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Motivation
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Machine Translation

‣Machine translation is a complex problem

‣ Several paradigms co-exist, each having 
individual strengths and weaknesses, e.g.:

‣ Statistical Machine Translation (SMT)

‣ Rule-based Machine Translation (RBMT)

‣ Possible solution: Hybrid Machine Translation
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Hybrid MT

‣ Focuses on creation of  combined translations

‣Assumes that systems have individual, often 
complementary, strengths and weaknesses

‣ Clever combination of  translations should 
result in an improved translation

‣ML4HMT-11/-12 specifically investigate this :)
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Oracle Scores
‣Oracle experiments with 

WMT’11 translation data

‣Good translations found
for all translation systems

‣ Proposed approach better 
than combo systems

‣ Improvements regardless 
of  specific language pair
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MT + Machine Learning

‣MT systems use a lot of  heterogeneous features

‣ Simple scores, probabilities, or even parse trees

‣Very difficult to intuitively understand systems

‣Machine Learning techniques can help here
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Methodology
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Requirements

‣Mechanism to select locally best translation

‣ Total order on translation output

‣ Feature vectors modeling comparison

‣Definition of  a suitable set of  features

‣ Training of  a SVM-based classification model

‣ System combination with conflict resolution

15

C. Federmann • System Combination Using Joint, Binarised Feature Vectors • ML4HMT-12



Methodology

‣ n translations from several, black-box systems

‣ Training data includes source text and reference

‣Decompose into pairwise A, B comparisons

‣ Round-robin tournament for sentence selection
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Total Order

‣ Translation quality estimated using a
multi-level, total order ord(A, B)

‣ Preference for sentence-based scores: Meteor

‣ Fallback to corpus-based metrics Meteor,
NIST and BLEU, if  necessary

‣Extension with human judgment possible
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“Classical” Features

‣ number of  target tokens, parse tree nodes, and 
parse tree depth;

‣ ratio of  target/source tokens, parse tree nodes, 
and parse tree depth;

‣ n-gram score for n-gram order n ∈ {1, ..., 5};

‣ perplexity for n-gram order n ∈{1, ..., 5}.
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Individual Feature Vectors
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While both the BLEU and the NIST scores are designed to have a high correlation with judgements
from manual evaluation on the corpus level, the Meteor metric can also be used to meaningfully
compare translation output on the level of individual sentences. We make use of this property when
defining our order ord(A, B) on translations, as described in (Federmann, 2012c).

3.3 Using Joint, Binarised Feature Vectors
Many Machine-Learning-based approaches for system combination use classifiers to estimate the
quality of or confidence in an individual translation output and compare it to other translations
afterwards. This means that the feature vector for a given translation A is computed solely on
information available from features of A, not considering any other translation B as additional source
of information, or formally:

vec
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(A) def=

0
BB@

f1(A)
...

f

n

(A)

1
CCA 2 R

n (1)

We aim to explicitly model pairwise feature comparisons of translations A, B, storing binary values
to model if a given feature value f

x

(A) for system A is better or worse than corresponding feature
value f

x

(B) for the competing system B. Effectively, this means that, in our approach, we compare
translations directly when constructing the set of training instances. Equation 2 shows the formal
definition of a so-called joint, binarised feature vector:

vec
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(A, B) def=

0
BB@

f1(A)> f1(B)
...

f

n

(A)> f
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(B)

1
CCA 2 B

n (2)

The reason to store binary features values f

x

2 B lies in the fact that these can be processed more
efficiently during SVM training. Also, previous experiments (Federmann, 2012a; Hunsicker et al.,
2012) have shown that the usage of actual feature values f

x

2 R in the feature vector does not
give any additional benefit so that we decided to switch to binary notation instead1. Note that the
order in which features for translations A, B are compared does not strictly matter. For the sake of
consistency, we have decided to compare feature values using simple A> B operations, leaving the
actual interpretation of these values or their polarity to the Machine Learning toolkit.

3.4 Creating Translations Using a Classifier
Given an SVM classifier trained on joint, binary feature vectors as previously described, we can
now create hybrid translation output. A schematic overview is depicted in Figure 1. We compute
the best translation for each sentence in the test set, based on the +1/�1 output of the classifier for
a total of n(n�1)

2
unique comparisons.

For each sentence, we create a lookup table that stores for some system X the set of systems which
were outperformed by X according to our classifier. To do so, we consider each pairwise comparison
of systems A, B and, for each of these, compute the corresponding feature vector which is then

1Also note that by using, e.g., combined feature vectors, which are comprised of feature values f1–n

(A) followed by
features f1–n

(B), the amount of training data required for meaningful training of a machine learning classifier would need to
be increased.

‣Quality estimation for MT usually based on 
feature vectors for single systems

‣ Classifier output is then combined in some way
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Joint, Binarised Feature Vectors

‣We use a different strategy, defining feature 
vectors which explicitly compare two systems

‣ Feature values are now compared as “A>B?”
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Selection Mechanism
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 ord(X, Y) can only
be approximated!



translation 1 translation 1 translation 1

???

Case 1 - single winner

ord(sysA, sysB) = +1
ord(sysA, sysC) = +1
ord(sysB, sysC) = +1
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translation 1 translation 1 translation 1

???

Case 1 - single winner

wins(sysA) = 2
wins(sysB) = 1
wins(sysC) = 0

system with most
+1 rankings wins
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translation 1

Case 1 - single winner
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translation 1 translation 1 translation 1

???

Case 2 - multiple winners

ord(sysA, sysB) = +1
ord(sysA, sysC) = -1
ord(sysB, sysC) = +1

no single-best system
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translation 1 translation 1 translation 1

???

Case 2 - multiple winners

wins(sysA) = 1
wins(sysB) = 1
wins(sysC) = 1

 ord(X, Y) definition 
guarantees winner
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translation 1 translation 1 translation 1

???

Case 2 - multiple winners

wins(sysA) = 1
wins(sysB) = 1
wins(sysC) = 1

except in case of 
“circular” results
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translation 1 translation 1 translation 1

translation 1

Case 2 - multiple winners

fallback to using best 
system from training
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Experiments
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Setup

‣ Participation in ML4HMT-12 shared task

‣ Submission for Spanish→English; however, our 
approach is language independent and should 
also work for Chinese→English

‣ Systems: n=4 but has already been used for n>10
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SVM Optimisation
‣We used libSVM for training, 5-fold cross 

validation to optimise parameters C and γ.

‣Experimented with 1) linear, 2) polynomial, and 
3) sigmoid kernel setups.

‣We ended up using a sigmoid kernel (C = 2, γ = 0.015625) 
and observed a prediction rate of  68.9608% on 
the training instances.
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Results
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Automatic Metrics

‣ Promising results wrt. small set of  features

‣ Spanish→English

‣ Meteor score: 0.323 • Best score observed!

‣ NIST score: 7.283 • For some reason very bad

‣ BLEU score: 0.257  • Not optimised for BLEU
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System Contribution

‣Another interesting aspect wrt. our approach

‣ Compare expected and actual contribution

‣ Strong preference: Moses SMT + Lucy RBMT

‣ Classifier able to make use of  good translations 
from systems performing bad on corpus level
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Conclusion

35

C. Federmann • System Combination Using Joint, Binarised Feature Vectors • ML4HMT-12



Findings

‣Defined a total order on translation output

‣ Joint, binarised feature vectors for comparison

‣Algorithm for sentence-based combination

‣ Successfully applied our Machine Learning 
framework to the ML4HMT-12 shared task
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Questions?
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