Clojure for Beginners

Elango Cheran

June 22, 2013

Clojure for

Get CIOJure I Beginners

Elango Cheran

Setup

» Clojure (actually) implemented as a Java library

» Need standard (Sun/Oracle) Java 1.6+ -
http://www.oracle.com/technetwork/java/
javase/downloads/index.html

» Clojure JAR downloads -
http://clojure.org/downloads

» Can run the REPL (“interpreter”) with
java -cp clojure-1.6.0.jar clojure.main

» Try Clojure - online vanilla REPL -
http://tryclj.com/

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://clojure.org/downloads
http://tryclj.com/

Clojure for

Get ClOJ u re I | Beginners

Elango Cheran

Setup

> Leiningen - de facto build tool -
http://leiningen.org/
> New project - lein new <project_name>
» Open a REPL - lein repl

» The REPL from Leiningen maintains proj. libs
(classpath), command history, built-in docs, etc.

» So easy that you don't notice Maven is underneath

» Light Table - evolving instant-feedback IDE -
http://www.lighttable.com/

http://leiningen.org/
http://www.lighttable.com/

Clojure for

“Tradltlonal” IDES for ClOJure I Beginners

Elango Cheran

Setup
» Emacs (!)
» Paredit mode - one unique advtange of Lisp syntax

> Imbalanced parenthases (& unclosed strings) no longer
possible
» Editing code structure as natural as editing code

» Integrated REPL, lightweight editor, etc.
» Get Emacs 24 or later, and install emacs-starter-kit

> Eclipse + Counterclockwise

» “Strict Structural Edit Mode” is steadily replicating
Paredit mode

» Vi, IntelliJ, etc.

Clojure for

“Tradltlonal” IDES for ClOJure II Beginners

Elango Cheran

Setup

Shortcuts to learn (and my configurations)

paredit-forward (C-M-f), paredit-backward (C-M-b),
paredit-forward-slurp-sexp (C-<right>),
paredit-forward-barf-sexp (C-<left>),
paredit-backward-slurp-sexp (C-M-<left>),
paredit-backward (C-M-<right>),

paredit-backward (C-M-b), paredit-backward (C-M-b),
paredit-split-sexp (M-S), and there's more ...

- - Clojure for
What This Presentation Covers e

Elango Cheran

Overview

v

An introduction to Clojure

v

A cursory comparison of Java, Clojure, Ruby, and Scala

v

Code snippets as needed

v

Explanation of design considerations

v

Additional resources

Clojure for

Interesting Things Not Covered Fr

Elango Cheran

Overview

» ClojureScript
» Specific DSLs & frameworks

» Clojure’s concurrency constructs & STM

Clojure for

Overview of Presentation Beginners

Elango Cheran

Overview

v

Brief intro of Clojure dev tools

v

Brief comparison of languages w/ snippets

v

Explanation of main Clojure concepts

v

Hands-on example(s)

Teasers

1. Average all numbers in a list

«4O0>» «Fr «=» <«

nae

Clojure for

Tease rS Beginners

Elango Cheran

Preview

1. Average all numbers in a list

2. Open, use, and close multiple system resources

Clojure for

Tease rS Beginners

Elango Cheran

Preview

1. Average all numbers in a list
2. Open, use, and close multiple system resources

3. Filter all lines of a file based on a reg. exp.

Clojure for

Tease rS Beginners

B

Elango Cheran

Preview

Average all numbers in a list
Open, use, and close multiple system resources
Filter all lines of a file based on a reg. exp.

Read in a line, skip first line, take every 3rd

Teaser #1

> Idea: Average all numbers in a list

> Java
// int[] nums = {8, 6, 7, 5, 3, 0, 9};
float average(int[] nums) {
float sum = 0.0;

for (int x : nums) {
sum += Xx;
}
return sum / nums.length;
}
» Clojure

; (def nums [8 6 7 5 3 0 9])
(defn average [nums]
(/ (reduce + nums) (count nums)))

> All values in input Java array, etc. must be of same

type

» Unless you use an untyped Java collection ...

> ... and pre-emptively cast to float

Clojure for
Beginners

Elango Cheran

Preview

Teaser #2 |

> ldea: Open, use, and close multiple system resources

» Java
Socket s = new Socket("http://tryclj.com/", 80);
OutputStream fos = new
FileOutputStream("index_copy.html");
PrintWriter out = new PrintWriter(fos);

try {
// do stuff...
}

finally {
out.close();
fos.close();
s.close();

Clojure for
Beginners

Elango Cheran

Setup
Overview
Preview

Clojure Basics &
Comparisons
Tabular comparisons

Clojure Code Building
Blocks

Cascalog

Clojure for

Teaser #2 II Beginners

Elango Cheran

Setup
Overview

> Clojure previen
(with-open [s (Socket. "http://tryclj.com" 80)
fos (FileOutputStream.
"index_copy.html") {hunkﬁx;w
out (PrintWriter. fos)] : ek
do stuff

)
» The predictable parts:

» .close()
» Close in reverse order
» A try-catch-finally block for clean I/O usage

Clojure for
Teaser #3 Bnginners
Elango Cheran
> Idea: Filter all lines of a file based on a reg. exp.

> Java -
BufferedReader br = new BufferedReader (new P
FileReader(file));
String line; otz e
while ((line = br.readlLine()) != null) { P G
if (line.matches("\\d{3}-\\d{3}-\\d{4}") { Blacks e PUIne

System.out.println(line);

}
}

br.close(); Sl

» Clojure
(with-open [br (BufferedReader.
(clojure. java.io/reader file))]
(doseq [line (line-seq br)]
(when (re-matches #"\d{3}-\d{3}-\d{4}" line)
(println line))))

Teaser #4

> Idea: Read in a line, skip first line, take every 3rd

» Java
String line;
int counter = 0;
br.readlLine(); // assume not EOF
while ((line = br.readLine()) != null) {
if (counter % 3 == 0) {
System.out.println(line);

}
counter++;
}
» Clojure

(doseq [line (take-nth 3 (rest (line-seq br)))]

(println line))

Clojure for
Beginners

Elango Cheran

Preview

Clojure for

REPL EE

Elango Cheran

» REPL = Read-Eval-Print Loop

» ‘“Interactive interpreter”

Clojure Basics &
Comparisons

» user> 1
1
user> 4.5
4.5

» Also try 22/7, \e, 10000000000000000000, first, str, +,
2r10101010, "hello",
0.000000000000000000000000314, [2 4 §],
{"key""value"}

Clojure for

Blndlngs | Beginners

Elango Cheran

» “binding” = assigning a value to a symbol
» Clojure promotes alternative ways to manage state, and
“variable” would be misleading

Clojure Basics &

> In general Comparisons
» Bindings are made at diff. times w.r.t. compiling (static
/ dynamic)
» Bindings are made within a context (lexical / dynamic
scope)

» Clojure is dynamic (uses dynamic bindings)
» Clojure promotes lexical scoping, allows easy dynamic
scoping
» You can “hot swap” live code
> Lexical scope + a function = a closure

Bindings Il

» Clojure

user> (def a 3)
#'user/a
user> a

3

user> (def b b5)
#'user/b
user> b

5

» Java
int a
a;
int b
b;

Clojure for
Beginners

Elango Cheran

Clojure Basics &
Comparisons

Bindings Il Getimmers
> Ruby Elango Cheran
irb(main) :001:0> a = 3
3
irb(main) :002:0> a
3
irb(main) :003:0> b = 3 Comparsons”
3
irb(main) :004:0> b
3

» Scala
scala> val a = 3
a: Int =3

scala> a
resl10: 1Int = 3

scala> val b =5

Bindings IV

b: Int =5

scala> b
resll:

Int = 5

O NI

Q>

Typl ng Clojure for

Beginners

Elango Cheran

v

The types of values and how they are resolved

v

Through Clojure, still using Java, just differently
Strong typing (like Java, Ruby, Scala; unlike Perl)

» Type hierarchies, interfaces, etc. Clojure Basics &
» Types of basic values are actual Java types. Try: e
(class 1)
(class 4.5)
(class "yolo")

Dynamic typing (like Perl, Ruby, Scala; unlike Java)

» Type checking happens at run-time, not compile-time

» Optional typing might provide type annotation
checking

v

v

» Trust in programmer’s ability to write good code

» Benefit is expressive power (ex: macros)

> Incremental development via REPL = less unexpected
surprises

Typing Examples |

» Clojure
user> (def a "not a Long")
#'user/a
user> (class a)
java.lang.String

user> (def a [1 2 3]) ;; no commas! commas
treated like whitespace
#'user/a

user> (class a)
clojure.lang.PersistentVector
» Side note: Clojure has other “container types” (beyond
just a "variable”) to manage state
> Java
» Variables are declared with a type that cannot change
» Prevents a lack of clarity on what a symbol

represents. . .
> ...but also restricts power of functions, collections, etc.

Clojure for
Beginners

Elango Cheran

Clojure Basics &
Comparisons

- Clojure for
Typing Examples Il Fr
» Ru by Elango Cheran
> a = "not a long"

=> "not a long"

> a.class

=> String

> a = [1, 2, 3] # commas required e B &
=> [1, 2, 3] Comparisons
> a.class

=> Array

> Scala
scala> var ¢ = 4.5
c: Double = 4 5
scala> c.getClass
resO: java.lang.Class[Double] = double

scala> ¢ = 3.5
c: Double = 3.5

Clojure for

Typing Examples Il e b

Elango Cheran

scala> var ¢ = "not a Long" // re-defining c
required to store object of diff type
c: java.lang.String = not a Long e e

scala> val d = Vector(1l, 2, 3)
d: scala.collection.immutable.Vector[Int] =
Vector(1, 2, 3)
» A ‘val' ("value") in Scala is immutable
» A ‘var' ("variable") is mutable but type is fixed, like
Java

Clojure for

FO”OW AlOng I Beginners

Elango Cheran

1. Install Leiningen and Light Table
2. At the command line, run lein new oakww
3. Run a REPL at the command line via Leiningen CRREbeC

» cd oakww
» lein repl
4. Now open Light Table

» In the “Workspace” tab on the left, choose “Folder'
Link at top

» Select the folder of the Leiningen project we created
(lein repl)

» Expand to and click the source file (oakww > src >
oakww > core.clj)

Clojure for

FO”OW Along II Beginners

Elango Cheran

Setup

5. Enter the following code in both command-line REPL Bl
and core.clj open in Light Table o
(class 4.5)

(class 22/7) Ce o &
(def a [1 2 3D) I
(class a) S
(first a)

(rest a)

(def b "hella")

(first b) Cascalog
(rest b)

(class (first b))
(class (rest b))

Follow Along IlI

6. In Light Table, in the “Command” tab on the left,
select “Instarepl: Make current editor an Instarepl”

Clojure for
Beginners

Elango Cheran

Clojure Basics &
Comparisons

Clojure for

FO”OW AlOng IV Beginners

Elango Cheran

7. Some notes on Light Table (curr. ver.: 0.4.11)
» Constant evaluation
> Instant feedback Clojure Basics &
lojure Basics
> Works well in some cases (pure / stateless functions, GeinpzrEams
web, testing)
» Not what you want in other cases (stateful fns / /0,
GUI)
» Standard command-line REPL is the “canonical” REPL
> Especially if you have confusion on return vals vs.
stdout, etc.
» Many people still stick with emacs + nREPL for
optimal productivity

Functions

» Prefix notation - functions go in first position
(def a 3)
(def b 5)
(+ a b)
(+ab716)

Clojure for
Beginners

Elango Cheran

Clojure Basics &
Comparisons

Clojure for
NOteS On SyntaX I BInginners

Elango Cheran

» Clojure
» Myth: Lisp's parentheses drown out code

LISP 15 OVER HALFA | | T WONDER IF THE CY(LES THESE ARE YOUR
CENTURYOLD AND 1T | | WILL CONTINUE FOREVER. FATHER'S PARENTHESES Clojure Basics &
STILL HAS THIS PERFECT, omparisons

TIMELESS AIR ABOUT IT

___w_,/
A FEW CODERS FROMEACH
NEW GENERATION RE-
DISCOVERING THE LISP ARTS.

Figure: from XKCD

ELEGANT
WEAPONS

FOR A MORE.... CWILZED AGE-

» Well, Common Lisp does have a lot. ..
> ...but Clojure reduces them, uses vector square
brackets, too

http://xkcd.com/297/

Clojure for

NOteS On SyntaX ” Beginners

. Elango Cheran
> Overall, Clojure has same or less

parens+brackets+braces than many other languages

(less code!)
objA.method(b, c, d);
I
(function a b ¢ d)
> Using Paredit mode (or equivalent) makes editing easy Comprtaans” &

and having imbalanced parens difficult

(AN UNMATCHED LEFT PARENTHES(S
(REATES AN UNRESOLVED TENSION
THAT WILL STRY WITH YU ALL DAY,

Figure: from XKCD

» Commas are whitespace
» Useful for macros
» Java
» There is a lot of code

http://xkcd.com/859/

Notes on Syntax Il

Extertainment Provider Singleton

]

THE WORLD SEEN BY AN “OBTECT-ORENTED © PROGRAMMER.
—
Ph-#‘chmAade‘DA“
[ErdoorSession Tnkialieer

Visitor Monitor TnferFe

Figure: from Bonkers World

» Ruby

» fn call parens can be omitted when the result is not

ambiguous

Clojure for
Beginners

Elango Cheran

Clojure Basics &
Comparisons

http://www.bonkersworld.net/object-world/

Clojure for

NOteS On SyntaX IV Beginners

Elango Cheran
» semicolon optional at end of the line

> def add_two(x)

> X + 2
> end Elojure _Basics&
=> nil omparisons
> add_-two 6
=> 8
» Scala
» Type declarations go after a variable / function name,
not in front

> Omissible when type can be inferred
» fn call parens can be omitted when the result is not
ambiguous
» Semicolon optional at end of line

Clojure for

Data StrUCtureS | Beginners

Elango Cheran

> 4 basic data structures with literal support in Clojure:
lists, vectors, maps, sets
» List: (1 1 2 3) Compartoons &
» Vector: [1 1 2 3]
» Set: #{1 2 3}
» Map: {"eins" 1, "zwei" 2, "drei" 3 }
» A lot of data can be represented through composites of
these

» Functions are executed through lists (fn is in first
position)

Clojure for

Data StI’UCtUI’GS II Beginners

> CleUre Elango Cheran
(def 1 (list 1 1 2 3))
1 Setup
Overview
(def v [1 1 2 3]) Previev
v
(def S #{1 2 3}) Clojure Basics &
s Comparisons
Tabular comparisons
(def m {"eins" 1’ "owei" 2’ "drei" 3}) é}gjc“kys(Code Building
m
> Java
// omitting plain arrays
import java.util.List; Cascalog

import java.util.ArraylList;

List 1 = new ArrayList();

1l.add(1); // only with auto-boxing starting in
Java 1.5 aka 5

1.add(1);

1.add(2);

1.2add(3);

Data Structures Il|

System.out.println(l);

// [1, 1, 2, 3]

ArrayList v = new ArrayList(); // ArrayList
replaced Vector in Java 1.2

import java.util.Set;
import java.util.HashSet;
Set s = new HashSet();
set.add(1);

set.add(2);

set.add(3);
System.out.println(s);

// 1, 2, 3]

import java.util.Map;
import java.util.HashMap;
Map m = new HashMapQ);
m.put("eins", 1);
m.put("zwei", 2);

Clojure for
Beginners

Elango Cheran

Setup
Overview

Preview

Clojure Basics &
Comparisons
Tabular comparisons

Clojure Code Building
Blocks

Cascalog

Data Structures IV

m.put("drei", 3);
System.out.println(m);
// {zwei=2, drei=3, eins=1}

» Ruby
v=1[1, 2, 3]
v
s = Set.new([1, 2])
s
m = {"eins" => 1, "zwei" => 2, "drei"
m
» Scala
val 1 = List(1, 2, 3)
val 12 =1 :: 2 :: 3 :: List(Q)
1
val v = Vector(1, 2, 3)
v
val s = Set(1, 2, 3)

S

Clojure for
Beginners

Elango Cheran

Clojure Basics &
Comparisons

=> 3}

Data Structures V

val m = Map("eins" -> 1, "zwei" -> 2, "drei" ->
3)
m

«O0>» «Fr «=>» « =)

DA

Immutablllty I Clojure for

Beginners

Elango Cheran

» Values don't change after declared
» Clojure

» Data structures (and any other value) are immutable

> Try: Clojure Basics &

Comparisons
(def v1 [5 6]) ;
(def v2 [7 81)
(concat v1 v2)
vl
v2
(def m {9 "nine", 8 "eight"})
(assoc m 7 "seven")
m

» Java

» People with experience say no such thing as “somewhat
immutable” code

Immutability I

» No immutable data structures originally, except for

Strings, actually

String strl = "hobnob with

String str2 =
strl.concat(str2);

System.out.println("stril
System.out.println("str2

on his Law

// strl = [hobnob with Bob
// str2 = [on his Law Blog]

Bob Loblaw";

String str3 = strl.concat(str2);

System.out.println("stril
System.out.println("str2
System.out.println("str3

// strl = [hobnob with Bob

// str2
// str3
Blog]

Blog";
[" + stril
[" + str2
Loblaw]
[" + stril
[" + str2
[" + str3
Loblaw]

[on his Law Blog]
[hobnob with Bob Loblaw on

+ II]II);
+ II]II);
+ II]II);
+ II]II);
+ II]II);
his Law

Clojure for
Beginners

Elango Cheran

Setup
Overview

Previe

Clojure Basics &
Comparisons

Tabular comparisons
Clojure Code Building
Blocks

Immutability 1
» Ruby

» Like Java, does not have immutable types

» Scala
scala> val vl = Vector(5, 6)
vl: scala.collection.immutable.Vector[Int] =
Vector (5, 6)

scala> val v2 = Vector(7, 8)
v2: scala.collection.immutable.Vector[Int]
Vector (7, 8)

scala> vl ++ v2
resl: scala.collection.immutable.Vector [Int]
Vector(5, 6, 7, 8)

scala> vl
res2: scala.collection.immutable.Vector [Int]
Vector (5, 6)

Clojure for
Beginners

Elango Cheran

Setup
Overview

Preview

Clojure Basics &
Comparisons
Tabular comparisons

Clojure Code Building
Blocks

Cascalog

Immutability IV Getimmers
Elango Cheran
scala> v2
res3: scala.collection.immutable.Vector[Int] =
Vector (7, 8)

scala> val m = Map(9 -> "nine", 8 -> "eight")
m: i

scala.collection.immutable.Map[Int, java.lang.String]
= Map(9 -> nine, 8 -> eight)

scala> m + (7 -> "seven"

res4:
scala.collection.immutable.Map[Int,java.lang.String]
= Map(9 -> nine, 8 -> eight, 7 -> seven)

scala> m

resb:

scala.collection.immutable.Map[Int, java.lang.String]
= Map(9 -> nine, 8 -> eight)

Clojure for

Immutablllty V Beginners

Elango Cheran

» Referential transparency
» Don't rebind symbols/names (bind fn results to new

symbols) G
» Any code that references a symbol (ex: v1) always sees
same value

» “Either it works (all the time) or it doesn't work at all”
happens more often

» Structural sharing through persistent data structures
» Any code creating a new value using v1 reuses memory

» EX: copying, appending, subsets, etc.

Clojure for

Immutabillty Vl Beginners

. El Ch
» Value semantics EID SIS

» Clojure
(def v3 v1)
vl
v3
(= vl v3) ot o™
(= v3 [5 6])
(def v4 [1 [2 [3]1]11)
(def vb [2 [3]11)
(second v4)
(= v5 (second v4))
» Scala
val v3 = vl
vl
v3
vl v3
v3 Vector(5,6)
val v4 = Vector(l, Vector(2, Vector(3)))
val v5 Vector (2, Vector(3))

Immutability VII

vb == v4(1)
» Immutable values can be safely used in sets and in map
keys
» Whereas Java allows mutable objects in sets or map
keys (unadvisable)
» Python disallows mutable objects (ex: lists) in sets or
map keys
> In general, Clojure uniquely teases out
» State as value + time, and...
> ldentity transcends time

Clojure for
Beginners

Elango Cheran

Clojure Basics &
Comparisons

Clojure for

Java, Ruby, Scala, & Clojure Ear

Elango Cheran

aspect H Java ‘ Ruby ‘ Scala ‘ Clojure

strong typing
dynamic typing
interpreter/REPL
functional style

“fun web prog.”

good for CLI script
efficient with memory
true multi-threaded

Tabular comparisons

<[/ <|z|Zz|Zz=Zz=Z<
z| z| <|<|<|<|<| <
<|<|z|<|<|<|z|<
< <|z|<| <] <|<| <

Clojure <+ Scala |

aspect

H Clojure ‘Scala

|

why? (Clojure)

STM

yes yes

does for concur-
rency what GC did
for memory

OOP

not really yes

“It is better to
have 100 functions
operate on one
data structure
than 10 func-
tions on 10 data
structures.”

design patterns

no some

equivalent out-
comes done in
other ways

FP

yes

sort of

fns compose and
can be used as ar-
guments to other
fns

Clojure for
Beginners

Elango Cheran

Tabular comparisons

Clojure <> Scala Il Beginners

Elango Cheran

aspect H Clojure ‘ Scala ‘ why? (Clojure)
concurrency yes yes Clojure designed
for this from the
beginning
persistent data yes yes only reasonable
structures way to support s
immutable data
structures
sequence abstrac- yes yes fns on seqs : ob-
tion jects = UNIX
DOS
syntax regularity yes sort of | nice for macros,
readability (&
pasting into
REPL)

Clojure <+ Scala Il

aspect H Clojure ‘ Scala ‘ why? (Clojure)

language extensi- yes yes* | abstract repetitive

bility (macros) code not possible
via fns and pat-
terns

backwards com- yes yes* | Clojure is relatively

patibility very good at work-

ing with old ver-
sion code

Clojure for
Beginners

Elango Cheran

Tabular comparisons

Defining a Function

» Basic structure of a new fn
(defn fn-name
"documentation string"
largl arg2]
;; return value is last form

)

Clojure for
Beginners

Elango Cheran

Setup
Overview

Preview

Clojure Basics &
Comparisons
Tabular comparisons

Clojure Code Building
Blocks

Cascalog

Clojure for

Deflnlng a FunCtlon Beginners

Elango Cheran

» Basic structure of a new fn
(defn fn-name '
"documentation string"
largl arg2] e
;3 return value is last form ClopnelceiiBhiding
)
» Enter the following (in Light Table, if possible):
(defn square
[x] e

(x x x))

Clojure for

Deflnlng a FunCtlon Beginners

Elango Cheran

» Basic structure of a new fn
(defn fn-name
"documentation string"
largl arg2]
;3 return value is last form ClomelCileuikne

)

» Enter the following (in Light Table, if possible):
(defn square
[x]
(* x %))
> Now enter:
(square 2)

Lexical scope - let |

» Can think of let form as giving “local variables”
» Except they must all be declared at the beginning
» The let bindings also used to break up a nested form
into something more readable
» Example: Let’s find the solutions of a quadratic

equation
» For ax? + bx + ¢ = 0, the solution is
—b++/b?—4ac
X=—-
2a

» Test case:
a=1b=-5c=6

Clojure for
Beginners

Elango Cheran

Clojure Code Building
Blocks

Clojure for

LechaI SCOpe - 1et II Beginners

Elango Cheran

Setup
Overview
. Preview
» First pass:
(defn quadsolve

Clojure Basics &

"solve a quad eqgn" Comparisons
Tabular comparisons

[a b c] @i ot Bl
Blocks

[(/ (+ (= b) (- (square b) (* 4 a c))) (*
2 a)) (/ (- (-Db) (- (square b) (* 4 a c)))
(x 2 a))])

» Check: Cascalog
(quadsolve 1 -5 6)

Clojure for

Lechal SCOpe - 1et III Beginners

Elango Cheran
» Define:

(defn discriminant Setuy
"for a quadratic eqn's coefficients, o
return the discriminant"
[a b c]
(- (square b) (x 4 a c)))

» Check:
(discriminant 1 -5 6)

Blocks

> Rewrite:
(defn quadsolve Cascalog
[a b c]
(let [disc (discriminant a b c¢)
disc-sqrt (Math/sqrt disc)]
[(/ (+ (- b) disc-sqrt) (x 2 a)) (/ (-
(- b) disc-sqrt) (x 2 a))l))

Lexical scope - 1let IV

» Math/sqrt refers to the sqrt static method of Java's
java.lang.Math

» Check:
(quadsolve 1 -5 6)

Clojure for
Beginners

Elango Cheran

Clojure Code Building
Blocks

Clojure for

COﬂtrOl FlOW - if, etC I Beginners

Elango Cheran

» Takes a 3 expressions: a test, the “then”, and the “else”
» Note: test passes for all values except false and nil
» This “truthiness” holds for everything built off of if -
when, and, or, if-not, when-not, etc. ClopnelceiiBhiding
» (if (< disc 0)
(println "I don't like imaginary
numbers!")
[(/ (+ (- b) disc-sqrt) (*x 2 a)) (/ (- (-
b) disc-sqrt) (x 2 a))l)
» do

» Creates a form that evaluates/executes multiple forms
inside it

Clojure for

ContrOl FlOW - if, etC ” Beginners

Elango Cheran

» Returns the value of the last form
(if (< disc 0)
(println "I don't like imaginary numbers")

(do
. . Clojure Code Buildin,
(println "I like real numbers!") Blocks e

[(/ (+ (- b) disc-sqrt) (x 2 a)) (/ (-
(- b) disc-sqrt) (* 2 a))l))

» when is the same as if, but with nil as “else” and a
do built in for “then”

» Both and and or do short-circuit evaluation

Clojure for

map & reduce | S

Elango Cheran

» Where's my for loop??

» Instead of dealing with index-based looping, you can
apply higher-order functions

Clojure Code Building
Blocks

> map applies a fn on every element of a sequence
» reduce uses a fn to accumulate an answer
> Apply fn on first 2 elements (or an initial value and first
element)

» Continue applying fn on accumulated value and next
element

map & reduce |l

user> (def data [3 59 15 4 2])
#'user/data
user> (map square data)
(9 25 81 1 25 16 4)
user> (reduce + data)
29
user> (defn sum-sq
[nums]
(reduce + (map square nums)))
#'user/sum-sq
user> (sum-sq data)
161

Clojure for
Beginners

Elango Cheran

Clojure Code Building
Blocks

Clojure for

map & reduce llI S

Elango Cheran

» Since Clojure fns are first-class citizens
» You can have a vector of fns: [+ -]
» You can have an anonymous fn (doesn't have a name):
(fn [x] (if (pos? x) x (- x)))
» Our next rewrite of quadsolve:) son
Clojure Code Building
(defn quadsolve Blocks
[a b c]
(let [disc (discriminant a b c)
disc-sqrt (Math/sqrt disc)
soln-fn (fn [op] (/ (op (- b)
disc-sqrt) (* 2 a)))
ops [+ -1]
(map soln-fn ops)))

Clojure for

ClOSU reS Beginners

. El h
» soln-fn is a closure — the values of a, b, and ange Cheran

disc-sqrt are pulled from surrounding scope
» Even if soln-fn is passed elsewhere, the values of a, b,
and disc-sqrt in soln-fn don't change after fn
creation & binding
» fns = values = immutable
» Ex: you have to decrypt a lot of strings encrypted with

Clojure Code Building

the same public key Blocks
> Instead of repeated (decrypt priv-key s ...) calls
defn decrypt-with-priv
[priv-key]
fn [s]

decrypt priv-key s

let [my-decrypt (decrypt-with-priv
priv-key)]
my-decrypt sl
my-decrypt s2

» In many cases, as above, partial does the same

Clojure for

Java InterOp Beginners
Elango Cheran

» Java classes in JVM and classpath accessible

» Use full name unless imported, ex: (import

'java.net.URL)

» All of java.lang.* always imported, just like Java

» New objects through new: (new URL
"http://clojure.org")

Clojure Code Building

» Syntax shorcut: (URL. "http://clojure.org") Blods

» Static methods called through Class/method (ex:
Math/sqrt)

> Idiomatic member method call ex: (.toLowerCase
"sUpEr UgLy CaSiNg")

» More (& interesting) Java interop available (ex: proxy,
memfn, etc.)

» Clojure way for Java patterns very neat (multimethods,
protocols, records, types)

Clojure for

Sequence/List Processing Functions | Beginners
Elango Cheran
» Many useful fns exist to transform sequences, work on
specific collection types, or convert from one to another

» Examples:
user> (filter even? data)
(4 2)
user> (remove even? data) Qs G Bty
(3591 5)
user> (take 3 data)
(359
user> (drop 3 data)
(154 2)
user> (first data)
3
user> (rest data)
(69154 2)
user> (last data)

Sequence/List Processing Functions

2
user> (butlast data)
(35915 4)

user> (take-while (fn [x] (< 1 x)) data)
(3 59)

user> (drop-while (fn [x] (< 1 x)) data)
(154 2)

user> (take-nth 2 data)

(395 2)

Clojure for
Beginners

Elango Cheran

Clojure Code Building
Blocks

Sequence/List Processing Functions Il Begimrs

Elango Cheran

user> (def nums [1 1121121111122
1312211

#'user/nums

user> (frequencies nums)

{113, 2.6, 3 1} Cllgre Code Buiking
user> (group-by odd? nums)

{true [11111111113111], false
[222222]}

user> (partition-by even? nums)

(1) (2 (11) (2 11111) (22 (13
1 (22 11D

Clojure for

Adding/Removing/Getting single elements Beginners
Elango Cheran
> cons puts an element at the front and returns a
sequence

» conj adds an element in the most efficient manner and
preserves the collection/sequence type
user> (cons 12 data)
(12359154 2) ClopnelceiiBhiding
user> (conj data 12)
[359154212]
user> (cons 12 s)
(12 1 2 3)
user> (conj s 12)
#{1 2 3 12}

» assoc (for maps) adds a key and its value, dissoc
removes a key and its value, given a key

» disj is the opposite of conj for a set

apply - unpacking sequences in fn calls

» Some fns are meant for scalar args, not sequences:
user> (max 3 8 95 -14 1 6)
9
user> (max [38 95 -1 4 1 6])
[3895-141 6]

» When what you want comes as a sequence. . .:
user> (max (filter odd? [38 95 -141

61))
(395 -11)

> ...use apply to “unpack” the sequence and apply the
fn:
user> (apply max (filter odd? [3 8 9 5 -1 4
161))

9

Clojure for
Beginners

Elango Cheran

Clojure Code Building
Blocks

Interlude - clojure.inspector

» Run the following (preferably in command-line REPL):
(use 'clojure.inspector)
(inspect [38 9 5 -1 4 1 6])
(inspect-tree [1 [2 [3 4]] 5])
(require '[clojure.xml :as xml])

(inspect-tree (xml/parse
"http://www.w3schools.com/xml/note.xml"))

Clojure for
Beginners

Elango Cheran

Blocks

Macros |

» Powerful pre-evaluation step
» A fn that transforms code (input and output is code)

» Only possible when language’s code written in
language's data structures
» Changing a language to accept code in its own data
structures = Lisp

Clojure for
Beginners

Elango Cheran

Clojure Code Building
Blocks

Macros Il
» Basic threading macros (-> and ->>)

» Write nested forms “inside out” (more readable)
» —> puts result of previous form in 2nd position of next
» —>> puts result of previous form in last position of next

» Our previous sum of squares example
» Before
(reduce + (map square nums))

> After
(=>> nums
(map square)
(reduce +))
» Qur previous teaser # 4 example
> Before
(take-nth 3 (rest (line-seq br)))
> After
(=>> br
line-seq
rest
(take-nth 3))

Clojure for
Beginners

Elango Cheran

Clojure Code Building
Blocks

Macros |11

» Example with —>

» Setup
(require '[clojure.string :as string])
(def line "coll\tcol2\tcol3\tcold"))
» Before
(Integer/parselnt (.substring (second
(string/split line #"\t")) 3))
> After
(-=> 1line
(string/split #"\t")
second
(.substring 3)
(Integer/parselnt))

» Nested nil checks

Clojure for
Beginners

Elango Cheran

Setup
Overview
Previe

Clojure Basics &
Comg s

Tabular comparisons

Clojure Code Building
Blocks

Clojure for
Macros IV BInginners

Elango Cheran

Setup
» Before Oveniew
(fn [n]
(when-let [nth-elem (get ["http://g.co" R
"http://t.co"] n)] .
(when-let [fl (get nth-elem 7)] Clojure Code Building
(get #{\g \t \£f} £1))))
> After
(fn [n]
(some-> ["http://g.co" "http://t.co"]
(get n) R
(get 7)

@\ \t \fp)»

Macros V

» Don't create your own macros unless you have to
» Can't compose like fns (< can't take value of macro)
» Macros harder to debug
» Macros can (and/or should) be used in a few cases,
including:
» Abstracting repetitive code where fns can't (ex:
patterns)

» Or even for simplifying control flow, if common enough
» Creating a DSL on top of domain-relevant fns
» Controlling when a form is evaluted
» Macros allow individuals to add on to their language
» with-open
> ...is a macro in Clojure
» Copied into Python, but only possible as official
language syntax (= impl’'ed by language maintainers)
» The some-> threading macro

> (officially added in Clojure 1.5)
> already functionally existed in contrib library as -7>

Clojure for
Beginners

Elango Cheran

Clojure Code Building
Blocks

Macros VI

» Most of Clojure is implemented as fns and macros

> A few special forms exist as elemental building blocks
> Rest of language (fns and macros) is composed of

previously-defined forms (special forms, fns and
macros)

> Syntax is simple and doesn't change

> New lang. versions mostly just add fns, macros, etc.
= backwards-compatibility

Clojure for
Beginners

Elango Cheran

Clojure Code Building
Blocks

High-level Design Decision Cascade

» Simplicity — isolate state

» Simplicity — immutability

» Concurrency — immutability

» Concurrency — STM

» Simplicity — functional programming

» Functional programming — immutability

> Immutability — persistant data structures

Clojure for
Beginners

Elango Cheran

Clojure Design
Ideas

Clojure for

Effects of Decisions Beginmere

Elango Cheran

» Lisp
> Flexible syntax

> Less parentheses + brackets + etc. (!)
» Macros

» Functional programming Clojure Design
Ideas

» Simpler code

> Easier to reason about

» Places of mutation minimized, isolated

» Refential transparency elsewhere

» Design patterns handled in simpler, more powerful ways

Clojure for

My Parting Message to You Fr

» The basics are simple, but tremendous depth

Elango Cheran

» May take time at first (initial investment), but simpler
code is perpetual payoff
» Clojure/Lisp compared to other languages

>

Lisp helps you get better at programming (even if you
don't use it)
Not a better vs. worse
But maybe a powerful vs. more powerful
> If we agree that two languages can differ in power (ex:
Perl vs. Basic)
Tradeoffs exist — always choose right tool for the job
> Ex: a language's power may cost performance
Many language discussions — emotional arguments b/c
of proximity to mind & identity
> Or so wrote Paul Graham - “Keep Your ldentity
Small” (& Paul Buchheit - “I am Nothing")

Conclusion

> Keep exploring

>

>

There are more cool aspects to Clojure | couldn't fit
here
And it's still a young language

http://www.paulgraham.com/avg.html
http://www.paulgraham.com/identity.html
http://www.paulgraham.com/identity.html
http://paulbuchheit.blogspot.com/2011/08/i-am-nothing.html

Abridged Set of Useful Resources Getimmers
» Videos of Easy-to-follow Lectures by Rich Hickey Elango Cheran

» At Clojure’s Youtube channel

» Data structures; Sequences; Concurrency; Clojure for
{Java Programmers, Lisp Programmers}

Books (my recommendations)

» The Joy of Clojure - good intro that explains the ‘why’
of Clojure

» Clojure Programming - deeper, more comprehensive
guide to Clojure for all levels

v

v

ClojureDocs

Conclusion

» Clojure Cheatsheet
» 4Clojure
» Getting through the first 100 is worth the challenge to
get better
> | learned a lot by following these users’ solutions: 0x89,
_pcl, austintaylor, jbear, maximental, nikelandjelo,
jfacorro, jsmith145, chouser, cgrand
» Shameless plug: The Newbie's Guide to Learning

Clojure

http://www.youtube.com/clojuretv
http://clojuredocs.org/
http://clojure.org/cheatsheet
http://www.elangocheran.com/blog/2012/03/the-newbies-guide-learning-clojure/
http://www.elangocheran.com/blog/2012/03/the-newbies-guide-learning-clojure/

The End

> Thanks!

o> < Fr «=»

«E>»

o

What is Cascalog? |

» You have a MapReduce (Hadoop) installation
» You put data on the filesystem (HDFS)
» You perform queries / analysis on data
» Cascalog enables queries in Datalog syntax
» Datalog - Scheme-based subset of Prolog - queries must
terminate?
» “log"” - logic programming
» logic programming is declarative (like SQL!)

Clojure for
Beginners

Elango Cheran

Cascalog

What is Cascalog? Il Beginners

Elango Cheran

» The point
» Queries are now a set of filters
» = No special syntax
» = We can combine/compose queries, run them in
parallel, etc.
» Implemented as a DSL = can mix in regular fns
» Based on Cascading - Java library on top of Hadoop
MapReduce
» Cascading establishes concept of flows
» Casca- + -log = Cascalog

Cascalog

. Clojure for
MOSt BaS|C Setup I BInginners
Elango Cheran

» Create a new Leiningen project

Setup

» Basic project.clj file: Olervien
(defproject happy-clickers "O.1.0-SNAPSHOT" e
:description "FIXME: write description"

:url "http://example.com/FIXME" Cojure Basics &
omparisons
:license {:name "Eclipse Public License" Tabular comparisons
Clojure Code Building
curl Blocks

"http://wuw.eclipse.org/legal/epl-v10.html"}
:dependencies [[org.clojure/clojure "1.5.1"]
[cascalog "1.10.1"]1]
:repositories {"cloudera" Cascalog
"https://repository.cloudera.com/artifactory/cloudera-repos"}
:profiles {:provided {:dependencies
[[org.apache.hadoop/hadoop-core
"0.20.2-cdh3u5"11}}
:aot [happy-clickers.core]
:main happy-clickers.core

)

Most Basic Setup Il

> Source file setup:
(ns happy-clickers.core
(:gen-class)
(:require [cascalog.ops :as ops]
[cascalog.vars :as vars])
(:use [cascalog.apil))

(defn -main

"initiate execution when run as a standalone
app"

[& args]

;3 do stuff

)

Clojure for
Beginners

Elango Cheran

Setup

Overview

Clojure Code Building
Blocks

Cascalog

Clojure for

Deployment Beginners

Elango Cheran

> lein uberjar - create the JAR file to run on Hadoop
» hadoop jar - run the JAR file

» Hadoop doesn't know (or care) that JAR file generated
through Clojure
> Testing
» You can create a REPL to run queries, etc.
» You can choose inputs to be from HDFS, LFS, or
hand-created Clojure data
» But still working on this, among other things ...

Cascalog

Example Prompt

ok W=

Given a file of online events (uid, impression, click, etc.)
Per uid, get # of impressions, & # of clicks

Determine CTR = impressions / clicks

Filter out when clicks <=2 or CTR < 0.02

For the CTR values, compute quartiles

Add the quartile number to each uid

Clojure for
Beginners

Elango Cheran

Cascalog

Clojure for

Query 1 - get quartile boundaries Ear

Elango Cheran

(defn queryl
[source]
(let [hclks (happy-clickers source)
hclk-ctrs (<- [?ctr] (hclks 7uid ?ctr))
ctr-quartiles (<- [7min ?b12 ?b23 7b34 7Tmax]
(hclk-ctrs ?ctr) (quartile-bounds ?ctr :> ?min ?bl2
7b23 7b34 7Tmax))]

ctr-quartiles)) Cascalog

Clojure for

CTR Ca|CU|at|0n Beginners

Elango Cheran

(defn happy-clickers i

[source] s
(<= [?uid 7?ctr]
(source _ _ _ _ _ _ _ _ 7uid 7impr 7clk 7Tactn) Clojure B

(parse-int 7clk :> 7click) At
(parse-int 7impr :> 7impression) Bede
(ops/sum ?click :> ?7clicks)
(ops/sum 7impression :> 7impressions)
(<= 2 7impressions) ;; includes preventing
divide-by-zero. as it Cascalog
;; turns out, order of predicates matters for
the divide-by-zero check
(div ?clicks 7impressions :> 7ctr)
(< 0.05 7ctr)))

. . Clojure for
Parsing input tap | Besimer:

Elango Cheran

Setup
Overview

(defn- in-tap-parsed Preview
"Helper fn that takes lines of input from a source

tap, splits the line, and returns only a specified Clojure Basics &
Comparisons

constant number of Cascalog vars. Helper fn to be E

used whether input is textline or sequencefile" Blogk e Buildine

[dir num-fields source]
(let [outargs (vars/gen-nullable-vars num-fields)]
(<- outargs
(source ?7line)
(line-not-empty 7line)
(parse-line num-fields 7line :>> outargs)
(:distinct false))))

Cascalog

Clojure for

ParS|ng Input tap II Beginners

Elango Cheran
(defn textline-parsed

"parse the input source as an HDFS TextLine (file). n
opts are for hfs-seqfile / hfs-tap" -
[dir num-fields & opts] o
(let [source (apply hfs-textline dir opts)]
(in-tap-parsed dir num-fields source))) e

Comp s

(defn parse-int
[s]
(Integer/parselnt s))

(defn parse-line Cascalog
[num-fields line]
(take num-fields (string/split line #"\t")))

(defn line-not-empty
[line]
(boolean (seq (.trim line))))

Clojure for

Custom aggregator - compute quartile boundaries = seginmer

Elango Cheran

Setup
Overview

Preview

Clojure Basics &
Comparisons

Tabular comparisons

(defbufferop quartile-bounds ClejurelCode Bulding
[tup]_es] Blocks
[(incanter.stats/quantile (map first tuples))])

Cascalog

Clojure for

Query 2 - Add quartile number Ear

Elango Cheran

(defn query2
[source ctr-quartiles]
(let [hclks (happy-clickers source)
hclk-gnums (<- [?Puid ?ctr ?qnum] (hclks ?7uid
7ctr)
(ctr-quartiles 7min 7b12 7b23
7b34 7?max)
(cast-dbls 7min ?b12 7b23 7b34
?max :> 7min-dbl ?b12-dbl ?b23-dbl ?b34-dbl
?max-dbl)
(gnum-casc-fn 7min-dbl
7b12-dbl ?b23-dbl 7?b34-dbl ?max-dbl ?ctr :> 7qnum)
;; need to specify to
;; Cascalog that this is a

Cascalog

cross-join
(cross-join))]
hclk-qnums))

Other quartile fns and queries |

(defn quantile-num

"find the quantile number (1-indexed) of data point
x given a vector of quantile info as given by
incanter's quantile fn (first and last are min-val
and max-val of dataset)"

[quantiles x]

(let [quant-ranges (partition 2 1 quantiles)]

(inc
(first (keep-indexed #(if (<= (first %2) x

(second %2)) %1) quant-ranges)))))

Clojure for
Beginners

Elango Cheran

Setup
Overview

Preview

Clojure Basics &
Comparisons

Tabular comparisons
Clojure Code Building
Blocks

Cascalog

Clojure for

Other quartile fns and queries |l Beginners

Elango Cheran

Setup
Overview

Preview

(defn cast-dbls

[& nums]
(map #(Double/parseDouble %) nums)) Comeioans™ &
il
Blocks
(defn gnum-casc-fn
"create a wrapper fn for quantile-num that works
with Cascalog, that is, doesn't take any collections
as args"
[min b12 b23 b34 max n] e

(quantile-num [min b12 b23 b34 max] n))

Clojure for

Run queries ESE
Elango Cheran
(defn run
"read in std in and return output" o
[Overview
(let [dir "hdfs://<hdfs_namenode>/data/dir/path/" o
intermediate
"hdfs://<hdfs namenode>/intermediate/dir/path/" Comparaons
output Cloire Code Buring
"hdfs://<hdfs_namenode>/output/dir/path/" o
source (seqfile-parsed dir 12 :source-pattern
"ds=201306{21,22,23,24,25,26,27}")

sink (hfs-textline output)] Cascalog
(?- (hfs-textline intermediate) (queryl source))
(with-job-conf {
"io.compression.codecs"
"org.apache.hadoop.io.compress.GzipCodec,org.apache.hadoop.io.compz
(?- sink (query2 source (textline-parsed
intermediate 5))))))

Clojure for

Improving this Cascalog example Fr

Elango Cheran

» Update versions (currently: Cascalog 2.1.1, etc.)
» Show testing situation — pretty simple

» Parsing a tab-separated (TSV) file is already supported
by Cascalog fns (use those instead)

> Instead of writing and reading the “intermediate” values
to disk using 2 disjoint queries, it might be more
efficient to pull into memory as Clojure data structures
using ?7- or 77<-
Cascalog

» There probably is a way to generalize the quartile code
for any quantiles of size n (ex: “deciles” when n=10)

> The first two points above will further decrease code
size

	Introduction
	Setup
	Overview
	Preview

	Language Overview
	Clojure Basics & Comparisons
	Tabular comparisons
	Clojure Code Building Blocks

	Clojure Design Ideas
	Conclusion
	Extras
	Cascalog

