0. For

example, if we wish to use only the difference between wedges term on the brightness

channel, we would set a1,r = 1, and set ai,r = 0∀i 6= 1, set all bi,r = 0 and cr = 0

(recall that i indexes the channel and that brightness is the first channel).

We also group terms and channels in order to make sense of them. We will call the

brightness, color, and texture channels local channels, and the soft segmented images

global channels. The difference term will refer to the difference between wedges,

the homogeneity term will refer to the homogeneity within wedges, and the edge-

grouping term will refer to the coincidence with edges. We will group the terms
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and channels together into the following units: the difference term on local channels,

the homogeneity term on local channels, difference and homogeneity on the global

channels, and the edge-grouping term.

5.1.2 Visualization

At each point, the gPj algorithm will output a junction score, along with (for

junctions of degree three) three angles that describe the directions in which the inci-

dent edges radiate from the point. One option for visualizing our output is to simply

show the junction score at each point. However, the detected angles are not visible in

this visualization. In order to visualize the angles, we will take only the points that

meet a certain threshold and are maximal in a small neighborhood. At these points,

we will draw lines in the detected directions of length proportional to the magnitude

of the junction score. These representations of the detected angles will be overlaid on

the original image. Figure 15 shows an example of both kinds of visualizations.

5.1.3 Initial Estimate

Recall that we perform an initial estimate of where we are likely to find junctions

in order to improve the efficiency of our algorithm. This initial estimate simply

counts the number of edges that coincide with radial lines from a point. Figure 16

visualizes the estimate at each point, and also shows the points that are selected when

a threshold is applied.

Because we are only looking for an initial estimate, we are not concerned with

obtaining precise results—we only need to ensure that all true junction points meet
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Figure 15: Left: The junction scores generated by gPj for all points of the image.
Found angles are not shown. Right: gPj output with a non-maxima suppression filter
and a threshold applied. For remaining points, the length of the lines is proportional
to the strength of the junction, and lines are in the directions that optimize the
junction score.

the threshold, while trimming as many points as we can for efficiency. Our crude

estimate measure succeeds by this standard. For example, in Figure 16, we can see

that no true junction points are eliminated by the threshold. All of the results we

give in this chapter were run only on points that passed the threshold of the initial

estimate.

5.2 Results on Models

We modeled junctions of degree three with different incident angles where the

regions are distinct in the brightness, color, and texture channels. Examples of these

models are in the top row of Figure 17. Before evaluating our algorithm on pho-

tographs, we confirm that our algorithm performs well on these models. The simplic-

ity of our models makes it easier to identify the strengths and weaknesses of individual

terms and channels, and our observations of this nature also apply when the junction
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Figure 16: Top left: A box. Top right: The detected edges from the gPb algorithm.
Bottom left: The initial estimate of possible junctions at every point. Bottom right:
The points which will be considered, obtained by thesholding the estimate.
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Figure 17: Top row: Modeled junctions of degree three in brightness, color, and
texture channels, and with different incident angles. Bottom row: The junction scores
at each point, cropped to the region of interest. The difference term was used on the
relevant channel for each image. The detected angles are not shown but are correct.

detector is used on photographic images.

5.2.1 Local Difference Between Wedges

We demonstrate the results of running our junction detection algorithm on these

models using only the difference term on only the local channels in Figure 17. We find

that on these models, this term performs well, responding strongly at the junction and

weakly elsewhere. Furthermore, the detected angle is always correct. The exception

is the texture channel, which requires tuning the parameters involved in creating the

texture channel to improve performance. We did not focus on the texture channel,

as our objects were not strongly textured.

Note that in these ideal cases, the detected junctions surrounding the maximal
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Figure 18: Left: Several points were selected (not necessarily maxima) and visualized
to demonstrate that the detected angles are well-behaved as we move away from a
junction, at least in the ideal case. Right: A visualization of the detected angles at
edge points.

junction are well-behaved. By this we mean that the magnitudes fall off proportionally

to the distance from the junction, and the detected angles remain relatively similar,

but fold inward towards the junction as we move away (this is illustrated in Figure 18).

Although performance on natural images will be much noisier, this behavior could be

used to improve non-maxima suppression. Currently, we only use magnitudes non-

maxima suppression, but we could also conceivably use the detected orientations.

The gPb algorithm uses a similar technique for better non-maxima suppression.

5.2.2 The p-norm

Also evident from these results is that edge points, or junctions of degree two,

are detected by our junction detector, even though we are looking for junctions of

degree three. As we can see in Figure 18, the algorithm will select two angles that

correspond to the actual edge, and a third angle somewhat randomly. Two of the

differences between the wedges will be relatively high, but two of the wedges will be
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essentially identical. Our junction score, because we are only dealing with differences

between wedges at the moment, is the sum of three terms: gPj = dbW1+dbW2+dbW3.

At these edge points, two of these terms will give high values, but the third is not.

One solution to this is to combine the terms differently. Instead of taking the sum

linearly, we could take:

gPj = dbW p
1 + dbW p

2 + dbW p
3

where 0 < p ≤ 1. We call this using the p-norm, because this sum is similar to the

norm of a vector. Changing the value of p did not significantly affect our algorithm’s

performance on our models, but did have some effect on photographs.

5.2.3 Homogeneity Within Wedges

The homogeneity within wedges term is not useful in isolation, as the results

in Figure 19 demonstrate. On its own, the homogeneity term will be high for many

points, including obviously non-junction points where there is little variation in image

features. However, even in these results, we can see how the homogeneity term might

be helpful. Points near the junction score low for homogeneity, but a handful of points

that are very close to the junction score high. Thus, the homogeneity term, when

used in conjunction with other terms, could help localize junctions and eliminate

points near junctions from consideration. Points near junctions will score high on

other terms, such as the difference term, so the homogeneity term will complement

the difference term in this way.
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Figure 19: Left: A model of a degree-three junction. Center: The junction scores
when using the homogeneity term on this model. Right: The junction scores when
using the homogeneity term on a similar model. This term is not useful on its own,
but is useful in conjunction with other terms. The junction detector outputs have
been cropped to the area of interest.

5.2.4 Global Soft Segmentation Channels

Using the difference and homogeneity terms on the soft segmentation channels

does not yield good results on our model images, as we can see in Figure 20. The

central junction is detected, but many extraneous junctions are also detected. The

reason for this is evident when we look at the soft segmentations themselves (in Figure

20). The soft segmentations break up large regions into smaller ones, which is why the

normalized cuts segmentation algorithm, which uses a spectral clustering technique

similar to what we do, suffers from the “broken sky” problem. Regions that were

homogeneous in the original image are split up in the soft segmentation, and the

junction detector finds the junctions of this incorrect segmentation.

This problem is exacerbated by the large, flat regions in our model, but the same

problem occurs for the same reason in more complex photographic images. Neverthe-

less, processing the soft segmentation channel does result in finding true junctions as
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Figure 20: Top: Four soft segmentations of a model image. Left: The junction scores
at each point when the difference term is used on global channels. Right: The non-
maxima suppressed visualization of the detected angles when the difference term is
used on global channels.

well as false ones, and it is more useful for photographic images than for our model.

5.2.5 Coincidence With Edges

Finally, we turn to the edge-grouping term, coincidence with edges. As shown in

Figure 21, this term is effective for our models. But, as we have mentioned earlier,

contour detectors do not detect edges well near junctions in photographic images,

which implies that this term will not suffice on its own.
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Figure 21: Left: The thinned output of the gPb contour detector on a model. Right:
The junction scores using the edge-grouping term on the same model.

5.3 Results on Photographs of Objects

We also apply our junction detector to photographic images. We obtain an idea of

how using different terms and channels affects performance and qualitatively evaluate

the performance of our junction detector. We show that although our junction detec-

tor in general generates many false positives, it does detect most true junctions. As

we mentioned before, we can reason about junctions and eliminate junctions that are

physically inconsistent in a post-processing step based on a physical understanding of

the object. Creating junctions in a post-processing step is much more difficult. This

means that false negatives are more problematic than false positives. In addition,

when junctions are detected, the detected angles are almost always correct.

Throughout this section, we have hand-labeled detected junctions that appear to

be “close” to actual junctions in location and angles of incident edges. These “close”

junctions will be colored red, while spurious detected junctions will be colored blue.
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5.3.1 Scale

One difference from the model images is that photographic images contain junc-

tions at different scales. By scale, we refer to the radius r of the neighborhood which

we analyze in each point (see Section 3.5). As we show in Figure 22, some junctions

are only detected at a small scale and some are only detected at a large scale. In

the interest of developing a general junction detector, we compute our terms over

multiple scales and combine them linearly. Note that this is not the same as adding

the resulting junction scores together, because we need to account for the angles at

each point. In other words, dbW (~θ, r1) may be maximal for one ~θ, and dbW (~θ, r2)

may be maximal for a different ~θ. We thus need to find

max
~θ

(
dbW (~θ, r1) + dbW (~θ, r2)

)
rather than

max
~θ

(
dbW (~θ, r1)

)
+ max

~θ

(
dbW (~θ, r2)

)
When we combine scales in this way, we see (in Figure 22) that using multiple scales

results in detecting junctions at both scales.

Another parameter related to scale is the shape of the neighborhood at each point.

Parida et al. [27] notice improvements in their junction detector by omitting a pixels

from the center of the neighborhood around each point, and they cite psychophysical

studies that suggest humans use a similar technique. We saw improvements when us-

ing the edge-grouping term, as we show in Figure 23. The difference and homogeneity

terms were largely unaffected by changing this parameter.
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Figure 22: Top left: Junctions detected at a scale of 12 pixels with the difference
term on local channels. Top right: Junctions detected at a scale of 24 pixels with the
difference term on local channels. Bottom: Junctions detected when results from both
scales are combined. Note that some of the junctions from each scale are detected in
this version. Throughout this section, junctions that are qualitatively “close” to true
junctions will be highlighted in red.
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Figure 23: Left: Junctions detected using the full neighborhood with the edge-
grouping term. (In both images, The blue circle visualizes the neighborhood used
at each point.) Right: Junctions detected omitting the center of the neighborhood
with the edge-grouping term.

This suggests that some parameters might affect some terms and channels but not

others. Two examples from our qualitative testing are that omitting the center of the

neighborhood only seems to affect the edge-grouping term, while the global channels

seem impervious to changes in the scale parameter. These kinds of observations have

implications for any attempt to learn parameters from labeled data.

5.3.2 Local Channels

As we noted earlier, the homogeneity term is not useful on its own, but is useful

in conjunction with other terms when applied to the local channels. We demonstrate

the result of using the difference term and the homogeneity term in Figure 24. For the

box (on the left), adding the homogeneity term adds two additional junctions that

were not detected when using only the difference term. For the mechanical part (on

the right), adding the homogeneity term did not improve results significantly. We find
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this improvement in the detection of junctions in the image of the box encouraging,

as it suggests that even though the homogeneity term alone produces what looks like

noise, it can be combined with other terms to create meaningful output.

Note that the junction detector on the local channels detects “junctions” where

two of the incident edges are contours, but the third is a paint discontinuity (Figure

24, top left). This is a persistent theme in contour and junction detection. The

low-level concept of a junction and the high-level concept of a junction do not always

coincide, and fixing these errors requires reasoning about the physical structure of

the image in the way that, for example, line labeling does.

5.3.3 Global Channels

The homogeneity term is useful when applied to the local channels, but is not

nearly as effective when applied to the global channels. For example, in Figure 25,

we can see that adding the homogeneity term to the difference term in the global

channels merely results in a noisier output.

Also, we observe the same problems with the global channels on photographic

images as we did on models. The global channels are soft segmentations that split up

large regions. For example, in Figure 25, we see that the background of the image is

split up by the soft segmentation. Junctions are thus detected at the intersection of

these splits and true contours. Two of the detected angles follow true contours, but the

third angle follows the false split generated by the soft segmentation. Nevertheless, the

global information provided by these soft segmentations is valuable, and does detect

some junctions that are not detected in the other channels. Despite the problems
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Figure 24: Top row: The output when using the difference term on local channels
using a p-norm where p = 0.5. Middle row: The output when using the homogeneity
term on local channels. Bottom row: The output when combining the difference term
and homogeneity term on local channels using a p-norm where p = 0.5.
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Figure 25: Top left: The output when using the difference term on global channels.
Top right: The output when using the homogeneity term on global channels. Bottom
left: The output when combining the difference and homogeneity terms on global
channels. Bottom right: One soft segmentation, i.e. global channel. Note that the
soft segmentation splits up large regions such as the background.
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with the global channels, they cannot be ignored.

5.3.4 Combining Channels

The terms and channels all appear to be useful and not entirely redundant. The

exception is the homogeneity term on the global channels, so we will ignore that

term/channel combination. Omitting pixels at the center of the neighborhood is also

useful, as it seems to improve the performance of the edge-grouping term while not

affecting the performance of any other terms. Using a p-norm with p ≤ 1 also seems

to aid in junction detection. We perform a handful of experiments with parameters

tuned by hand and demonstrate them in Figure 26. We note that different parameter

settings result in detecting different sets of junctions, which leads us to suspect that

with better parameters, our algorithm could achieve better results.

However, even without obtaining the optimal parameters, we have shown that

the terms and channels we use complement each other in detecting junctions, and

that even without optimal parameters, we can achieve promising results. A broader

selection from our results is in Figure 27. We show that although we detect too many

false positives, junction localization is promising and the detection of angles is quite

accurate at true junctions.
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Figure 26: Each row is the output of the algorithm with different set of parameters.
Note that different parameter settings result in capturing different junctions.
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Figure 27: The output of our junction detection algorithm on selected examples from
our dataset. All of these tests were done with the same parameters.
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Conclusion

Our main contribution is to identify the underlying model of a contour that the

gPb boundary detector uses, replace that model of a contour with the model of a

junction, and create a new algorithm for detecting junctions. We have outlined our

algorithm and have shown promising preliminary results. Our algorithm localizes

junctions mostly correctly, and detects angles at true junctions accurately. However,

we note that it generates many false positives. Also, junctions that are detected

with one combination of parameters will sometimes not be detected with different

parameters.

We meet the two central problems with suggestions for future work. First, false

positives could be reduced by post-processing. As we noted in Section 2.4.3, junction

detection algorithms are often accompanied by post-processing that reasons about

the connectivity of the junctions and discards those that are not consistent with

the reasoning about the three-dimensional geometry of the object in the image. Our

algorithm would benefit from such post-processing as a way to threshold the responses
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to our detector more intelligently.

Second, missed junctions may be a result of a non-optimal combination of param-

eters. There are too many parameters in our algorithm for hand-optimization to find

a combination of parameters that will detect the most junctions. Furthermore, we

have also shown that the terms that we use to define a junction, difference between

wedges, homogeneity within wedges, and coincidence with edges, were shown to each

be useful and provide non-redundant information about the image. This suggests

that changing parameters will have a significant effect. Thus, obtaining a labeled

dataset and using machine-learning to tune the parameters of the algorithm would

most likely result in improved performance.

Another possibility for improving the number of missed junctions is to adjust gPb.

As we have alluded to earlier, the gPb boundary detector was designed and optimized

for scene-level images. We are interested in object-level images, and retuning the gPb

algorithm to our dataset or any object-level dataset might result in better results, as

detected contours are an important building block of our algorithm. There is reason

to believe that scene-level boundary detection and object-level contour detection are

slightly different tasks. Boundary detectors only need to distinguish between different

kinds of objects, but contour detectors need to also distinguish between different parts

of the same object. These developments would likely significantly improve the output

of our junction detector.

We were motivated to develop a junction detector because, as we showed, although

junctions are critically important to the contour image, the gPb boundary detector

does not perform well near junctions. As we show in Figure 28, our junction detector



Chapter 6: Conclusion 71

Figure 28: Left: An image of a box. The area we will focus on is outlined in blue.
Center: The output of the gPb boundary detector on this part of the image. Right:
The output of the gPj junction detector on this part of the image. Note that the
junction detector fills in the gaps left by the boundary detector.

does indeed fill in some of the gaps left by gPb.

Extracting contour images from photographic images is an exciting problem be-

cause of the many possible applications of a complete contour image. Our suggestion

of combining the results of a contour detector and a junction detector appears to be

one important step towards extracting complete contour images from photographic

images.
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