PYQCTools Documentation
Release 1.0

Enrico Ronca

August 19, 2016

CONTENTS

1 Contents
1.1 Tools for Omega Space Green’s Functions
1.2 Tools for Real-Time Green’s Functions
1.3 Tools for Integrals Dumping

ENUSERUS I JS)

PYQCTools Documentation, Release 1.0

PYQCTools is a collection of python scripts useful to dump quantum chemistry integrals and to perform data post-
processing for different quantum chemistry methods.

PYQCTools requires the following prerequisites to work:
* Python 2.6,2.7,3.2,3.3,3.4
* Numpy 1.6.2 or higher
* Scipy 0.10 or higher (0.12.0 or higher for python 3.3, 3.4)

» PySCEF for Integrals Calculation in Integrals Dumpings scripts.

CONTENTS 1

https://github.com/sunqm/pyscf

PYQCTools Documentation, Release 1.0

2 CONTENTS

CHAPTER
ONE

CONTENTS

1.1 Tools for Omega Space Green’s Functions

gf_trace.py: Calculate the Density of States (DOS) value from an w-dependent Green’s Function. It makes
the trace of the Green’s Function associated with a certain frequency value.

Example:

from PYQCTools.Omega_ GF import gf_trace
gf_trace.run(green.txt, omega_value)

green.txt: formatted text file containing the Green’s function, omega_value: double frequency value.

1.2 Tools for Real-Time Green’s Functions

rtgf.py: Calculate the Density of States (DOS) values during a time propagation. It makes the trace of time-
dependent Green’s Functions calculated along a time propagation and return the DOS values as a function of
time both for the real and for the imaginary part of the Green’s Function.

Example:

from PYQCTools.RT _GF import rtgf
rtgf.run (prop_time, time_step, scratch)

prop_time: double value of the full propagation time (period), time_step: double value of
the time-step, scratch: directory containing text files of the real (green.$t.$t.txt) and imaginary
(green.30000+$t.30000+$t.txt) Green’s Functions, where $t indicate the specific time-step.

The script save two output files, rt_real.txt and rt_imag.txt, containing the real and imaginary part
of the time-dependent DOS respectively.

fft .py: Perform the fourier transform of the time-dependent Density of States (DOS). It reads the
rt_real.txt and rt_imag.txt generated by the rtgf.py script and produces the ldos.out
and real_part.txt files containing the imaginary and real parts of the omega-dependent DOS respectively.

Example:

from PYQCTools.RT_GF import fft

fft.run (broad, rem_add)

PYQCTools Documentation, Release 1.0

broad: double value of the imaginary broadening, rem_add: string specifying if we are working
with the addition or removal part of the Green’s Function. It can assume only the values ‘add’ or

3 5

rem .

rtlrdm_builder.py: Build the Real and Imaginary parts of a Real-Time 1RDM at every time step starting from DMRG da
It opportunely combines the 1RDM components read from files onepdm. $t.$t.txt where $t is of the
order of 1,2,3,..., 100001,10002,100003,... and 200001,200002,200003,... for the Real-Real, Imag-Real and

Imag-Imag respectively.
Example:

from PYQCTools.RT_GF import rtlrdm builder
rtlrdm_builder.run (prop_time, time_step, scratch)

prop_time: double value of the full propagation time (period), t ime_step: double value of the
time-step, scratch: directory containing text files of the IRDM components at every time-step.

extrapolation.py: Perform linear prediction to extend the total propagation time of a time propagation.

It reads N points of time-dependent DOS inside the files rt_real.txt and
rt_imag.txt and use the last N/2 data to predict the following N points.

Example:

from PYQCTools.RT_GF import extrapolation
extrapolation.run (full_range)

full_range: boolean variable. If it is true is return the full range of calculated and predicted
values, if it is false it returns only the predicted values.

The script produces new_full_data.out filesif full_range = true otherwise it produces predicted. out
output files.

iter_ extrapolation.py: Perform an interative linear prediction to extend the total propagation time of a time propagatio

It reads 4 points of the time-dependent DOS inside the files rt_real.txt and
rt_imag.txt and use the last 2 of them to predict the following N points.

Example:

from PYQCTools.RT _GF import iter_extrapolation
iter_extrapolation.run (N)

N: integer variable specifying the total number of points that need to be predicted.

The script produces new_full_real.out and new_full_imag.out output files with the real and imag-
inary parts of the exteded time-dependent DOS respectively.

1.3 Tools for Integrals Dumping

Integrals_dump.py: It dumps 1 and 2-elctron integrals in the MO basis inside a CASCI space in FCIDUMP format.
The PySCF input to calculate the integrals is already included in the script.

DipoleIntegrals_dump.py: It dumps dipole integrals in the MO basis in a CASCI space in FCIDUMP format.
The PySCEF input to calculate the integrals is already included in the script.

4 Chapter 1. Contents

PYQCTools Documentation, Release 1.0

LowdinOrtho_Integrals.py: It dumps 1 and 2-electron integrals in the Localized basis obtained by Lowdin Orthogonaliz
The PySCF input to calculate the integrals is already included in the script.

hubbard_1d: It dumps 1 and 2-electron integrals got the 1D Hubbard model.
Example:

from PYQCTools.Integrals dump import hubbard_1ld
hubbard_1d.run(nsites, t, U, output, pbc)

nsites: Number of sites, t: Hopping constant, U: Coupling constant, out put: Output file name, pbc:
‘True’ of ‘False’ respectively if periodic boudary conditions need to be included or not.

MPSPT_integrals.py: It dumps the DYALL and PERTURSB files to run NEVPT2 calculations by MPS-PT using the BLOC!
Integrals are dumped in FCIDUMP format. The PySCF input to calculate the integrals is already included in
the script.

You can also download the PDF version of this manual.

1.3. Tools for Integrals Dumping 5

https://raw.github.com/eronca/PYQCTools/gh-pages/latex/PYQCTools.pdf

	Contents
	Tools for Omega Space Green's Functions
	Tools for Real-Time Green's Functions
	Tools for Integrals Dumping

