
DFKI System Combination 
using Syntactic Information

Christian Federmann, Sabine Hunsicker, Yu Chen, Rui Wang
DFKI Language Technology Lab

1

Friday, November 18, 11



Overview

‣ Introduction & Motivation

‣ System Combination Approach

‣ Experiments

‣Conclusion & Outlook

‣Questions & Answers

2

Friday, November 18, 11



Introduction
& Motivation

3

Friday, November 18, 11



Introduction

‣We report on research conducted within the 
EuroMatrixPlus project

‣ EM+ aims at “Bringing Machine Translation for 
European Languages to the User”

‣WP2 working on improved hybrid machine 
translation systems

‣Work based on the Lucy RBMT system
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Motivation

‣Underlying assumption: different machine 
translation paradigms have differing strengths 
and weaknesses;

‣ often, these differences are complementary, 
so a clever combination of both techniques 
should allow to create better translations

‣ hence → research on hybrid MT systems
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DFKI’s Hybrid History

‣ 2009－Shallow hybrid MT system based on 

substitution of NPs into RBMT sentences

‣ 2010－Statistical System Combination and 

improved shallow system (more factors)

‣ 2011－Deeper integration by adding a 

stochastic parse selection component
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System Combination Approach
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Basic Idea

‣ Extending previous work on constituent 
substitution for hybrid MT

‣One system chosen as ‘translation template’

‣ Remaining systems provide alternatives

‣ Substitution based on decision factors

‣ Factors are based on syntactic features
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Finding the right template...

‣ML4HMT shared task data contains 5 systems

‣ Level of annotation details varies greatly

‣ Makes it difficult to equally use the data

‣We decided to use Lucy RBMT as template

‣ Rule-based systems create structurally sound sentences

‣ Lucy provides parse tree information

‣ (plus) we already worked with Lucy before...
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Reconstructing Parse Trees

‣ML4HMT shared task data provides flattened 
parse trees

‣We derived an algorithm to approximate the 
original parse trees

‣ Example: “la inflación europea”

‣ Learned heuristics regarding valid pos 
categories, e.g., NO can be NST or PRN
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Flattened Parse Trees
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Substitution Process

1.Compute approximated parse trees

2.Find interesting phrases (noun, verb, adjectives)

‣ we consider noun, verb, adjective phrases

‣ word alignment is computed using GIZA++

3.Each candidate translation is evaluated by 
some decision factors
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Decision Factors

‣Matching POS? only substitute if part-of-speech matches

‣Majority Vote prefer more frequent translation candidates

‣Context part-of-speech matching for left/right context

‣ Language Model fragments and left/right context scored by LM
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Experiments
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Overview

‣ Training Data

‣ Corpus: ML4HMT shared task data

‣ Domain: News text

‣ Size:

‣ 1,025 sentences (development)

‣ 1,026 sentences (test set)

‣ Translation direction: Spanish → English
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Experimental Setup

‣XML parser trained on development set

‣We defined several system configurations

‣ Focus on comparison to Lucy baseline

‣ RBMT systems usually perform bad in terms of BLEU

‣ our approach cannot easily be tuned with BLEU

‣Manual inspection of combination results
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Feature Configurations

Configuration Matching POS? Context?

strict yes yes

pos yes no

context no yes

relaxed no no
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Automated Scores

Configuration NIST BLEU

baseline 5.5068 0.1516

strict 5.0937 0.1532

pos 5.0962 0.1534

context 5.0984 0.1535

relaxed 5.0932 0.1535
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Substitution Statistics

Configuration # of substitutions

strict 412

pos 1,121

context 458

relaxed 1,317
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Hmmm...
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Evaluation

‣All combinations outperformed the baseline

‣Differences in BLEU were not conclusive

‣Hence, we conducted a manual evaluation

‣ context disallows, e.g.,“it is saved” → “it is saves”

‣ context implicitly includes part-of-speech

‣ relaxed leads to many useless substitutions

‣We finally submitted the context translations
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Conclusion & Outlook
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Conclusion

‣ML4HMT shared task data allowed us to fuse 
translation output from different MT ‘classes’

‣ Single word substitution gave improvements

‣Good syntactic structure of RBMT ‘skeleton’ 
was retained

‣ Lexical semantics improved by substitution
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Outlook

‣ Investigate the contribution the different 
source systems have

‣ Extend the substitution to entire phrases and 
multi-word expressions

‣ Learn substitution rules using ML techniques

‣ Find ways of avoiding substitution errors

‣Use parser to allow other ‘skeleton’ systems
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Thank you!
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Questions & Answers
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