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Abstract

This manuscript summarizes research in designing machine learn-
ing models to discover brain imaging signatures of mental disorders.
We explore dimension reduction and regularization strategies to over-
come the “curse of dimensionality” caused by a large number of neu-
roimaging measurements. Given the limitations of sparse models to
produce stable and interpretable predictive signatures, we propose to
push forward regularization by integrating spatial constraints. Evalu-
ations on experimental data demonstrated that those constraints force
the solution to adhere to biological priors, producing a more plausible
interpretable predictive brain signature of clinical status. To bridge
the gap between biological processes and brain imaging, we present
multivariate latent variable sparse models to investigate the genetic
influence on the brain.

Résumé

Ce manuscrit résume les recherches sur la conception de modèles
d’apprentissage automatique pour découvrir les signatures en im-
agerie cérébrale des troubles mentaux. Nous explorons les stratégies
de réduction de dimensions et de régularisation pour résoudre la
"malédiction de la dimensionnalité" causée par le grand nombre de
mesures de neuroimagerie. Étant donné les limites des modèles parci-
monieux à produire des signatures prédictives stables et interpréta-
bles, nous proposons de pousser la régularisation en intégrant des
contraintes spatiales. Les évaluations sur données expérimentales ont
montré que ces contraintes obligent la solution à adhérer à des a
priori biologiques, produisant une signature cérébrale prédictive de
l’état clinique plus plausible et plus interprétable. Pour combler le
fossé entre les processus biologiques et l’imagerie cérébrale, nous
présentons des modèles à variables latentes multivariées parcimonieux
pour étudier l’influence génétique sur le cerveau.
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Research summary

Brain anatomy and functioning are modeled by the individual’s ge-
netic and environmental background. Specialized behavior or certain
genes may be associated with a commensurately greater allocation
of the neural circuitry in the corresponding brain centers (Draganski
et al., 2004; Maguire et al., 2000; Zatorre, Fields, and Johansen-Berg,
2012). Conversely, in neurodegenerative disorder (Frisoni et al., 2010),
the clinical symptoms are thought to reflect differential patterns of at-
rophy. While neuroimaging is now widely accepted in neurology, its
potential in psychiatry (Goodkind et al., 2015) is still emerging: brain
developmental effect of genes (Leonard, Eckert, and Kuldau, 2006) or
environment (Teicher et al., 2014) could be observed in neuroimag-
ing. Those findings open a way to advance a biologically grounded
re-definition of major psychiatric disorders.

Chap. 1: Design of machine learning algorithms for neuroimaging

My goal, 15 years ago, was to design artificial intelligence algorithms
that learn to predict an output (the clinical outcome) given the hun-
dreds of thousands of brain imaging features. This chapter provides
the background of neuroimaging and Multivariate machine learning
models. Those models leverage the capacity to capture complex brain
patterns offering new opportunities such as making predictions at the
individual level.

Chap. 2: Fighting overfitting

The core problem emerges from the unfavorable ratio between the
small number of subjects (≈ 102) and a large number of neuroimaging
features (≥ 105). This situation, a.k.a as the "curse of dimensionality,"
misleads the algorithm resulting in overfitting the training data and
producing near-chance predictions on an independent sample.

This issue became the common thread of my research: Chapter 2

presents and evaluates the predictive performances of several designs
combining regularized models with feature selection. Those designs
were used to predict (i) sex and brain asymmetries from the cortical
folding patterns (Duchesnay et al., 2007); (ii) visual stimuli from func-
tional activation maps (Thirion et al., 2006) and (iii) the clinical status
of patient with autism using PET imaging (Duchesnay et al., 2011).

Supervision: In 2007-2010, together with J.B. Poline, I supervised Cé-
cilia Damon’s PhD (entitled: Réduction de Dimension et Régularisation
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pour l’Apprentissage Statistique et la Prédiction Individuelle en Irmf ) on
the problems of regularization and size reduction applied to fMRI.

Adjusting research strategy

This application to psychiatry inspired the purpose of my method-
ological developments: machine learning has the potential to retrieve
cerebral signatures of mental illnesses. This experience also drew two
methodological limitations:

1. The biological (millimetric) scale of neuroimaging is not infor-
mative about the underlying physiopathological process.

2. Standard models analyze brain images as they would do for
customer indicators to predict internet purchases. They do not
permit the integration of any biological knowledge about the
brain, even the simple spatial organization of the measurements
from a scanner is utterly ignored.

Chap. 3: Imaging genetics

This Chapter presents multivariate models to address the first limita-
tion, i.e., investigating the potential of neuroimaging to provide use-
ful information to understand the biological processes that underpin
the disorders. Brain imaging is increasingly recognized as an inter-
mediate phenotype to understand the complex path between genet-
ics (molecular) and behavioral or clinical phenotypes. In this context,
the first goal was to propose ML algorithms to identify the part of
genetic variability that explains some neuroimaging variability. The
identified genetic variability would point to biological processes.

In Le Floch et al., 2012, we investigated the efficacy of different
strategies of regularization and dimension reduction techniques com-
bined with multivariate latent variable models to face the very high
dimensionality of imaging genetics studies. A comparison of the strate-
gies on a simulated dataset showed that univariate filtering combined
with (`1, `2) regularized Partial Least Squares (PLS), outperformed
other approaches. Then, we applied the chosen strategy on a real
dataset composed of 94 subjects, around 600,000 genetic measure-
ments (Single Nucleotide Polymorphisms, SNPs) and 34 functional
MRI lateralization indexes measured during reading and speech com-
prehension tasks. We identified a genetic signature that explains the
brain activation involved in language processing.

Supervision: In 2009-2012, I supervised Edith Le Floch’s PhD (entitled:
Multivariate methods for the joint analysis of neuroimaging and genetic
data).
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Chap. 4: Integrating spatial regularization

Then, I addressed the second limitation of classical sparse algorithms
to integrate biological structure to produce stable and interpretable
predictive signatures. I initiated a research program (funded by ANR
BrainOmics, obtained together with V. Frouin) that pushed forward
the regularization approaches by extending models with structural
constraints issued from the known biological structure (spatial struc-
ture of the brain and the linkage disequilibrium or pathways of OMICs
data). The aim is to constraint the solution to adhere to biological pri-
ors, producing more plausible interpretable solutions.

Adding those new penalties raised complex minimization prob-
lems. Existing solvers were either limited in the functions they can
minimize or in their practical capacity to scale to "real life" high-
dimensional data and to process meshes of the cortical surface. One
outcome of this research program was a solver, called CONESTA,
(Hadj-Selem et al., 2018) and the corresponding Python library (Parsi-
monY), which extends scikit-learn, for high dimensional structured
input data such as 3D images and meshes of the cortical surface.
The first result of this methodological effort was underwhelming: we
could not demonstrate the relevance of such an approach to DNA
data. It could be a promising track to follow with functional genomic
measurements (such as RNA). Nevertheless, the second result demon-
strated, beyond expectation, the relevance of spatial regularization
(using Total Variation, TV) for neuroimaging (3D images and corti-
cal meshes). Given the versatility of the proposed solver, we use it
to integrate structured sparsity in other multivariate analysis meth-
ods. In de Pierrefeu et al., 2018c we demonstrated that the popular
PCA (Principal Component Analysis) could be extended with spatial
regularization to identify interpretable patterns of the neuroimaging
variability in either functional or anatomical meshes of the cortical
surface.

Supervision:

• 2013-2015: Fouad Hadj Selem, post-doc, mathematical founda-
tions of CONESTA.

• 2013-2015: Tommy Lofstedt, post-doc, implementation of the
Parsimony library.

• 2013-2015: Mathieu Dubois, post-doc, application to ADNI dataset.

Chap. 5: Identification of predictive signatures of brain disorders

Application to psychiatry:

• In de Pierrefeu et al., 2018b a spatially regularized supervised
model (ElasticNet-TV) could identify an interpretable functional

https://github.com/neurospin/pylearn-parsimony
https://github.com/neurospin/pylearn-parsimony
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predictive signature (clusters in speech-related brain regions) of
the upcoming hallucinations in patients with schizophrenia, of-
fering perspectives in bio-feedback. Here, classical linear Sup-
port Vector Machine produced a useless signature (Fig 5.9), with
signal across the whole-brain and significantly lower predictive
power.

• In de Pierrefeu et al., 2018a, we demonstrated that spatial regu-
larization (ElasticNet-TV), working at a voxel level, could iden-
tify a neuroanatomical signature of Schizophrenia (SCZ), repro-
ducible across sites and more importantly to an earlier stage of
the disorder. We demonstrated that spatial regularization pro-
vides a qualitative breakthrough (Fig 5.3) in terms of support
recovery of the predictive brain regions.

Application to neurology:

• In Duchesnay et al., 2018 we used spatially regularized PCA to
identify spatial patterns of white matter hyperintensities (WMH)
in patients with CADASIL syndrome. We found two distinct
patterns: a first subcortical pattern of WMH associated better
clinical outcomes and a second pattern lesions in the deep white
matter (pyramidal tracts and forceps minor) that is associated
with clinical worsening. This finding suggests different mech-
anisms of small vessel disease (CADASIL) and clinical conse-
quences.

Supervision:

• 2009-2012: Amicie de Pierrefeu, PhD: Machine Learning with Struc-
tured Sparsity: Application to Neuroimaging-based Phenotyping in
Schizophrenia.

• 2017-2018: Pauline Favre, Post-doc, together with JF Mangin
and J Houenou.
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1
Background in machine-learning in
neuroimaging

This chapter presents the background in neuroimaging (Sec. 1.1) and
the processing to produce input features of the machine learning al-
gorithms. Then, we summarize the principles of supervised Machine
Learning algorithms (Sec. 1.2).

1.1 Neuroimaging features

The success of machine learning relies on the features used to repre-
sent the information contained in the brain images. Each MRI brain
scan is composed of thousands of 3D volumetric units called voxels,
in which the local anatomical or functional information is measured.
However, a certain number of pre-processing steps are required be-
fore group analysis. Stacking subject’s preprocessing outputs yields
to a (N × P) data matrix (X) containing the P features for N subject.

1.1.1 Structural MRI

sMRI uses the phenomenon of nuclear magnetic resonance (NMR)
of the hydrogen atom to produce high-resolution, detailed images of
internal brain structures and tissues. The strength of the magnetic
field determines the resolution of the images. sMRI provides good
contrast between gray matter and white matter. Three main prepro-
cessing can be used: voxel-based grey matter density, vertex-based
cortical thickness and region of interest-based measurements, each
reflecting different aspects of the brain anatomy.

Voxel based morphometry (VBM)

VBM Fig. 1.1, described in (Ashburner, 2007), generally include 3

main steps: Segmentation (see Fellhauer et al., 2015 for a comparison),
normalization (see Klein et al., 2009 for a comparison) and Modula-
tion. Briefly, the sMRI images are first segmented into Gray Matter
(GM), White Matter (WM), and Cerebrospinal Fluid (CSF). The sec-
ond step is crucial to achieve spatial correspondence of voxels across
subjects: All brain images are normalized into a common standard
space. This normalization composes two transformations: (i) a linear
transformation that accounts for global alignment (rotation, transla-
tion, and global brain size); (ii) and, a non-linear deformation that
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Figure 1.1: VBM-based feature extraction.

locally aligns brain structures. (iii) All the normalized images are fi-
nally modulated by the Jacobian of their transformation. This enables
to preserve the quantity of tissue. No spatial smoothing is conducted.
The validity of modulation to detect mesoscopic (i. e.between micro-
scopic and macroscopic) abnormalities is discussed in Radua et al.,
2014. If the global brain size is not of interest, one should modulate
for non-linear effects only, or apply a proportional scaling according
to the individual Total Intracranial Volume (TIV), as post-processing,
to fully modulated images.

Recently, we decided to do the pre-processing with Computational
Anatomy Toolbox (CAT). This toolbox of Statistical Parametric Map-
ping (SPM) uses a modified segmentation procedure reducing the
role of tissue priors. Although, it uses DARTEL for the normalization,
CAT, uses existing DARTEL templates in MNI space. Therefore, the
creation of study-specific DARTEL templates is no longer necessary
for most studies. This may seem somewhat sub-optimal, however,
good performances have been reported Farokhian et al., 2017 and the
use of the same template for all studies offers the possibility to pool
data across studies (transfer learning, etc.).

VBM preprocessing produces hundreds of thousands (typically 300,000

GM voxels at 1.5mm3 resolution) of features representing the local
GM volume at each voxel. One advantage of VBM is that it is not
restricted to a specific brain region, such as region-of-interest (ROI)
analysis (described below) that requires a priori assumptions.

Cortical surface based morphometry

The goal is to obtain a measurement of the cortical thickness at each
vertex of the cortical surface of the brain. The cortical thickness di-
rectly characterizes the amount of cortex atrophy. The measurements
of cortical thickness are realized with Freesurfer software. All cortical
thickness maps are registered on the default template of Freesurfer.
Thus, the dimensionality of the vertex-based features is very high
(≈ 300, 000), since it corresponds to the number of vertices on the
cortical mesh of the brain.

http://www.neuro.uni-jena.de/cat/
http://www.fil.ion.ucl.ac.uk/spm
http://www.neuro.uni-jena.de/cat/index.html#Features
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Regions-of-interest (ROIs)

Neuroimaging Softwares (Freesurfer, etc.) can segment the brain into
cortical parcels and subcortical regions using atlases (Desikian, etc.).
They automatically extract measurements on those ROIs: Cortical
thickness and volume of subcortical regions. Compared to voxel-
based and vertex-based approach, the number of features yielded by
ROIs-based approaches is limited (≤ 100).

Cortical sulci based structural morphometry

Most automatic brain morphometry approaches are based on a point-
by-point (voxel or mesh node) strategy in which each brain image is
warped towards a reference coordinate system. Sulci based structural
morphometry, provide by brainVISA software, proposes a comple-
mentary approach producing structural representations (6,000 mor-
phometric features per brain) of cortical shapes to overcome the com-
plex consequences of non-linear spatial normalization in population
comparisons (Mangin et al., 2004).

1.1.2 Functional MRI

Functional Magnetic Resonance Imaging (fMRI) monitors local brain
activity. fMRI exploits the local variations in the blood oxygen level.
Indeed, it indirectly tracks brain activity by measuring the blood-
oxygen-level-dependent (BOLD) signal (Poldrack, Mumford, and Nichols,
2011), which reflects the amount of brain activity. When a brain re-
gion becomes active, the amount of blood flow through that specific
local area is increased. It subsequently leads to a relative surplus in
local blood oxygen. This variation in the level of oxygenated blood
induces a change in the local magnetic field and thus affects the MR
signal. fMRI data is typically composed of temporal sequences of 3D
images acquired every 2 to 3 seconds. Spatial resolution is usually
3mm3 when acquired with 3 Tesla (T) scanners.

Preprocessing steps

First step is the slice timing correction that temporally realigns the
slices of each 3D volume. Second, the motion correction step allows
spatial realignment between each 3D volume acquired at different
point in time. It allows filtering out potential movement of the subject
within the scanner. Third step, is the co-registration of each 3D fMRI
volume acquires with the anatomical image of the subjects (the sMRI).
The last step is the normalization of each subject in the common brain
template.

http://brainvisa.info
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General Linear Model

Once the fMRI time series are preprocessed, features can be extracted
from the images. The most used approach is the General Linear Model
(GLM) (Friston et al., 1994). The idea is to regress the signal of each
individual voxel independently, onto a set of regressors explaining
the experimental design (such as condition/task). Therefore, for each
voxel, regression coefficients associated with each regressor are com-
puted. Thus, different activation maps can be derived, correspond-
ing to each condition/task. Those activation maps are used for sub-
sequent statistical inferences. Usually, in fMRI studies, we want to
test an effect of interest, to identify voxels that are significantly ac-
tivated in condition A compared to condition B. This is answered
by conducting a contrast between the activation map yielded under
condition A, and the activation map yielded in condition B. Such
(contrast)activation maps typically contain few tens of thousands of
features.

1.2 Supervised machine learning

Machine learning (ML) is a term that encompasses a collection of
methods to uncover patterns in data to perform trustworthy future
predictions on new data. There are two mains methodological ap-
proaches: supervised and unsupervised machine learning algorithms.
In supervised learning, the goal is to find a mapping from input
data to an output target. In unsupervised learning, the objective is
to identify inherent structures in the data to either: (i) classify data
into homogeneous subgroups (clustering) or (ii) represent data with
few features (feature extraction).

Given a training set of N samples, D = {(x1, y1), . . . , (xN , yN)} ,
where xi is a multidimensional input vector with dimension P and yi
is the target to be predicted, class label in case of classification and
a continuous value in case of regression. Input vectors are stacked in
an input N × P matrix X and output N-dimensional vector y.

1.2.1 Linear models

Linear models learn a predictive function f (x) = f (σ(xTw)) parame-
terized by a vector of weights or coefficients w that performs a linear
combination of the input variables, xTw followed by an optional ac-
tivation function σ(.). This step performs a projection or a rotation of
input sample into a good predictive one-dimensional sub-space.

The vector of parameters (w), is obtained by minimizing an objective
function J(w) that is a sum of a loss function L(w) and an optional
regularization term (penalties on the weights vector) Ω(w) discussed
in Sec. 2.2.
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Figure 1.2: Linear models with an optional activation function.

min
w

J =
N

∑
i=1

Lε(yi, f (xi, w)) + Ω(w) (1.1)

= Lε(y, f (X, w)) + Ω(w) (1.2)

The sum of squared errors (SSE) loss

L(y, f (X, w)) = SSE(w)

= (y− Xw)T(y− Xw)

= ‖y− Xw‖2
2,

Minimizing the SSE is the Ordinary Least Square (OLS) regression
as objective function. This minimization has an analytic solution:

wOLS = (XTX)−1XTy

If needed, the gradient of the loss:

∂
L(y, f (X, w))

∂w
= 2 ∑

i
xi(xi ·w− yi)

The Logistic loss

The logistic regression for classification problems is a generalized lin-
ear models. It is a linear model with a link function that maps the
output of linear multiple regression to the posterior probability of
class 1 p(1|x) using the logistic sigmoid function:

p(1|w, xi) =
1

1 + exp(−w · xi)
.
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The Loss function for sample i is the negative log of the probability:

L(w, xi, yi) =

− log(p(1|w, xi)) if yi = 1

− log(1− p(1|w, xi) if yi = 0.

For the whole dataset X, y = {xi, yi} the loss function to minimize
L(w, X, y) is the negative negative log likelihood (nll) that can be
simplied using a 0/1 coding of the label in the case of binary classifi-
cation:

L(y, f (X, w)) = − logL(w, X, y)

= − log Πi{p(1|w, xi)
yi ∗ (1− p(1|w, xi)

(1−yi)}
= ∑

i
{yi log p(1|w, xi) + (1− yi) log(1− p(1|w, xi))}

= ∑
i
{yiw · xi)− log(1 + exp(w · xi))}

This is solved by numerical method using the gradient of the loss:

∂
L(y, f (X, y))

∂w
= ∑

i
xi(yi − p(1|w, xi)).

Logistic regression is a discriminative model since it focuses only on the
posterior probability of each class p(Ck|x). It only requires to estimate
the P weights of the w vector. Thus, it should be favored over Linear
Discriminant Analysis (LDA) with many input features. In small di-
mension and balanced situations it would provide similar predictions
than LDA.

However, imbalanced group sizes cannot be explicitly controlled. It
can be managed using a re-weighting of the input samples.

The hinge loss

This is the loss of Support Vector Machines which is given by:

L(y, f (X, w)) =
N

∑
i=1

(1− yixT
i w)+,

where yi ∈ {−1, 1} for binary classification problem.

1.2.2 Non-linear kernel-based models: Support Vector Ma-
chines

Support Vector Machines (SVM)

SVMs belong to the family of kernel methods that rely on a kernel
function K(xi, xj) which measures the similarity over pairs of data
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points (xi, xj). Input data are mapped into the kernel (dual) space
on which learning algorithms operate linearly, i. e.every operation on
points is a linear combination of K(xi, xj). Outline of the SVM algo-
rithm:

1. Map points x into kernel space using a kernel function: x →
K(x, .).

2. Learning algorithms operate linearly by dot product into high-
kernel space K(., xi) · K(., xj).

• The kernel trick (Mercer’s Theorem) replaces dot product
in high dimensional space K(., xi) ·K(., xj) by a simple sim-
ilarity function K(xi, xj). Thus, we only need to compute
similarity for each pair of points and store them in a N×N
Gram matrix.

• Finally, The learning process consists of estimating the con-
tribution of training samples (αi in SVM, Eq. 1.3) in the
decision function that maximizes the hinge loss plus some
penalty when applied on all training points.

3. Predict a new point x using the decision function (here binary
classification problem with class label yi ∈ {−1, 1}):

f (x) = sign

(
∑

i
αiyiK(x, xi)

)
(1.3)

Figure 1.3: Left: Kernel mapping using Gaussian kernel from red and blue
dots (lower) to kernel space (upper). Right, Support Vector Machines deci-
sion function on the top and support vector on the bottom.
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Gaussian kernel (RBF, Radial Basis Function)

RBF is the most commonly used kernel function. For a pair of points
xi, xj the RBF kernel is defined as:

K(xi, xj) = exp

(
−‖xi − xj‖2

2σ2

)
= exp

(
−γ ‖xi − xj‖2) ,

where σ (or γ) defines the kernel width parameter. Basically, we con-
sider a Gaussian function centered on each training sample xi. It has
a ready interpretation as a similarity measure as it decreases with
squared Euclidean distance between the two points. Non-linear SVM
also exists for regression problems.



2
Fighting overfitting

This chapter presents two approaches to overcome the overfitting
phenomenon (summarized Sec. 2.1): Sec. 2.2 regularization and Sec. 2.3
dimension reduction using feature selection. Using these approaches,
we designed predictive pipelines combining feature selection and
regularized models. Three contributions are presented in the follow-
ing sections:

• Sec. 2.4 explores various strategies to predict sex from the corti-
cal folding patterns (Duchesnay et al., 2007). This work laid the
foundation for the following researches; it demonstrated the rel-
evance of dimension reduction associated with regularization;
however it raised the crucial issue of model selection.

• Sec. 2.5 presents an inverse inference model to predict the visual
stimuli from functional activation map (Thirion et al., 2006).

• Sec. 2.6 proposes a strategy to predict ASD based on whole-
brain PET imaging using regional features (Duchesnay et al.,
2011). This work presents a preliminary proposition to extract
interpretable predictive maps from whole-brain images.

2.1 The overfitting phenomenon

The estimation of the model parameters (coefficient vector w in linear
models) is very sensitive to the conditioning of X, and sometimes pro-
duces a dangerous situation of overfitting. In statistics and machine
learning, overfitting occurs when a statistical model describes ran-
dom errors or noise instead of the underlying relationships. In such
situations, the model performs perfectly on the training data but will
lead to poor performances and replicability on independents subjects.
The overfitting phenomenon has three main explanations: excessively
complex models, multicollinearity, and high dimensionality.
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Figure 2.1: Top: three models of increasing complexity (capacity). Bottom:
The increase of model complexity always reduces prediction error on the
training dataset. However, beyond the necessary complexity, the error on an
independent test set increases. The unnecessary complexity gives the model
the capacity to fit the noise of the training data that will not replicate on test
data.

Statistical learning theory (Vapnik, 1999) founded the theoreti-
cal background of overfitting. It provides measures to quantify the
model capacity. Among these, the most well-known is the Vapnik-
Chervonenkis dimension or VC dimension defined as the cardinality
of the largest set of points that the algorithm can label arbitrarily.

The VC dimension states that a linear classifier with P input fea-
tures has VC dimension of P + 1. Hence, as shown in Fig. 2.2, in di-
mension two (P = 2) any random partition of 3 points can be learned.
Thus, any linear classifier can trivially obtain 100% of classification on
N training sample with only P = N − 1 features.

Figure 2.2: In two dimensions, we can shatter any three non-collinear points.
VC dimension of a linear classifier in 2D equals 3.
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The risk of overfitting is specifically high in the context of neu-
roimaging data, where the number of features (e.g., number of voxel-
s/vertices) for a subject is much larger than the total number of sub-
jects, resulting in high-dimensional data. This problematic situation
leads to a high imbalance between the number of parameters to esti-
mate and the number of available samples. It sometimes results in ex-
tremely complex models with low generalization capabilities. More-
over, neuroimaging measurements are frequently correlated. In this
situation, the coefficient estimation in the multiple regression may
fluctuate erratically in response to small changes in the model or the
data. Multicollinearity does not reduce the predictive power or relia-
bility of the model as a whole, at least not within the sample data set;
it only affects computations regarding individual predictors. That is,
a multiple regression model with correlated predictors can indicate
how well the entire bundle of predictors predicts the outcome vari-
able, but it may not give valid results about any individual predictor,
or about which predictors are redundant for each other.

2.2 Regularization based on shrinkage of the co-
efficient vector

Regarding linear models, overfitting generally leads to excessively
complex solutions (coefficient vectors), accounting for noise or spu-
rious correlations within predictors. Regularization aims to alleviate
this phenomenon by constraining (biasing or reducing) the capacity
of the learning algorithm to promote simple solutions. Regularization
penalizes "large" solutions forcing the coefficients to be small, i.e., to
shrink them toward zeros.

The objective function J(w) to minimize with respect to w is com-
posed of a loss function Lε(w) for goodness-of-fit and a penalty term
Ω(w) (regularization to avoid overfitting). This is a trade-off where
the respective contribution of the loss and the penalty terms is con-
trolled by the regularization parameter λ. Therefore the loss function
Lε(w) is combined with a penalty function Ω(w) of the Eq. 1.1.

2.2.1 `2 (Ridge) regularization

`2 Regularization imposes a `2 penalty on the coefficients, i.e., it pe-
nalizes with the Euclidean norm of the coefficients while minimizing
the loss function. The objective function of Eq. 1.1 becomes:

min
w

N

∑
i=1

Lε(yi, f (xi, w)) + λ2‖w‖2
2 (2.1)

with λ2 ≥ 0 and ‖w‖2 =
√

∑P
i=1 wi

2



22 fighting overfitting

2.2.2 `1 (Lasso) regularization

However, the Ridge penalty does not assign exactly zero coefficients
to predictors. Yet, with high dimensional features, such as with neu-
roimaging datasets, many variables are expected to be irrelevant for
the prediction task. They should be removed from the model. One so-
lution to conduct such variable selection is the use of `1 (a.k.a Lasso)
penalty. The lasso (Least Absolute Shrinkage and Selection Operator)
constraint (Tibshirani, 1996) penalizes the `1-norm of the coefficients
vector. It enforces many coefficients to have zeros weights. The crite-
rion to optimize becomes:

min
w

N

∑
i=1

Lε(yi, f (xi, w)) + ‖w‖1, (2.2)

with λ1 ≥ 0 and ‖w‖1 = ∑
p
i=1 |wi|

In contrast to the ridge regression, the lasso regression can perform
variable selection. Indeed, due to the geometric properties of `1 norm,
Lasso tends to reach its minimum along the axis.

(0,0)

(0,1)

Indeed, as shown in the figure, mini-
mizing a quadratic loss (in blue) un-
der the constraint of the `1 norm of
‖w‖1 ≤ 1. `1 norm promotes optimal
solution along axis. Here w1 = 1. Thus,
it produces sparse solution of w by se-
lecting at most k non-null coefficients
for k � p. This sparse configuration of
the solution is desirable for the inter-
pretability of prediction. However, in a
set of correlated predictors, the lasso re-
gression tends to select only one vari-
able on the set. Such selection might be unstable, and thus inter-
pretability is still limited The Lasso regression problem lacks an an-
alytic solution. It is convex but not differential anymore due to the
addition of the `1 penalty. It requires specific optimization algorithms
such as FISTA: the fast iterative shrinkage-thresholding algorithm de-
scribed in (Beck and Teboulle, 2009a).
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Ridge

Lasso

Figure 2.3: `1, `2 shrinkages.

2.2.3 `1, `2 (ElasticNet) regularization

The ElasticNet model combines both `1 and `2 penalties (Zou and
Hastie, 2005):

min
w

N

∑
i=1

Lε(yi, f (xi, w)) + λ1‖w‖1 + λ2‖w‖2
2. (2.3)

ElasticNet associates the advantages of both Ridge (`2) and Lasso
penalties by favoring sparse and stable configurations in case of cor-
related predictors. Elastic net encourages a grouping effect, where
strongly correlated predictors tend to be in or out of the model to-
gether. As with Lasso, ElasticNet can be solved with FISTA algorithm.

2.3 Feature selection

The selection of a reduced set of input features may improve the pre-
dictive performance by reducing the risk of overfitting and produc-
ing simpler and more interpretable models, see (Guyon and Elisseeff,
2003; Guyon et al., 2006) for a review and NIPS 2003 Feature Selection
Challenge (Guyon et al., 2005). Some approaches (filters wrappers) in-
clude two distinct steps: feature ranking then model selection to feed
the predictive algorithms. Conversely, embedded methods combine
feature selection in the learning process.
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2.3.1 Univariate feature ranking: filters

Filters are a simple, widely used method for supervised dimension re-
duction (Guyon and Elisseeff, 2003). Filters are univariate methods
that rank features according to their ability to separate populations,
independently of other features. This ranking may be based on para-
metric (e.g. t-test, ANOVA) or non-parametric (e.g. Wilcoxon test) sta-
tistical methods. Filters are computationally efficient and more robust
to overfitting than multivariate methods. However, they are blind to
feature interrelations, a problem that can be addressed only with mul-
tivariate selection.

2.3.2 Embedded methods

We need to consider combinations of features for at least two reasons:
(i) This makes it possible to remove redundant features, which is im-
portant as redundancy may weaken the classification. For example, if
a neurodegenerative disease modifies the depth of a sulcus but not
its length, then depth and area (≈depth×length) will be discriminant
(i.e. with a high univariate rank), but area measurements simply in-
crease classifier noise. A feature selection combining depth and area
could be used to detect this kind of situation of redundancy. (ii) It
also makes it possible to exploit informative interrelations.

Embedded methods are multivariate feature selection methods that
combine feature selection in the learning process. Embedded meth-
ods can produce sets of selected feature of different size by playing
on some regularization parameters. I. e.decreasing the `1 regulariza-
tion parameter produces selected feature of increasing size. There-
fore, model selection is also required with most of embedded algo-
rithms.

Examples of Embedded methods:

• Automatic Relevance Determination (ARD) (MacKay and Lab-
oratory, 1994) provides a Bayesian framework wheres priors al-
low the model to determine which of the features are most rel-
evant.

• Recursive Feature Elimination (RFE) (Guyon et al., 2002) per-
forms feature selection by iteratively training the model on a
reduced set of features selected according to their importance
in the current model. In linear models, the absolute value of the
weight can be use as the feature importance.

• Random Forests (Breiman, 2001) is an ensembles learning of
decision trees select features in the process of building classifi-
cation or regression tree.
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• `1 regularization may be used as embedded feature selection.
Indeed, the use of the `1 norm constraint on the parameter leads
to a sparse model.

2.3.3 Wrappers: forward-and backward-stepwise selection

Wrappers use the objective function of a learning algorithm as a "black
box" to score subsets of features according to their predictive power
(Guyon and Elisseeff, 2003). Wrappers explore the features space with
greedy strategies and can work in two ways: forward or backward.
Sequential forward selection (SFS) adds features that improve the ob-
jective function, whereas sequential backward selection (SBS) deletes
features that weaken the objective function. SFS and SBS are sensitive
to the nesting effect, as they never backtrack on their choices. A hy-
brid strategy, sequential floating forward selection (Pudil, Novovivcová,
and Kittler, 1994), limits this effect by nesting a backward loop, that
deletes the worst feature only when the objective function is im-
proved, within a forward loop.

The wrapper evaluates the objective function to select (forward) or
remove (backward) a feature. The choice of the objective function is
closely related to the classifier. For LDA, a Manova F-statistic (Pillai-
Bartlett trace) is recommended (Hand and Taylor, 1987). SVMs pro-
vide many methods for estimating the generalization power on un-
seen data (the bounds of test error). Such methods are useful in im-
plementing the objective function. We used the margin-based bound
based on its simplicity and demonstrated efficiency in a previous
comparative study (Rakotomamonjy, 2003). Finally, it is possible to
use cross-validation (CV) of the loss function on training data (Schölkopf
and Smola, 2002) (chap. 12.2).

Results from "NIPS 2003 Feature Selection Challenge" (Guyon et
al., 2005) recommend the use of embedded methods over wrappers.

2.3.4 Model (dimension) selection

Most feature selection methods yield several nested feature sets of
increasing dimensions. The user must select the size k of the subset
to be used for further processing: either training of the classifier or
an additional step of multivariate feature selection. Most dimension
selection approaches are of one of three types:

Cross-validation

Choose k from cross-validation: In this classical solution, the classifier
is trained on subsets of features of increasing size. The dimension
yielding the best generalization rate is then chosen.
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Select fewer features than samples

If k is to be selected on the basis of information about the classifier,
then as the first rule of thumb is to take k smaller than that k the num-
ber of subjects (N). This choice can be justified by many theoretical
arguments:

• A Linear Discriminant Analysis (LDA) classifier, estimatesO
(
k2)

parameters (k(k− 1)/2 + k for the covariance matrix and 2k for
the 2 means). Therefore, we want k ≤ N such that the number
of estimated parameters is smaller than the dataset size (N× k).

• VC dimension Sec. 2.1 states that linear classifier in dimen-
sion k can reach 100% of classification rate on N − 1 samples.
Considering the Occam’s razor principle that states that among
competing hypotheses that explain known observations equally
well, one should choose the “simplest,” we should select mod-
els with k ≤ N − 1 input features.

Thresholding based on univariate p-values

In cases of univariate feature selection (filter), k can be obtained with
a correction of multiple comparisons (Bonferroni correction or false
discovery rate (FDR)).

In-sample prediction error: structural risk minimization

An alternative to cross-validation is to penalize the training error
with the model complexity to calculate error bound as a function
of the model complexity (the number of features) and use this bound
for model selection. Structural risk minimization provides such error
bounds.

The complexity of the class of functions performing classification
or regression and the algorithm’s generalizability can be evaluated
by the Vapnik-Chervonenkis (VC, see Sec. 2.1) theory that provides
a general measure of complexity and error bounds as a function of
complexity. Structural risk minimization search for a model that min-
imizes this bound, which depends on the empirical risk (error on
training sample) and the capacity of the function class (Vapnik, 1999).

For SVM-based classifiers the simplest bound (Schölkopf and Smola,
2002) is given by the proportion of support vectors (SVs):

E[P(error)] ≤ number of SVs
Number of training samples

The selected model is the one that minimizes the proportion of SVs.
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In-sample prediction error: penalized likelihood

Another way to get an in-sample prediction error is to estimate the
optimism and then add it to the training error using a penalized
likelihood framework. Many criteria have been proposed ((Burnham
and Anderson, 1998)), and the two most commonly used are the
Bayesian (BIC, Schwarz, 1978) and the Akaike information criteria
(AIC, Akaike, 1974). Despite their different theoretical foundations,
both yield a similar linear penalization of the log-likelihood with the
number of parameters. The BIC is given by

BIC = −2L(y, f (X, w)) + k ln(N),

where L(y, f (X, w)) is the likelihood of the fitted model f (., w) on
data X, y.

2.4 Feature selection and classification based on
cortical folding patterns

In Duchesnay et al., 2007, we performed an extensive comparison of
strategies combining feature selection with multivariate classifiers to
deal with the overfitting problem in high dimensional settings.

The aim was to predict the sex of a subject from its cortical folding.
151 structural MRIs from the ICBM database (65 women and 86 men)
were processed with brainVISA to identify 116 sulci for a total of
6747 (shapes and coordinates) descriptors. Preliminary spatial affine
normalization prevented the classifier from using global differences
in volume between the sexes.

This compares main strategies of predictive pipeline with feature
selection:

1. Filter+SVM-Lin: Univariate filter (based on t-test) combined with
Linear SVM (`2 regularization + hinge loss).

2. Filter+SVM-RBF: Univariate filter (based on t-test) combined
with non linear SVM-RBF.

3. RFE+SVM-Lin: Recursive Feature Elimination combined with
Linear SVM.

4. Elasticnet+LinSVM: Feature selection obtained with `1-based reg-
ularization of the linear SVM with `2 penalty.

2.4.1 General behavior of feature ranking

Whatever the feature ranking strategy, we observed a similar pattern
of behavior:

http://brainvisa.info
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• Feature ranking must be performed on training data only, i.e.,
withing the cross-validation loop. As shown in Fig. 2.4, feature
selection on the whole dataset leads to severely optimistically
biased performances that are close to the performance obtained
on the training dataset.

• Performances with feature ranking can be divided into four dis-
tinct phases (Fig. 2.4): after having selected few features, (i) we
reach a phase (green shaded region) where best-ranked fea-
tures improve the performance compared to baseline `2 reg-
ularized model (using all features). (ii) Then (yellow region),
performances stop to increase and become unstable. In a third
phase, (iii, red region) feature selection induces overfitting until
it reaches a final phase (iv, blue region) where it has no more
effect of prediction since almost all the features are selected.

• Overfitting starts to occur around P ≈ N = 151 input fea-
tures, which generally marks the end of the second phase (green
range). Here, prediction on train data reaches almost 100% of
accuracy, and test performance becomes irregular (yellow range).

• Feature selection can improve the performance: in Fig. 2.4 at
the end of the first phase (10 ≤ k ≤ 20 green region), this
improvement is significant: the baseline scores are bellow the
lower confidence interval.

• Model selection (of the k number of feature) is a difficult task.
Selection using nested cross-validation might not help due to
large errors (see confidence intervals of the blue curve in Fig. 2.4).
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Figure 2.4: Accuracies on training and testing (measured with a 10 folds
CV) data as a function of an increased number of (k) selected features, us-
ing a univariate filter. The "Test Biased" curve shows biased performances
obtained with feature selection performed outside of the CV loop, i.e., on all
data. The classifier is a linear SVM with C = 1. The shades surrounding the
lines depict the 95% confidence intervals (CIs). The black horizontal lines
show the chance level (plain line) and the predictive performances without
the feature selection (dotted line). The colored shaded ranges of k depict the
four phases of feature ranking: (i) green: improvement, (ii) yellow: instabil-
ity (iii) red: overfitting, and (iv) blue: neutral effect.

2.4.2 Results

Comparing feature ranking strategies

• Fig. 2.5 (a) shows that non-linear SVM-RBF model does not out-
perform linear models. This suggests that the performances are
driven by the selected input features.

• Fig. 2.5 (b) shows that sophisticated multivariate feature rank-
ing (RFE) and simple filter produce a comparable performance
profile in four phases. Nevertheless, the best result was obtained
with RFE (around 7 features), demonstrating the potential to
identify a predictive pattern. However, this peak performance is
useless. Indeed, the model (dimension) selection has not been
made yet, and it is unlikely that a model selection procedure
could pick this precise location.

• Fig. 2.5 (c) shows that (i) `1-based feature selection does not
outperform RFE. It has a simpler profile of performance based
only on 3 phases: (i) an increase, (ii) an overfiting and (iii) a
neutral effect.
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(a) Linear (Filter+SVM-Lin) vs non linear (Filter+SVM-RBF) classifiers
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(b) Filter (Filter+SVM-Lin) vs RFE (RFE+SVM-Lin) ranking
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(c) RFE (RFE+LinSVM) ranking vs `1 selection (Elasticnet+LinSVM)
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Figure 2.5: Test accuracies as a function of k the number of selected fea-
tures for three strategies of feature selection combined with a multivariate
classifier: Univariate filter with linear SVM, Univariate filter with non-linear
SVM-RBF and RFE with linear SVM. The black horizontal lines show the
chance level (plain line) and the baseline predictive performances without
the feature selection (dotted line). The gray shaded region shows the range
where all features selection strategies outperform the baseline model.
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The problem of model selection

Efficient model selection is the key point to benefit of feature selec-
tion . Fig. 2.6 presents results obtained with methods presented in
Sec. 2.3.4.

• As a rule of thumb, we should use fewer features than subjects
(k ≤ N). This recommendation is inspired from VC dimension
and experiments corroborated this statement: when k ≥ N all
strategy started to overfit the training data (Fig. 2.5).

• CV should be used carefully due to large error bars, see Fig. 2.5
and Fig. 2.6 for a simplified figure. This recommendation is no
more valid for highly correlated features, like brain images.

• Fig. 2.6 shows that in in-sample model selection criteria (such
as the proportion of support vectors or BIC) provide acceptable
solutions with low variability and a negligible computational
burden.

(a) Nb. SVs: Filter+SVM-RBF (b) Nb. of SVs: Filter+SVM-Lin
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(c) BIC: Filter+SVM-Lin (d) BIC: RFE+SVM-Lin
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Figure 2.6: Test accuracy (blue line) and model selection criteria (orange
line) as a function of k. The vertical line is the solution selected by minimiz-
ing criteria (proportion of Support Vectors or BIC), the shaded gray region
shows its confidence interval.
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2.4.3 Discussion and conclusion

• All feature selection strategies significantly outperformed base-
line `2-regularized models (without feature selection) on a small
range of input features.

• Simple filter is a good default candidate to build a predictor in
high dimensional space. Experiments demonstrate that filters
are as efficient as sophisticated multivariate feature selection.
In Guyon et al., 2006 (p.242), I. Guyon summarizes the results
obtained from the NIPS2003 challenge, and she states: "Filter
methods are powerful."

• Concerning sophisticated multivariate feature selection, `1-regula-
rization should be favored. Indeed, it minimizes a well-defined
convex problem leading to smoother performance profile (Fig. 2.6
(c)) where CV may help to select a reasonable model.

• To be useful, feature selection requires an efficient model selec-
tion procedure to select a model somewhere at the end of phase
1. We suspect that this major difficulty led to disappointing re-
sults reported by Chu et al., 2012, and Kerr et al., 2014.

• CV-based model selection is not efficient on small dataset du
large confidence intervals Varoquaux, 2018.

• In-sample criteria provide an efficient solution. However, they
may require some calibration (of the predicted probability to
compute the likelihood in the BIC, or the model complexity
term).

The predictive features include (Fig. 2.7):

• Central and pre-central regions: In men, the right central sulcus
of men folds deeper into the internal face (closer to the inter-
hemispheric plane). Conversely, The right inferior pre-central
sulcus seems deeper and closer to the interhemispheric plane
in women.

• Temporal lobe: The anterior part of the right occipito-temporal
sulcus follows different orientations in the two sexes.

• Occipital lobe: The right lingual sulcus is deeper and larger in
men.

• Parietal lobe: The post-central and intra-parietal sulci are shifted
upward in men.

• Cingulate: The left posterior cingulate sulcus anterior extremity
is higher in women.
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Figure 2.7: From (Duchesnay et al., 2007): Sulci features that are significantly
associated with sex. Taken together, they provide a significant prediction of
the sex.

2.5 Predicting stimuli from visual cortex activa-
tion using voxels selection and SVM

2.5.1 Retinotopic functional activation maps of “dominos”
visual stimuli

Traditional inference in neuroimaging consists of describing brain ac-
tivations elicited and modulated by different kinds of experimental
conditions such as visual stimuli. In (Thirion et al., 2006), we ad-
dressed the inverse problem of predicting the visual stimuli given
functional MRI activation images. Such brain decoding exploited the
well-known retinotopic mapping of the visual cortex (Sereno et al.,
1995) to infer the visual content. We used univariate feature selection
(filter) combined with linear SVMs to perform the prediction.

In the domino experiment, two grids, situated on the left and right
parts of the visual field, and a central fixation cross, were presented to
the subjects. Every 8s, a flickering pattern appeared in several sectors
of the grid. These patterns belonged to a set of 6 possible dominos
shapes. The dominos were presented simultaneously to the bilateral
visual fields for a total of 36 combinations. Each subject performed
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the experiment four times. For each subject and each hemisphere,
144 (24 maps for each of the 6 domino shape) trial-specific activa-
tion maps were extracted using classical first-level analysis based on
General Linear Model (GLM). Maps were masked by the retinotopic
regions estimated from a retinotopic mapping experiment yielded to
≈ 10, 000− 15000 voxels, according to the subject.

2.5.2 Decoding: prediction of visual stimulus from activa-
tion map

We combined univariate feature selection (ANOVA-based) filter with
a linear SVM. As model (dimension) selection, we retained only vox-
els that were significantly associated with the domino category using
a threshold at p-value ≤ 0.1 after a False Discovery Rate (FDR) cor-
rection for multiple comparison (Benjamini and Hochberg, 1995).

All 16 datasets (8 subjects both hemispheres) were classified (ac-
curacy between 60 and 96%, 82% in average) significantly (p-value
≤ 10−3) above the chance level (1/6 or 16.7% correct responses).
Across subjects and hemisphere, we found that 60-70% of the most
discriminative voxels were in V1, while only 5-20% were in V2 (ven-
tral and dorsal). We did not try to study other visual areas since their
delineation was not reliable enough from our retinotopic maps.

2.6 Feature selection and classification based on
PET images of children with autistic spec-
trum disorders

Autism Spectrum Disorders (ASD) are typically characterized by im-
paired social interaction, narrow interests, and repetitive behaviors,
with high variability in expression and severity. The numerous find-
ings revealed by brain imaging studies suggest that ASD is associated
with an intricate and distributed pattern of abnormalities that makes
the identification of a shared and common neuroimaging profile a
problematic task.

In Duchesnay et al., 2011, we aim to identify the rest functional
(PET scans perfusion) brain imaging abnormalities pattern associated
with ASD and to validate its efficiency in the individual classification.
The dataset was small and highly imbalanced: 45 low-functioning
children with ASD and only 13 non-ASD low-functioning children.
The small number of control is inherent to the difficulties to obtain
PET scan of low-functioning children. Additionally to those difficul-
ties, clinicians requested for an interpretable predictive brain map
organized in brain regions. Indeed activation abnormalities map is
neither expected to be scattered into isolated voxels (a solution that
would be produced by a sparsity promoting penalty) nor allowed to
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show rapid changes of positive (hyperperfusion) and negative (hy-
poperfusion) values (produced by a `2 penalty).

2.6.1 Regional feature extraction

To take advantage of such biological priors to limit overfitting, we
designed a simple pipeline the first stage of which extracts regional
feature: Given to simplicity and the good performances of univari-
ate feature filtering obtained in (Duchesnay et al., 2007) and espe-
cially on whole brain images (Thirion et al., 2006), we ranked vox-
els based on t-tests (Fig. 2.9 step 1.1). Such parametric statistics rely
on some assumptions (independence, normality of the residuals, and
homoscedasticity). However, they do not favor the most numerous
class, which was a risk in such an imbalance setting. We selected vox-
els with a p-value < 0.001, uncorrected for multiple comparisons.
Thresholded-connected voxels were grouped into regions (or clus-
ters), and the PET signal was averaged within each region, producing
a set of new regional features (Fig. 2.9 step 1.3). The p-value threshold
was empirically chosen among the three possible values of 10−2, 10−3

and 10−4 as the value that produces clusters of reasonable size.

2.6.2 Regional feature ranking

The resulting regional features were ranked using univariate (filter)
or multivariate (wrappers, RFE, and `1-based regularization) approaches
that all produce similar results.

2.6.3 Model selection: calibration of penalized likelihood
using randomization

The third stage (step 3 in Fig. 2.9) selects the optimal subset of fea-
tures to be used by the final classifier . This model selection problem
is solved with a penalized likelihood framework such as BIC or AIC
(Sec. 2.3.4). Such an approach would not be appropriate for feature
selection in high-dimension Giraud, 2014. Nevertheless, it is conceiv-
able in the low dimensional space of regional features. Nevertheless,
our two-stages feature selection procedure prevents a straightforward
application of a fixed penalty as a function of the number of regional
features. Indeed, such a penalty would ignore the overfitting induced
by the first step of region extraction. We demonstrated this under-
penalization of fixed penalties criteria in Fig. 2.8. Those limitations
motivated the development of data-driven methods to calibrate crite-
ria whose penalties are known up to a multiplicative factor, e.g. “the
slope heuristics” proposed by (Birgé and Massart, 2007).
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Adaptive log-likelihood penalization

Likewise, “the slope heuristics” of (Birgé and Massart, 2007), we re-
tain the linear penalization as function the number regional features
(BIC like) but we loosen the fixed link by adding a free parameter
(noted “a” in Eq.2.4):

aPena = −L+ a
1
2

k ln(N). (2.4)

Penalization calibration based on randomized data

The penalization value (a) is calibrated to the overfitting caused by
the feature selections, using an estimation under the null hypothesis
obtained from randomized datasets, i.e., randomly permuted y. We
repeated the whole algorithm and measured the increase of the log-
likelihood (lnL), purely due to the overfitting of the training, data
and compared it to the theoretical log-evidence, which is supposed
to be constant and equal to ln(1/2)N . A good penalization is sup-
posed to fit this increase. Fig 2.8 clearly shows that the feature se-
lection algorithm dramatically increases the overfitting, which is not
balanced with the pure BIC or AIC penalization criteria. However,
this experiment also suggests that a satisfying linear approximation
can be estimated. This calibration is conducted within each cross-
validation fold, excluding the test sample. The estimated adaptive
penalization values (a) (average across folds 2.62,±0.03) were then
plugged in Eq. 2.4). The features subset that maximized this adaptive
penalized log-likelihood was selected for the classification step.
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Figure 2.8: Calibration of the penalization with randomization: The multi-
stages feature selection algorithm has been repeated on randomly permuted
datasets. We can observe the increase of the log-likelihood for a varying
number of regional features (k). We reported the theoretical log-evidence
(baseline), which is supposed to be constant and equal to ln(1/2)N . We
also reported the penalizations obtained with the BIC and AIC criteria. This
experiment shows that those fixed penalty criteria lead to a severe under-
penalization of the log-likelihood. However, it also demonstrates that a good
linear approximation can be obtained, leading to an adaptive penalization
criterion noted (aPen) with a penalty term of 2.67 1

2 k ln N as noted in (2.4).

2.6.4 Performances validation and comparison methodol-
ogy

The classification accuracy of the entire pipeline (including the fea-
ture selection) was evaluated by leave-one-out cross-validation (LOO-
CV).

By combining a selected choice of those alternatives, we formed
four strategies:

1. No feature selection combined with a `2 linear (reweighted)
SVM classifier. This strategy acts as a baseline to highlight the
specific contributions of feature selection.

2. Univariate t-test feature subset ranking, CV-based model selec-
tion with a linear (reweighted) SVM classifier. This strategy acts
as a baseline to highlight the specific contributions of the two
last strategies based on multivariate feature selection.

3. RFE based feature ranking, CV-based model selection with a
linear (reweighted) SVM. This strategy is commonly used as
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a "state-of-the-art" multivariate feature selection with a kernel-
based classifier (Ecker et al., 2010; Guyon et al., 2006).

4. Lasso-based feature selection (CV-based model selection) with
(reweighted) logistic regression classifier. This strategy is a "state-
of-the-art" representative of recent advances in `1-regularized
based methods.

Those four strategies were first directly applied on entire brain im-
ages (hundreds of thousands of voxels), and then on the regional
features (≈10). The low dimension space made of regional features
(≤ 10) allowed us to test a Linear Discriminant Analysis (LDA) clas-
sifier, replacing discriminative models (SVM, logistic regression) by
a generative model. Indeed, generative models estimate the param-
eters of the classes’ conditional distributions independently limiting
the bias toward the most numerous class. Class imbalance can be
nicely controlled with the classes’ prior probabilities where discrimi-
native models have to use a sample reweighting "trick" to re-balance
the load of class in the minimization problem.

2.6.5 Results

Prediction performances

• `2 penalty on whole-brain images obtained a significant AUC
of 0.64. However, predictions were strongly biased toward the
most numerous class (ASD) (93% of sensitivity and 23% of speci-
ficity).

• Generative model (LDA), using a reduced set of regional fea-
tures, obtained comparable AUC of 0.65 with the benefice of
balanced predictions (82% of sensitivity and 53% of specificity)

• Model selection based on adaptive (calibrated) penalized likeli-
hood improves performances of all the feature selection meth-
ods: AUCs of 0.81 with `1 and 0.74 with RFE-LDA, with bet-
ter balance in predictions: sen./spe. of 75%/69% with `1 and
88%/69% with RFE-LDA.

Predictive regions of ASD

The pipeline identified a final characteristic pattern in the ASD group
that featured a hypoperfused region in the right superior temporal
sulcus and a hyperperfused region in the left post-central (Fig. 2.9.
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Figure 2.9: In a first step: univariate t-statistics selected regions of hypoper-
fusion in the ASD group: (i) the right temporo-parietal junction (RTPJ); (ii)
the right Superior Temporal Sulcus (STS); (iii) middle temporal gyrus; and
(iv) the posterior zone of the corpus callosum where it overlaps with the
right posterior cingulum and bilateral thalami. Two hyperperfused regions
in the ASD group were identified in (v) the left post-central and (vi) the right
pre-central areas. A second step of multivariate feature selection identified
two most predictive regions (ii) the right STS and (v) the left postcentral
whose provide more than 80% of balanced prediction accuracy.

2.7 Feature selection and classification based on
whole brain VBM

We compared various regularization and features selection strategies
applied to whole-brain VBM Gray matter image containing ≈ 360,000

voxels within a brain mask. The first dataset (SCZ vs. CTL) contains
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Gray Matter (from VBM) maps from 605 participants: 330 Controls
(CTL) and 275 with patients with chronic schizophrenia (SZC). The
second dataset (BD vs. CTL) contains Gray Matter (from VBM) maps
from 662 participants: 356 Controls (CTL) and 306 patients with Bipo-
lar Disorder (BD). Fig. 2.10 shows the comparison of the following
strategies:

• `2 regularized Logistic Regression (LR). This setting acts as the
baseline strategy.

• Lasso (`1 regularized) LR.

• ElsaticNet with `1`2 regularized LR.

• Filter with `2 regularized LR.

• RFE with `2 regularized LR.

2.7.1 Results

SCZ vs CTL BD vs CTL

(a) Filter vs. RFE + LR (b) Filter vs. RFE + LR

101 102 103 104 105

k
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

AU
C

Model
Filter+`2

RFE+`2

101 102 103 104 105

k
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

AU
C

Model
Filter+`2

RFE+`2

(c) `1, `2, ElasticNet LR (d) `1, `2, ElasticNet LR

10−4 10−3 10−2 10−1 100 101 102 103 104

C
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

AU
C

Model
`1

`2

`1`2

10−4 10−3 10−2 10−1 100 101 102 103 104

C
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

AU
C

Model
`1

`2

`1`2

Figure 2.10: Sensitivity analysis: AUC as a function of model complexity
parameter for two datasets, left column: SCZ vs. CTL, right column BD vs.
CTL. (a, b) AUCs of Filter vs. RFE + `2 regularized Logistic Regression (LR)
as a function of k the number of selected features. (c, d) AUCs of `1 (Lasso)
vs `2 vs. ElasticNet- regularized LR as a function of the regularization pa-
rameter C. The dotted horizontal line provides the baseline performance of
a`2 regularized LR with C = 1.
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Feature selection

• Fig. 2.10(a) shows that with SCZ vs. CTL dataset, feature se-
lection (FS) provides a slight improvement (≥ +0.05) which
is significant enough to be detected (i. e.larger that CV stan-
dard errors ±0.05) by CV-based model selection. On BD dataset
(Fig. 2.10(b)) the FS is dominated by baseline `2 LR, neverthe-
less CV model selection would pick a configuration (around 104

features) with similar performance.

• RFE does not out-perform a simple filter.

Regularization

• Similar conclusions can be drawn with ElasticNet or Lasso regu-
larization: small improvement could be obtained on SCZ (Fig. 2.10(a)).
Note that CV-based model selection would pick a parameter of
regularization (C) with better or at least similar performances
compared to baseline `2-regularization. On BD dataset (Fig. 2.10(d)),
CV model selection will easily pick a value of C where Elas-
ticeNet, or Lasso, get the same performances than baseline `2

with the benefice of parsimony.

• Note that, we have explored an overly broad range. The com-
mon practices limit to a range between [10−2, 102], which matches
the range where the sparse model either outperformed or com-
pete with baseline `2. AUC equals 0.5 correspond to over-penalized
settings (small C), leading to all coefficients being exactly null,
which could be trivially avoided.

Conclusion

`2 regularization must be used in the first place, providing a base-
line performance target. Then, some improvements could be obtained
with ElasticNet/Lasso or basic univariate filtering. Here such strat-
egy provides improvements on SCZ and similar performances on BD.
Again, feature selection requires a stable model selection procedure
with small standard error. Here, (5 folds)CV would achieve this goal
thanks to the large size ≥ 600 of the dataset. On smaller datasets, the
baseline `2 should be favored.

Model selection based on priors like the "VC dimension" would
propose k ≈ 600. This tendency to select too low k is due to the
strong spatial correlation between the voxels. It would be necessary
to calibrate such a procedure.





3
Imaging-genetics

This chapter presents the background in imaging-genetics Sec. 3.1.
Then, Sec. 3.2 reviews multivariate analysis models. Finally, Sec. 3.4
presents our contribution (Le Floch et al., 2012) based on dimension
reduction and `1-regularized multivariate latent variable models to
face the very high dimensionality of imaging genetics studies.

3.1 Background in imaging genetics

Imaging genetics studies rely on the idea that neuroimaging data may
be considered as a relevant intermediate phenotype (or endopheno-
type) to understand the complex path between genetics and behav-
ioral or clinical phenotypes. Compared to the final phenotypes, this
endophenotype is expected to be closer to genetics. In this context, we
aimed to propose multivariate models to identify the part of genetic
variability that explains some neuroimaging variability.

While other OMICs modalities can now be measured, here we ad-
dress the processing of (Single Nucleotide Polymorphisms (SNPs))
issued from DNA (Deoxyribonucleic acid) arrays. SNPs are the few
millions of nucleotides with some variability across the population.
There exists a correlation structure within genetic data, called link-
age disequilibrium (LD), which refers to the non-random association
between the alleles of two genetic polymorphisms at two distinct po-
sitions (loci). It means that some pairs of alleles corresponding to the
two loci are seen more often together on the same chromosome than
expected by chance. This phenomenon is due to the physical link
existing between neighboring loci on the same chromosome, called
genetic linkage, and the fact that their alleles are inherited together
from one generation to another. One cause of LD decay is recombi-
nation occurring during the crossing-over in meiosis. Thus, the larger
the physical distance between two polymorphisms is, the higher is
the probability of recombination and, thus, the lower the LD would
be. There exist some regions with a higher recombination rate, called
hot spots, and some others with a low recombination rate, called hap-
lotype blocks.

LD reduces the number of genetic polymorphisms necessary to
capture most of the genetic variability. Only a reduced number of
independent and highly informative SNPs, called tagSNPs, should
be genotyped. For instance, 99% of common SNPs (with a minor al-
lele frequency > 5%) are tagged with an LD of r2 ≥ 0.8 by only one
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million of tagSNPS. Most of the commercial chips use these tagSNPs.
A consequence is that in most cases, when a genotyped SNP is found
to be associated with a given phenotype, it is not the causal SNP itself
but in LD with the causal SNP.

3.2 Analysis strategies

Imaging genetics studies that include a large amount of data in both
the imaging and the genetic components are facing challenges for
which the neuroimaging community has no definitive answer so far.

Candidate genes approach

Current imaging genetics studies are often either limiting the brain
imaging endophenotype studied to a few candidate variables but test-
ing their relationship with a large number of SNPs as one usually
proceeds during gene screening (e.g., Furlanello et al., 2003), or limit-
ing the number of candidate SNPs or genes to be tested on the whole
brain or some significant portion of it (e.g., Glahn, Thompson, and
Blangero, 2007; McAllister et al., 2006; Roffman et al., 2006). When
faced with both a large number of SNPs, and a large number of vox-
els, one has to design an appropriate analysis strategy that should be
as sensitive and specific as possible.

Massive univariate linear model (MULM)

Without any priors on genetic or brain regions involved, exploratory
methods can be used. The most straightforward approach to exploratory
imaging genetics studies is clearly to apply a massive univariate anal-
ysis on both genetic and imaging data (Stein et al., 2010), which
may be called Mass-Univariate Linear Modelling (MULM). However,
while univariate techniques are simpler, they encounter a multiple
comparison problem in the order of 1011. Moreover, the link between
genetic and imaging data is likely to be in part multivariate: epista-
sis or pleiotropy are likely phenomena in common traits or diseases.
Indeed, brain imaging endophenotypes are probably influenced by
the combined effects of several SNPs and different brain regions may
also be influenced by the same SNP(s). A way to partially take into
account epistasis may be to use a gene-based method for associat-
ing the joint effect of the different SNPs within each gene across the
voxels of the whole brain (Hibar et al., 2011).

Two-block multivariate models

To address the limitations of univariate analysis, multivariate meth-
ods models have been proposed in imaging genetics studies. Such a
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joint analysis of two blocks can take advantage of two multivariate
structure in the data:

• Within block correlation that stems from linkage disequilibrium.

• Between blocks multivariate relation that comes from epistasis
or pleiotropy.

Two-block multivariate methods aim to discover "associations" be-
tween one genetic block (noted X) and a second neuroimaging block
(noted Y). Where Y (of size N× q) contains the q imaging phenotypes
and X (of size N × p) contains p genetic measurements (e. g.SNPs),
N being the number of subjects.

Partial Least Squares (PLS) regression (Wold, Martens, and Wold,
1983) and Canonical Correlation Analysis (CCA) (Hotelling, 1936)
appear to be good candidates to look for associations between two
blocks, as they extract pairs of covarying/correlated latent variables
from a linear combination of the variables of each block. Another
approach has also been proposed by (Calhoun, Liu, and Adali, 2009)
based on parallel Independent Component Analysis to combine func-
tional MRI data and SNPs from candidate regions. Nevertheless, all
these multivariate methods encounter critical overfitting issues due
to the very high dimensionality of the data.

Fighting overfitting

To face these issues, methods based on dimension reduction Sec. 2.3
or regularisation Sec. 2.2 can be used.

As for regularization, multivariate methods based on `1 -penalization,
like sparse Partial Least Squares (Chun and Keleş, 2010; Lê Cao et al.,
2009, 2008; Parkhomenko, Tritchler, and Beyene, 2007, 2009; Waai-
jenborg, Witt Hamer, and Zwinderman, 2008; Witten and Tibshirani,
2009) or regularised CCA (Soneson et al., 2010), provided good re-
sults in correlating two blocks of data such as transcriptomic and
metabolomic data, gene expression levels and gene copy numbers,
or gene expression levels and SNP data. Vounou, Nichols, and Mon-
tana (2010) also introduced a similar promising method, called sparse
Reduced-Rank Regression (sRRR) and based on `1-penalization, that
they applied to a simulated dataset made of 1000s of SNPs and brain
imaging data. The implementation of the method becomes equiva-
lent to sparse PLS in high dimensional settings since they make the
classical approximation that its diagonal elements may replace the
covariance matrix of each block. However, whether these multivari-
ate techniques can resist even higher dimensions remains an open
question.
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3.3 Regularized multi-blocks latent variables mod-
els

3.3.1 PLS

Partial Least Squares (PLS) regression is modeling the associations
between two blocks of variables with the assumption that blocks are
linked through unobserved latent variables. A latent variable (or com-
ponent) corresponding to one block is a linear combination of the
observed variables of this block.

Data

Loadings

Latents

Figure 3.1: Two blocks latent variables models: PLS or CCA.

PLS builds a sequence of orthogonal latent variables for each block
such that, at each step, the covariance between the pair of latent vari-
ables is maximal. For each step h in 1..H, where H is the maximal
number of pairs of components, it optimizes the following criterion:

max
‖uh‖2=‖vh‖2=1

cov(Xh−1uh, Yh−1vh) (3.1)

max
‖uh‖2=‖vh‖2=1

u′hX ′h−1Yh−1vh, (3.2)

where uh and vh are the weight vectors for the linear combinations
of the variables of blocks X and Y , respectively. Xh−1 and Yh−1 are
the residual (deflated) X and Y matrices after their regression on the
h − 1 previous pairs of latent variables, starting with X0 = X and
Y0 = Y (whose columns have been standardized).

There exist two ways of deflation: an asymmetric way (the original
PLS regression) and a symmetric way (canonical-mode PLS). With
asymmetric deflation, both blocks are deflated on the same the latent
variables of block X (which becomes the predictor block), while with
symmetric deflation, each bock is deflated on its latent variable. In
our case, we are more interested in symmetric PLS as we investigate
exploratory methods trying to extract covarying networks among a
tremendous amount of neuroimaging and SNP data, many of which
are very likely to be irrelevant. Note that, on the first pair of compo-
nents, the original PLS regression and symmetric PLS give the same
results.
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This optimization problem is solved using the iterative algorithm
called NIPALS (Wold, 1966) and, more precisely, its inner loop. The
outer loop of NIPALS is the iteration over the number of pairs of
components. The optimal vectors u and v are the first pair of singular
vectors of the matrix X ′Y .

3.3.2 CCA

A similar method is Canonical Correlation Analysis (CCA) which
maximizes the correlation between the two latent variables:

max
‖uh‖2=‖vh‖2=1

corr(Xh−1uh, Yh−1vh) (3.3)

max
‖uh‖2=‖vh‖2=1

u′hX ′Yvh√
u′hX ′Xuh

√
v′hY ′Yvh

(3.4)

The solution may be obtained by computing the SVD of (X ′X)−1/2X ′Y()Y ′Y)−1/2.
The successive pairs of weight vectors uh and vh are obtained by:
uh = X ′X−1/2e and vh = Y ′Y−1/2f, where the columns of e and f are
the left and right singular vectors respectively.

CCA is more prone to overfitting than PLS: it requires the inver-
sion of the scatter matrices X ′X and Y ′Y , which are ill-conditioned
in our high-dimensional settings with very large p and q (numbers of
variables for blocks X and Y respectively) and a small N (number of
observations or individuals).

3.3.3 `2 Regularization of CCA

`2-regularization alleviates the risk of overfitting and the non-invertibility
issues of CCA. Assuming data scaling (to zero mean and unit stan-
dard deviation), `2-regularization of CCA consists of modifying the
correlation matrices X ′X and Y ′Y by X ′X + λ2I and Y ′Y + λ2I re-
spectively. However, in high-dimensional space, the approximation is
often made that the covariance matrices may be replaced by identity
matrices. Such extreme `2-regularization of CCA shrinks the loading
coefficients and makes CCA equivalent to PLS-SVD and thus to PLS
regression as well on the first component.

3.3.4 `1 Regularization of PLS

PLS is a `2 regularized CCA, moreover, authors (Lê Cao et al., 2008;
Tibshirani, 1996) proposed to add a sparsity promoting `1 penalty to
deal with overfitting issue. It should be noted that `1 penalization
may not be easily implemented on PLS-SVD without loosing the or-
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thogonality constraint on weight vectors (Zou, Hastie, and Tibshirani,
2006). Sparse PLS (sPLS) minimization problem is given by:

min
‖u‖2=‖v‖2=1

−u′X ′Yv + λ1X‖u‖1 + λ1Y‖v‖1 (3.5)

where λ1X and λ1Y are `1-penalization parameters for the weight vec-
tors (loadings) of blocks X and Y respectively. The sPLS criterion is
bi-convex in u and v and may be solved iteratively for u fixed or v
fixed, using soft-thresholding of variable weights at each iteration of
the NIPALS inner loop. Weight vectors u and v are computed using
the following Algo. 1:

Algorithm 1 Sparse PLS
(
X, Y , λ1X, λ1Y

)
1: Initialize u and v using for instance the first pair of singular vec-

tors of the matrix X ′Y and normalise them.
2: repeat
3: for fixed v do
4: û = arg min‖u‖2=1 −u′X ′Yv + λ1X‖u‖1 = gλ1X (X ′Yv) .

where gλ(y) = sign(y)(|y| − λ)+ is the soft-thresholding func-
tion.

5: Normalise u = u/‖u‖2.
6: end for
7: for fixed v do
8: v̂ = arg min‖v‖2=1 −u′X ′Yv + λ1Y‖v‖1 = gλ1Y(Y

′Xu)
9: Normalise v = v/‖v‖2

10: end for
11: until Until convergence of u and v
12: return u, v

Sparse versions of CCA have also been proposed by Parkhomenko,
Tritchler, and Beyene (2007, 2009), Waaijenborg, Witt Hamer, and
Zwinderman (2008), and Witten and Tibshirani (2009). However, to
solve the non-invertibility issue, they make the approximation that

the covariance matrices
1

n− 1
X ′X and

1
n− 1

Y ′Y may be replaced

by their diagonal elements, which makes sparse CCA equivalent to
sparse PLS.

3.4 Feature selection and sparse PLS reveal the
genetic polymorphisms that explain brain acri-
vation

In Le Floch et al., 2011, we proposed latent based multivariate mod-
els to identify to identify the part of genetic variability (SNPs) that
explains some neuroimaging functional variability (fMRI).
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In this work, we address the overfitting risk in a very high di-
mension by combining dimension reduction on SNPs, either by PCA
or univariate filtering, before applying (sparse) PLS or (regularized)
CCA. We first use a simulated dataset mimicking fMRI and genome-
wide SNP data and compare the performances of the different meth-
ods, by assessing their positive predictive value, as well as their ca-
pacity to generalize the link found between the two blocks on unseen
data with a cross-validation procedure. Indeed, we first compared
PLS and CCA, and then we investigated the influence of `2 regular-
ization on CCA and `1 regularization on PLS. Finally, we evaluated
the potential benefice of dimension reduction using either PCA or
filtering.

Finally, we apply these different methods with the same cross-
validation procedure on a real dataset made of fMRI and genome-
wide SNP data. The statistical significance of the link obtained on
“test” subjects is assessed with randomization techniques.

3.4.1 Methods

Univariate feature selection consisted of (i) p× q pair-wise linear re-
gressions based on an additive genetic model; (ii) ranking the SNPs
according to the minimal p-value each SNP gets across all pheno-
types, and (iii) keeping the set of SNPs with the lowest “minimal”
p-values.

In this study, N = 94 subjects were genotyped and participated
in a general cognitive assessment fMRI task described in Pinel et al.
(2007). With fMRI data we focused only on two activation contrasts:
reading minus checkerboard viewing and speech comprehension minus rest.
After the usual subject-level processing, we selected 34 brain regions
of interest (ROIs): 19 from the “reading” contrast and 15 from the
“speech comprehension” contrast. We identified the 34 mirror ROIs
by symmetry for the inter-hemispheric plane. Finally, 34 lateralization
indices (normalized right-left) were derived from those regions.

Preprocessing provided two blocks of data Y (fMRI) and X (genet-
ics) of size 94× 34 and 94× 622, 534 respectively.

We compared the following models: (i) MULM: Mass Univariate
Linear Modelling; (ii) PLS: Partial Least Squares; (iii) KCCA: Ker-
nel Canonical Correlation Analysis; (iv) sPLS: sparse PLS with a re-
parametrization of the sparsity parameter: The raw λ1X and λ1X (used
in Algo. 1) have been replaced by selection rates, sλ1X and sλ1Y , as the
number of selected variables from each block out of the total number
of variables of that block. In our case, we chose to apply sparsity on
SNPs only and to set sλ1Y to 1 for imaging phenotypes, as we had a
very large number of SNPs and only a few (34) imaging phenotypes.
(v) rKCCA: `2 penalized KCCA with λ2 being the regularization pa-
rameter: (Full CCA is obtained with λ2 = 0, large λ2 leads to PLS); (vi)
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PCPLS: Principal Component Analysis + PLS; (vii) PCKCCA: Princi-
pal Component Analysis + KCCA; (viii) f(s)PLS: Filtering + (sparse)
PLS; (ix) f(r)KCCA: Filtering + (regularised) KCCA.

Generalization performances were assessed through cross-validation
by computing the correlation between the pair of latent X testu, Y testv
obtained by multiplying the test sample X test, Y test by the coefficients
(and any other dimension reduction) estimated on the training data
only.

Finally, in the case of simulated data, since the ground truth was
known, we could evaluate the precision of methods by computing the
Positive Predictive Value (PPV=number of true positives/number of
positive calls).

3.4.2 Results on simulated data

Influence of regularization

Fig. 3.2 compares PLS, CCA and the influence of regularization when
the number of SNPs p increases, from 200 (mostly made of the 198

informative features) up to 85,772 SNPs (mostly made of noise).

1. Fig. 3.2 (a): pure CCA, (rKCCA without regularization λ2 = 0),
suffers from overfitting as soon as irrelevant features are added
in the model. Such a result highlights the limits of pure CCA
to deal with situations where the number of training samples
(100) is smaller than the dimension (p = 200).

2. Fig. 3.2 (b): with low-dimensional datasets p ≤ 100 containing
only informative features and with suitable `2-regularization
(λ2 = 100), rKCCA outperformed other methods, notably all
(sparse) PLS. This results with an "optimal" dataset, was ex-
pected since the evaluation criterion (correlation between facto-
rial scores) is exactly the one which is maximized by CCA.

3. Fig. 3.2 (c): Superiority of PLS over their CCA counterparts
is observed when the dimensionality increases, adding irrele-
vant features. More notably, sPLS dominates rKCCA: the per-
formance of rKCCA rapidly decreases while sPLS (sλ1X = 0.1,
i.e., 10% of feature are selected) tolerates an increase of the di-
mensionality up to 1,000 features before its performance starts
to decrease. One may note that as expected theoretically, along
with the increase of penalization (λ2), rKCCA curves smoothly
converge toward PLS.

On the second component pair, the results are less interpretable. How-
ever, (s)PLS curves are above the rKCCA ones.

The four graphs on the right panel of Fig. 3.2 shows precision (PPV)
curves computed for each pattern separately.
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1. Fig. 3.2 (d): precision on the first genetic component appears to
be much higher for the first pattern than for the second pat-
tern, especially in low dimensions, while the opposite trend is
observed on the second genetic component. This demonstrates
that the first causal pattern is captured by the first component,
while the second pattern is captured by the second component.

2. Fig. 3.2 (e): An increase of `2 penalty on CCA improves the
precision on respective components.

3. Fig. 3.2 (f): Adding some `1 penalty to PLS shows little improve-
ment in precision.

(e)

(d)(f)

sPLS( )

rKCCA( )

Dimension (p) (increase noise) Dimension (p) (increase noise)

(a)

(b)

(c)

(d)

(f)

(e)

Figure 3.2: Simulated dataset: comparison of regularization methods to deal
with increasing irrelevant features. The total number of features varies along
the x-axis between 200 (mostly informative) to 85,772 non-causal SNPs. We
compared: (i) in blue, regularized kernel CCA (rKCCA) with various `2
regularization values (λ2) ranging from 0 (pure CCA) to 10,000; (ii) in black,
PLS; (iii) in red, sparse PLS (sPLS) with various `1 regularization values
parameterized as sparsity rate (sλ1X ) ranging from 0.5 (50% of input features
have a non null weight) to 0.1. The y-axis of the two left panels shows the (5-
fold CV) average out-of-sample correlation coefficients between the two first
component pairs. The four right panels present the power of the methods to
identify causal SNPs implied in the two causal patterns. The y-axis depicts
the precision (PPV) for each of the two first genetic components (u1, u2).

Influence of the dimension reduction step

Then we investigated the influence of the first step of dimension re-
duction. Fig. 3.3 presents the influence of different dimension reduc-
tion strategies: Principal Component Analysis (PC), filter (f), sparse
(s), and combined filter+sparse (fs) methods. Here the parameter set-
ting, 50 selected SNPs, was derived from the known ground truth (56
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true causal SNPs). The 50 SNPs were either the 50 best-ranked SNPs
for (f) methods or the 50 non-null weights for sparse PLS or, a com-
bination of both (10% of the 500 best-ranked SNPs or 50% of 100 for
fsPLS).

1. Fig. 3.3 (a): shows that all PC-based methods (green curves)
failed to identify generalizable covariations between blocks when
the number of irrelevant features increases.

2. Fig. 3.3 (b): Filtering slightly improved the performance of CCA
and greatly those of PLS: simple fPLS(k = 50) is the second-best
approach in our comparative study. Filtering with regular PLS
outperformed sparse PLS.

3. Fig. 3.3 (c): Finally the best performance is obtained by combin-
ing filtering and `1 regularization: fsPLS(k = 100, sλ1X = 0.5),
which keeps 100 SNPs after filtering and selects 50% of those
SNPs by sPLS.
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fsPLS( )
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f+method( )

PC+method
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(a)(a)

(b)
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Figure 3.3: Simulated dataset: comparison of regularization methods to deal
with increasing irrelevant features. The total number of features varies along
the x-axis between 200 (mostly informative) to 85,772 non-causal SNPs. In
greens, Principal Component (PC) Analysis based methods: PC regression
(PCR), PCA+KCCA (PCKCCA), PCA+PLS (PCPLS). In blues, filter (f) based
methods: f+KCCA (fKCCA), f+PLS (fPLS). We selected only the 50 best
SNPs, while according to ground truth, 56 SNPs were identified as causal.
In black, PLS. In yellow, sparse PLS (sPLS) where selection rate, sλ1X , is such
that 50 features have a non-null weight. In reds, filter + sparse PLS (fsPLS)
with settings both leading to 50 selected features: fsPLS(k = 500, sλ1X = 0.1)
(resp. fsPLS(k = 100, sλ1X = 0.5)) keeps the 500 (resp. 100) best ranked fea-
tures and then 10% (50%) get a non-null weight. Finally, in pink, we add
MULM. The y-axis of the two left panels shows the (5-fold CV) average out-
of-sample correlation coefficients between the component pairs. The four
right panels present the power of the methods to identify causal SNPs im-
plied in the two causal patterns. The y-axis depicts the precision (PPV) when
50 SNPs are selected for each of the two first genetic components: (u1, u2).

3.4.3 Results on experimental data

Comparative analysis

Tab. 3.1 summarizes the two first average correlation between pairs
of latent variable for the different methods tested.
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Correlation between PC pairs

Methods ρ1
test ρ2

test ρ1
training ρ2

training

PLS -0.092 0.218 0.990 0.984

sPLS (sλ1X =0.1%) 0.008 0.201 0.938 0.922

fPLS (k=1000) 0.236 0.268 0.962 0.953

fsPLS (k=1000,sλ1X =5%) 0.432 0.210 0.772 0.788

Table 3.1: The correlation (averaged across CV-folds) between pairs h ∈
{1, 2} of components: corr(Xh−1uh, Yh−1vh), where X0, Y0 are the original
datasets. Correlation are given for left-out “test” sample (ρh

test) and “train-
ing” sample ρh

training.

• Both PLS and `1-regularized sPLS failed to identify a generaliz-
able imaging-genetic link in such high dimensions and captured
only noise. Overfitting occurred in training data.

• As found with simulated dataset, univariate filtering combined
with PLS (fPLS) significantly improved the performance of PLS.

• As found with simulated dataset, the best performance is ob-
tained with a combination of filtering `1-regularized sPLS. This
strategy succeeds in identifying a generalizable imaging-genetic
link.

Sensitivity analysis of fsPLS and significance assessment

Tab. 3.2 shows sensitivity analysis to assess the influence of the sparse
PLS penalization parameter sλ1X and the number k of SNPs kept
by the filter. The significance was assessed with random permuta-
tion and Westfall and Young (maxT) correction for multiple test-
ing (westfall_resampling-based_1993; Dudoit, Shaffer, and Boldrick,
2003). The performances are driven by the filter parameter k: once
fixed to 1,000, good performances are obtained on a wide range of
values for the sparsity parameter.
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Ratio of sparsity: sλ1X

k 1% 5% 10% 25% 50% 75% 100%

10 0.041 0.041 0.041 0.041 0.144 0.112 0.112

100 0.182 0.074 0.085 0.057 0.069 0.188 0.243

1000 0.151 0.432* 0.414* 0.400 0.317 0.285 0.236

10000 0.004 0.120 0.130 0.027 -0.006 -0.031 -0.061

Table 3.2: Out-of-sample (test) correlation on the first component pair as a
function of k and sλ1X . Empirical p-values still significant (p < .05) after
correction are shown here as: *.

Imaging genetics findings

Among the 50 SNPs selected by fsPLS, some of them were located
within a gene. Eighteen genes were identified including PPP2R2B
and RBFOX1, that were reported to be linked with ataxia and poor
coordination of speech and body movements, and PDE4B, which is
associated with schizophrenia and bipolar disorder.

3.4.4 Discussion

1. The overwhelming superiority of PLS over CCA demonstrates
that `2-regularization is a prerequisite.

2. With such high-dimensional data, simple univariate filtering
was essential.

3. `1 brings a valuable contribution.

4. The model selection problem has not been addressed in this
work.





4
Integrating spatial regularization

Given the limitations of classical sparse algorithms to produce stable
and interpretable predictive signatures, I initiated a research program
to extend regularization with spatial constraints (Sec. 4.1). This ob-
jective required the design of a new solver that scales to "real life"
high-dimensional data (≤ 300, 000 input features).

• Sec. 4.2 presents CONESTA (Hadj-Selem et al., 2018) our orig-
inal solver for high-dimensional structured input data such as
3D images, meshes of the cortical surface or genetic data (with
LD structure). This solver was originally designed for super-
vised linear problems. This solver (applied to many classifica-
tion problems) has been released through an open-source python
library ParsimonY.

• Sec. 4.3 proposes an application of CONESTA to unsupervised
Principal Component Analysis with spatial regularization (de
Pierrefeu et al., 2018c).

4.1 Interpretable ML: spatial regularization

4.1.1 Interpretable predictive maps: toward brain signatures

Although good performances are achieved by linear classifiers work-
ing on the whole brain at the voxel level, it is difficult to interpret the
contribution of brain regions in the prediction of the target variable.
Indeed, most of the state-of-the-art classifiers, such as linear SVM
(or any `2 regularized linear model), produce a dense coefficient map
with rapid sign flipping. In other words, most of the whole brain con-
tributes to the prediction, and more puzzling, nearby voxels (within
the same brain regions) have an opposite effect on the prediction.
Therefore, such predictors do not provide objective neuroanatomi-
cal markers on which a clinical decision is built: the solution must
provide meaningful predictive patterns to reveal the neuroimaging
markers of the pathology. In the context of predictive signature dis-
covery, it is crucial to understand the brain’s structural patterns that
underpin the prediction. This absence of interpretability of the deci-
sion is ruling out the prospect of clinical application.

Our view of interpretable predictive pattern:

https://github.com/neurospin/pylearn-parsimony
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1. Pattern must be organized as clearly delimited regions, i. e.clusters
of connected imaging measurements that can be interpreted by
clinicians.

2. Pattern must be stable, i.e., another set of subjects sampled in
the same population should produce a similar predictive pat-
tern.

4.1.2 Limitations of regional features

A possibility would have been to use regional approaches (ROIs),
based on the parcellation of cortical surface (Desikan et al., 2006) and
the segmentation of subcortical structures. Indeed, such approaches
reduce the dimensionality of the problem to several tens of measure-
ments, simplifying the solution interpretability. Most of the multi-
subject analyses require proper alignment of brain structures across
subjects. However, ROIs add the assumption that the spatial extent of
the searched imaging marker match with the size of the atlas-based
pre-defined regions.

In a comparison study (Cuingnet et al., 2011), voxels based ap-
proaches outperformed region based approach. It suggests that the
gain obtained by dimensionality reduction does not compensate for
the loss of informative signal caused by averaging within pre-defined
regions. Let’s provide an illustrative scenario of the problem: Suppose
that we look for the structural markers that best predict the response
to antidepressant medication in patients with unipolar depression.
A regional approach produces the volume of many structures, in-
cluding the whole hippocampus. However, neurogenesis associated
with antidepressants occurs entirely in a fairly small subsection of
the hippocampus: the dentate gyrus (Sapolsky, 2001). Thus, the mea-
sure of the whole hippocampal volume mixes up the specific increase
of the dentate gyrus with non-specific volume variation of the rest of
the hippocampus. Such, partial volume effect, reduces the capacity
to detect the informative signal and prevent to identify the relevant
localized biomarker within the dentate gyrus. Hippocampal subfield
segmentation (Van Leemput et al., 2008) could alleviate this prob-
lem, however, the segmentation of such small structures (Wisse, Bies-
sels, and Geerlings, 2014) still an open debate on low resolution (1
mm3) T1 images. More generally, the multiplication of many fine-
grained pre-defined regions, to capture small effects, increases the
risk of poorly matched (or defined) regions across individuals. More-
over, this brings us back to a situation similar to the one encounter at
the voxel level. Thus, atlas-based regional approaches may overlook
a searched effect with an unknown spatial extent.
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4.1.3 Limitations of classical penalties applied to voxel-wise
features

Thus, it seems appropriate to process whole-brain data at voxel/ver-
tex level. On such high-dimensional space, `2 penalty (e.g., linear
SVM) produces dense and, which is more questionable, irregular so-
lutions with abrupt and high-frequency changes of values and coef-
ficients sign. Although some methods exist to define thresholds to
uncover brain regions than significantly contribute to the classifica-
tion process (Gaonkar and Davatzikos, 2013; Wang et al., 2007), they
do no produce interpretable weight maps per se.
`1 regularization produces sparse, scattered, and unstable solu-

tions. In both cases, the weight maps are hard to interpret in terms of
neuroanatomy. The combination of both penalties in ElasticNet, pro-
motes sparse models while still maintaining the regularization prop-
erties of the `2 penalty. However, a major limitation of the ElasticNet
penalty is that it does not take into account the spatial structure of
brain images, leading to either the problem of `2 penalty or, more
generally, the scattered patterns of `1.

The more straightforward approach to get interpretable maps could
be to integrate spatial smoothing within the learning procedure. This
option has been explored in Cuingnet et al., 2013. Authors show that
a kernel-based method (SVM) that incorporates smoothing within the
pre-computation of the similarity (Gram) matrix is equivalent to the
trivial smoothing of the 3d images.

4.1.4 Spatial regularization: GraphNet and Total Variation

Without strong priors, the efficient scale (region or voxel) depends on
the target to be predicted. Therefore, the scale should be determined
during the learning process. Such automatic, data-driven identifica-
tion of regions that best predict the target has motivated the use of
structured sparsity.

One solution to extract brain regions at the relevant scale is to take
benefit of the known structure of brain MRI images, to force the solu-
tion to adhere to biological priors, thereby producing more plausible
and interpretable solutions. Indeed, MRI data is naturally encoded on
a 3-dimensional grid where some voxels are neighbors, and others are
not. Structured sparsity can be achieved with several penalties. Here,
we propose to encode the spatial structure of the images or meshes
as a penalty on the spatial gradient of the solution.

GraphNet penalty

One of the penalty is the Graph-constrained Elastic-Net, GraphNet
(GN), described in (Dohmatob et al., 2015; Grosenick et al., 2013).
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GraphNet closely resembles the Elastic-Net, but with a modification
of the `2 -norm penalty term:

min
w

Lε(w) + λ1‖w‖1 + λ2‖w‖2
2 + λG‖∇w‖2

2, (4.1)

where ∇ denotes a finite difference spatial gradient operator acting
upon an image. For a 3D grid of size p = px py pz, flattened into a long
vector, we have ∇ ∈ R3p. It promotes local smoothness of the weight
map by forcing adjacent voxels/vertices to have similar weights, and
it does this by imposing a squared `2 penalty on the gradient of the
weight map. The GN penalty induces smoothness by penalizing the
size of the pairwise differences between coefficients that are adjacent
in the graph. Therefore, GN promotes smooth change rather than
piecewise constant structure in the non-sparse parts of the weight
map. Such an outcome is of interest if we expect the magnitudes
of nonzero coefficients to be different within a volume of interest.
Concerning minimization, GN is differentiable, its combination with
Lasso is solved with any proximal gradient method such as FISTA
(Beck and Teboulle, 2009a).

However, to identify predictive regions of a clinical condition, it is
desirable to produce clearly delineated piecewise constant structures.
Therefore, we explored the potential of TV-ElasticNet penalty.

TV-Enet penalty

The Total Variation (TV) penalty is widely used in image denois-
ing and restoration. It accounts for the spatial structure of images by
encoding piecewise smoothness and enabling the recovery of homo-
geneous regions separated by sharp boundaries.

TV penalty forces sparsity on the spatial derivatives of the weight
map (using an `12-norm), segmenting the weight map into spatially-
contiguous parcels with almost constant values (Michel et al., 2011).
TV can be combined with sparsity-inducing penalties (such as `1

(Lasso) (Tibshirani, 1996) to obtain segmenting properties that ex-
tracts predictive regions from a noisy background with zeros (Dohma-
tob et al., 2014; Dubois et al., 2014; Gramfort, Thirion, and Varoquaux,
2013). TV, together with Lasso, produces the desired foreground-
background segmentation by imposing constant-valued parcels.

The ElastiNet-TV (Enet-TV) minimization problem is given by:

min
w

Lε(w) + λ1‖w‖1 + λ2‖w‖2
2 + λs‖∇w‖2,1, (4.2)

where λ1, λ2 and λs are the hyper-parameters controlling the relative
strength of each penalty.
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4.1.5 Experimental evaluation of spatial penalties

This section compare spatial regularization: (i) Total Variation (TV)
and (ii) GraphNet (GN) with classical ElascticNet (Enet) penalty of
whole brain gray matter images.

3D T1 MRI Datasets

1. Dep-TMS dataset - Patients with treatment-resistant depression
(TRD) where investigated with baseline structural MRI (sMRI)
prior to a treatment with transcranial magnetic stimulation (TMS)
Paillère Martinot et al., 2011. Followup response to active TMS
was defined as having 50% depression score decrease. After
quality control of the images, we could collect baselines sMRI
of 18 responders and 16 non-responders. The aim was to learn
a prognostic model of the treatment response from baseline 3D
T1 MRI using (i) VBM 3D GM maps and (ii) cortical thickness.

2. NUSDAST dataset - Participants under 50 years old were se-
lected from the NUSDAST cohort (Wang et al., 2013) leading
to 97 patients with schizophrenia, according to DSM-IV crite-
ria, and 139 healthy controls. The aim was to learn a diagnostic
model of the clinical status using (i) VBM 3D GM maps, and (ii)
cortical thickness.

3. ADNI dataset - 81 patients with a diagnosis of mild cognitive
impairments (MCI) from the ADNI database who converted to
AD within two years during the follow-up period where com-
pare with 120 healthy controls elderly subjects. The aim was to
learn a prognostic model of the conversion to AD from base-
line 3D T1 MRI using (i) VBM 3D GM maps and (ii) cortical
thickness.

Sensitivity analysis

GraphNet provides similar Fig. 4.1 performances than ElasticNet,
whatever its contribution. The right panel shows that increasing GN
slowly increases the stability of the coefficient maps. This result calls
for the use of GraphNet instead of Enet without much risk. Neverthe-
less, there is no increase in prediction and a moderate improvement
of stability (+10%).

TV-Enet is more sensitive to settle: too large global penalty (α = 1,
dark plain blue line) leads to a collapse of prediction performances
but a tremendous increase of stability (+50%). An inspection of the
coefficient maps shows vast regions covering almost the whole brain.
This goes against the requirement of clearly delimited regions.

http://adni.loni.usc.edu/
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Figure 4.1: Sensitivity analysis of the spatial penalization parameter av-
eraged across 6 experiments: the 3 datasets for both 3D GM and cortical
thickness. Y-axis reports the differences of score (balanced accuracy in left
panel or map stability in right panel) with the baseline ElasticNet that are
averaged across the experiments for an increased spatial penalty in TV
(plain lines) or GN (dashed lines). The models Eq. 4.1 and Eq. 4.2 were
re-parameterized with only two parameters: α which determines the global
penalty and κ which controls the ratio of `2 over the spatial penalty. The
ElasticNet penalty has a fixed `1/`2 ratio of 0.1 with λ1 = α/10 and λ2 = α.
Finally, λs∈{TV,GN} = ακ with κ ∈ [0, 1]. The darkness of blue lines codes for
the global strength of the penalty: dark α = 1, medium α = 0.1, and light
blue α = 0.01. Left panel: the balanced accuracy. Right panel: stability of the
coefficient map as the average correlation (using Fisher’s z-transformation)
between pairs of coefficient maps computed across the 5 CV-folds.

On the other side, too small global penalty (α = 0.01, light plain
blue line) neither harm nor improve the performance and the stability
compared to ElasticNet.

An intermediary global penalty (α = 0.1, medium plain blue line)
progressively improves both the prediction performances and the sta-
bility. Visual inspection show that with κ = 0.8 provides clearly de-
lineated regions for all the experiments, as shown in Figs. 4.2 and 4.3,
with a significant improvement of performances +7% and stability
+30%.

Visual evaluation of the predictive maps

Left panels of Figs. 4.2 and 4.3 provides the coefficient maps obtained
with ElasticNet (Enet), GraphNet (GN) and Enet-TV (TV) with the
similar parameters settings for all models: α = 0.1, `1/`2 ratio of 0.1
and κ = 0.8 for TV and GN. The right panel presents a measure of the
stability of the coefficient maps as the proportion of selection across
CV-folds.

Enet and GraphNet both provide scattered and unstable maps.
Such a result was expected with Enet, but the solution provided by
GraphNet was disappointing in terms of interpretation. Meanwhile,
the predictive maps obtained with TV-Enet classifier appear much
more interpretable, since it provides a smooth and stable map made
of few identifiable regions.
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Figure 4.2: Left panel: coefficient maps from 3D gray matter images obtained
by the three models: GM ElasticNet (Enet), GraphNet (GN), and Enet-TV
(TV) on the three datasets: ADNI, NUSDAST, and Dep-TMS. Right: stability
of the coefficient maps as the proportion ∈ [0, 1] of selection across CV-
folds for each voxel, i. e., the dark value of 1 means that the voxel is always
selected.
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Conclusion

1. GraphNet can be safely used in replacement of ElasticNet.

2. GraphNet does not provide a breakthrough in term of perfor-
mances and stability.
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Figure 4.3: Left panel: coefficient maps from meshes of cortical thickness
obtained by the three models: GM ElasticNet (Enet), GraphNet (GN), and
Enet-TV (TV) on the three datasets: ADNI, NUSDAST, and Dep-TMS. Right:
stability of the coefficient maps as the proportion ∈ [0, 1] of selection across
CV-folds for each vertex, i. e., the dark value of 1 means that the vertex is
always selected.
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3. TV-Enet is more sensitive to settle, however we propose a de-
fault settings (λ1, λ2, λTV) = α(0.1, 1, κ) with α = 0.1 and κ =

0.8 that provides some increase of performance compare to Elas-
ticNet and breakthrough in term of map stability and inter-
pretability.

4.2 CONESTA: an efficient solver for structured
sparsity in high-dimensionality

The previous section has demonstrated the potential of TV regular-
ization. This section addresses the practical optimization problem in-
corporating structured penalties (TV) to deal with large scale "real
life" datasets (N ≥ 100 and P ≥ 300, 000 with both 3D image and
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meshes (of cortical surface). To our knowledge, there is still no solver
to address these two constraints.

4.2.1 Reformulating TV as a linear operator

Before discussing the optimization strategy, we provide details on the
encoding of the spatial structure within the TV penalty.

3D image

This section presents the formulation and the design of A in the spe-
cific case of the TV penalty applied to the parameter vector w mea-
sured on a 3-dimensional (3D) image.

A brain mask is used to establish a mapping, φ(i, j, k), from integer
coordinates (i, j, k) in the 3D grid of the brain image, and an index
φ ∈ {1, . . . , P} in the collapsed (vectorized) image. We extract the
spatial (forward) neighborhood at (i, j, k), of size ≤ 4, corresponding
to a voxel and its three neighboring voxels, within the mask, in the
positive i, j and k directions. The TV penalty is defined as

TV(w) ≡ ∑
i,j,k

∥∥∥∇(wφ(i,j,k)
)∥∥∥

2
, (4.3)

where ∇(wφ(i,j,k)) denotes the spatial gradient of the parameter map,
w ∈ RP, at the 3D position (i, j, k) mapped to element φ(i, j, k) in
w. A first order approximation of the spatial gradient, ∇(wφ(i,j,k)),
can be computed by applying the linear operator A′φ ∈ R3×4 to the
parameter vector w′φ(i,j,k) ∈ R4 as

∇
(

wφ(i,j,k)

)
≡

 −1 1 0 0

−1 0 1 0

−1 0 0 1


︸ ︷︷ ︸

A′φ


wφ(i,j,k)

wφ(i+1,j,k)

wφ(i,j+1,k)

wφ(i,j,k+1)


︸ ︷︷ ︸

w′
φ(i,j,k)

, (4.4)

where w′φ(i,j,k) contains the elements at linear indices in the collapsed
parameter map, w, corresponding to the spatial neighborhood in the
3D image at wφ(i,j,k). Then, A′φ is extended, by zeros, to a large but
very sparse matrix Aφ(i,j,k) ∈ R3×P such that A′φw′φ(i,j,k) = Aφ(i,j,k)w.
If some neighbors lie outside of the mask, the corresponding rows in
Aφ(i,j,k) are removed (or set to zero). Approximating TV by

TV(w) = ∑
i,j,k
‖Aφ(i,j,k)w‖2 (4.5)

allows us to use the TV, as the structured penalty s, in Eq. 4.2. Finally,
with a vertical concatenation of all the Aφ(i,j,k) matrices, we obtain
the full linear operator A ∈ R3P×P that will be used in the following
sections.
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Mesh of cortical surface

The linear operator A
′
φ(v) used to compute a first order approximation

of the spatial gradient can be obtained by examining the neighboring
vertices of each vertex v. Where φ(v) establishes a mapping, from
vertex v in the mesh to an index φ ∈ {1, . . . , P} in the collapsed mesh.
With common triangle-tessellated surfaces, the neighborhood size is
≤ 7 (including φ(v)). In this setting, we have A

′
φ(v) ∈ R3×7, which can

be extended and concatenated to obtain the full linear operator A.

4.2.2 The TV-Enet problem

We propose a solver that addresses a very general class of optimiza-
tion problems including many group-wise penalties (allowing over-
lapping groups) such as Group Lasso and TV. The function that we
wish to minimize has the form

min
w

f (w) =

smooth︷ ︸︸ ︷
Lε(w) + λ2‖w‖2

2︸ ︷︷ ︸
g(w)

+

non-smooth︷ ︸︸ ︷
λ1 ‖w‖1︸ ︷︷ ︸

h(w)

+λs ∑
g∈G
‖Agw‖2︸ ︷︷ ︸
s(w)

, (4.6)

where g(w) is the penalized smooth (i. e.differentiable) loss, h(w) is
a sparsity-inducing penalty whose proximal operator is known and
s(w) is a complex penalty (e.g., Group Lasso and TV) on the struc-
ture of the input variables with an unknown proximal operator. h
(`1) can be minimized with proximal gradient (Beck and Teboulle,
2009a) method. The difficulty is with s that is neither smooth nor has
a known proximal operator.

4.2.3 Background

Although many solvers have already been proposed to minimize such
function, their practical use in the context of high-dimensional neu-
roimaging data (≥ 105 features) remains an open issue (see Sec. Back-
ground Supplementary in (Hadj-Selem et al., 2018) and (Dohmatob et
al., 2014; Varoquaux et al., 2015)). Next, we provide a short overview
of the existing solvers’ limitations:

1. Primal-dual proposed by Chambolle and Pock, 2011 (applica-
tion to fMRI: Gramfort, Thirion, and Varoquaux, 2013) assumes
to have access to the proximal operators of both the smooth
part and the non-smooth part of the minimized function. This
method requires the approximation (using inexact method de-
scribed below) of proximal operators when they are not avail-
able. This is a major shortcoming for an efficient application to
logistic regression.

https://hal-cea.archives-ouvertes.fr/cea-01324021/document
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2. Inexact FISTA: Inexact proximal gradient algorithm (Schmidt,
Le Roux, and Bach, 2011), where the proximal operator of s is
approximated numerically. While the main algorithm (FISTA)
enjoys a convergence rate of O

(
1/k2) (with k the number of

iterations), the precision of the approximation of the proximal
operator is required to decrease as O

(
1/k4+δ

)
for any δ > 0

(Schmidt, Le Roux, and Bach, 2011, Proposition 2). This results
in prohibitive computations to reach a reasonable precision, es-
pecially with high-dimensional w vectors, as found with brain
images that generally involve ≥ 104 (functional MRI) to ≥ 105

(structural MRI) features. This solver has been applied to fMRI
by Michel et al., 2011.

3. ADMM The alternating direction method of multipliers (Boyd
et al., 2011) is computationally expensive and/or difficult to
compute for general structured penalties and which suffers from
a difficulty of setting the regularization parameter, as mentioned
in Dohmatob et al., 2014; Schmidt, Le Roux, and Bach, 2011.

4. EGM (Excessive Gap Method) (Nesterov, 2005b) does not allow
true sparsity nor general loss functions.

5. Nesterov’s smoothing technique (Nesterov, 2005a) provides an
appealing and generic framework in which a broad range of
non-smooth convex structured penalties can be minimized with-
out computing their proximal operators. However, reasonable
precision (≈ 10−3 or higher) requires a very small smoothing
parameter, which brings down the convergence rate to unac-
ceptable levels.

We propose a continuation solver, called CONESTA (short for CO-
ntinuation with NEsterov smoothing in a Shrinkage-Thresholding
Algorithm), based on Nesterov’s smoothing technique that automat-
ically generates a decreasing sequence of smoothing parameters to
maintain the optimal convergence speed towards any globally de-
sired precision. Nesterov’s smoothing technique makes the solver
highly versatile: it can address a large class of complex penalties (the
function s in Eq. 4.6) where the proximal operators are either not
known or expensive to compute. The problem can be minimized us-
ing an accelerated proximal gradient method, possibly also utilizing
(non-smoothed, e. g.`1) sparsity-inducing penalties. CONESTA can be
understood as a smooth touchdown procedure that uses the duality
gap to probe the distance to the ground (global optimum) and dy-
namically adapts its speed (the smoothing parameter) according to
this distance.
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4.2.4 Nesterov’s smoothing of the structured penalty

We consider the convex non-smooth minimization of Eq. 4.6 with re-
spect to w. This problem includes a general structured penalty, s, that
(for the purpose of this paper) covers the specific case of TV. The ac-
celerated proximal gradient algorithm (FISTA, Beck and Teboulle,
2009a) can be used to solve the problem when applying only e. g.the
`1 penalty. However, since the proximal operator of TV, together with
the `1 penalty, has no closed-form expression, standard implementa-
tions of those algorithms are not suitable. In order to overcome this
barrier we used Nesterov’s smoothing technique (Nesterov, 2005a),
which consists of approximating the non-smooth penalty for which
the proximal operator is unknown (e. g., TV) with a smooth func-
tion (for which the gradient is known). Non-smooth penalties with
known proximal operators (e. g., `1) are not affected by this smooth-
ing. Hence, as described in Chen et al., 2012, this allowed us to use
an exact accelerated proximal gradient algorithm.

Using the dual norm of the `2-norm (i. e.the `2-norm), Eq. 4.5 can
be reformulated as

TV(w) = ∑
i,j,k
‖Aφ(i,j,k)w‖2

= ∑
i,j,k

max
‖αφ(i,j,k)‖2≤1

α>φ(i,j,k)Aφ(i,j,k)w, (4.7)

where αφ(i,j,k) ∈ Kφ(i,j,k) = {αφ(i,j,k) ∈ R3 : ‖αφ(i,j,k)‖2 ≤ 1} is a vector
of auxiliary variables in the `2 unit ball, associated with Aφ(i,j,k)w. As
with A ∈ R3P×P, which is the vertical concatenation of all the Aφ(i,j,k),
we concatenate all the αφ(i,j,k) to form α ∈ K = {[αT

1 , . . . , αT
P]

T : αl ∈
Kl , ∀ l = φ(i, j, k) ∈ {1, . . . , P}} ∈ R3P. The set K is the Cartesian
product of closed 3D unit balls in Euclidean space and, therefore, a
compact convex set. Eq. 4.7 can now further be written as

TV(w) = max
α∈K

αT Aw = s(w), (4.8)

and with this formulation of s, we can apply Nesterov’s smoothing
technique. For a given smoothing parameter, µ > 0, the function s is
approximated by the smooth function

sµ(w) = max
α∈K

{
αT Aw− µ

2
‖α‖2

2

}
, (4.9)

for which limµ→0 sµ(w) = s(w). Nesterov (Nesterov, 2005a) demon-
strates this convergence using the inequality in Eq. 4.13. The value
of α∗µ(w) = [α∗Tµ,1, . . . , α∗T

µ,φ(i,j,k), . . . , α∗Tµ,P]
T that maximizes Eq. 4.9 is the
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concatenation of projections of the vectors Aφ(i,j,k)w ∈ R3 onto the `2

ball Kφ(i,j,k), i. e.α∗µ,φ(i,j,k)(w) = projKφ(i,j,k)

(
Aφ(i,j,k)w

µ

)
, where

projKφ(i,j,k)
(x) =

x if ‖x‖2 ≤ 1
x
‖x‖2

otherwise.
(4.10)

The function sµ, i. e.Nesterov’s smooth transform of s, is convex
and differentiable. Its gradient is given by Nesterov (Nesterov, 2005a)
as

∇sµ(w) = ATα∗µ(w). (4.11)

The gradient is Lipschitz-continuous, with constant

L
(
∇(sµ)

)
=
‖A‖2

2
µ

, (4.12)

in which ‖A‖2 is the matrix spectral norm of A. Moreover, Nes-
terov (Nesterov, 2005a) provides the following inequality, relating sµ

and s

sµ(w) ≤ s(w) ≤ sµ(w) + µM, ∀w ∈ RP, (4.13)

where M = maxα∈K 1
2‖α‖2

2 = P
2 .

Thus, a new (smoothed) function, closely related to Eq. 4.6, arises
as

fµ(w) =

smooth︷ ︸︸ ︷
Lε(w)+ λ2‖w‖2

2︸ ︷︷ ︸
g(w)

+λs

{
α∗µ(w)T Aw− µ

2
‖α∗‖2

2

}
︸ ︷︷ ︸

sµ(w)

+λ1

non-smooth︷ ︸︸ ︷
‖w‖1︸ ︷︷ ︸
h(w)

.

(4.14)

Hence, we can explicitly compute the gradient of the smooth part,
∇(g + λssµ) using Eq. 4.11, its Lipschitz constant L (using Eq. 4.12)
and also the proximal operator of the non-smooth part.

Linear regression loss

∇
(

g + λssµ

)
= ∇(g) + λs∇(sµ)

= XT(Xwk − y) + λs A>α∗µ(w
k), (4.15)

L
(
∇
(

g + λssµ

))
= 2 + λs

‖A‖2
2

µ
. (4.16)
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Logistic regression loss

∇
(

g + λssµ

)
= ∇(g) + λs∇(sµ)

= XT(y− 1
1 + e−Xwk ) + λs A>α∗µ(w

k), (4.17)

L
(
∇
(

g + λssµ

))
= 1/2‖X‖2

2 + λs
‖A‖2

2
µ

. (4.18)

We thus have all the necessary ingredients to minimize the func-
tion using e. g.an accelerated proximal gradient method (Beck and
Teboulle, 2009a). Given a starting point, w0, and a smoothing param-
eter, µ, FISTA (Algorithm 2) minimizes the smoothed function and
reaches a given precision, εµ.

Algorithm 2 FISTA
(
w0, εµ, µ, A, g, sµ, h, λs, λ1

)
1: w1 = w0; k = 2

2: Step size tµ =
(

L(∇(g)) + λs
‖A‖2

2
µ

)−1

3: repeat
4: z = wk−1 + k−2

k+1

(
wk−1 −wk−2)

5: wk = proxλ1h
(
z− tµ∇(g + λssµ)(z)

)
6: until Gapµ(w

k) ≤ εµ (see Sec. 4.2.6)
7: return wk

4.2.5 Principles of the CONESTA algorithm

The step size, tµ, computed in Line 2 of Algorithm 2, must be smaller
than or equal to the reciprocal of the Lipschitz constant of the gra-
dient of the smooth part, i. e.of g + λssµ (Beck and Teboulle, 2009a).
This relationship between tµ and µ implies a trade-off between speed
and precision: Indeed, the FISTA convergence rate, given in the Sup-
plementary (Eq. SM 2.3), shows that a high precision (small µ and
tµ) will lead to slow convergence. Conversely, poor precision (large µ

and tµ) will lead to rapid convergence.
To optimize this trade-off, we propose a continuation approach (Al-

gorithm 3) that decreases the smoothing parameter for the distance
to the minimum. On the one hand, when we are far from w∗ (the
minimum of Eq. 4.6), we can use a large µ to decrease the objective
function rapidly. On the other hand, when we are close to w∗, we
need a small µ to obtain an accurate approximation of the original
objective function.

https://hal-cea.archives-ouvertes.fr/cea-01324021/document
https://hal-cea.archives-ouvertes.fr/cea-01324021/document
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4.2.6 Duality gap

The distance to the unknown f (w∗) is estimated using a duality gap.
Duality formulations are often used to control the achieved precision
level when minimizing convex functions. The duality gap provides
an upper bound of the error, f (wk) − f (w∗), for any wk, when the
minimum is unknown. Moreover, it vanishes at the minimum:

Gap(wk) ≥ f (wk)− f (w∗) ≥ 0,

Gap(w∗) = 0.
(4.19)

The duality gap is the cornerstone of the CONESTA algorithm.
Indeed, it is used three times:

(i) As the stopping criterion in the inner FISTA loop (Line 6 in
Algorithm 2). FISTA stops as soon as the current precision is
achieved using the current smoothing parameter, µ, which pre-
vents unnecessary iterations toward the approximated (smoothed)
objective function.

(ii) In the ith CONESTA iteration, as a way to estimate the current
error f (wi) − f (w∗) (Line 7 in Algorithm 3). The error is esti-
mated using the gap of the smoothed problem, Gapµ=µi(wi+1),
which avoids unnecessary computation since it has already been
computed during the last iteration of FISTA. The inequality in
Eq. 4.13 is used to obtain the distance, εi, to the original non-
smoothed problem. The next desired precision, εi+1, and the
smoothing parameter, µi+1 are derived from this value.

(iii) Finally, as the global stopping criterion in CONESTA (Line 10 in
Algorithm 3). This guarantees that the obtained approximation
of the minimum, wi, at convergence, satisfies f (wi)− f (w∗) <
ε.

Eq. 4.14 decomposes the smoothed objective function as a sum of a
strongly convex loss, Lε, and the penalties. Therefore, we can equiva-
lently express the smoothed objective function as

fµ(w) = Lε(w) + Ωµ(w)

= l(Xw) + Ωµ(w),

where Ωµ represents all penalty terms of Eq. 4.14. We aim to compute
the duality gap to obtain an upper bound estimation of the distance
to the optimum. At any step k of the algorithm, given the current
primal wk and the dual σ(wk) ≡ ∇Lε(Xwk) variables (Borwein and
Lewis, 2006), we can compute the duality gap using the Fenchel dual-
ity rules (Mairal2010). It requires computing the Fenchel conjugates,
l∗ and Ω∗µ, of l and Ωµ, respectively. While the expression of l∗ is
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straightforward, to the best of our knowledge, there is no explicit ex-
pression for Ω∗µ when using a complex penalty such as TV or group
Lasso. Therefore, as a significant theoretical contribution of this pa-
per, we provide the expression for Ω∗µ to compute an approximation
of the duality gap that maintains its properties (Eq. 4.19).

Theorem 1 (Duality gap for the smooth problem). The following esti-
mation of the duality gap satisfies Eq. 4.19 , for any iterate wk:

Gapµ(wk) ≡ fµ(wk) + l∗(σ(wk)) + Ω∗µ,k(−XTσ(wk)), (4.20)

The proof of this theorem can be found in Supplementary of Hadj-
Selem et al., 2018 (Sec. SM 3.1.3). Note that the Supplementary pro-
vides the expression and proof of the Fenchel conjugate for the non-
smoothed problem, i. e., using Ω instead of Ωµ.

Linear regression loss Lε(w) = 1
2‖Xw− y‖2

2, can be re-written as a
function of Xw by l(z) ≡ 1

2‖z− y‖2, where z = Xw. the dual variable
is :

σ(wk) ≡ ∇l(Xwk) = Xwk − y, (4.21)

and the Fenchel conjugates:

l∗(z) =
1
2
‖z‖2

2 + 〈z, y〉

Ω∗µ,k(z) ≡
1

2λ2

P

∑
j=1

([∣∣∣zj − λs
(

ATα∗µ(w
k)
)

j

∣∣∣− λ1

]2

+

)

+
λsµ

2

∥∥α∗µ(w
k)
∥∥2

2, (4.22)

where [ · ]+ = max(0, · ).

Logistic regression loss The dual variable is:

σ(wk) ≡ ∇l(Xwk) =
1

1 + e−Xwk − y (4.23)

and the Fenchel conjugates

l∗(z) =
P

∑
j=1

(
zj log(zj) + (1− zj) log(1− zj)

)
(4.24)

with z = 1
1+e−Xwk

The expression in Eq. 4.20 of the duality gap of the smooth problem
combined with the inequality in Eq. 4.13 provides an estimation of
the distance to the minimum of the original non-smoothed problem.
The sought distance is decreased geometrically by a factor τ ∈ (0, 1)
at the end of each continuation, and the decreased value defines the

https://hal-cea.archives-ouvertes.fr/cea-01324021/document
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precision that should be reached by the next iteration (Line 8 of Al-
gorithm 3). Thus, the algorithm dynamically generates a sequence
of decreasing precisions, εi. Such a scheme ensures the convergence
towards a globally desired final precision, ε, which is the only param-
eter that the user needs to provide.

4.2.7 Determining the optimal smoothing parameter

Given the current precision, εi, we need to compute a smoothing pa-
rameter µopt(εi) (Line 9 in Algorithm 3) that minimizes the number of
FISTA iterations required to achieve such a precision when minimiz-
ing Eq. 4.2 via Eq. 4.6 (i. e., such that f (wk)− f (w∗) < εi). We have
the following theorem giving the expression of the optimal smooth-
ing parameter, for which a proof is provided in the Supplementary of
Hadj-Selem et al., 2018 (Sec. SM 3.2).

Theorem 2 (Optimal smoothing parameter, µ). For any given ε > 0,
selecting the smoothing parameter as

µopt(ε) =
−λs M‖A‖2

2 +
√
(λs M‖A‖2

2)
2 + ML(∇(g))‖A‖2

2ε

ML(∇(g))
,

(4.25)

minimizes the worst case bound on the number of iterations required to
achieve the precision f (wk)− f (w∗) < ε.

Note that M = P/2 (Eq. 4.13) and the Lipschitz constant of the
gradient of g as defined in Eq. 4.14 is L(∇(g)) = λmax(XTX) + λ,
where λmax(XTX) is the largest eigenvalue of XTX.

4.2.8 CONESTA algorithm and convergence analysis

The user only has to provide the globally prescribed precision ε,
which is guaranteed by the duality gap. Other parameters are related
to the problem to be minimized (i. e.g, λs, s, λ1, h) and the encoding
of the data structure A. Finally, the value of τ was set to 0.5. Indeed,
experiments shown in Supplementary of Hadj-Selem et al., 2018 (Sec.
SM 4.2) have demonstrated that values of 0.5 or 0.2 led to similar and
increased speeds compared to larger values, such as 0.8.

CONESTA acts as a smooth touchdown procedure that uses the
duality gap to probe the distance to the ground (global optimum)
to dynamically adapt its speed (the smoothing). Indeed, each con-
tinuation step of CONESTA (Algorithm 3) probes (Line 7) an upper
bound εi of the current distance to the optimum ( f (wi)− f (w∗)) us-
ing the duality gap. Then, Line 8 computes the next precision to be
reached, εi+1, decreasing εi by a factor τ ∈ (0, 1). Line 9 derives the
optimal smoothing parameter, µi+1, required to reach this precision

https://hal-cea.archives-ouvertes.fr/cea-01324021/document
https://hal-cea.archives-ouvertes.fr/cea-01324021/document
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Algorithm 3 CONESTA
(
ε, A, g, s, h, λs, λ1, τ = 0.5

)
1: Initialize w0 ∈ RP

2: ε0 = τ ·Gapµ=10−8(w0)

3: µ0 = µopt
(
ε0)

4: repeat
5: εi

µ = εi − µiλs M
6: wi+1 = Fista(wi, εi

µ, µi, A, g, sµi , h, λs, λ1)
7: εi = Gapµ=µi(wi+1) + µiλs M
8: εi+1 = τ · εi

9: µi+1 = µopt
(
εi+1)

10: until εi ≤ ε

11: return wi+1

as fast as possible. Finally, Line 5 transforms back the precision to the
original problem into a precision for the smoothed problem, εi

µ, us-
ing the inequality in Eq. 4.13. Therefore, at the next iteration, FISTA
(Line 6) will decrease f i

µ until the error reaches εi
µ. Thanks to Line 5,

this implies that the true error (toward the non-smoothed problem) is
smaller than εi. The resulting weight vector, wi+1, is the initial value
for the next continuation step using updated parameters. Note that
we use the duality gap for the smoothed problem, Gapµ=µi (and εi

µ),
and transform it back and forth using Eq. 4.13 to obtain the duality
gap for the non-smooth problem, Gap (and εi). We do this because
the gap on Line 7 has already been computed at the last iteration of
the FISTA loop (Line 6), since it was used in the stopping criterion.
Moreover, Gapµ converges to zero for any fixed µ unlike Gap.

The initialization (Line 2) is a particular case where we use Gapµ

with a negligible smoothing value of e. g.µ = 10−8. We then derive the
initial smoothing parameter on Line 3. Therefore, if we start close to
the solution, the algorithm will automatically pick a small smoothing
parameter, which makes CONESTA an excellent candidate for warm-
restart.

The following theorem ensures the convergence and convergence
speed of CONESTA.

Theorem 3 (Convergence of CONESTA). Let
(
µi)∞

i=0 and
(
εi)∞

i=0 be
defined recursively by CONESTA (Algorithm 3). Then, we have that

(i) lim
i→∞

εi = 0, and

(ii) f (wi)
i→∞−−→ f (w∗).

(iii) Convergence rate of CONESTA with fixed smoothing (without contin-
uation): For any given desired precision ε > 0, using a fixed smoothing
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(line 6 of Algorithm 3) with an optimal value of µ, equal to µopt(ε), if
the number of iterations k is larger than√

8‖A‖2
2Mλ2

s‖w0 −w∗‖2
2

ε
+

√
2L(∇(g))‖w0 −w∗‖2

2√
ε

.

then the obtained wk satisfies f (wk)− f (w∗) < ε.

(iv) Convergence rate of CONESTA (with continuation), assuming unique-
ness of the minimum (β∗): For any given desired precision ε > 0, if the
total sum of all the inner FISTA iterations is larger than

C/ε,

where C > 0 is a constant, then the obtained solution (obtained from
(iii)), i. e.wi, satisfies f (wi)− f (w∗) < ε.

The proof is provided Sec. SM 3.3 in the Supplementary of Hadj-
Selem et al., 2018. Claim (i): Sec. SM 3.3.1 demonstrates that the se-
quence of decreased precisions εi converges toward any prescribed
precision. Claim (ii): Sec. SM 3.3.2 demonstrates, at each step of the
sequence, the solutions of the smoothed problem converge toward
the solution of the non-smoothed problem. Claim (iii): Sec. SM 3.3.3
demonstrates the number of iterations required to converge toward
w∗ using the auxiliary smoothed problem (without continuation) with
a fixed and optimal smoothing value. Finally, claim (iv), Sec. SM 3.3.4
provides the convergence rate concerning the total number of itera-
tions.

The continuation technique improves the convergence rate com-
pared to the simple smoothing using a single value of µ. Indeed, it
has been demonstrated in Beck and Teboulle, 2012 (see also Chen et
al., 2012) that the convergence rate obtained with a single value of µ,
even optimized, is O(1/ε) + O

(
1/
√

ε
)
. However, the CONESTA al-

gorithm achieves O(1/ε) for simply (non-strongly) convex functions.

4.2.9 Benchmarking solver convergence speed

In this section we compare CONESTA to the state-of-the-art algo-
rithms mentioned above (see Supplementary of Hadj-Selem et al.,
2018 for details), i. e., ADMM, EGM, Inexact FISTA and FISTA with
fixed µ. We will use these algorithms to solve the problem on both
simulated and high-dimensional structural neuroimaging data.

We used FISTA with fixed µ using two values of µ, chosen as fol-
lows: (i) Chen’s µ where µ = ε/(2λs M) as was used in (Chen et al.,
2012) and (ii) Large µ = (Chen’s µ)1/2. The first proposal for µ en-
sures that we reach the desired precision, although convergence may
be slow. The second proposal has a value of µ that may not guarantee
we reach the desired precision before convergence.

https://hal-cea.archives-ouvertes.fr/cea-01324021/document
https://hal-cea.archives-ouvertes.fr/cea-01324021/document
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Benchmarking solvers on simulated data

Based on our contribution Löfstedt et al., 2018 we generated simu-
lated data where we control the true minimizer, w∗, and the associ-
ated regularization parameters λ1, λ2 and λs. The experimental setup
for the simulated 1D data set was inspired by that of (Bach et al.,
2011), including several sizes of the dataset, (N, P), the correlation
between variables, the sparsity of the true w∗, and the signal-to-noise
ratio. For each dataset setting and each solver, we measured the num-
ber of iterations and the time (in seconds) required to reach a certain
precision level, ε. For each precision level, ranging from 1 to 10−6,
for each solver and each dataset, we ranked solver according to the
time they required to reach a given precision. Then, we averaged the
ranks across data sets (see Tab. 4.1), and we tested (Friedman test
(Friedman, 1940)) the significance of the difference in ranks between
solvers.

Table 4.1: Average rank of the convergence speed of the algorithms to reach
precisions ( f (wk)− f (w∗)) ranging from 1 to 10−6. We have here reported
whether the average rank of a given algorithm was significantly larger >
(slower) or significantly smaller < (faster) than CONESTA (a missing ‘>’ or
‘<’ means non-significant). P-values were calculated with a post hoc anal-
ysis of the Friedman test corrected for multiple comparisons. Note that all
reported significant differences had a corrected p-value of 10−3 or smaller.
For a given dataset, all solver were evaluated with limited upper execution
time. Thus, some high precisions (e. g., 10−5, 10−6) were not always reached
within a limited time. For FISTA with a large µ, the high precisions may, in
fact, not be reachable at all. In those situations, the execution time was set
to +∞.

Average rank of the time to reach a given precision

Algorithm 1 10−1 10−2 10−3 10−4 10−5 10−6

CONESTA 3.3 – 2.7 – 2.2 – 1.6 – 1.3 – 1.0 – 1.0 –

ADMM 2.9 2.1 1.9 1.8 1.7> 1.8> 1.5 >

EGM 1.8< 2.2 2.0 2.3> 2.3> 2.2> 1.7 >

FISTA large µ 4.7> 6.0> 4.6> 3.4> 2.7> 2.2> 1.7 >

FISTA Chen’s µ 6.2> 5.0> 4.4> 3.4> 2.7> 2.2> 1.7 >

Inexact FISTA 6.2> 5.4> 4.3> 3.3> 2.7> 2.2> 1.7 >

Tab. 4.1 indicates that for precision higher (smaller) than 10−3),
CONESTA outperformed all other solvers. Its superiority was sig-
nificant for all precisions, except for the comparison with ADMM at
ε = 10−3.
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Benchmarking on structural MRI

We applied the solvers on a structural MRI data set of 199 sub-
jects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI,
http://adni.loni.usc.edu/) cohort. We included 119 controls and
80 patients with mild cognitive impairment (MCI) that converted to
AD within 800 days, see Supplementary of Hadj-Selem et al., 2018

for details. Our goal was to predict (regression problem) the subjects’
continuous ADAS (AD Assessment Scale-Cognitive Subscale) score
(y), measured 800 days after brain image acquisition. As input (X),
we retained 286 214 voxels of gray matters extracted with SPM8 using
DARTEL normalization (Ashburner and Friston, 2005). We compared
EGM, FISTA with the two different fixed µ and Inexact FISTA. Note
that ADMM was excluded in this example. The version in (Wahlberg
et al., 2012) is designed for 1D data was not adapted to 2D or 3D data.
We fixed the desired precision, ε = 10−6 used as the stopping crite-
rion. This precision was also used to derive the smoothing parameter
for FISTA with fixed µ. We ran CONESTA and Inexact FISTA until
they reached a precision of 10−7, evaluated with the duality gap. The
smallest value of f (wk) was considered as the global minimum f (w∗)
used to compute the errors f (wk)− f (w∗) in Tab. 4.4 and Tab. 4.2.
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Figure 4.4: The error as a function of the computational time (top plot) and
the number of iterations (bottom plot). The vertical axis is given in a loga-
rithmic scale. Dots on the CONESTA curve indicate where the continuation
steps take place, i. e.where the dynamic selection of a new smoothing pa-
rameter happened.

Fig. 4.4 and Tab. 4.2 shows that FISTA with fixed µ is either too
slow (Chen’s µ) or, as expected, does not reach the desired preci-

http://adni.loni.usc.edu/
https://hal-cea.archives-ouvertes.fr/cea-01324021/document
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Table 4.2: Execution time ratios of each state-of-the-art algorithm over the
time required by CONESTA to reach the same precision.

Time ratio over CONESTA to reach a given precision

Algorithm 10 1 10−1 10−2 10−3 10−4 10−5

EGM 0.97 0.39 0.24 1.05 1.08 1.74 3.64

Inexact FISTA 1.13 1.92 2.64 3.97 4.38 5.45 6.07

FISTA Chen’s µ 2.7 10.65 17.5 29.95 16.72 13.47 10.45

FISTA large µ 1.04 0.97 1.12 1.14 — — —

sion (as with the large µ). However, CONESTA competes with FISTA
with large µ and EGM during the first iterations. This demonstrates
two points: CONESTA dynamically picked an efficient (large enough)
smoothing parameter and that the gap stopping criterion, used in the
nested FISTA loop, allows stopping before reaching a plateau, and
thus to quickly change to a smaller µ (illustrated with dots in Fig. 4.4
where the continuation steps occurred).

Fig. 4.4, bottom panel, shows the fast convergence of Inexact FISTA
as a function of the number of iterations. However, the top panel of
Fig. 4.4 shows that it is always considerably slower, in terms of the
execution time, compared to the EGM or CONESTA. Tab. 4.2 reveals
that Inexact FISTA is 4.38 times slower than CONESTA to reach an
error of 10−3, and this difference in speed increases with higher pre-
cisions. This demonstrates the hypothesis we stated in the introduc-
tion, that Inexact FISTA becomes slower after many iterations due to
the necessity to decrease the precision faster than 1/k4 (k being the
number of FISTA iterations), in the approximation.

As a conclusion, Fig. 4.4 and Tab. 4.2 demonstrate that on high-
dimensional MRI data sets, CONESTA outperformed all other algo-
rithms for precisions higher than ε ≤ 10−2.

Required precision and its gap estimate

The figure Fig. 4.5, top panel, shows that the similarity of coefficient
maps to the true solution is reaching a plateau for precisions higher
than 10−3, using both the duality gap estimation and true precision.

An early stopping at ε = 10−2 would provide a different solution
than the expected one using either measures of precision: corr(wk, w∗) =
0.92 with the gap estimate and corr(wk, w∗) = 0.45 with the true pre-
cision. Moreover, the figure demonstrates the relevance of the duality
gap as a stopping criterion: stopping the convergence at 10−3, us-
ing the duality gap, provides a map with a 0.97 correlation with the
true solution. The bottom panel shows that less than 104 iterations
are sufficient to reach the target precision of 10−3, which is less than
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30 minutes of computation. It also shows that, for useful precisions
(ε ≤ 10−1), the duality gap is an accurate upper-bound of the true
error.
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Figure 4.5: Top panel: Correlation between the coefficient maps wk and the
true solution w∗ as a function of the true precision (red line) and precision
estimated with the duality gap. The true solution has been estimated by
running 106 iterations of CONESTA and Inexact FISTA. Bottom panel: True
precision (red line) and precision estimated with the duality gap (blue line)
as a function of the number of iteration. 104 iterations are sufficient to reach
and outperform the required precision of 10−3.

4.2.10 Conclusion

CONESTA minimizes any combination of the `1, `2 and TV penal-
ties while preserving the exact `1 penalty. This solver uses Nesterov’s
technique to smooth the TV penalty such that objective function is
minimized with an exact accelerated proximal gradient algorithm.
The approximation of TV is controlled by a single smoothing param-
eter µ. This continuation algorithm uses successively smaller values
of µ to reach a prescribed precision while achieving the best possible
convergence rate.

Overall, the use of structured sparse supervised machine learn-
ing is highly relevant in providing a major breakthrough in terms
of support recovery of the predictive brain regions. We will demon-
strate the performance, interpretability and versatility of TV-Enet on
two datasets of schizophrenia patients containing sMRI and fMRI, re-
spectively in Chapters 5 and 6. In addition, we will see in Chapter 4
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that the existence of structured and sparse regularization terms is not
limited to supervised machine learning tools. Indeed, for some spe-
cific unsupervised machine learning analysis, the use of sparse and
spatial constraint is also of great interest.

4.3 CONESTA applied to spatially regularized
principal components analysis

The versatility of CONESTA has made possible the integration of
structured sparsity in the popular unsupervised principal component
analysis (PCA) applied to high-dimensional data.

4.3.1 Introduction

Principal components analysis (PCA) is an unsupervised statis-
tical procedure whose aim is to capture dominant patterns of vari-
ability to provide an optimal representation of a data set in a lower-
dimensional space defined by the principal components (PCs). Given
a data set X ∈ RN×P of N samples and P centered variables, PCA
aims to find the most accurate rank-K approximation of the data:

min
U,D,V

∥∥∥X −UDV T
∥∥∥2

F
, (4.26)

s.t. UTU = I, V TV = I, d1 ≥ · · · ≥ dK > 0

where ‖.‖F is the Frobenius norm of a matrix, V = [v1, · · · , vK] ∈
RP×K are the K loading vectors (right singular vectors) that define
the new coordinate system where the original features are uncorre-
lated, D is the diagonal matrix of the K singular values, and U =

[u1, · · · , uK] ∈ RN×K are the K projections of the original samples in
the new coordinate system (called principal components (PCs) or left
singular vector).

In a neuroimaging context, the goal is to discover the phenotypic
markers accounting for the main variability in a population’s brain
images. For example, when considering structural images of patients
that will convert to Alzheimer disease (AD), we are interested in re-
vealing the brain patterns of atrophy, explaining the variability in this
population. It provides indications of possible stratification of the co-
hort into homogeneous sub-groups that may be clinically similar but
with a different pattern of atrophy. This could suggest different sub-
types of patients with AD or some other etiologies such as dementia
with Lewy bodies. Clustering methods might be natural approaches
to address such situations; however, they can not reveal subtle dif-
ferences that go beyond a global and trivial pattern of atrophy. Such
patterns are usually captured by the first component of PCA, which,
after being removed, offers the possibility to identify spatial patterns
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on the following components. However, PCA provides dense load-
ing vectors (patterns), that cannot be used to identify brain markers
without arbitrary thresholding.

Sparse PCA Recently, some alternatives propose to add sparsity in
this matrix factorization problem (Li et al., 2015, Mairal et al., 2010,
Ramezani et al., 2015). The sparse dictionary learning framework pro-
posed by (Mairal et al., 2010) provides a sparse coding (rows of U) of
samples through a sparse linear combination of dense basis elements
(columns of V ). However, the identification of biomarkers requires
a sparse dictionary (columns of V ). This is precisely the objective of
Sparse PCA (SPCA) proposed in (d’Aspremont et al., 2007; Jolliffe,
Trendafilov, and Uddin, 2003; Journée et al., 2010; Witten, Tibshirani,
and Hastie, 2009; Zou, Hastie, and Tibshirani, 2006) which adds a
sparsity-inducing penalty on the columns of V . Imposing such spar-
sity constraints on the loading coefficients is a procedure that has
been used in fMRI to produce a sparse representation of the brain’s
functional networks (Eavani et al., 2015; Shen et al., 2017). However,
sparse PCA ignores the inherent spatial correlation in the data, lead-
ing to scattered patterns that are difficult to interpret. Furthermore,
constraining only the number of features included in the PCs might
not always be fully relevant since most data sets are expected to have
a spatial structure. For instance, MRI data is naturally encoded on a
grid; some voxels are neighbors, while others are not.

Spatially regularized PCA We hypothesize that brain patterns are
organized into distributed regions across the brain(Felleman and Es-
sen, 1991; Korbinian Brodmann, 1909; Rudolf Nieuwenhuys, 2013).
Recent studies tried to overcome this limitation by encoding prior
information concerning the spatial structure of the data (see (Guo
et al., 2015; Jenatton, Obozinski, and Bach, 2010; Wang and Huang,
2015)). However, they used methods that are difficult to plug into the
optimization scheme (e. g., spline smoothing, wavelet smoothing) and
incorporated prior information that sometimes may be difficult to de-
fine. One simple solution is the use of a GraphNet penalty (Dohma-
tob et al., 2015; Grosenick et al., 2013; Kandel et al., 2013; Mohr et al.,
2015; Ng et al., 2012). It promotes local smoothness of the weight map
by simply forcing adjacent voxels to have similar weights using an λ2

penalty on the gradient of the weight map. Nonetheless, we hypoth-
esized that, as with supersized problems, Graph-net should produce
a smooth solution rather than clearly delineated regions.

For simplicity, rather than solving Eq. 4.27, we solve a slightly dif-
ferent criterion which results from using the Lagrange form, rather
than the bound form, of the constraints on V . Then, we extend the
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Lagrangian form by adding penalties (`1, `2 and TV) to the mini-
mization problem:

min
U,D,V

1
N
‖X −UDV>‖2

F

+
K

∑
k=1

{
λ2‖vk‖2

2 + λ1‖vk‖1 + λs ∑
g∈G
‖Agvk‖2

}
, (4.27)

s. t. ‖uk‖2
2 = 1, ∀k = 1, · · · , K,

where λ1, λ2 and λs are hyper-parameters controlling the relative
strength of each penalty. We further propose a generic optimization
framework that can combine any differentiable convex (penalized)
loss function with (i) penalties whose proximal operator is known
(here ‖·‖1), and (ii) a broad range of complex, non-smooth convex
structured penalties that can be formulated as a ‖·‖2,1-norm defined
over a set of groups G. Such group-penalties cover e. g., total varia-
tion, and overlapping group lasso.

This new problem aims at finding a linear combination of origi-
nal variables that points in directions explaining as much variance
as possible in data while enforcing sparsity and structure (piecewise
smoothness for TV) of the loadings. To achieve this goal, it is nec-
essary to sacrifice some of the explained variance as well as the or-
thogonality of both the loading and the principal components. Most
existing SPCA algorithms (d’Aspremont et al., 2007; Journée et al.,
2010; Witten, Tibshirani, and Hastie, 2009; Zou, Hastie, and Tibshi-
rani, 2006), do not impose orthogonal loading directions either. While
we forced the components to have unit norm for visualization pur-
poses, we do not, in this formulation, enforce ‖vk‖2 = 1. Instead, the
value of ‖v‖2 is controlled by the hyper-parameter λ2. This penalty
on the loading, together with the unit norm constraint on the com-
ponent, prevents us from obtaining trivial solutions. The optional 1

N
factor acts on and conveniently normalizes the loss to account for the
number of samples to simplify the settings of the hyper-parameters:
λ1, λ2, λs.

de Pierrefeu et al., 2018c presents an extension of the popular PCA
framework by adding structured sparsity-inducing penalties on the
loading vectors to identify the few stable regions in the brain images
accounting for most of the variability. The addition of a prior that re-
flects the data’s structure within the learning process gives this con-
tribution a scope that goes beyond Sparse PCA. To our knowledge,
very few authors ((Abraham et al., 2013; Guo et al., 2015; Jenatton,
Obozinski, and Bach, 2010; Wang and Huang, 2015)) addressed the
use of structural constraints in PCA. The study (Jenatton, Obozinski,
and Bach, 2010) proposes a norm that induces structured sparsity
(called SSPCA) by restraining the support of the solution to be sparse
with a particular set of group of variables. Possible supports include
a set of variables forming rectangles when arranged on a grid. Only



4.3 conesta applied to spatially regularized principal components analysis 83

one study, recently used the total variation prior (Abraham et al.,
2013), in a context of multi-subject dictionary learning, based on a
different optimization scheme (Beck and Teboulle, 2009b).

4.3.2 Minimization of PCA with TV penalty

Iteration over components

A common approach to solve the PCA problem, (see d’Aspremont
et al., 2007; Journée et al., 2010; Witten, Tibshirani, and Hastie, 2009),
is to compute a rank-1 approximation of the data matrix, and then
repeat this on the deflated matrix (Mackey, 2009), where the influence
of the PCs are successively extracted and discarded.

Single component computation

Given a pair of loading/component vectors, u ∈ RN , v ∈ RP, the best
rank-1 approximation of the problem given in Eq. 4.27 is equivalent
(Witten, Tibshirani, and Hastie, 2009) to:

min
u,v

f ≡

smooth︷ ︸︸ ︷
− 1

N
u>Xv + λ2‖v‖2

2︸ ︷︷ ︸
g(v)

+

non-smooth︷ ︸︸ ︷
λ1 ‖v‖1︸︷︷︸

h(v)

+λs ∑
g∈G
‖Agv‖2︸ ︷︷ ︸
s(v)

(4.28)

s. t. ‖u‖2
2 ≤ 1,

where g(v) is the penalized smooth (i. e.differentiable) loss, h(v) is
a sparsity-inducing penalty whose proximal operator is known and
s(v) is a complex penalty on the structure of the input variables with
an unknown proximal operator. This problem is convex in u and in v
but not in (u, v).

Alternating minimization of the bi-convex problem

The objective function to minimize is bi-convex (Boyd and Vanden-
berghe, 2004). The most common approach to solve a bi-convex opti-
mization problem (which does not guarantee global optimality of the
solution) is to alternatively update u and v by fixing one of them at
the time and solving the corresponding convex optimization problem
on the other parameter vector.

On the one hand, when v is fixed, the problem to solve is

min
u∈RN

− 1
N

u>Xv (4.29)

s. t. ‖u‖2
2 ≤ 1, ,
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with the associated explicit solution

u∗(v) =
Xv
‖Xv‖2

. (4.30)

On the other hand, solving the equation with respect to v with
a fixed u presents a higher level of difficulty. It is solved with the
CONESTA algorithm detailed in Sec. 4.2.

Minimization of the loading vectors with CONESTA

Using Nesterov’s smoothing of the structured penalty, a new (smoothed)
optimization problem, closely related to Eq. 4.28 (with fixed u), arises
from this regularization as

min
v

smooth︷ ︸︸ ︷
− 1

n
u>Xv+ λ2‖v‖2

2︸ ︷︷ ︸
g(v)

+λs

{
α∗µ(v)

>Av− µ

2
‖α∗‖2

2

}
︸ ︷︷ ︸

sµ(v)

+λ1

non-smooth︷︸︸︷
‖v‖1︸︷︷︸
h(v)

.

(4.31)

Since we are now able to explicitly compute the gradient of the
smooth part ∇(g + λssµ) (Eq. 4.33), its Lipschitz constant (Eq. 4.34)
and also the proximal operator of the non-smooth part, we have all
the ingredients necessary to solve this minimization function using
the CONESTA algorithm.

However, to control the convergence of the algorithm (presented
in Sec. 4.2.6), we introduce the Fenchel dual function and the cor-
responding dual gap of the objective function. The Fenchel duality
requires the loss to be strongly convex, which is why we further re-
formulate Eq. 4.31 slightly: All penalty terms are divided by λ2, and
by using the following equivalent formulation for the loss, we obtain
the minimization problem:

min
v

fµ ≡

g(v)︷ ︸︸ ︷
1
2
‖v− y‖2

2︸ ︷︷ ︸
Lε(v)

+
1
2
‖v‖2

2 +
λs

λ2

sµ(v)︷ ︸︸ ︷{
α∗µ(v)

>Av− µ

2
‖α∗‖2

2

}
+

λ1

λ2

h(v)︷︸︸︷
‖v‖1︸ ︷︷ ︸

ψµ(v)

.

(4.32)

This new formulation of the smoothed objective function (noted fµ)
preserves the decomposition of fµ into a sum of a smooth term g +
λs
λ2

sµ and a non-smooth term h. Such decomposition is required for
the application of CONESTA as detailed in Sec 4.2. Moreover, this
formulation provides a decomposition of fµ into a sum of a smooth
loss Lε and a penalty term ψµ required for the calculation of the gap
presented in Sec. 4.2.6.
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We provide all the required quantities to minimize Eq. 4.32. Using
Eq. 4.11 we compute the gradient of the smooth part as

∇
(

g +
λs

λ2
sµ

)
= ∇(g) +

λs

λ2
∇(sµ)

= (2v− y) +
λs

λ2
A>α∗µ(v

k), (4.33)

and its Lipschitz constant (using Eq. 4.12)

L
(
∇
(

g +
λs

λ2
sµ

))
= 2 +

λs

λ2

‖A‖2
2

µ
. (4.34)

Based on Eq. 4.32, which decomposes the smoothed objective func-
tion as a sum of a strongly convex loss and the penalty,

fµ(v) = Lε(v) + ψµ(v),

we compute the duality gap that provides an upper bound estimation
of the error to the optimum. At any step k of the algorithm, given the
current primal vk and the dual σ(vk) ≡ ∇Lε(vk) variables (Borwein
and Lewis, 2006), we can compute the duality gap using the Fenchel
duality rules (Mairal2010):

Gap(vk) ≡ fµ(vk) + L∗ε
(
σ(vk)

)
+ ψ∗µ

(
− σ(vk)

)
, (4.35)

where L∗ε and ψ∗µ are respectively the Fenchel conjugates of Lε and ψµ.
Denoting by v∗ the minimum of fµ (solution of Eq. 4.32), the interest
of the duality gap is that it provides an upper bound for the difference
with the optimal value of the function. Moreover, it vanishes at the
minimum Eq. 4.19. The dual variable is

σ(vk) ≡ ∇Lε(vk) = v− X>u
nλ2

, (4.36)

the Fenchel conjugate of the squared loss Lε(vk) is

L∗ε (σ(v
k)) =

1
2
‖σ(vk)‖2

2 + σ(vk)>y. (4.37)

The algorithm for the SPCA-TV problem

The computation of a single component through SPCA-TV is achieved
by combining CONESTA and Eq. 4.30 within an alternating min-
imization loop. Mackey (Mackey, 2009) demonstrated that further
components can be efficiently obtained by incorporating this single-
unit procedure in a deflation scheme as done in e. g. (d’Aspremont
et al., 2007; Journée et al., 2010). The stopping criterion is defined as

StoppingCriterion =

∥∥∥Xk − ui+1vi+1>
∥∥∥

F
−
∥∥∥Xk − uivi>

∥∥∥
F∥∥∥Xk − ui+1vi+1>

∥∥∥
F

.

(4.38)
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All the presented building blocks were combined into Algorithm 4 to
solve the SPCA-TV problem.

Algorithm 4 SPCA-TV(X, ε
)

1: X0 = X
2: for all k = 0, . . . , K do . Components
3: Initialize u0 ∈ RN

4: repeat . Alternating minimization
5: vi+1 = CONESTA(X>k ui, ε)

6: ui+1 = Xkvi+1

‖Xkvi+1‖2
7: until StoppingCriterion ≤ ε

8: vk+1 = vi+1

9: uk+1 = ui+1

10: Xk+1 = Xk − uk+1vk+1> . Deflation
11: end for
12: return U = [u1, · · · , uK], V = [v1, · · · , vK]

4.3.3 Experiments on synthetic data

We compare the performance of SPCA-TV with existing sparse PCA
models: Sparse PCA, ElasticNet PCA, GraphNet PCA and SSPCA
from Jenatton, Obozinski, and Bach, 2010.

Performances were evaluated through a 5-fold× 5-fold nested cross-
validation. In the outer (external) loop, the sample is split into train-
ing and test sets. The test sets are exclusively used for model assess-
ment, while the train sets are used in the inner (internal) loop for
model fitting and selection. The inner folds select the set of parame-
ters (over a grid given in de Pierrefeu et al., 2018c), minimizing the
reconstruction error on the outer fold.

The reconstruction accuracy was evaluated with the average (across
the folds) of the MSE (Mean Squared Error) or Frobenius norm of
the error between test data and their reconstructed versions. How-
ever, the TV penalty has a more important purpose than to minimize
the reconstruction error: the estimation of coherent and reproducible
loadings. Therefore the stability of the loading vectors obtained across
various training data sets (variation in the learning samples) was as-
sessed through a similarity measure: the pairwise Dice index between
loading vectors obtained with different folds/data sets (Dice, 1945).

We simulated 2D datasets with three latent variables whose spatial
support is illustrated in Fig. 4.6 (top row) with carefully controlled
signal-to-noise ratio (de Pierrefeu et al., 2018c).
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Quantitative evaluation of reconstruction and stability

Tab. 4.3 shows that reconstruction error (MSE between reconstructed
and true test data), is significantly lower with SPCA-TV than with all
other methods: Sparse PCA (T = 6.9, p = 8.0 · 10−9), ElasticNet PCA
(T = 6.2, p = 1.1 · 10−07), GraphNet-PCA (T = 4.1, p = 1.4 · 10−04)
and SSPCA, from Jenatton, Obozinski, and Bach, 2010, (T = 22.6, p <

10−16). Moreover, when evaluating the stability of the loading vectors
across resampling, we found a higher statistically significant mean
Dice index when using SPCA-TV compared to the other methods
(p < 0.001).

Table 4.3: Scores are averaged across the 50 independent data sets. We
tested whether the scores obtained with existing PCA methods are signifi-
cantly different from scores obtained with SPCA-TV. Significance notations:
***: p ≤ 10−3

Method MSE Dice Index

Sparse PCA 0.91*** 0.28***

ElasticNet PCA 0.83*** 0.43***

GraphNet PCA 0.83*** 0.30***

SSPCA 1.54*** 0.07***

SPCA-TV 0.64 0.52

Qualitative evaluation

Fig. 4.6 represents the loading vectors extracted with different meth-
ods. Please note that the sign is arbitrary. Indeed, if we consider the
loss of Eq. 4.28, u and v can both be multiplied by -1 without chang-
ing anything. We observe that the recovered support for the loading
vectors of SPCA-TV are sparse, but also organized in clear regions.
SPCA-TV provides loading vectors that closely match the ground
truth.

Convergence of the algorithm

One of the issues linked to biconvex optimization is the risk of falling
into locals minima. Conscious of this potential risk, we set up an ex-
periment in which we ran 50 times the optimization of the same prob-
lem, with a different starting point at each run. We then compared the
resulting loading vectors obtained at each run and computed a sim-
ilarity measure, the Dice index. It quantifies the proximity between
each independently-run solution with a different starting point. We
obtained a Dice index of 0.99 on the 1st component, 0.99 on the 2nd
component, and 0.72 on the 3rd component. Off the strength of this
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Figure 4.6: Synthetic data. Top row: the true loading vectors used to generate
the images. Following rows present, the loading vectors recovered using
different sparse models.

indices, we are confident of this algorithm’s robustness and ability
to converge toward the same stable solution independently from the
choice of the starting point.
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4.3.4 Experiments on meshes of cortical thickness in Alzheimer
disease

SPCA-TV was applied to the whole brain cortical thickness (317 379
features) of 133 patients with a diagnosis of mild cognitive impair-
ments (MCI) from the ADNI database. We did not use SSPCA, which
is restricted to array images and does not support meshes of cortical
surfaces.

Quantitative evaluation of reconstruction and stability

The reconstruction Tab. 4.4 error is significantly lower in SPCA-TV
than in Sparse PCA (T = 12.7, p = 2.1 · 10−4), ElasticNet PCA (T =

6.8, p = 2.3 · 10−3) and GraphNet PCA (T = 2.83, p = 4.7 · 10−2).
The results are presented in Table 4.4. Moreover, when assessing the
stability of the loading vectors across the folds, the mean Dice index
is significantly higher in SPCA-TV than in other methods.

Table 4.4: Scores are averaged across the 5 folds. We tested whether the
averaged scores obtained with existing PCA methods are significantly lower
from scores obtained with SPCA-TV. Significance notations: ***: p ≤ 10−3,
**: p ≤ 10−2, *: p ≤ 10−1.

Scores

Methods Test Data Reconstruction Error Dice Index

Sparse PCA 2991.8*** 0.44**

ElasticNet PCA 2832.6** 0.43**

GraphNet PCA 2813.6* 0.62*

SPCA-TV 2795.0 0.65

Clinical interpretation of coefficient maps

The loading vectors obtained from the data set with sparse PCA and
SPCA-TV are presented in Fig. 4.7. As expected, Sparse PCA loadings
are not easily interpretable because the patterns are irregular and dis-
persed throughout the brain surface. In contrast, SPCA-TV reveals
structured and smooth clusters in relevant regions. The first loading
vector, which maps the whole surface of the brain, can be interpreted
as the variability between patients, resulting from global cortical at-
rophy, as often observed in AD patients. The second loading vector
includes variability in the entorhinal cortex, hippocampus, and tem-
poral regions. Last, the third loading vector might be related to the
atrophy of the frontal lobe and captures variability in the precuneus
too. Thus, SPCA-TV provides a smooth map that closely matches the
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well-known brain regions involved in Alzheimer’s disease (Frisoni et
al., 2010).

Indeed, it is well-documented that cortical atrophy progresses over
three main stages in Alzheimer’s disease (Braak and Braak, 1991;
Delacourte et al., 1999) The cortical structures are sequentially being
affected because of the accumulation of amyloid plaques. Cortical at-
rophy is first observed, in the mild stage of the disease, in regions
surrounding the hippocampus (Jack et al., 2004, Ridha et al., 2008,
and Thompson et al., 2004) and the enthorinal cortex (Cardenas et
al., 2011), as seen in the second component. This finding is consis-
tent with early memory deficits. Then, the disease progresses to a
moderate stage, where atrophy gradually extends to the prefrontal
association cortex, as revealed in the third component (McDonald et
al., 2009). In the severe stage of the disease, the whole cortex is af-
fected by atrophy (Delacourte et al., 1999) (as revealed in the first
component).

Clinical interpretation of neuroimaging latent scores

To assess the clinical significance of these weight maps, we tested
the correlation between the components’ scores and the subjects’ per-
formance on the ADAS (The Alzheimer’s Disease Assessment Scale-
Cognitive subscale) clinical test. ADAS is scored in terms of errors,
so a high score indicates poor performance. We obtained significant
correlations between ADAS test performance and components ’scores
in Figure 4.8. r = −0.34, p = 4.2 · 10−11 for the first component, r =

−0.26, p = 3.6 · 10−7 for the second component and r = −0.35, p =

4.0 · 4.5−12 for the third component). The same behavior is observable
for all three components: The ADAS score grows proportionately to
the level to which a patient is affected and to the severity of atro-
phy he presents (in temporal pole, prefrontal region, and also glob-
ally). Conversely, controls subjects score low on the ADAS metric and
present low levels of cortical atrophy. Therefore, SPCA-TV provides
us with precise biomarkers, that are entirely relevant to the scope of
Alzheimer’s disease progression.

Sensitivity analysis

We conducted a sensitivity analysis on the real neuroimaging data
set to increase the understanding of the relationships between input
parameters and output weight maps.

• First, increase of `TV (Fig. 4.9) results in a more structured and
smoother map. In addition, it tends to increase the extent of the
support, even with a fixed `1.
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Figure 4.7: Loading vectors recovered from the 133 MCI patients using dif-
ferent methods



92 integrating spatial regularization

Figure 4.8: Correlation of components scores with ADAS test performance.

Figure 4.9: Sensitivity analysis : Effect of the variation of the `TV ratio pa-
rameter on the weight maps.

• Second, increase of `1 (Fig. 4.10) results, as expected, in a more
parsimonious map.

Figure 4.10: Sensitivity analysis : Effect of the variation of the `1 parameter
on the weight maps.

• Last, increasing α Fig. 4.11 produces a solution that evolves from
a dense a map (dominated by `2), to a structured map (domi-
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nated by TV) and, finally an extremely sparse map (dominated
by `1).

Figure 4.11: Sensitivity analysis : Effect of the variation of the α parameter
on the weight maps.

It is also interesting to note the extreme effects of `TV and `1 pa-
rameters: Extremely high values of these two parameters tend to push
the solution toward two opposite weight maps configuration. An ex-
tremely high value of `TV produces very extended support with con-
stant coefficient values. On the other hand, an extremely high value
of `1 tends to yield fully sparse weight maps where every coefficient
have a zero coefficient.

4.3.5 Conclusion

We proposed an extension of Sparse PCA that takes into account the
spatial structure of the data. We observe that SPCA-TV, in contrast
to other existing sparse PCA methods, yields clinically interpretable
results, and reveals significant sources of variability in data, by high-
lighting structured clusters of interest in the loading vectors. Fur-
thermore, SPCA-TV ’s loading vectors were more stable across the
learning samples compared to other methods.





5
Identification of predictive signatures of
brain disorders

This chapter presents clinical applications of our methodological con-
tributions, in psychiatry:

• Sec. 5.1 summarizes de Pierrefeu et al., 2018a which demon-
strates tha ML with spatial regularization (ElasticNet-TV) work-
ing at a voxel level can identify a reproducible neuroanatomical
signature of Schizophrenia;

• Sec. 5.2 outlines de Pierrefeu et al., 2018b which shows that
ElasticNet-TV can identify an interpretable functional predic-
tive signature (clusters in speech-related brain regions) of the
upcoming hallucinations in patients with schizophrenia;

and neurology:

• Sec. 5.3 presents an application of spatialy regularized PCA to
identify white matter hyperintensities spatial patterns of vari-
ability in patient with CADASIL syndrome, which has been
published in Duchesnay et al., 2018.

5.1 Identifying a neuroanatomical signature of
schizophrenia

In de Pierrefeu et al., 2018a, we used anatomical MRI to learn a pre-
dictor of the schizophrenia that generalizes to the early stage of the
disorder while providing insight into the neurobiological predictive
signature.

5.1.1 Introduction

Schizophrenia is a disabling chronic mental disorder characterized
by various symptoms such as hallucinations, delusions as well as
impairments in high-order cognitive functions. The development of
magnetic resonance imaging (MRI) provides an effective and nonin-
vasive approach to investigate the neuroanatomy of the brain. Specif-
ically, structural MRI (sMRI) allows the study of structural changes in
the brain and their relationship with the clinical diagnosis. Over the
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Figure 5.1: Learn a predictive signature on patients with chronic schizophre-
nia that generalizes to the early stage of the disorder, i.e., patients with first
episode of psychosis.

years, sMRI has been increasingly used to gain insights on the struc-
tural abnormalities inherent to the disorder and to identify brain re-
gions where schizophrenia patients differ significantly from healthy
controls (van Erp et al., 2016). Unfortunately, group analyses do not
offer the possibility to uncover individual subject deviations from
normality. There is indeed a broad overlap between brain-imaging
measurements in schizophrenia patients and the normal range (Sun
et al., 2009). Thus, group analyses cannot be easily used to assist in
the diagnosis process.

Recent progress in machine learning, together with the availability
of large datasets, paves the way for automatic detection of brain dis-
orders, solely based on MRI data (Kambeitz et al., 2015; Orrù et al.,
2012). In the past, an extensive number of studies have focused on the
prediction of schizophrenia based on neuroanatomical features (Lu et
al., 2016; Rozycki et al., 2017; Sabuncu, Konukoglu, Initiative, et al.,
2015). These studies uncovered relevant structural brain patterns that
are different between controls and patients and that achieve a pre-
diction at the individual level. Based on these structural discrepan-
cies alone, classifiers reached various prediction performances rang-
ing from 65% to 90% of accuracy. However, to date, despite initial
promising results, these studies have barely impacted clinical prac-
tice. Significant challenges still need to be tackled for translational
implementation of such findings in psychiatry.

Schizophrenia is a complex and very heterogeneous disorder. Small
size cohorts, typically composed of highly-selected patients, suffer
from a bias in the recruitment. They do not represent the full and
broad cross-sectional spectrum of the disorder phenotype. Given this
variability, a significant heterogeneity can be found in the effect-sizes
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and patterns of brain differences across studies (Adriano et al., 2010;
Shepherd et al., 2012; Vita et al., 2006). To date, most studies recruited
subjects scanned at a single acquisition site (i.e., the subjects were
scanned at the same site, using similar scanner hardware and MRI
protocols). Such results are difficult to generalize to large-scale clin-
ical settings, i.e., with patients scanned at widely different locations
(Orban et al., 2018). Validation on independent datasets is a more real-
istic approach to quantifying generalization accuracy. Consequently,
multi-site populations can ensure consistency and reproducibility in
the results. To our knowledge, only few studies have relied on a com-
pletely independent validation cohort to estimate prediction perfor-
mances of a classifier (Kawasaki et al., 2007; Nieuwenhuis et al., 2012;
Rozycki et al., 2017)

Leveraging those studies, we intend to further develop our findings
along two different aspects. First, in the context of predictive signa-
ture discovery, it is crucial to understand the brain’s structural pat-
terns that underpin a prediction. Unfortunately, in most cases, despite
accurate prediction performance achieved, classifiers still behave as a
“black box” model, not providing objective neuroanatomical markers
thus ruling out the prospect of clinical application. We will therefore
focus on the interpretability of such predictive patterns. Second, we
strive to filter-out chronic pharmaceutical treatments’ impact on the
brain. Given that the literature has consistently reported that some
regions of the brain are affected by antipsychotic medication (Radua
et al., 2012), our intention is to evaluate the generalization of the de-
veloped predictive models on subjects that are still in an early stage
of the disease. Hence, we need to address the non-negligible proba-
bility that previous classifiers rely heavily on the medication impacts
over the brain rather than as “true” markers of the disorder able to
distinguish healthy individuals from those affected by schizophrenia.

Here, we validated automatic methods to classify schizophrenia
using exclusively sMRI scans. We tested different sMRI-based fea-
tures to assess inter-site performance replicability using data from
606 subjects scanned at four distinct sites with no prior coordina-
tion. In addition, we investigated the interpretability of the obtained
neuroanatomical predictive signature and its independance regard-
ing medication. Finally, we tested the ability of our classifiers to gen-
eralize to an independent set of patients with first-episode psychosis.

5.1.2 Methods

Brain imaging data from 4 independent studies with no prior coor-
dination were gathered in the current analysis (http://schizconnect.
org). The training dataset included 276 patients with strict schizophre-
nia, according to DSM-IV criteria, and 330 healthy controls. One ad-
ditional independent set of healthy controls and patients with first-

http://schizconnect.org
http://schizconnect.org
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episode psychosis (FEP) was used for additional validation of the pre-
diction performance. We compared the predictive power of 3 types
of features extracted from anatomical MRI: VBM: Gray matter maps
(125,959 features); Vertex-based cortical thickness (299,862 features) and
Regions of interest features (66 structural measurements of regions of
interest were extracted with FreeSurfer).

Classifiers We compared linear Support Vector Machine (SVM) and
logistic regressions with respectively ElasticNet, GraphNet and TV-
Enet penalties, implemented in the Parsimony package.

Evaluation on an independent set of first-episode patients The
impact of antipsychotic treatments on brain anatomy has been pre-
viously reported in the literature (Radua et al., 2012; Roiz-Santiañez,
Suarez-Pinilla, and Crespo-Facorro, 2015). It raises questions about
the validity of the learned models and the predictive signature. Our
concern was that patients and controls might be classified with re-
gard to their medication status rather than their diagnosis. In order
to discard the hypothesis of a confounding effect of medication on
discriminative patterns, we conducted two additional analyses.

We trained the classifier by masking out the regions that are known
to be affected by antipsychotic drugs, such as the striatum (Smieskova
et al., 2009; Torres et al., 2013). We created a new predictive model us-
ing the remaining features and evaluated its performance. We used
Leave-one-site-out (LOSO) procedure for model selection. As a test
sample, we used an independent of 133 subjects: 90 healthy controls
and 43 participants with first episode-psychosis. Some of those pa-
tients have taken antipsychotic medication. However, the duration of
treatment is minimal (average: 2.56± 5.1 months). Thus, we assumed
that the medication impacts on the brain are very limited in this co-
hort.

Stability of coefficient maps We assessed the stability of coefficient
maps across re-sampling using the average correlation (denoted rw)
and Dice index between pairs of weights maps computed across the
CV folds. This measure of stability was evaluated on the weight maps
provided by the sparse classifiers: Enet, GraphNet and Enet-TV. In-
deed, SVM yields dense weight maps, and thus comparing the region
selected across fold is not relevant.

5.1.3 Results

Evaluation on independent set of first-episode patients

Prediction performances presented in Tab. 5.1 demonstrate that:

• VBM features outperformed +10% cortical thickness features.
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• On VBM, all models provide similar prediction performances.

• TV regularization provides a significant breakthrough in terms
of stability of coefficient maps. The average correlation between
maps (rw) is drastically increased. Note that similar finding
is obtained with other measures of similarities between maps:
Dice index and Fleiss-Kappa statistic.

Table 5.1: Prediction performances on an independent cohort of controls and
patients with first-episode psychosis. The models were learned on a multi-
sites cohort of controls and patients with chronic schizophrenia. Scores: Bal-
anced accuracy (bAcc), AUC of ROC analysis, and the predictive maps’ sta-
bility measured as the average correlation rw between pairs of maps across
the CV folds. All accuracies and AUCs were significant with p ≤ 10−2

Features Model AUC bAcc rw

Gray Matter VBM

SVM 0.78 0.71 -

Enet 0.78 0.73 0.34

GraphNet 0.79 0.76 0.42

TV-Enet 0.80 0.76 0.74

Vertex based cortical thickness

SVM 0.68 0.64 -

Enet 0.65 0.62 0.09

GraphNet 0.63 0.60 0.19

TV-Enet 0.67 0.62 0.76

ROIs based volume SVM 0.72 0.66 -

Neuroanatomical predictive signature

Predictive weight maps are presented in Figs. 5.2 and 5.3:

`2 regularization of SVM classifier produces a dense map with
high-frequency changes and, more confusing, rapid sign flipping ob-
servable as with irregular alternate of red and blue values. Let us con-
sider the scenario observed in both Figs. 5.2 and 5.3, of two nearby
regions A and B with negative (blue) value in A and positive (red)
values in B. In blue A, an increase of GM leads reduces the risk of
being predicted as a patient. While in nearby red B, the opposite con-
clusion can be drawn. Such a situation rules out the interpretability
of the solution provided by `2 regularization.

ElasticNet and GraphNet solutions are scattered and unstable (Tab.5.1)

TV-Enet provides a smooth map made of several clearly identifi-
able regions. The stability of maps is considerably increased com-



100 identification of predictive signatures of brain disorders

S
V
M

E
la
st
ic
N
et

G
ra
ph
N
et

T
V
-E
n
et

+0.00005

-0.00005

-0.05

+0.05

+0.01

-0.01

-0.001

+0.001

-0.00005

Figure 5.2: Freesurfer predictive signatures obtained with the classifiers-
SVM, ElasticNet, GraphNet and Enet-TV

pared to Enet and GraphNet on both GM VBM (0.74 vs 0.34 and 0.42)
and meshes of cortical thickness (0.76 vs 0.09 and 0.19).

Brain score and symptomatic level

The neuroanatomical predictive signature (w) can be applied to a
dataset X to produce the decision function (Xw), i. e., an individual
brain score of the disorder for each patient. In a post hoc analysis,
we investigated to what extent this neural score can track the symp-
tomatic level.

The VBM brain score, of 118 patients, was correlated (controlling
for the effects of age and gender) with patients’ cognitive functions
(Crystallized intelligence, Working memory, Episodic memory, and
Executive functions) and scales of symptoms dimensions (Scale for
the Assessment of Positive Symptoms, SAPS and the Scale for the
Assessment of Negative Symptoms, SANS)

We found significant positive correlations between the VBM pre-
dictive signature and both, the negative symptoms scores (r = 0.17,
p = 3.5e−2) and the positive symptoms scores (r = 0.18, p = 2.2e−2).
The predictive signature also correlated with the extent of cognitive
deficits in all domains tested: Crystallized intelligence, working mem-
ory, episodic memory and executive functions. Fig. 5.4 illustrates one
of those correlation between the brain score and the positive symp-
toms score (SAPS) of patients.
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Figure 5.3: VBM predictive signatures obtained with the classifiers- SVM,
ElasticNet, GraphNet and Enet-TV.

Figure 5.4: Correlation between the neuroanatomical signature score and the
negative and positive symptoms scores (SANS and SAPS) of patients.
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5.1.4 Discussion

Neuroanatomical predictive signature

The interpretation of the coefficient map is not straightforward. As
raised by some papers (Haufe et al., 2014; Kia et al., 2017; Weichwald
et al., 2015), we are facing a backward “decoding” problem where we
intend to predict the causal clinical status given the brain phenotypes
results. Some coefficients can capture a general variability associated
to a latent variable (typically the age) that is not specific to the disease
of interest. Conversely, some regions may be overlooked due to the
sparsity constraint.

Only TV-penalization provides the opportunity to discuss identi-
fied regions (Figs. 5.5 and 5.6): Those regions appear largely con-
sistent with available neural data in schizophrenia and may fill the
criteria to become a biomarker of the disorder. We indeed found that
classification of patients with schizophrenia relied on reduced gray
matter compared to healthy controls in the cingulate gyrus, precen-
tral and postcentral gyrus, temporal pole, hippocampus, amygdala,
and thalamus. These regional deficits of gray matter in schizophrenia
patients have been consistently reported in univariate studies (For-
nito et al., 2009; Glahn et al., 2008; Honea et al., 2005; Kim, Kim, and
Jeong, 2017; Torres et al., 2016). On the other hand, we found a re-
gional increase of gray matter in schizophrenia patients compared to
healthy controls in the putamen, caudate, and pallidum. These local
increased GM in schizophrenia were also frequently reported in pre-
vious studies (Fornito et al., 2009; Glahn et al., 2008; Honea et al.,
2005; Kim, Kim, and Jeong, 2017; Pol et al., 2001; Torres et al., 2016).

Furthermore, significant correlations were found between this pre-
dictive signature and both negative and positive symptom scores.
Such a result is consistent with the literature where negative symp-
toms have already been reported to be associated with the extent
of structural brain abnormalities in schizophrenia (Ren et al., 2013;
Rozycki et al., 2017). Additionally, the neural score obtained from
the predictive signature is also correlated with the extent of cogni-
tive impairments in all the domains that are known to be impacted
in schizophrenia. This result is promising since it paves the way to-
wards the use of a neuroanatomical signature as an objective measure
to monitor the evolution of the disorder.

To demonstrate the clinical relevance of predictive models, the next
step would be to evaluate the specificity of the classifiers in differen-
tial diagnosis situations. There is now an urgent need for transdi-
agnostic studies able to compare the specificity of the identified neu-
roanatomical predictive signature in schizophrenia but also in bipolar
disorder or autism spectrum disorder.
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Figure 5.5: Main discriminative regions found in VBM.

5.1.5 Conclusion

These results highlight the existence of a neuroanatomical signature
of schizophrenia, shared by a majority of patients across different
sites and already present at the early stage of the disorder. More-
over, this signature is associated with the symptoms severity and the
amount of cognitive deficit.

5.2 Functional patterns to predict hallucinations
in Schizophrenia

In de Pierrefeu et al., 2018b, we demonstrated that supervised classi-
fication methods can accurately learn a functional MRI-based pattern
that predicts the imminence of a hallucinatory episode. Thus, lever-
aging real-time pattern decoding capabilities and applying them in
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Figure 5.6: Discriminative regions found with cortical thickness.

the case of hallucinations could lay the foundation for alternative so-
lutions for affected patients in the near future, such as fMRI-based
neurofeedback.
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Figure 5.7: Functional MRI activation patterns to predict hallucinations in
Schizophrenia for neurofeedback.

5.2.1 Introduction

Hallucinations are defined as abnormal perceptions in the absence of
causative stimuli. These experiences, especially auditory hallucina-
tions, constitute fundamental features of psychosis (64-80% lifetime
prevalence among schizophrenia-diagnosed patients) and can lead to
functional disability and low quality of life (McCarthy-Jones et al.,
2017).

Over the past years, auditory hallucinations have been studied in-
depth with brain imaging methods, such as functional and struc-
tural magnetic resonance imaging (fMRI and sMRI), to decipher their
underlying neural mechanisms. Numerous abnormalities have been
found in patients suffering from auditory hallucinations (e.g., Allen
et al., 2008; Bohlken, Hugdahl, and Sommer, 2017; Jardri et al., 2011;
Sommer et al., 2008. Beyond location, the functional dynamics of the
neural networks involved in auditory hallucinations have also been
studied in several studies that focused on so-called intrinsic connec-
tivity networks (ICN) and their potential role in the onset of hallu-
cinations Alderson-Day et al., 2016; Northoff and Qin, 2011. ICNs
typically reveal interactions among brain regions when the subject is
not engaged in any particular task. Reported networks include the
default mode network (DMN), the control executive network (CEN),
the salience network (SAL) and the sensorimotor network (SMN)
(Alderson-Day et al., 2016). Numerous studies have asserted that fluc-
tuations in those ICNs are associated with the onset of hallucina-
tion periods. For instance, the emergence of hallucinations correlates
with a disengagement of the DMN (Jardri et al., 2013). More recently,
stochastic effective connectivity analyses revealed complex interac-
tions among hallucination-related networks, DMN, SAL and CEN,
during the ignition, active phase, and extinction of hallucinatory ex-
periences (Lefebvre et al., 2016).
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Despite significant progress in the field, “capturing” the neural cor-
relates of subjective mental events (such as hallucinations) remains a
time-consuming task with multiple post-processing steps and analy-
ses. However, recent progress in machine learning has now paved the
way for real-time automatic fMRI decoding of hallucination-related
patterns. Such developments may have crucial impacts on the imple-
mentation of innovative fMRI-based therapy for drug-resistant hallu-
cinations, such as fMRI-based neurofeedback (Arns et al., 2017; Fovet,
Jardri, and Linden, 2015). During fMRI-based neurofeedback, brain
activity is measured and fed back in real-time to the subject to help
her/him progressively achieve voluntary control over her/his own
neural activity. Precisely defining strong a priori strategies for choos-
ing the appropriate target brain area/network(s) for fMRI-based pro-
tocols appears critical.

The feasibility of fMRI-based neurofeedback relies on robust and
reliable classifying performances and on the ability to detect hallu-
cinations sufficiently early to allow the patients the necessary time
to modulate their cerebral activity (Fovet et al., 2016). Rather than
detecting hallucinatory events per se, we aim to help patients be-
come aware of the imminence of this experience based on online
detection of fMRI signal changes in key networks involved in the
ignition of hallucinations. Thus in this study, we specifically focused
on the period preceding the occurrence of a hallucination, i.e., the
few seconds corresponding to the brain’s transition from a resting-
state to a full hallucinatory state. Interestingly, previous fMRI studies
have noted the existence of specific fMRI changes prior to hallucina-
tions (Diederen et al., 2010; Hoffman et al., 2008; Lefebvre et al., 2016;
Lennox et al., 1999).

Among the current machine-learning approaches available for fMRI
analysis, multi-voxel pattern analysis (MVPA), a supervised classifi-
cation method, is gaining recognition for its potential to discriminate
between complex cognitive states (Fovet et al., 2016; Haxby, Connolly,
and Guntupalli, 2014). MVPA seeks to identify significantly repro-
ducible spatial activity patterns differentiated according to mental
states. Extending these methods to the prediction of the phenom-
ena of transition towards hallucinations should provide better insight
into the mechanisms of these subjective experiences. Thus, leveraging
real-time pattern decoding capabilities and applying them in the case
of hallucinations could lay the foundation for potential solutions for
affected individuals.

Variations in transition-to-hallucination functional patterns from
one patient to another (e.g., due to phenomenological differences)
and from one occurrence to the next (e.g., depending on the modal-
ities involved) appears to be the potential major shortcomings in
developing an effective classifier. Indeed, such disparities may inex-
orably lead to a decrease in decoding performances. Therefore, char-
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acterizing the variability within the pre-hallucination patterns across
subjects and occurrences is highly desired. Principal component anal-
ysis (PCA) is one such unsupervised method that has been success-
fully applied in the analysis of the variability of a given dataset. The
principal components (PCs) and the associated basis patterns shed
light on the intrinsic structures of the variability present in a dataset.
This unsupervised approach is complementary to the supervised ap-
proach described above, as it can help with interpreting the classifi-
cation performances.

Here, we applied both supervised and unsupervised machine-learning
methods to an fMRI dataset collected during hallucinatory episodes.
The goal of this paper was two-fold: i) to predict the activation pat-
terns preceding hallucinations using a supervised analysis and ii) to
uncover the variability in these activation patterns during the emer-
gence of hallucinations using unsupervised analysis. The goals of
these two analyses appear completely complementary in the context
of future fMRI-based clinical and therapeutic applications.

5.2.2 Methods

Participants and experimental paradigms

The population was composed of 37 patients with schizophrenia (DSM-
IV-TR criteria) who were suffering from very frequent multimodal
hallucinations (i.e., more than 10 episodes/hour).

fMRI was acquired at rest. Participants were asked to lie in the
scanner in a state of wakeful rest with their eyes closed. The subjects
experienced an average of 4 hallucinatory episodes per session. The
patients’ states at different acquisition times were labelled using a
semi-automatic difficult procedure, as described in (Jardri et al., 2013;
Leroy et al., 2017) and were assigned to one of the following four
categories: transition towards hallucinations (trans), on-going hallu-
cinations (on), no hallucinations (off) and end of hallucinations (end).

This labelling task is a non-straightforward two-steps strategy; the
first step is a data-driven analysis of the fMRI signal using an ICA
in the spatial domain. The second step involves the selection of the
ICA components associated with possible sensory experiences that
occurred while scanning. This pipeline is said to be semi-automatic
since it combined the following: (a) an automatic denoising part, and
(b) a manual and time-consuming part, with the use of an immediate
post-fMRI interview conducted with the patient, in which the sen-
sory modalities, number of episodes, and phenomenological features
of the experiences were specified. Usual fMRI pre-processing were
performed leading to 67,665 voxels in the MNI referential.
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Computation of samples

Before training classifiers, the first step involved computing samples
from the fMRI signal. The intention was to convert the fMRI sig-
nal into a brain map that could capture reflecting an evolution to-
ward hallucination. From each set of consecutive images within a
pre-hallucination state (“trans” periods) or “off” state, we estimated
a statistical map by regressing the fMRI time course on a linear ramp
function. This choice is based on the hypothesis that activation in
some regions presents a ramp-like increase during the time preced-
ing the onset of hallucinations.

Figure 5.8: (a) Regression of the fMRI signal time course of a voxel on a lin-
ear ramp function (fit is represented in green). (b) Sample created from one
set of consecutive pre-hallucinations scans. The features are the T-statistic
values associated with the coefficients of the regression in each voxel

Fig. 5.8 (A) represents the evolution of the signal intensity in one
single voxel over the 8 consecutive volumes of a pre-hallucination pe-
riod of a subject. Fig. 5.8 (B) as an example of one sample containing
67,665 features.

Given that most of the patients hallucinated more than once during
the scanning session, we had more samples than patients (376 sam-
ples created from 36 patients): 166 in the resting state (off periods)
and 210 in the pre-hallucination state (trans periods).
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Supervised analysis

We compared the prediction performance and interpretability of weight
maps provided by two different classifiers: the linear Support Vector
Machine and the TV-Enet classifier.

Performances were evaluated using a double cross-validation made
of two nested cross-validation loops. In the outer (external) loop we
employed a leave-one-subject-out pipeline where all subjects except
one were referred to as the training data, and the remaining subject
was used as test data. The test sets were exclusively used for model
assessment, whereas the training sets were used in the inner 5-fold
cross-validation loop for model fitting and model selection. Classi-
fier performances were assessed by computing the balanced accuracy,
sensitivity, and specificity with which the test samples were classified.
Sensitivity was defined as the ability to identify the transition towards
hallucination state (trans), whereas specificity evaluated the ability to
identify the resting-state activity (off). The balanced accuracy score
was defined as the average of the sensitivity and specificity.

Unsupervised Analysis

Subsequently, in addition to the supervised analysis, we conducted
an extensive analysis of the data using unsupervised machine learn-
ing. The goal was to characterize the variability within the pre-hallucination
scans. We used SPCA-TV model, described in Sec. 4.3, to produce in-
telligible patterns.

We hypothesized that the principal components extracted with SPCA-
TV could uncover significant variability trends within the pre-hallucination
samples. Thus, the principal components might reveal the existence of
subgroups of hallucinations, notably according to the sensory modal-
ity involved (e.g., vision, audition). From the 376 samples, we retained
the 210 elements corresponding to the pre-hallucinations samples. We
applied SPCA-TV to these 210 samples and interpreted the resulting
principal components.

Additionally, we computed the explained variance of each com-
ponent yielded by SPCA-TV and investigated whether these compo-
nents were capturing a signature of the cognitive process involved
in the onset of hallucinations. To do so, we projected each activation
map, “off” and “trans” samples, in the basis formed by the principal
components and used the subsequent scores to decode the mental
state of each subject. We used an SVM using the same cross-validation
pipeline described in the supervised analysis method section.
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5.2.3 Results

Supervised analysis

Classification performances Classification (Tab. 5.2) of resting state
(i.e., non-hallucination) patterns (off) versus transition towards hallu-
cinations patterns (trans) achieved above chance level decoding per-
formances with both methods. The TV-Enet yielded a significantly
increased AUC compared to SVM (T = 2.87, p = 0.006).

Table 5.2: The performance of the classifiers. Prediction accuracies: sensitiv-
ity (recall rate of "trans" samples), specificity (recall rate of "off" samples)
and balanced accuracy (bAcc): (Sen+Spe)/2; AUC indicates area under the
curve. We tested whether the scores obtained with SVM were significantly
different from the scores obtained with TV-Enet. Significance notations: *:
p ≤ 10−2

Model AUC bAcc Spe Sen

SVM 0.73* 0.73 0.78 0.67

TV-Enet 0.79* 0.74 0.76 0.71

Predictive weight maps When using the regular SVM classifier, the
relevance of the obtained discriminating weight maps was limited
(Fig. 5.9 (A): The whole-brain contributes to the prediction, and more
puzzling, the complex mixing of positive (red) and negative (blue)
values rule out the opportunity to understand the brain regions in-
volved in the detection. Conversely, The TV-Enet classifier yields a
more coherent weight map with two defined stable predictive clus-
ters (Fig. 5.9.B). The regions cover Broca’s area, and its the right
homolog.
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Figure 5.9: (a) Linear support vector machine (SVM) and (b) TV-Enet pre-
dictive weight map.

Unsupervised analysis

The explained variances of the four first components were: 2.5%,
1,4%, 0.09% and 0.05%. The coeficient map are provided in Fig. 5.10.
The prediction of mental states based on the scores associated with
each component yielded a significant decoding performance: the clas-
sifier was able to distinguish the “trans” samples from “off” samples,
with an AUC of 0.65, a balanced accuracy of 65% with a sensitivity
of 68% and a specificity of 64%.
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Figure 5.10: SPCA-TV principal components. Note that the sign is arbitrary

5.2.4 Discussion

Supervised analysis predictive signature

Spatial regularization provides two large, stable predictive fronto-
temporal clusters that are consistent with what we currently know of
the networks involved in auditory hallucinations. Indeed, numerous
studies have highlighted abnormal resting-state functional connec-
tivity among some temporo-parietal, frontal and subcortical regions
in patients with auditory hallucinations (Alderson-Day, McCarthy-
Jones, and Fernyhough, 2015; Allen et al., 2008). Otherwise, patients
experiencing auditory hallucinations while in the MRI scanner (in so-
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called fMRI “capture” studies) demonstrated significantly increased
activation in Broca’s area, the insula, left middle and superior tem-
poral gyrus, left inferior parietal lobule and left hippocampal region
(Jardri et al., 2013).

The right cluster identified in our study also emphasized the role of
the right-sided homologues of the classical speech-related areas (i.e.,
the right inferior frontal gyrus, right superior temporal and supra-
marginal gyrus) in auditory hallucinations, as previously described
in the literature. It has been hypothesized that activity in these re-
gions, especially the insula and the right homologue of Broca’s area,
is associated with the occurrence of auditory hallucinations (Jardri
et al., 2011; Sommer et al., 2008), whereas language production in
a natural context predominantly activates left-lateralized frontal and
temporal language areas. The role of right-sided speech-related ar-
eas in the pathophysiology of auditory hallucinations was also men-
tioned by Mondino et al., 2016. By neuromodulating a speech-related
fronto-parietal network, these authors demonstrated that a reduction
in the resting-state functional connectivity between the left temporo-
parietal junction and right inferior frontal areas could be measured,
and this reduction was associated with a significant reduction in the
severity of the hallucinations.

Taken together, these results confirm that adding a penalty to ac-
count for the spatial structure of the brain seems relevant in fMRI cap-
tures, given that it significantly improves the classifier performance
and results in clinically interpretable weight maps.

Unsupervised analysis

Relevance of components The total amount of explained variance
was surprisingly low. However, when predicting the mental state of
subjects based on the SPCA-TV scores, the decoding accuracy was
significant, demonstrating that the component captured a functional
variability specific to the cognitive processes involved in the onset of
hallucinations.

Weight map interpretation The variability in the pre-hallucination
patterns across occurrences and subjects were represented in the form
of intelligible components shown in Fig. 5.10.

1. The first PC mainly included the weights in the precuneus cor-
tex and the posterior cingulate cortex. The posterior cingulate
cortex, which is part of the DMN, is associated with auditory
hallucinations (Rotarska-Jagiela et al., 2010). We believe that this
component may have captured the visual pathways typically in-
volved in the occurrence of visual hallucinations.

2. The second PC was composed of one activation cluster in the
paracingulate gyrus and the anterior cingulate gyrus and two
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symmetric bilateral activation clusters in the temporal cortex.
This fronto-temporal component appeared compatible with the
processes at the roots of the auditory hallucinations. Interest-
ingly, some processes involved in the occurrence of hallucina-
tions, such as the monitoring of inner speech processes and er-
ror detection, are classical functions of the anterior cingulate
cortex included in this component (Allen et al., 2008; Mechelli et
al., 2007). This second PC yielded regions classically involved in
inhibition (paracingulate gyrus, anterior cingulate gyrus) (Allen
et al., 2008; Mechelli et al., 2007). The severity of auditory hallu-
cinations has been found inversely related to the strength of the
functional connectivity between the temporal-parietal junction,
the anterior cingulate cortex (ACC), and the amygdala (Vercam-
men et al., 2010). This ACC dysconnectivity supposedly drove
the external misattribution observed during auditory hallucina-
tions (Allen et al., 2007; Mechelli et al., 2007), and might explain
global inhibition impairments in the pathophysiology of hallu-
cinations (Jardri et al., 2016), which may account for this fea-
ture beyond the schizophrenia-spectrum, for instance in LSD-
induced hallucinations Schmidt et al., 2017.

3. The third PC revealed a cluster in the frontal gyrus and the ante-
rior insula. These regions are important for speech production,
encompassing the well-known Broca’s area and are involved in
auditory hallucinations (Jardri et al., 2011; Sommer et al., 2008).

4. The fourth PC included two clusters of opposing signs. In the
right hemisphere, there was a large activation cluster that in-
volved the temporo-parietal junction and a deactivation cluster
that involved the precuneus cortex and the posterior cingulate
gyrus. Interestingly, this PC revealed activation of the brain re-
gions involved in auditory hallucination-related processes and
in self-other distinction, such as the right temporo-parietal junc-
tion (Decety and Lamm, 2007; Jardri et al., 2013; Plaze et al.,
2015), together with a deactivation of key nodes of the DMN,
including the posterior cingulate cortex, medial prefrontal cor-
tex, medial temporal cortex, and lateral parietal cortex (Buck-
ner, Andrews-Hanna, and Schacter, 2008). Our results appeared
fully compatible with recent fMRI-capture findings demonstrat-
ing that aberrant activations of speech-related areas concomi-
tant with hallucinatory experiences follow complex interactions
between ICNs, such as the DMN and the CEN (Lefebvre et al.,
2016). Disengagement of the DMN during goal-directed behav-
iors has been seminally evidenced in the resting-state literature
(Lefebvre et al., 2016; “From The Cover: The Human Brain Is In-
trinsically Organized into Dynamic, Anticorrelated”), and simi-
lar mechanisms might be involved in hallucinatory occurrences
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(Jardri et al., 2013; Leroy et al., 2017). Such fluctuations in the
ICNs are, thus, thought to be highly involved in the transition
from a resting state to an active hallucinatory state.

Perspectives

Real-time recognition of the “trans” period using the TV-Enet classi-
fier could enable the delivery of visual information (i.e., visual feed-
back) regarding the imminent onset of hallucinations to the partici-
pant during a fMRI session. Such a procedure could help the subject
learn effective coping strategies to prevent the occurrence of halluci-
nations.

One of the major limits of such fMRI-based therapies remains the
accessibility and cost of the equipment. It appears fundamental to
develop less complex devices as potential second-line treatments for
hallucinations, such as near-infrared spectroscopy (NIRS). From this
technological transfer perspective, the discriminative maps obtained
using the TV-Enet classifier also appear advantageous, given that the
identified clusters are cortical regions with activity that are easily
measured with NIRS.

5.2.5 Conclusion

Because the hallucinations were frequently multimodal in the sam-
ple of patients recruited for this study, we expected more disparities
in the functional patterns associated with their complex hallucina-
tions and the transition towards this state compared with pure audi-
tory experiences. In this context, the significant inter-subject decoding
performances obtained appeared satisfactory and are promising for
future fMRI-based therapy for drug-resistant hallucinations.

We have successfully demonstrated the interest of using structured
sparse machine learning tools on a clinical dataset of fMRI-recorded
pre-hallucination patterns in a population of schizophrenia patients.

5.3 Spatial Patterns of White Matter Hyperin-
tensities in CADASIL

CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcor-
tical Infarcts and Leukoencephalopathy) is a neurological, vascular
disorder associated with white matter hyperintensities (WMH) that
are considered to result from hypoperfusion. We hypothesized that
the burden of WMH results from the combination of several spatial
patterns of WMH associated with different mechanisms and clinical
evolution. In Duchesnay et al., 2018 (summarized in Fig.5.11) the aim
was to identify spatial pattern WMH variability using spatial Princi-
ple Component Analysis (PCA-TV) . PCA-TV identified two patterns
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explaining part of the WMH variability. The first pattern includes
subcortical WMH was found to be associated with better clinical out-
comes than the second pattern of WMH in pyramidal tracts that is
associated with worse outcomes. Those two brain patterns of WMH
associated with two different clinical evolution suggest two different
pathological mechanisms.

WMH in pyramidal tracts
→ worse outcomes

Subcortical WMH
→ better outcomes

2) Apply maps to WMH images
Provides individual PC score

1) Learn Principle Component (PC) 
brain maps explaining WMH variability

WMH maps of 
CADASIL 
patients

PC score

+-

Figure 5.11: PCA-TV found two spatial patterns of WMH variability in
CADASIL.

5.3.1 Introduction

White matter hyperintensities (WMH) are a hallmark of cerebral small
vessel disease (SVD). While it is still widely considered that they
result from chronic hypoperfusion, other mechanisms are likely in-
volved (Joutel and Chabriat, 2017; Pantoni, 2010). In CADASIL (Cere-
bral Autosomal Dominant Arteriopathy with Subcortical Infarcts and
Leukoencephalopathy), the most frequent monogenic form of SVD,
WMH are commonly seen in anterior temporal poles and superior
frontal gyri, which are generally spared by WMH in age- and hypertension-
related SVD Auer et al., 2001. We recently showed that the WMH ob-
served in these areas in CADASIL are characterized by far longer T1

and T2* relaxometry values than WMH observed in the remaining
white matter. This large difference, tightly linked to the local water
content De Guio et al., 2018, suggests that WMH in anterior tempo-
ral poles and superior frontal gyri might result from different mech-
anisms than WMH observed in other brain regions. In the present
work, we hypothesized that the whole burden of WMH observed on
conventional MRI in CADASIL results from the combination of dif-
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ferent regional populations of WMH. We tested this hypothesis us-
ing a priori free, exploratory spatial Principle Component Analysis
(PCA-TV).

5.3.2 Methods

Patients

Three hundred one patients with CADASIL Chabriat et al., 2009 with
four clinical scores of global the cognitive performances that were as-
sessed by the Mattis dementia rating scale (MDRS) and mini mental
state examination (MMSE); executive functions that were assessed by
the time to complete part B of Trail Making Test (TMTB); and disabil-
ity that was assessed by the modified Rankin’s scale (mRS).

Image processing and analysis

Masks of WMH and lacunes were semi-automatically determined.
The number of microbleeds (MBN) recorded in all subjects from FLAIR,
3D-T1, and T2* sequences, respectively, providing the volume of WMH
and lacunes (WMHV and LLV respectively). The brain parenchymal
fraction (BPF) was defined as the ratio of brain tissue volume to that
of intracranial cavity volume to take into account inter-subject vari-
ability in head size. All masks of WMH were registered to the Mon-
treal Neurological Institute (MNI) template, first with a linear regis-
tration between FLAIR and T1 images (FLIRT) and then with a non-
linear registration between T1 images and the MNI template (FNIRT)
(http://www.fmrib.ox.ac.uk/fsl).

Spatially regularized PCA applied to aligned masks of WMH pro-
duced a sequence of Principal Components (PCs) explaining a de-
creasing proportion of the WMH variability. We chose to stop the
addition of new PC as soon as the relative improvement of the total
explained variance by the new PC was inferior to 5%.

Each principal component k is made of a PC map, i. e.the brain pat-
tern that is multiplied with individual WMH mask to produce a PC
score. The visualization PC map highlight the brain pattern that best
explains the spatial variability of WMH at step k. Individuals PC score
are used to explore associations with clinical or other phenotypes.

Thereafter, we tested the relationships between the different PC
scores and: (1) MRI markers of CADASIL, namely BPF, LLV , WMHV ,
and MBN , with systematic adjustment for age and sex; (2) cognitive
scores (MDRS, MMSE, TMTB) and disability scale (mRS), with sys-
tematic adjustment for age, sex, level of education, and MRI markers
in agreement with the literature in CADASIL (Chabriat et al., 2016;
Jouvent et al., 2016).
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Figure 5.12: Principal component maps and their relationships with other
MRI markers and clinical scores. Each box depicts one principal component.
The Top of the box shows the component map (the combination of voxels
that explains a part of the variability of WMH shape) and the Bottom the
corresponding component score.

5.3.3 Results

Main Sources of Variation of the Spatial Pattern of WMH

• PC1 explained 19.9% of the variability of WMH. PC1 map (Fig. 5.12)
has positive coefficients that spread all over WM capturing the
global extends of WMH (95% of correlation between PC1 score
and WMHv).

• PC2 explained 15% of the variability of WMH. PC2 map (Fig. 5.12)
has positive coefficients in pyramidal tract (PT) is and negative
coefficients in anterior temporal pole (ATP) and superior frontal
gyrus (SFG).

• PC3 explained 6% of the variability of WMH, PC2 map (Fig. 5.12)
has positive coefficients in PT and forceps minor (FM), and neg-
ative coefficients in ATP. Therefore, patients with WMH in PT
or/and FM will have PC3 a large positive, while patients with
WMH in ATP will result in a low negative PC3 score.
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Relationships between PC scores and other MRI markers and clinical
scores

• In addition to their strong correlation with WMHV , PC1 score
was positively and significantly associated with WMHV , LLV ,
MBN but not to BPF. PC1 score was positively and significantly
associated with clinical worsening of all scores MADRS, MMSe,
TMTB, mRS.

• PC2 score was positively and significantly associated with WMHV ,
MBN ad BPF. PC2 score was not found to significantly associ-
ated with any clinical score.

• PC3 score was positively and significantly associated with WMHV ,
MBN ad BPF. PC2 score was positively and significantly associ-
ated with clinical worsening of MADRS, MMSe, and mRS.

5.3.4 Conclusion

The results of the present study support the hypothesis that the whole
burden of WMH in CADASIL is, in fact, the combination of different
regional populations of WMH, with different mechanisms and clini-
cal consequences.

This analysis confirmed different and sometimes inverse relation-
ships between the local extent of WMH and clinical severity. PC3

shows that subcortical WMH (anterior temporal poles and superior
frontal gyri) are associated with milder forms of the disease, while
larger volumes of WMH in pyramidal tracts or in the forceps minor
are associated with more severe forms.





6
Conclusion and perspectives

6.1 Feedback on a fifteen years journey of de-
signing machine learning models for neu-
roimaging

High-dimensional (“large P small N”) data, such as neuroimaging
or OMICs, disrupts theory and our common understanding of data
analysis. Indeed our representation of clusters of points in space is
misleading since all points lie on the hull containing them. Thus,
whereas no one would have foreseen it 15 years ago, a consensus
emerged in the community that linear approaches were the most ef-
fective.

We found that simple `2-regularization has a broad stability range
and provides satisfying baseline performance on most datasets. Some
improvements may be obtained with univariate feature selection or
sparse `1-regularized models. However, those models’ outcome is
limited to understand the brain’s patterns that underpin the pre-
diction. We demonstrated, with several clinical applications, that TV
spatial regularization provides a qualitative breakthrough in terms of
support recovery of the predictive brain regions.

However, besides the `2 regularization, the model selection issue
undermines the potentiality of more sophisticated models. With a
large sample size (a few hundred), thanks to low variability, cross-
validated grid-search can efficiently be used. On a smaller sample
size (< 100), the model selection remains an open problem. We found
that in-sample bounds were promising axis to explore. Neverthe-
less, to be practically useful sophisticated models should be provided
with a “ready-to-use” reduced set possible parameters’ values for a
given data type. This practical consideration will reduce the variabil-
ity of possible solutions with a likely improvement of generalization.
More importantly, this will promote “good science” with sophisti-
cated models, preventing the overfitting risk of cherry-picking the
best model among many tested ones. We have to do this work con-
cerning our TV-based models. When it comes to application to real
data, providing instructions on how to use a sophisticated model is
as essential as the theoretical contribution behind it.
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6.2 Perspectives: leveraging psychiatric neuroimag-
ing biomarkers discovery

6.2.1 Toward precision psychiatry: datasets and strategies

Unlike many other medical specialties, psychiatry lacks objective quan-
titative measures (such as blood dosage) to guide clinicians in choos-
ing a therapeutic strategy. Brain anatomy is an imprint of the indi-
vidual’s genetic and environmental background. The identification
of prognostic brain signatures of clinical course or response to treat-
ment would pave the way for personalized medicine in psychiatry.

Disorder-specific retrospective and heterogeneous cohorts

Many international initiatives (schizconnect, abide, enigma) opened
the doors to such perspective by retrospectively aggregating existing
cohorts for each specific disorders. However, the considerable hetero-
geneity and cross-sectional designs of such datasets limit the scope
of clinical relevance to basic case/control prediction (Arbabshirani et
al., 2016; Rashid and Calhoun, 2020).

Large transnosographic heterogeneous cohorts

Another strategy has recently emerged on the constitution of very
large (N ≥ 10, 000) transnosographic cohorts (UK Biobank, HBN).
Those initiatives opened the way to new strategies: (i) investigation
of general variability; (ii) dimensional exploration across clinical cat-
egories according to the RDoC (Cuthbert and Insel, 2013) paradigm.
However, it is becoming clear that these cohorts have limited poten-
tial to investigate critical clinical problems. For example, HBN does
not contain a sufficient number of subjects nor the required clinical
assessments to learn a predictor of psychotic transition in at-risk sub-
jects.

Disorder-specific longitudinal and homogeneous cohorts

It is becoming strategic to gather new cohorts with improved clinical
homogeneity, including longitudinal follow-ups, to assess response
to treatment and transition to disease in patients at risk. In this aim, I
developed a network of clinicians bringing NeuroSPin to join two of
the main European projects:

1. PsyCARE, RHU, 2019-2024. Preventing psychosis through per-
sonalized care. PI: MO Krebs, WP leader: E Duchesnay, Team
budget: 715k€.

2. R-LiNK, H2020, 2018-2023. Optimizing response to Li treatment
through personalized evaluation of individuals with bipolar I

http://schizconnect.org/
http://fcon_1000.projects.nitrc.org/indi/abide
http://enigma.ini.usc.edu
https://www.ukbiobank.ac.uk/
https://healthybrainnetwork.org/
http://joliot.cea.fr/drf/joliot/en/Pages/research_entities/NeuroSpin.aspx
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disorder: the R-LiNK initiative. PI: F. Bellivier, WP leader: E
Duchesnay and leader for the CEA, Team budget: 800k€.

Note that the CATI neuroimaging infrastructure (funded by Neu-
roSPin and ICM) is a key asset to build such large multi-site cohorts.
Indeed, the CATI provides support for multi-center neuroimaging
studies (i.e., harmonization of MRI data acquisition, monitoring and
quality control, pre-processing, etc.). Such studies typically investi-
gate from a few hundred too few thousands deeply phenotyped par-
ticipants.

The high cost per patient (>10K€), however, limits the feasibility
to scale such cohorts up to the sample size (≈ 10, 000) necessary to
build predictive models that are sufficiently reproducible for regular
clinical application.

Indeed, the anatomo-functional variability is dominated by a natu-
ral interindividual variability that stems from demographical or pos-
sibly other unobserved (latent) variables such as age, sex, education
level, toxic/alcohol consumption, etc. The information specific to the
disorder is mixed up or hidden with non-specific information. For
example, response to an antidepressant (of patients with unipolar
depression) is associated with strategic atrophies related to the his-
tory of depression of a patient (Chen et al., 2007), which could be
used to identify a prognostic brain signature to antidepressants. Un-
fortunately, this signature is overlooked by numerous other factors
(age, alcohol) that are known to modify the brain but with a different
spatial pattern.

6.2.2 Perspectives: Transfer Learning from Big data to Small
Data

Therefore, a future methodological challenge is to bridge the gap be-
tween large heterogeneous cohorts and more relevant, but smaller,
longitudinal, and homogeneous cohorts. This goal can be addressed
using transfer learning strategies described in Fig. 6.1.

The idea, related to normative models proposed by Marquand et
al., 2016, is illustrated in the enclosed figure:

14

16

18

20

22

2426

28

kg/m²

2 5 10 15 20

10th
25th

50th

75th

90th

17
Age

Bo
dy

 M
as

s I
nd

ex

Reference
curve

Patient with
anorexia

Specific
variability

Let us suppose that we want
to identify individuals with
anorexia nervosa. The reference
curve of Body Mass Index (BMI)
as a function of the age will
leverage a supervised algorithm
to "dig" in a pathology-specific
direction (red arrow in the fig-
ure) by overcoming the general
variability. The reference curve
can learned by an "universal"
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Encoder Eu (Fig. 6.1, top) that maps subjects to a reduced latent space
zu.

We propose to pre-train the "universal" Encoder Eu of the general
brain variability on large transnosographic heterogeneous cohorts, see top
of Fig. 6.1.

Sex
Age

(1) Pretraining: Model the general variability

Large heterogeneous
cohort

(2) Transfer learning

Disorder-specific
cohort

Figure 6.1: Transfer Learning strategies: from large trans-diagnostic hetero-
geneous cohorts to small longitudinal cohorts.

Eu (typically convolutional neural network) will be trained using
a combination of a supervised multitask learning (of orthogonal tar-
gets, such as sex and age) and an additional decoder that will mini-
mize a reconstruction loss. Eu will be transfered to disorder-specific co-
horts to learn a second specific encoder Es to re-focus on the disorder-
related variability. A first solution (Fig. 6.1, bottom left), uses the
ImageNet-like pre-training paradigm, to fine-tune Eu to get Es. In
a second approach (Fig. 6.1, bottom right), a "frozen" Eu will force a
second specific encoder Es to focus its latent space zs toward disorder-
specific variability (e.g., Zheng and Sun, 2019).
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