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DCU Teams Overview

I Meta information

I DCU-Alignment: alignment information
I DCU-QE: quality information
I DCU-DA: domain ID information
I DCU-NPLM: latent variable information
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Our Strategies
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System Combination Overview

I System combination [Matusov et al., 05; Rosti et al., 07]

I We focus on three technical topics

1. Minimum-Bayes Risk (MBR) decoder (with MERT tuning)
2. Monolingual word aligner
3. Monotonic (consensus) decoder (with MERT tuning)
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System Combination Overview

Input 1 they are normally on a week .
Input 2 these are normally made in a week .
Input 3 este himself go normally in a week .
Input 4 these do usually in a week .

⇓ 1. MBR decoding

Backbone(2) these are normally made in a week .
⇓ 2. monolingual word alignment

Backbone(2) these are normally made in a week .
hyp(1) theyS are normally *****D onS a week .
hyp(3) esteS himselfS goS normallyS in a week .
hyp(4) these *****D doS usuallyS in a week .

⇓ 3. monotonic consensus decoding

Output these are normally ***** in a week .
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1. MBR Decoding

1. Given MT outputs, choose 1 sentence.

ÊMBR
best = argminE ′∈ER(E ′)

= argminE ′∈E

∑

E ′∈EE

L(E ,E ′)P(E |F )

= argminE ′∈E

∑

E ′∈EE

(1 − BLEUE (E ′))P(E |F )

= argminE ′∈E








1 −









BE1
(E1) BE2

(E1) BE3
(E1) BE4

(E1)
BE1

(E2) BE2
(E2) BE3

(E2) BE4
(E2)

. . . . . .

BE1
(E4) BE2

(E4) BE3
(E4) BE4

(E4)

























P(E1|F )
P(E2|F )
P(E3|F )
P(E4|F )









6 / 21



1. MBR Decoding

Input 1 they are normally on a week .
Input 2 these are normally made in a week .
Input 3 este himself go normally in a week .
Input 4 these do usually in a week .

= argmin
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= (Input2)

Backbone(2) these are normally made in a week .

7 / 21



2. Monolingual Word Alignment

I TER-based monolingual word alignment

I Same words in different sentence are aligned
I Proceeded in a pairwise manner: Input 1 and backbone, Input

3 and backbone, Input 4 and backbone.

Backbone(2) these are normally made in a week .
hyp(1) theyS are normally *****D onS a week .
Backbone(2) these are normally made in a week .
hyp(3) esteS himselfS goS normallyS in a week .
Backbone(2) these are normally made in a week .
hyp(4) these *****D doS usuallyS in a week .
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3. Monotonic Consensus Decoding

I Monotonic consensus decoding is limited version of MAP decoding

I monotonic (position dependent)
I phrase selection depends on the position (local TMs + global

LM)

ebest = arg max
e

I
∏

i=1

φ(i |ēi )pLM(e)

= arg max
e

{φ(1|these)φ(2|are)φ(3|normally)φ(4|∅)φ(5|in)

φ(6|a)φ(7|week)pLM(e), . . .}

= these are normally in a week (1)

1 ||| these ||| 0.50 2 ||| are ||| 0.50 3 ||| normally ||| 0.50
1 ||| they ||| 0.25 2 ||| himself ||| 0.25 ...
1 ||| este ||| 0.25 2 ||| ∅ ||| 0.25 ...
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Objective

I Meta information

I Alignment information

I ML4HMT dataset includes alignment information when MT systems
decode.

I Usual monolingual alignment in system combination do not use
such external alignment information.
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Standard System Combination Procedures

I Procedures: For given set of MT outputs,

1. (Standard approach) Choose backbone by a MBR decoder
from MT outputs E .

ÊMBR
best = argminE ′∈ER(E ′)

= argminE ′∈EH

∑

E ′∈EE

L(E ,E ′)P(E |F ) (2)

= argmaxE ′∈EH

∑

E ′∈EE

BLEUE (E ′)P(E |F ) (3)

2. Monolingual word alignment between the backbone and
translation outputs in a pairwise manner(This becomes a
confusion network).

I TER alignment [Sim et al., 06]
I IHMM alignment [He et al., 08]

3. Run the (monotonic) consensus decoding algorithm to choose
the best path in the confusion network.
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Our System Combination Procedures

I Procedures: For given set of MT outputs,

1. (Standard approach) Choose backbone by a MBR decoder
from MT outputs E .

ÊMBR
best = argminE ′∈ER(E ′)

= argminE ′∈EH

∑

E ′∈EE

L(E ,E ′)P(E |F ) (4)

= argmaxE ′∈EH

∑

E ′∈EE

BLEUE (E ′)P(E |F ) (5)

2. Monolingual word alignment with prior knowledge (about
alignment links) between the backbone and translation outputs
in a pairwise manner (This becomes a confusion network).

3. Run the (monotonic) consensus decoding algorithm to choose
the best path in the confusion network.
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IHMM Alignment [He et al., 08]

I Same as conventional HMM alignment [Vogel et al., 96] except

I Word semantic similarity and word surface similarity

I word semantic similarity: source word seq = hidden word seq

p(e′j |ei ) =

K
∑

k=0

p(fk |ei )p(e′j |fk , ei ) ≈
K

∑

k=0

p(fk |ei )p(e′j |fk)

I exact match, longest matched prefix, longest common
subsequences

I “week” and “week” (exact match).
I “week” and “weeks” (longest matched prefix).
I “week” and “biweekly” (longest common subsequences)

I Distance-based distortion penalty.

15 / 21



Alignment Bias

I In (monotonic) consensus decoding,

I big weight for Lucy alignment and
I low weight for conflicting alignment with Lucy.

I This can be expressed as

p(Eψ) = θψ logp(Eψ|F ) (6)

where ψ = 1, . . . ,Nnodes denotes the current node at which the
beam search arrived. θψ > 1 if a current node is Lucy alignment
and θψ = 1 if a current node is not Lucy alignment.
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Lucy Backbone

I We used the Lucy backbone since it seems better than other
backbone.

Devset(1000) Testset(3003)

TER Backbone 8.1168 0.3351 7.1092 0.2596

Lucy Backbone 8.1328 0.3376 7.4546 0.2607

Table: TER Backbone selection results.
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Extra Alignment Information Experiments

θψ Devset(1000) Testset(3003)
NIST BLEU NIST BLEU

1 8.1328 0.3376 7.4546 0.2607
1.2 8.1179 0.3355 7.2109 0.2597
1.5 8.1171 0.3355 7.4512 0.2578
2 8.1252 0.3360 7.4532 0.2558
4 8.1180 0.3354 7.3540 0.2569
10 8.1190 0.3354 7.1026 0.2557

Table: The Lucy backbone with tuning of θψ.
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Discussion: HMM-MAP (Bayesian HMM) Alignment

I Hidden Markov Model

p(s1:T , y1:T ) = p(s1)p(y1|s1)
T

∏

t=2

p(st |st−1)p(yt |st) (7)

I p(st |st−1): transition matrix
I p(yt |st): emission matrix

I HMM-MAP (Bayesian HMM)

I Prior on transition matrix and emission matrix

I IHMM-MAP

I Prior on transition matrix and emission matrix
I Word semantic similarity and word surface similarity
I Distance-based distortion penalty
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Conclusion

I We focus on adding extra alignment information on consensus
decoding.

I Our results show that with choosing Lucy, which is an RBMT
system, as a backbone the result is slightly better (0.11%
improvment by BLEU) than the traditional TER backbone selection
method.

I Extra alignment information we added in the decoding part does not
improve the performance.
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