

Sentence-Level Quality Estimation for MT System Combination

Tsuyoshi Okita, Raphaël Rubino, Josef van Genabith Dublin City University

in City University University College Dubl

Introduction

Quality Estimation for System Combination

Sentence Level QE Features Extraction TER Estimation

System Combination

Standard System Combination QE-based Backbone Selection

Results and Discussion

Conclusion

Introduction

- Our approach: sentence-level Quality Estimation (QE) for system combination
- Two main steps
 - 1. Estimate sentence-level quality score for the 4 MT systems
 - 2. Pick the best sentence and use it as a backbone for system combination
- Two systems submitted
 - 1. Sentence-level system combination based on QE
 - 2. Confusion network based system combination

Introduction – Quality Estimation for MT

- How to estimate the translation quality when no references are available?
- ► First work at the word and sentence levels [?, ?]
- ► More recently, WMT12 shared task on QE [?]
- State-of-the-art approach based on feature extraction and machine learning.

Introduction

Quality Estimation for System Combination

Sentence Level QE Features Extraction TER Estimation

System Combination

Standard System Combination QE-based Backbone Selection

Results and Discussion

Conclusion

Sentence Level QE

- The aim is to estimate sentence-level TER scores for the 4 systems outputs
- Train set used to build regression model, TER estimation on test set
- Different features are extracted from the source and target sentence pairs
- We do not use provided annotations
- SVM used: ϵ -SVR with a Radial Basis Function kernel

Features Extraction – Adequacy and fluency

From the source and target sentences, we extract

- Surface features: sentence length, words length, punctuation, etc.
- Source and target surface features ratio
- Language model features: *n*-gram log-probability, perplexity
- Edit rate between the 4 MT outputs
- Two feature sets are built
 - R1 constrained to provided data, contains target LM features and edit rates

7 / 20

DCI

▶ R2 unconstrained, contains all the features

Features Extraction – MT Output Edit Rate

For each MT system output, measure the edit rate with the three other systems' output.

System 1	Surprisingly, has checked that the new councillors
	almost do not comprise these known concepts.
System 2	Surprisingly, it has been proved that the new town
	councilors do almost not understand those
	known concepts.

Ins	Del	Sub	Shft	WdSh	NumEr	NumWd	TER
3	0	4	1	1	8.0	14.0	57.1

_

TER Estimation

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |ref_i - pred_i|$$
 $RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (ref_i - pred_i)^2}$

	system 1		system 2		system 3		system 4	
	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE
R1	0.19	0.26	0.21	0.29	0.17	0.24	0.18	0.25
R2	0.20	0.26	0.21	0.29	0.21	0.28	0.20	0.26

Table: Error scores of the QE model when predicting TER scores at the sentence level on the test set for the four MT systems.

9 / 20

Introduction

Quality Estimation for System Combination

Features Extraction TER Estimation

System Combination

Standard System Combination QE-based Backbone Selection

Results and Discussion

Conclusion

10 / 20

Standard System Combination Procedures (1)

- Procedures: For given set of MT outputs,
 - 1. (Standard approach) Choose backbone by a MBR decoder from MT outputs $\ensuremath{\mathcal{E}}.$

$$\begin{split} \hat{E}_{best}^{MBR} &= \operatorname{argmin}_{E' \in \mathcal{E}} R(E') \\ &= \operatorname{argmin}_{E' \in \mathcal{E}_H} \sum_{E' \in \mathcal{E}_E} L(E, E') P(E|F) \quad (1) \\ &= \operatorname{argmax}_{E' \in \mathcal{E}_H} \sum_{E' \in \mathcal{E}_E} BLEU_E(E') P(E|F) \quad (2) \end{split}$$

- 2. Monolingual word alignment between the backbone and translation outputs in a pairwise manner (This becomes a confusion network).
- 3. Run the (monotonic) consensus decoding algorithm to choose the best path in the confusion network.

Standard System Combination Procedures (2)

				segment 3				
Input 1		they	are normal	ly on a weel	κ.			
Input 2		these	e are norma	lly made in	a week .			
Input 3		este	himself go	normally in	a week .			
Input 4		these	e do usually	in a week .				
Input 5		they	are normal	ly in one we	ek.			
Backbone(2	2)	these are normally made in a week .						
Backbone(2)	t	hese	are	normally	made	in	а	week .
hyp(1)	t	hey <i>s</i>	are	normally	*****D	on _S	а	week .
hyp(3)	6	este _S	himself _S	gos	normally _S	in	а	week .
hyp(4)	t	hese	*****D	do <i>s</i>	usually _S	in	а	week .
hyp(5)	t	hey <i>s</i>	are	normally	*****D	in	one _S	week .
Output	t	hese	are	normally	****	in	а	week .

<u>UC</u>D

DCU

Our Procedures of System Combination

Procedures: For given set of MT outputs,

1. Select backbone by QE.

$$\hat{E}_{best}^{QE} = \operatorname{argmax}_{E' \in \mathcal{E}} QE(E')$$

- 2. Monolingual word alignment between the backbone and translation outputs in a pairwise manner (This becomes a confusion network).
- 3. Run the (monotonic) consensus decoding algorithm to choose the best path in the confusion network.

Introduction

Quality Estimation for System Combination

Sentence Level QE Features Extraction TER Estimation

System Combination

Standard System Combination QE-based Backbone Selection

Results and Discussion

Conclusion

Results

	NIST	BLEU	METEOR	WER	PER
s1	6.50	0.225	0.5459	64.24	49.98
s2	6.93	0.250	0.5853	62.92	48.01
s3	7.40	0.245	0.5545	58.07	44.02
s4	7.21	0.253	0.5597	59.39	44.52
	System	combinati	on without QE	(standar	d)
sys	7.68	0.260	0.5644	56.24	41.54
	System of	combinatic	on with QE (1s	t algorith	m)
R1	7.68	0.262	0.5643	56.00	41.52
R2	7.51	0.260	0.5661	58.27	43.10
	Backb	one Perfo	rmance (2nd A	lgorithm)	
R1	7.46	0.250	0.5536	57.68	43.38
R2	7.48	0.253	0.5582	57.76	43.28

15 / 20

* = *

DEU

Discussion (1)

	NIST	BLEU	METEOR	WER	PER
avg. TER	7.62	0.264	0.5653	56.40	41.61
s2 backbone	7.64	0.265	0.5607	56.01	42.01

Table: This table shows the performance when the backbone was selected by average TER and by one of the good backbone.

Discussion (2)

	System Combination TER Degradation (Case A)
source	"Me voy a tener que apuntar a un curso de idiomas", bromea.
QE	'I am going to have to point to a language course "joke.
comb	I am going to have to point to a of course ", kids.
ref	"I'll have to get myself a language course," he quips.
	System Combination TER Improvement (Case B)
source	Sorprendentemente, se ha comprobado que los nuevos concejales
	casi no comprenden esos conocidos conceptos.
QE	Surprisingly, it appears that the new councillors almost no
	known understand these concepts.
comb	Surprisingly, it appears that the new councillors almost do
	known understand these concepts.
ref	Surprisingly, it turned out that the new council members do
	not understand the well-known concepts.

7 / 20

.

Introduction

Quality Estimation for System Combination

Sentence Level QE Features Extraction TER Estimation

System Combination

Standard System Combination QE-based Backbone Selection

Results and Discussion

Conclusion

18 / 20

Conclusions

- We presents two methods to use QE method.
 - for backbone selection in system combination.(1st algorithm)
 - for selection of sentence among translation outputs. (2nd algorithm)
- 1st algorithm
 - improvement of 0.89 BLEU points absolute compared to the best single system
 - 0.20 BLEU points absolute compared to the standard system combination strategy
- 2nd algorithm: lost of 0.30 BLEU points absolute compared to the best single system.
- > At first sight, our strategy seemed to work quite well.

Acknowledgement

Thank you for your attention.

- This research is supported by the the 7th Framework Programme and the ICT Policy Support Programme of the European Commission through the T4ME project (Grant agreement No. 249119).
- This research is supported by the Science Foundation Ireland (Grant 07/CE/I1142) as part of the Centre for Next Generation Localisation at Dublin City University.

