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Abstract

From a game of darts to neurorehabilitation, the ability to explore and fine tune our move-

ments is critical for success. Past work has shown that exploratory motor behaviour in

response to reinforcement (reward) feedback is closely linked with the basal ganglia, while

movement corrections in response to error feedback is commonly attributed to the cerebel-

lum. While our past work has shown these processes are dissociable during adaptation, it is

unknown how they uniquely impact exploratory behaviour. Moreover, converging neuroana-

tomical evidence shows direct and indirect connections between the basal ganglia and cere-

bellum, suggesting that there is an interaction between reinforcement-based and error-

based neural processes. Here we examine the unique roles and interaction between rein-

forcement-based and error-based processes on sensorimotor exploration in a neurotypical

population. We also recruited individuals with Parkinson’s disease to gain mechanistic

insight into the role of the basal ganglia and associated reinforcement pathways in sensori-

motor exploration. Across three reaching experiments, participants were given either rein-

forcement feedback, error feedback, or simultaneously both reinforcement & error feedback

during a sensorimotor task that encouraged exploration. Our reaching results, a re-analysis

of a previous gait experiment, and our model suggests that in isolation, reinforcement-

based and error-based processes respectively boost and suppress exploration. When act-

ing in concert, we found that reinforcement-based and error-based processes interact by

mutually opposing one another. Finally, we found that those with Parkinson’s disease had

decreased exploration when receiving reinforcement feedback, supporting the notion that
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compromised reinforcement-based processes reduces the ability to explore new motor

actions. Understanding the unique and interacting roles of reinforcement-based and error-

based processes may help to inform neurorehabilitation paradigms where it is important to

discover new and successful motor actions.

Author summary

Reinforcement-based and error-based processes play a pivotal role in regulating our

movements. Converging neuroanatomical evidence show interconnected reinforcement-

based and error-based neural circuits. Yet is unclear how reinforcement-based and error-

based processes interact to influence sensorimotor behavior. In our past work we showed

that reinforcement-based and error-based processes are dissociable. Building on this

work, here we show that these process can also interact to influence trial-by-trial sensori-

motor behaviour.

Introduction

From a toddler taking their first steps to an adult relearning a sensorimotor skill following a

neurological disease, exploration is critical to discovering successful motor actions [1, 2]. We

often receive reinforcement feedback (knowledge that an action was successful) or error feed-

back (the direction and magnitude of a movement error) for our actions. Reinforcement feed-

back can promote exploration by encouraging new actions to find success [3–7]. Conversely,

error feedback is used to make corrective motor actions that improve accuracy [8–12], which

may impact exploratory behaviour [8]. Currently it is unclear how reinforcement-based and

error-based processes uniquely contribute and or interact to influence sensorimotor explora-

tion. Understanding the processes that underpin sensorimotor exploration may lead to more

informed neurorehabilitation paradigms that aim to discover new and successful functional

motor skills [1, 2, 13, 14].

Exploratory behaviour in songbirds has been linked to positive reinforcement (i.e., reward)

and the basal ganglia [15–17]. During human reaching, we recently showed that reinforce-

ment-based processes actively regulate sensorimotor exploration along task-redundant dimen-

sions [3]. In this paradigm, participants were told to reach and stop within a long rectangular

target. The major axis of the target was task-redundant and encouraged exploration. Con-

versely, the minor axis of the target was task-relevant. Participants received binary positive

reinforcement feedback when they successfully stopped within the target. Investigating explo-

ration along task-redundant dimensions can be useful to isolate exploratory mechanisms. We

quantified exploratory random walk behaviour along the task-redundant dimension using lag-

1 autocorrelation, which is ubiquitously seen in both reaching [3, 8, 18, 19] and gait [20, 21]

behaviour. Another metric that has been used to quantify exploration is the variability of the

trial-by-trial change in reach position [3, 4, 6, 18, 22–24]. Work by Pekny and colleagues

(2015) showed that this trial-by-trial variability increases following an unsuccessful movement.

Further, Pekny and colleagues (2015) showed that this modulation of trial-by-trial variability is

reduced in individuals with Parkinson’s disease. Parkinson’s disease is caused by neuronal

death in the basal ganglia that impacts reinforcement (reward) processes and associated path-

ways [25, 26]. Thus, using a clinical model of Parkinson’s disease is a powerful way to gain
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mechanistic insight into the role of reinforcement-based neural processes on exploratory

motor behaviour.

Just as exploration in response to reinforcement-based feedback is linked to the basal gan-

glia, movement corrections in response to error-based feedback are predominantly attributed

to the cerebellum [27–31]. A greater magnitude of movement variability is commonly

observed along task-redundant compared to task-relevant dimensions [8, 32–37]. Elegant

empirical and theoretical work by van Beers and colleagues (2013) investigated exploratory

random walk behaviour along task-redundant dimensions compared to task-relevant dimen-

sions. In their task, participants were told to reach and stop close to a thin line target. In this

paradigm, the major axis of the target was task-redundant, while the minor axis of the target

was task-relevant. Participants received error feedback each trial in the form of a visual cursor

at their final hand position. Van Beers and colleagues observed greater lag-1 autocorrelation

along the task-redundant dimensions compared to the task-relevant dimension, indicating

heightened exploratory random walk behaviour. The authors attributed this to an accumula-

tion of planned noise during the planning stages of movement [38, 39] and a lack of error cor-

rection towards the center of the target. Thus, it is possible that exploratory behaviour can

arise passively through a lack of error-based processes correcting movement aim [8] and/or

reinforcement-based processes actively updating movement aim towards recently successful

actions [3].

There is converging neuroanatomical evidence suggesting that reinforcement-based and

error-based processes interact. The basal ganglia and cerebellum share direct connections with

one another [40–43], as well as interconnections to the same motor planning circuitries such

as the dorsal premotor [44] and prefrontal [45] cortices. Further, signatures of reward have

been found in the cerebellum [46, 47], and the cerebellum has been shown to directly modulate

dopaminergic activity [43]. While our past work has shown that these reinforcement-based

and error-based processes are dissociable during adaptation [48], it is unknown whether they

interact to influence sensorimotor behaviour.

Here we hypothesize that reinforcement-based processes boost exploratory behaviour by

updating movement aim towards a successful action, while error-based processes suppress

exploratory behaviour by correcting movement aim. When acting in concert, we hypothesize

these reinforcement-based and error-based processes will mutually oppose one another to

impact sensorimotor exploration. For all three experiments, we made a priori predictions with

a general model that incorporated both reinforcement-based and error-based mechanisms. In

Experiment 1, we investigated the individual roles of reinforcement-based and error-based

processes on sensorimotor exploration. We predicted that participants would display greater

exploratory random walk behaviour when receiving reinforcement feedback compared to

error feedback. Our findings in reaching during Experiment 1 generalized to walking, which

we found by re-analyzing a recent gait study [49]. In Experiment 2, we replicated the results of

Experiment 1 while also investigating how reinforcement-based and error-based processes act

in concert to influence sensorimotor exploration. When given simultaneous reinforcement &

error feedback, we expected that exploratory random walk behaviour would be greater than

when given isolated error feedback but less than when given isolated reinforcement feedback.

In Experiment 3, we gained mechanistic insight into the role of reinforcement-based neural

processes in sensorimotor exploration by recruiting participants with Parkinson’s disease and

age-matched control participants. We predicted participants with Parkinson’s disease would

display less exploratory random walk behaviour when given reinforcement feedback compared

to age-matched control participants. We then found the best-fit model from nine different

plausible models, each testing different error correction mechanisms while including rein-

forcement-based terms from our previous work [3]. Taken together, our empirical results and
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modelling work suggest that reinforcement feedback boosts exploration and is causally linked

to the basal ganglia and associated reinforcement (reward) processes. Additionally, our results

suggest that error feedback suppresses exploration, while the interaction of reinforcement

feedback & error feedback interact to impact sensorimotor exploration.

Results

Experimental design

For all experiments, participants made targeted reaching movements in the horizontal plane

while holding the handle of a robotic manipulandum (Fig 1A, KINARM, BKIN Technologies,

Ontario, Canada). Images of the start position, target, and cursor were projected onto a sil-

vered mirror that occluded vision of the hand and arm. Participants began each trial by mov-

ing the handle of a robotic manipulandum to a start position. Participants were instructed to

reach and stop within a virtually displayed target, without vision of their hand. We recorded

the final hand position for each reach after participants stopped their hand within or near the

virtually displayed target. In Experiment 1 (Fig 1B), we investigated how reinforcement-based

and error-based processes differentially influence exploration along task-redundant dimen-

sions. We predicted that participants would display greater exploration when receiving rein-

forcement feedback compared to error feedback. Thirty-six young, neurotypical participants

performed 50 baseline, 200 experimental trials, 50 washout trials, and another 200 experimen-

tal trials.

During baseline and washout blocks, participants attempted to reach and stop within a

small white circle. Participants saw a small yellow cursor after stopping their hand within or

near the small white circle for the first 40 trials of baseline and washout. Participants received

no feedback for the last 10 trials of baseline and washout. Removing feedback for the last 10

during baseline allowed us to estimate trial-by-trial movement variability without the influence

of corrective actions.

During experimental trials, participants attempted to reach and stop within a large rectan-

gular target (Fig 1A). The major axis of the target was aligned with the movement extent. In

this task, the major axis represents the task-redundant dimension and encourages exploratory

behaviour. The minor axis of the target was scaled based on participant movement variability

during the last 10 trials of baseline [3, 18]. Scaling target width based on individual movement

variability ensured similar task difficulty across participants. Participants experience two con-

ditions: isolated reinforcement feedback and isolated error feedback. With reinforcement feed-

back, each time participants successfully stopped within the target they would receive a small

monetary reward, hear a pleasant sound, and see the target expand and change colour. Partici-

pants received no feedback if their final hand position was outside the target during the rein-

forcement feedback condition. With error feedback, a small yellow cursor would appear at the

participant’s final hand position. Condition order was counterbalanced.

In Experiment 2 (Fig 1C), we sought to replicate the results of Experiment 1 while also

investigating the interplay between reinforcement-based and error-based processes. As in

Experiment 1, we predicted that participants would display greater explorative behaviour

when receiving reinforcement feedback compared to error feedback. We also predicted that

participant explorative behaviour under reinforcement & error feedback would be greater

than isolated error feedback, but less than isolated reinforcement feedback. In Experiment 2,

thirty-six young neurotypical participants performed 50 baseline trials, 200 experimental trials,

50 washout trials, 200 experimental trials, 50 washout trials, and another 200 experimental tri-

als. Baseline and washout trials were identical to Experiment 1. Participants experienced three
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conditions: isolated reinforcement feedback, isolated error feedback, and simultaneous rein-

forcement & error feedback. Condition order was counterbalanced.

In Experiment 3 (Fig 1D), we sought to gain mechanistic insight into the role of the basal

ganglia in exploratory behaviour along task-redundant dimensions. We recruited participants

with Parkinson’s disease as a population with a known compromise to the basal ganglia, as

well as neurotypical age-matched control participants. Participants with Parkinson’s disease

Fig 1. Experimental design. In all experiments, participants grasped the handle of a robotic manipulandum and made

reaching movements in the horizontal plane. An LCD display projected images (start position, targets) onto a semi-

silvered mirror that occluded vision of the hand and upper arm. A) Participants were told to reach from a start

position (white circle) and stop within a target (white rectangle) that promoted exploration along the task-redundant

dimension. B) In Experiment 1, we investigated how reinforcement-based and error-based processes differentially

impact sensorimotor exploration. Participants experienced two conditions. In one condition, participants received

isolated reinforcement feedback (sound icon, blue) when their hand successfully stopped within the target. With

reinforcement feedback, participants heard a pleasant noise, the target turned blue, and they received a small monetary

reward. In the other condition, participants received isolated error feedback (eye icon, orange). With error feedback,

participants saw a cursor appear at their final hand position. C) In Experiment 2, we sought to replicate the results of

Experiment 1 while investigating how reinforcement-based and error-based processes interact during sensorimotor

exploration. Experiment 2 had three conditions: reinforcement feedback (blue), error feedback (orange), and

simultaneously both reinforcement & error feedback (pink). D) In Experiment 3, our goal was to gain mechanistic

insight into the role of the basal ganglia and associated reinforcement pathways on sensorimotor exploration. Those

with Parkinson’s disease have impaired reinforcement-based neural circuitry from neuronal death in the basal ganglia.

Thus, we recruited neurotypical age-matched control (light grey) participants and those with Parkinson’s disease (dark

grey). Participants in Experiment 3 also performed three conditions: reinforcement feedback (blue), error feedback

(orange), and reinforcement & error feedback (pink).

https://doi.org/10.1371/journal.pcbi.1012474.g001
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(N = 10, age: 68.4 ± 8.4 years) and neurotypical age-matched control participants (N = 12, age:

69.7 ± 6.9 years) performed three conditions: isolated reinforcement feedback, isolated error

feedback, and simultaneous reinforcement & error feedback. Participants performed 50 base-

line trials, 100 experimental trials, 50 washout trials, 100 experimental trials, 50 washout trials,

and another 100 experimental trials. Baseline and washout trials were identical to Experiment

1. Baseline movement variability was not significantly different between the Parkinson’s dis-

ease group and age-matched control group along either the minor (p = 0.82) or major

(p = 0.51) target axes. Trial count was reduced from Experiment 2 to minimize the potential

influence effects of fatigue for the older population. Condition order was randomized. We pre-

dicted that participants with Parkinson’s disease would display less explorative behaviour

when given reinforcement feedback compared to neurotypical age-matched controls.

A Priori model predictions

Previous work by van Beers and colleagues (2013) investigated exploratory random walk

behaviour along task-redundant dimensions. Random walk behaviour is a statistical character-

istic of time-series data that captures the temporal relationship between data points. In their

task, participants received error feedback while reaching to a long thin line target. The major

target axis corresponded to the task-redundant dimension while the minor axis corresponded

to the task-relevant dimension. Participants displayed greater random walk behaviour (lag-1

autocorrelation) along the task-redundant dimension compared to the task-relevant dimen-

sion. The authors attributed this finding to an accumulation of planned noise during the plan-

ning stages of movement [38, 39] and a lack of error corrections along the task-redundant

dimension. While the amount of planned movement variability resulting from planned noise

may be small on a single trial, in their model planned movement variability is added to the

intended movement aim on each trial. Thus, over many trials, planned movement variability

accumulates in the intended movement aim. The accumulation of this small amount of move-

ment variability over many trials, without any form of error-based correction, could result in a

large drift away from the original intended movement aim. However, it is likely that there is

some error correction along the largely task-redundant dimension of a target, particularly

along the edges of the target. Thus, the error signal participants use along a task-redundant

dimension remains unclear.

Classically, models of error-based learning correct to the center of the target [8, 10, 50–53].

However, when reaching towards a large target, it is unclear where an individual may aim. For

example, if someone is throwing a ball into a large pool, they do not necessarily need to aim

for the center of the pool. Rather, they could successfully throw the ball into the pool by aiming

somewhere between the center and the edge of the pool.

One potential error signal participants may use to update movement aim is the error

between the executed movement and their intended movement [54, 55]. To investigate the

error signal utilized along task-redundant dimensions, our general model considers both an

error signal relative to the target center (Xt − Tx) and an error signal to the intended movement

aim (Xt � Xaim
t ). As with our previous work [3], we modelled exploratory random walk behav-

iour with reinforcement feedback as a process of expanding movement variability after unsuc-

cessful actions, and utilizing knowledge of this exploratory movement variability to update

movement aim towards a recent success. Here, we developed a general model (Model 1) that

considers both reinforcement-based and error-based processes. We used the general model to

generate our a priori predictions (Fig 2). The general model simulates final hand position
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Fig 2. A priori model predictions. We generated theory-driven predictions for Experiments 1–3. Simulations of A-C) a single

individual from Experiment 1. D-F) Group behaviour using our general model (Model 1). A) Final hand positions from a

simulation of the reinforcement feedback (light grey) and error feedback (dark grey) conditions. Solid circles represent target hits

while open circles represent target misses. B) Here we show the final hand positions along the major target axis (y-axis) for the

reinforcement feedback (light grey) and error feedback (dark grey) conditions over trials (x-axis). C) When analyzing the lag-1

autocorrelation along the major axis, our model suggests greater lag-1 autocorrelation with reinforcement feedback (light grey)

compared to error feedback (dark grey). Note that a higher lag-1 autocorrelation corresponds to greater exploration [3], whereas a

lower lag-1 autocorrelation corresponds more with corrective actions [8]. We simulated 500 individuals for D) Experiment 1, E)

Experiment 2, and F) Experiment 3. D) Here we show the lag-1 autocorrelation along the major target axis (y-axis) for each condition

(x-axis) in Experiment 1 (parameters: σM,x = 0.37, σM,y = 0.49, σE,x = 0.38, σE,y = 0.88, αx = 0.99, αy = 0.99, βaim,x = 0.15, βtarget,x = 0.13,

βaim,y = 0.25, βtarget,y = 0.01). Our model suggests that reinforcement feedback (light grey) should yield greater lag-1 autocorrelations than

error feedback (dark grey). Greater lag-1 autocorrelations with reinforcement feedback compared to error feedback would suggest that

reinforcement-based processes boost exploration while error-based processes suppress exploration. E) Here we show the lag-1

autocorrelation along the major axis (y-axis) for each condition (x-axis) in Experiment 2. Using the same parameters our model suggests

that reinforcement feedback (light grey) should yield the largest lag-1 autocorrelations, error feedback (dark grey) should yield the lowest

lag-1 autocorrelations, and simultaneous reinforcement & error feedback should yield moderate lag-1 autocorrelations. A moderate level

of lag-1 autocorrelations would suggest that reinforcement-based and error-based processes interact by mutually opposing one another

during sensorimotor exploration. F) For Experiment 3, we modelled Parkinson’s disease participants (darker colours) by simply

reducing the model parameter associated with reinforcement feedback (αx = 0.5, αy = 0.5). Age-matched control predictions (light

colours) use the same model parameters as in Experiment 1 & 2. Our model would suggest that a deficit to reinforcement-based

processes (Parkinson’s) should yield lower lag-1 autocorrelations in the reinforcement and reinforcement & error conditions compared

to neurotypical age-matched controls. Box and whisker plots display the 25th, 50th, and 75th percentiles.

https://doi.org/10.1371/journal.pcbi.1012474.g002
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along the minor axis (Xt) and major axis (Yt) as

Xt ¼ Xaim
t þ �

M;x
t þ ð1 � rt� 1Þ�

E;x
t ð1AÞ

Yt ¼ Yaim
t þ �

M;y
t þ ð1 � rt� 1Þ�

E;y
t ð1BÞ

Xaim
tþ1
¼ Xaim

t þ rta
x½ð1 � rt� 1Þ�

E;x
t � � b

aim;x
ðXt � Xaim

t Þ � b
target;x
ðXt � TxÞ ð1CÞ

Yaim
tþ1
¼ Yaim

t þ rta
y½ð1 � rt� 1Þ�

E;y
t � � b

aim;y
ðYt � Yaim

t Þ � b
target;y
ðYt � TyÞ ð1DÞ

Final reach position on the current trial (Xt, Yt) is equal to the intended movement aim

(Xaim
t ;Yaim

t ) with additive Gaussian noise (�it � Nð0; s2
i Þ). Superscripts represent the source of

the variability: motor movement variability [56–58] (M) and exploratory movement variability

(E). Exploratory movement variability is added only if the previous trial was unsuccessful [3–

6] (rt−1 = 0). When given reinforcement feedback and the trial is successful (rt = 1), movement

aim is updated proportionally (α) to exploratory movement variability [3] if exploratory move-

ment variability was present (rt−1 = 0). This reinforcement-based process of increasing explor-

atory movement variability following a failure and updating movement aim following a

subsequent success boosts exploratory behaviour. For the general model, when provided error

feedback, movement aim is partially corrected towards the intended movement aim [54]

(βaim) and partially corrected towards the center of the target [8, 10, 11, 50–52] (βtarget). These

error-based corrections to movement aim may suppress exploratory behaviour.

Simulating individual behaviour

We used our general model (Model 1) to generate a priori predictions for all three experiments

(Fig 2). Model parameters for the general model used to generate our a priori predictions were

similar to our prior work on reinforcement-based random-walk behaviour and past work on

error-based random-walk behaviour [3, 8]. Fig 2A shows a simulation of an individual in the

reinforcement feedback condition and error feedback condition for Experiment 1. Fig 2B

shows the component of the final hand position along the major target axis for both the rein-

forcement feedback condition and error feedback condition. In Fig 2C, we used lag-1 autocor-

relation to quantify exploratory random walk behaviour along the major target axis for each

condition. A higher lag-1 autocorrelation indicates greater exploration of the task-redundant

dimension [3], while a lower lag-1 autocorrelation is associated with greater error corrections

[8]. Here, lag-1 autocorrelations reflect the relative contribution of exploration and corrective

actions along a continuum. For this simulated individual, we found a greater lag-1 autocorrela-

tion in the reinforcement feedback condition compared to the error feedback condition.

Simulating group behaviour

We used the general model (Model 1) to simulate 500 individuals in Experiment 1 (Fig 2D),

Experiment 2 (Fig 2E), and Experiment 3 (Fig 2F). The same set of model parameters were

used to generate a priori predictions of neurotypical populations in Experiment 1, Experi-

ment 2, and Experiment 3 (Age-Matched Control Participants). Critically, in Experiment 3

we wanted to capture how dysfunction in the basal ganglia, a brain region closely linked to

reinforcement feedback, influences reinforcement-based exploration. Thus, we lowered the

model parameter associated with reinforcement-based processes (α) to generate a priori
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predictions of participants with Parkinson’s disease. Lowering the parameter associated with

reinforcement-based movement updates will decrease exploratory behaviour.

In Experiment 1 (Fig 2D), our model predicts greater levels of lag-1 autocorrelation in the

reinforcement feedback condition compared to the error feedback condition. In Experiment

2 (Fig 2E), our model predicts the highest level of lag-1 autocorrelation in the reinforcement

feedback condition, the lowest level of lag-1 autocorrelation in the error feedback condition.

When given reinforcement & error feedback, our model predicts that lag-1 autocorrelations

will be greater than when given error feedback but less than when given reinforcement feed-

back. This moderate level of lag-1 autocorrelation is a result of the reinforcement-based move-

ment update and error-based correction acting in opposite directions. In Experiment 3 (Fig

2F), our model predicts that participants with Parkinson’s disease will display lower levels of

lag-1 autocorrelation compared to neurotypical age-matched controls for both the reinforce-

ment feedback condition and the reinforcement & error feedback condition.

Individual behaviour

In Experiment 1, we investigated how reinforcement-based and error-based processes differ-

entially influence exploration along task-redundant dimensions. Fig 3A shows final hand posi-

tions for a representative participant who experienced both the reinforcement feedback

condition and error feedback condition. For this particular individual, we saw greater

Fig 3. Individual behaviour for Experiment 1 and 2. A) Successful (solid circles) and unsuccessful (empty circles)

final hand positions for a representative participant in Experiment 1 that performed the reinforcement feedback

condition (blue) and error feedback condition (orange). B) Final hand position along the major target axis (y-axis) for

every trial (x-axis). C) We used lag-1 autocorrelation (y-axis) of final hand positions along the major axis to capture the

level of exploration and corrective actions in each condition. Aligning with model predictions, this participant

displayed greater lag-1 autocorrelation with reinforcement feedback (blue) compared to error feedback (orange). D)

Successful (solid circles) and unsuccessful (empty circles) final hand positions for a representative participant in

Experiment 2 that performed the reinforcement feedback condition (blue), error feedback condition (orange), and

reinforcement & error feedback condition (pink). E) Here we show the component of the final hand position along the

major target axis (y-axis) for every trial (x-axis). F) Aligning with model predictions, this participant displayed the

highest level of lag-1 autocorrelation with reinforcement feedback (blue), the lowest level of lag-1 autocorrelation with

error feedback (orange), and an moderate level of lag-1 autocorrelation with reinforcement & error feedback (pink).

https://doi.org/10.1371/journal.pcbi.1012474.g003
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exploration along the major target axis with reinforcement feedback compared to error feed-

back (Fig 3B). We quantified this participant’s trial-by-trial exploration using lag-1 autocorre-

lation, where we saw greater lag-1 autocorrelations with reinforcement feedback compared to

error feedback (Fig 3C).

Group behaviour

Aligned with our group level a priori predictions (Fig 2D), we found significantly higher lag-1

autocorrelation in the reinforcement feedback condition compared to the error feedback con-

dition (Fig 4A, p< 0.001, ŷ ¼ 75:0). Similarly, we found significantly greater lag-1 autocorre-

lation along the minor target axis during the reinforcement feedback condition compared to

the error feedback condition (p< 0.001; see Fig A in S1 Appendix). Lag-1 autocorrelations

along the minor axis appeared much lower than lag-1 autocorrelations along the major axis,

suggesting more corrective actions along the minor axis. Additionally, we were able to repli-

cate our Experiment 1 results by re-analyzing a recent gait study [49] (see Fig C in S1 Appen-

dix). These results suggest that reinforcement-based processes boost exploration by updating

movement aim towards success while error-based processes suppress exploration aim by cor-

recting movement aim in reaching and gait.

Reinforcement-based and error-based processes interact to influence

exploration during reaching individual behaviour

In Experiment 2, we wanted to replicate the results of Experiment 1 while also investigating

how reinforcement-based and error-based processes may interact during exploration of task-

redundant dimensions. Fig 3D shows final hand positions for a representative participant who

experienced the reinforcement feedback condition, error feedback condition, and

Fig 4. Group results for Experiment 1 and 2. A) Here we show lag-1 autocorrelation (y-axis) along the major target

axis for each participant in both conditions (x-axis) in Experiment 1. Aligning with model predictions (Fig 2D),

participants displayed significantly greater lag-1 autocorrelations in the reinforcement feedback condition (blue)

compared to the error feedback condition (orange; p< 0.001). B) Lag-1 autocorrelation along the major target axis (y-

axis) for each condition (x-axis) in Experiment 2. Replicating the results of Experiment 1, participants in the

reinforcement feedback condition (blue) again displayed greater lag-1 autocorrelations than the error feedback

condition (orange; p< 0.001). Interestingly, and aligning with model predictions (Fig 2E), participants receiving both

reinforcement & error feedback simultaneously displayed greater lag-1 autocorrelations compared to just error

feedback (p = 0.029) but less than just reinforcement feedback (p< 0.001). We performed a model comparison

analysis to better understand the mechanism underlying sensorimotor exploration. Black solid circles and lines show

the resulting mean and inner quartiles of the best-fit model simulations (Model 4) for both A) Experiment 1 and B)

Experiment 2. Box and whisker plots display the 25th, 50th, and 75th percentiles. Error bars on the best-fit model

represent the 25th and 75th percentiles. Hollow circles and connecting lines represent individual data. Solid circles and

connecting lines represent group means. Collectively, Experiment 1 and 2 suggest that reinforcement feedback boosts

exploration while error feedback suppresses exploration. Additionally, moderate levels of exploration were observed in

the reinforcement & error feedback condition, supporting the idea that there exists an interaction between

reinforcement-based and error-based processes in sensorimotor exploration.

https://doi.org/10.1371/journal.pcbi.1012474.g004
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reinforcement & error feedback condition. For this particular individual, we saw the greatest

amount of exploration along the major target axis with reinforcement feedback, the lowest

amount of exploration with error feedback, and a moderate amount of exploration with both

reinforcement & error feedback (Fig 3E). Consequently, when quantifying exploration for this

individual using lag-1 autocorrelation (Fig 3F), we saw the highest level of lag-1 autocorrela-

tion with reinforcement feedback, the lowest level of lag-1 autocorrelation with error feedback,

and a moderate level of lag-1 autocorrelation with reinforcement & error feedback.

Group behaviour

Aligned with our group level a priori predictions (Fig 2E) and the results of Experiment 1, par-

ticipants displayed significantly greater lag-1 autocorrelations along the major axis in the rein-

forcement feedback condition compared to the error feedback condition (Fig 4B; p < 0.001;

ŷ ¼ 80:56). Likewise, when we analyzed lag-1 autocorrelation along the minor axis, partici-

pants displayed greater lag-1 autocorrelation during the reinforcement feedback condition

compared to the error feedback condition (p< 0.001; see Fig A in S1 Appendix). These results

replicate the findings of Experiment 1 and further support the idea that reinforcement-based

processes boost exploration while error-based processes suppress exploration.

Again aligning with a priori predictions, participants displayed greater lag-1 autocorrela-

tions along the major axis in the reinforcement & error feedback condition compared to the

error feedback condition (Fig 4B; p = 0.029; ŷ ¼ 58:33), but less than the reinforcement feed-

back condition (Fig 4B; p< 0.001; ŷ ¼ 75:0). Similarly along the minor axis, participants dis-

played greater lag-1 autocorrelations in the reinforcement & error feedback condition

compared to the error feedback condition (p< 0.001; see Fig A in S1 Appendix), but less than

the reinforcement feedback condition (p< 0.001; see Fig A in S1 Appendix). When acting in

concert, our results suggest that reinforcement-based and error-based processes interact to

result in moderate exploration.

Dysfunction in the basal ganglia compromises reinforcement-based motor

exploration individual behaviour

Exploratory behaviour in songbirds has been linked to reinforcement and the basal ganglia

[15–17]. By studying those with Parkinson’s disease, the basal ganglia has been implicated in

the modulation of exploratory movement variability in response to reinforcement feedback

[6]. In Experiment 3, we wanted to gain mechanistic insight into the role of basal ganglia and

associated reinforcement (reward) pathways in the exploration of task-redundant dimensions.

We recruited participants with Parkinson’s disease as a population with known dysfunction in

the basal ganglia. We also recruited a neurotypical age-matched control group. There was no

statistical difference in age between the Parkinson’s disease group and the neurotypical age-

matched control group (p = 0.69). All participants with Parkinson’s disease were on their rou-

tine dopaminergic medication during the study. Table 1 shows the Unified Parkinson’s Dis-

ease Rating Scale (UPDRS) results of each participant with Parkinson’s disease, which is used

to rate the severity of symptoms. Both the Parkinson’s disease group and the neurotypical age-

matched control group performed the Mini-Mental State Exam to rule out cognitive impair-

ments such as dementia [59]. All participants scored higher than 26 on the exam, and we

found no statistical difference in scores between the Parkinson’s disease group and the neuro-

typical age-matched control group (p = 0.82). Fig 5A shows final hand positions for a represen-

tative age-matched control participant who experienced the reinforcement feedback

condition, error feedback condition, and reinforcement & error feedback condition. For this
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particular individual, we saw the greatest amount of exploration along the major target axis in

the reinforcement feedback condition (Fig 5B). When quantifying exploration for this individ-

ual using lag-1 autocorrelation (Fig 5C), we saw the highest level of lag-1 autocorrelation in

the reinforcement feedback condition.

Fig 5. Experiment 3 age-matched control individual results. A) Successful (solid circles) and unsuccessful (empty

circles) final hand positions for a representative age-matched control participant that performed the reinforcement

feedback condition (light blue), error feedback condition (light orange), and reinforcement & error feedback condition

(light pink). B) Here we show the component of the final hand position along the major target axis (y-axis) for every

trial (x-axis). C) We used lag-1 autocorrelation (y-axis) of final hand positions along the major axis to capture the level

of exploration in each condition. D) Successful (solid circles) and unsuccessful (empty circles) final hand positions for

a representative participant with Parkinson’s disease that performed the reinforcement feedback condition (dark blue),

error feedback condition (dark orange), and reinforcement & error feedback condition (dark pink). E) Here we show

the component of the final hand position along the major target axis (y-axis) for every trial (x-axis). F) This

representative participant with Parkinson’s disease did not display a change in lag-1 autocorrelation between

conditions, suggesting that the basal ganglia influences sensorimotor exploration.

https://doi.org/10.1371/journal.pcbi.1012474.g005

Table 1. UPDRS Scores for Parkinson’s participants. We administered the Universal Parkinson’s Disease Rating Scale (UPDRS) to each participant in the Parkinson’s

disease group of Experiment 3. Here we show individual section scores of the UPDRS for each participant. Higher scores indicate greater impairment. Section 1 of the

UPDRS rates the non-motor aspects of daily living. Section 2 of the UPDRS rates the motor aspects of daily living. Section 3 of the UPDRS rates the severity of motor symp-

toms for each individual with Parkinson’s disease. Section 4 of the UPDRS rates motor complications.

Participant 1 2 3 4 5 6 7 8 9 10

Age (years) 68 72 63 51 68 61 62 82 72 60

Disease Duration (years) 12 6 1 3 6 6 6 4 1 4

Section 1 3 6 8 5 10 13 12 7 5 4

Section 2 3 3 10 3 7 10 24 5 2 12

Section 3 17 24 29 38 40 34 34 26 17 14

Section 4 2 6 5 3 8 1 1 3 0 0

Hoehn-Yahr Stage 2 2 2 2 2 2 2 2 2 2

MMSE 30 30 27 30 28 30 30 30 29 29

https://doi.org/10.1371/journal.pcbi.1012474.t001
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Fig 5D shows final hand positions for a representative participant with Parkinson’s disease

who experienced the reinforcement feedback condition, error feedback condition, and rein-

forcement & error feedback condition. For this particular individual with Parkinson’s disease,

we saw the same relative amount of exploration across all three conditions (Fig 5E). We did

not see modulation of lag-1 autocorrelation (Fig 5F) between conditions for this representative

participant with Parkinson’s disease.

Group behaviour

Aligning with a priori model predictions (Fig 2F), participants with Parkinson’s disease dis-

played significantly lower lag-1 autocorrelations in the reinforcement feedback condition

compared to age-matched control participants (Fig 6; p = 0.016, ŷ ¼ 68:33). These results sug-

gest that dysfunction in the basal ganglia compromises reinforcement-based sensorimotor

exploration of task-redundant dimensions. Further matching a priori predictions, we did not

find differences in lag-1 autocorrelation between Parkinson’s disease and age-matched control

participants in either the error feedback condition (Fig 6, p = 0.693, ŷ ¼ 62:5). This was

expected because Parkinson’s disease is not associated with error-based neural processes. We

did not find a difference between groups in the reinforcement & error feedback condition (Fig

6, p = 0.91, ŷ ¼ 51:67), which was unexpected but may be due to a relatively weaker influence

of reinforcement-based processes in this condition. We did not see significant differences

between group lag-1 autocorrelations along the minor target axis (see Fig B in S1 Appendix).

Aligning with a priori model predictions (Fig 2F), participants with Parkinson’s disease did

not display modulation of lag-1 autocorrelations across conditions (p> 0.94 for all compari-

sons). Matching a priori predictions, participants in the age-matched control group displayed

greater lag-1 autocorrelations in the reinforcement feedback condition compared to the error

Fig 6. Parkinson’s and age-matched control results. Here we show lag-1 autocorrelation (y-axis) in each condition

(x-axis), for both the neurotypical age-matched control (light colors) and Parkinson’s disease (dark colors) groups.

Aligning with model predictions (Fig 2F), participants with Parkinson’s disease displayed significantly lower lag-1

autocorrelations compared to age-matched control participants in the reinforcement feedback condition (p = 0.016).

Participants with Parkinson’s disease displayed similar levels of lag-1 autocorrelation compared to age-matched

controls in the error feedback (p = 0.693) and reinforcement & error feedback (p = 0.910) conditions. We fit the results

of both the Parkinson’s disease group (dark grey) and age-matched control group (light grey) separately using our

best-fit model (Model 4), which found a reduced parameter value associated with reinforcement-based aiming updates

in Parkinson’s disease. Taken together, our modeling and behavioural results suggest that the basal ganglia is involved

with reinforcement-based task exploration. Box and whisker plots display the 25th, 50th, and 75th percentiles. Error

bars on the best-fit model represent the 25th and 75th percentiles. Hollow circles represent individual data. Solid

circles represent group means.

https://doi.org/10.1371/journal.pcbi.1012474.g006
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feedback condition (p< 0.01) and the reinforcement & error feedback condition (p< 0.01).

Unlike our a priori predictions and findings in Experiment 2, we did not see a difference in

lag-1 autocorrelations between the error feedback and reinforcement & error feedback condi-

tion in the age-matched control group (p = 0.59). While unexpected, no difference in lag-1

autocorrelations between the error feedback and reinforcement & error feedback conditions

in the age-matched control group may be due to a relatively weaker influence of reinforce-

ment-based processes with age [60, 61].

In addition to lag-1 autocorrelation, past work has shown that trial-by-trial movement vari-

ability can be modulated by task success [3–6, 18, 23, 24, 62, 63]. Aligning with past work, par-

ticipants in Experiment 1 and Experiment 2 displayed significantly greater movement

variability following a target miss along both the minor and major target axes (p< 0.001 for all

comparisons, see Fig D in S1 Appendix). In Experiment 3, the age-matched control group dis-

played significantly greater movement variability following a target miss compared to a target

hit along both the minor and major axes (p� 0.027 for all comparisons, see Fig D in S1

Appendix). In the group with Parkinson’s disease during Experiment 3, participants displayed

significantly greater movement variability following a target miss compared to a target hit in

all conditions along the minor axis (p< 0.001 for all comparisons, see Fig D in S1 Appendix)

as well as along the major axis during the reinforcement & error feedback condition

(p< 0.001, see Fig E in S1 Appendix).

Additionally, Parkinson’s disease has been shown to decrease movement variability after

unsuccessful movements compared to neurotypical age-matched control participants [6]. Sur-

prisingly, we did not find evidence that Parkinson’s disease reduced movement variability

compared to age-matched control participants following either a successful reach or an unsuc-

cessful reach in any experimental condition (Fig 7). We also did not find a difference in move-

ment variability between participants with Parkinson’s disease and age-matched control

participants along the minor target axis (see Fig F in S1 Appendix). These results suggest that

Parkinson’s disease does not reduce the exploratory movement variability following an unsuc-

cessful action. Rather, these findings suggest a reduced ability to utilize exploratory movement

variability to update movement aim following a successful action.

Best-fit model

Our general model (Model 1) updates trial-by-trial movement aim by considering both error-

based and reinforcement-based processes. This general model did well to formulate a priori
theory-driven predictions. However, models with many free parameters can be prone to over-

fitting to the data, and it is possible that one or more of the free parameters used by the model

are not needed to explain our findings. Thus, we performed a model reduction analysis [3] to

find the simplest model that would best explain the data using the fewest number of free

parameters. We systematically reduced the parameters in the general model (Model 1) to test

different mechanisms underlying sensorimotor exploration. Our prior work showed that rein-

forcement-based processes expand movement variability following an unsuccessful action.

Knowledge of this movement.

Each model followed the same fitting procedure. Specifically, each model was fit to average

participant lag-1 autocorrelations simultaneously across all experiments (see Methods). Model

simulations for each fitted model can be found in Fig G in S1 Appendix. We used both Bayes-

ian Information Criteria (BIC) and Akaike Information Criteria (AIC) analyses to weigh how

well each model fit the data while penalizing the number of free parameters. A lower score

indicates a better model fit for both BIC and AIC analyses. Both BIC and AIC analyses support

Model 4 as the best-fit model (Table 2). Model 4 simulates final reach position and updates
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intended movement aim as

Xt ¼ Xaim
t þ �

M;x
t þ ð1 � rt� 1Þ�

E;x
t ð4AÞ

Yt ¼ Yaim
t þ �

M;y
t þ ð1 � rt� 1Þ�

E;y
t ð4BÞ

Xaim
tþ1
¼ Xaim

t þ rta
x½ð1 � rt� 1Þ�

E;x
t � � b

aim;x
ðXt � Xaim

t Þ � b
target;x
ðXt � TxÞ ð4CÞ

Yaim
tþ1
¼ Yaim

t þ rta
y½ð1 � rt� 1Þ�

E;y
t � � b

aim;y
ðYt � Yaim

t Þ ð4DÞ

Fig 7. Movement variability conditioned on task outcome. A-F) We calculated trial-by-trial movement variability as

the standard deviation of change in reach (y-axis) following target hits (left column) and target misses (right column)

for both the age-matched control group (light colours) and Parkinson’s disease group (dark colours). Unlike past work

[6], we did not find a significant difference between the age-matched control group and the Parkinson’s disease group

for movement variability following a target hit or a target miss in any of the three conditions. These results suggest that

Parkinson’s disease did not reduce trial-by-trial movement variability. Box and whisker plots display the 25th, 50th,

and 75th percentiles. Hollow circles represent individual data. Solid circles represent group means.

https://doi.org/10.1371/journal.pcbi.1012474.g007
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Unlike the general model (Model 1), the best-fit model (Model 4) does not update intended

movement aim based on error corrections to both the target center and intended movement

aim simultaneously in both dimensions. Rather, the best-fit model (Model 4) only considers

both corrections to the target center and intended movement aim along the task-relevant

dimension (minor target axis) and only corrections towards the intended movement aim

along the task-redundant dimension (major target axis). Thus, our best-fit model (Model 4)

does not make corrections towards the target center along the task-redundant dimension.

Rather our best-fit model (Model 4) allows for a correction to somewhere between the center

and edge of the target, similar to our prior example of throwing a ball into a large pool.

We obtained posterior parameter distribution estimates of the model parameters (see Fig I

in S1 Appendix). We used the median values of the parameter distribution estimates to simu-

late each experiment. Model simulations from the best-fit model are shown alongside the par-

ticipant data for Experiment 1 (Fig 4A), Experiment 2 (Fig 4B), Wood and colleagues (2024;

see Fig C in S1 Appendix), and Experiment 3 (Fig 7). The best-fit model did well to capture

the trends in each experiment across both the major and minor axes (see Fig G in S1

Appendix).

The parameter associated with reinforcement-based processes along the task-redundant

dimension was found to be lower in Parkinson’s disease (αy = 0.52) compared to neurotypical

controls (αy = 0.79) that, aligned with model 1, predicted slightly less exploratory behaviour in

the reinforcement feedback condition. These results suggest that Parkinson’s disease reduces

the ability to utilize exploratory variability to update movement aim towards successful

actions.

Taken together, our results and modelling suggest that reinforcement-based processes

boost exploratory behaviour by updating movement aim towards a success, while error-based

processes suppress exploratory behaviour by correcting movement aim. Our modelling analy-

sis suggests that reinforcement-based processes and error-based processes interact by mutually

opposing one another, leading to moderate levels of exploration. Additionally, our results

from Experiment 3 suggest that Parkinson’s disease does not reduce the exploratory move-

ment variability following an unsuccessful action. Rather, our results suggest that Parkinson’s

disease reduces the ability to utilize exploratory movement variability to update movement

aim following a successful action.

Table 2. Model selection analysis. We performed a model selection analysis using both Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC). Both

AIC and BIC consider how well a model fits the data while penalizing the number of free parameters. For both analyses, a lower score indicates a better model fit given the

total number of free parameters. Experiments 1 & 2 were fit simultaneously and given a single combined score for both AIC and BIC. For Experiment 3, the Parkinson’s

disease and age-matched control groups were fit separately and each group was given their own AIC and BIC scores. The table shows the sum of all AIC and BIC scores cal-

culated for Experiments 1, 2, & 3. Both analyses would suggest Model 4 as the best-fit model across all experiments.

Number of Parameters Parameters Removed Total Loss AIC Score BIC Score

Model 1 10 None 0.19 -0.39 -0.28

Model 2 8 βtarget,x, βtarget,y 0.82 17.42 17.76

Model 3 8 βaim,x, βaim,y 2.67 40.43 40.77

Model 4 9 βtarget,y 0.23 -5.31 -5.09

Model 5 9 βaim,y 2.53 45.69 45.92

Model 6 9 βaim,x 0.33 4.60 4.82

Model 7 9 βtarget,x 0.78 23.51 23.74

Model 8 8 βtarget,x, βaim,y 3.10 42.64 42.98

Model 9 8 βaim,x, βtarget,y 0.36 -1.80 -1.46

https://doi.org/10.1371/journal.pcbi.1012474.t002
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Discussion

Here we show that reinforcement-based and error-based processes differentially influence sen-

sorimotor exploration along task-redundant dimensions. Specifically, reinforcement based

processes promote exploratory behaviour by updating movement aim towards a recent suc-

cess, while error-based processes suppress exploratory behaviour through error-based correc-

tions to movement aim. Our empirical and modelling results suggest that reinforcement-based

and error-based processes interact by mutually opposing one another, leading to moderate lev-

els of sensorimotor exploration. Our results with Parkinson’s disease suggest that dysfunction

in the basal ganglia reduces the ability to utilize exploratory movement variability when updat-

ing movement aim, leading to less exploration.

An important goal of Experiment 2 was to test the idea that reinforcement-based and

error-based processes interact to influence sensorimotor behaviour. Crucially, if these pro-

cesses interact, we would expect the reinforcement & error condition to display less than the

reinforcement condition and greater exploration than the error condition. As simulated by

our a priori model (Fig 2E) and best-fit model, we found that the reinforcement & error condi-

tion had respectively less and greater exploration compared to the reinforcement condition

and error condition (Fig 4B). Past work has suggested that an intrinsic reinforcement-based

signal may be present following a successful movement when given only error-based feedback

[10]. It can be difficult to completely isolate error-based feedback from reinforcement-based

feedback. However, in our paradigm, participants are provided an extrinsic reward in the rein-

forcement feedback condition and reinforcement & error feedback condition, which has been

shown to boost dopaminergic activity [64] and motor learning [65]. Thus, while not

completely isolating error-based feedback from intrinsic reinforcement-based feedback, our

paradigm is able to distinguish error-based feedback from extrinsic reinforcement-based feed-

back. Nevertheless, these results are in line with converging anatomical evidence of neural con-

nections between the basal ganglia and cerebellum [40–43], and support the hypothesis that

reinforcement-based and error-based processes interact to influence sensorimotor

exploration.

The best-fit model (Model 4) would suggest that this moderate level of exploration arises

from reinforcement-based processes and error-based processes acting in opposite directions.

Along the task-redundant dimension, the best-fit model locally updates movement aim

towards a recent success by utilizing knowledge of exploratory movement variability. In addi-

tion to this reinforcement-based update, the best-fit model also corrects movement aim so that

the executed movement more closely resembles the previously intended movement. Thus, the

reinforcement-based movement update pushes movement aim towards a recent success while

the error-based correction pulls towards the previously intended movement. The net result of

this push and pull respectively by reinforcement-based and error-based mechanisms leads to a

moderate level of exploratory random walk behaviour. This moderate level of exploratory ran-

dom walk behaviour is lower compared to isolated reinforcement-based mechanisms and

greater compared to isolated error-based mechanisms. As currently formulated, both rein-

forcement-based and error-based mechanisms in our model individually update intended

movement aim. For instance, reinforcement-based processes may update movement aim on

one trial, and this updated movement aim will be used as part of the error signal on the next

trial. Thus, over multiple trials these individual updates from reinforcement-based and error-

based mechanisms begin to indirectly interact with one another. Our past work showed disso-

ciable influences of reinforcement-based and error-based processes during sensorimotor adap-

tation [48]. We also found that when reinforcement-based and error-based processes have

different optimal solutions given externally provided noise, that the sensorimotor system will
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suppress the influence of reinforcement feedback. However, for the task used in this paper,

reinforcement-based and error-based processes both reach towards previous movement loca-

tions that have been successful. Here we show that reinforcement feedback and error feedback

indirectly interact with one another when both are provided in a complementary manner.

Our model suggests reinforcement-based and error-based processes indirectly interact to

influence exploration. This framework is analogous to how the basal ganglia and cerebellum

share interconnections to the same motor planning circuitry such as the dorsal premotor [44]

and prefrontal cortices [45]. However, it is also possible that reinforcement-based and error-

based processes may directly influence each other as the basal ganglia and cerebellum also

share direct connections [40–42]. One possible mechanism for a direct interaction between

reinforcement-based and error-based processes may be through the history of reinforcement

(i.e., reward). Importantly, the history of reinforcement influences both expected reward and

reward prediction error. Expected reward can be thought of as a weighted, running average of

reward received from previous trials. Expected reward has been shown to play an important

role in cognitive decision making tasks [66, 67]. Reward prediction error is the difference

between expected reward and received reward for an action. Reward prediction errors pro-

mote neuroplasticity [54, 68–70] and are used to recursively update expected reward [71]. The

cerebellum is typically associated with error-based processes [27–31]. However, recent work

has identified reward signatures in the cerebellum that encode expected reward [46, 47] and

reward prediction error [72, 73] Thus, it is possible that reinforcement-based processes

directly interact with error-based processes through expected value or reward prediction

errors. Future work should examine how reinforcement history, specifically through expected

reward or reward prediction errors, influence error-based corrective behaviour.

Our findings suggest that the sensorimotor system continually explores by greedily updat-

ing reach aim towards the last successful movement, with error corrections to their previous

aim somewhat dampening this exploration. Such a process is a reasonable general exploration

strategy across a wide range of environments to maximize reward [4]. This process was likely

occurring in our task that was designed to isolate exploratory processes [18], even though

there was likely minimal value in continually updating reach aim along the task-redundant

dimension. Although it is possible that participants were to some degree exploring in an

attempt to minimize energy [33] or sensorimotor noise [74], which to some extent may have

influenced their reach aim. Nevertheless here we show that reinforcement boosts exploration

along a task-redundant dimension in task space, which we posit may also occur along redun-

dant dimensions in muscle and joint space. Our work differs from the Tolerance, Noise,

Covariation (TNC) approach (task space) [74, 75], the uncontrolled manifold hypothesis (joint

space) [32], and minimum intervention principal from optimal feedback control (task space

[76], joint space [33], muscle space [77]), all of which do not consider the role of reinforcement

processes influencing movement variability along task-redundant dimensions. Optimal feed-

back control explains greater movement variability along task-redundant dimensions to arise

by not making corrective movements along this dimension because it is energetically costly.

Conversely, our past work showed that greater movement variability along task-redundant

dimensions can arise through reinforcement-based processes continually updating reach aim

towards recently successful actions [3]. In the present study, our results suggest that error-

based processes are still to some degree involved with corrective actions towards recently suc-

cessful aim locations, which influence movement variability along the task redundant

dimension.

In Experiment 3, we recruited participants with Parkinson’s disease to gain mechanistic

insight into the role of the basal ganglia in sensorimotor exploration. Aligning with a priori
predictions (Fig 2F), we found that Parkinson’s disease reduced reinforcement-based
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exploratory random walk behaviour compared to neurotypical age-matched controls. Thus,

our results suggest that a compromise to the basal ganglia compromises exploratory random

walk behaviour. Contrary to previous findings [6], this decrease in exploratory behaviour was

only found in the exploratory random walk behaviour and not the magnitude of movement

variability following an unsuccessful action. Our behavioural data, a priori model, and best-fit

model suggest this difference arises in part due to a decrease in the knowledge of exploratory

variability (α) used to update movement aim. That is, although participants with Parkinson’s

disease modulated movement variability between successful and unsuccessful trials, they were

less able to use knowledge of this exploratory movement variability to update movement aim

following rewarded reaches. The best fit model predicted these behavioural differences, albeit

they were less pronounced than the a priori model. Notably, we did not find statistical differ-

ences in exploratory random walk behaviour between Parkinson’s disease and age-matched

control participants in the error feedback or reinforcement & error feedback conditions. As in

past work [78–80], the similarity between the Parkinson’s disease group and age-matched con-

trol group when given error feedback suggests that error-based circuitry driving sensorimotor

exploration remains intact with Parkinson’s disease. Our results suggest that reinforcement-

based processes impact exploratory random walk behaviour, which may be exploited to dis-

cover new and successful motor actions in neurological conditions where the basal ganglia and

associated reinforcement (reward) pathways remain intact.

We found no difference between the error feedback and reinforcement & error feedback

conditions in the age-matched control group of Experiment 3. One possible explanation is

that the interaction between reinforcement-based and error-based processes weakens with

age. In rat models, recent work has shown that the cerebellum has a direct connection to the

substantia nigra [43], an area that is known to degrade with age in humans [60, 61]. It is possi-

ble that this direct connection between the basal ganglia and cerebellum naturally degrades

with age, resulting in a weaker interaction between reinforcement-based and error-based neu-

ral circuits. It would be useful for future work to further examine how neural circuits change

over time from childhood through adulthood.

Similar to past work [6], participants with Parkinson’s disease performed Experiment 3

while on their routine dopaminergic medication. While we used a Parkinson’s disease sample

size similar to past work [6], this small sample size of individuals with Parkinson’s disease that

had diverse symptoms is a limitation of our work. Additionally, having participants on their

routine medication allowed us to observe behaviour during the participant’s normal function-

ing state. Observing behaviour while in the on-medication state likely improved the ability of

participants with Parkinson’s disease to complete the motor components of the task. However,

as a result, it can be difficult to parse the effects of Parkinson’s disease from the effects of the

dopaminergic medication. Indeed, some dopaminergic medications have been found to alter

learning during reward-based tasks in neurotypical populations [81, 82]. It has been proposed

that individuals with Parkinson’s disease on dopaminergic medication can display decreased

task performance as a result of dopamine overdose [83]. According to the dopamine overdose

hypothesis, reinforcement-based neural processes become compromised due to overstimula-

tion of the dopaminergic system [83]. Overstimulation of the dopaminergic system leads to a

lack of responsiveness to reinforcement feedback. Thus, it is possible that either dysfunction of

the basal ganglia and or dopamine overdose could have led to decreased exploratory behaviour

in our task. Nevertheless, either dysfunction of the basal ganglia or dopamine overdose repre-

sent a compromised reinforcement-based process. Moving forward, it would be beneficial to

study the influence of on-medication and off-medication states in Parkinson’s disease to iso-

late the influence of dopamine overdose or basal ganglia function on exploratory behaviour.
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Our best-fit model (Model 4) makes corrections towards both the target center and

intended movement aim along the task-relevant dimension (minor axis) and only corrections

towards the intended movement along the task-redundant dimension (major axis). Intended

movement aim has been shown to play a critical role in sensorimotor adaptation [55, 84].

Work by McDougle and colleagues (2017) investigate generalization during a visuomotor rota-

tion task. They found evidence to suggest that the intended movement goal is actively cor-

rected towards by the sensorimotor system during motor adaptation. Their findings

complement our work, where the models support the idea that individuals will make corrective

actions towards previously intended movement aim. However, in our task it would be difficult

to distinguish between the intended movement aim and the center of the target along the task-

relevant dimension due to the small width of the target. It would be interesting to further

examine how error signals are weighted along different dimensions of a task, possibly by

including aiming reports [3, 11, 55, 85] or experimentally imposing an explicit strategy [9].

Van Beers and colleagues (2013) provide evidence to suggest that this error signal is not

present along the task-redundant dimension of a task. Specifically, they had participants reach

towards a long thin target. Participants displayed greater exploratory random walk behaviour

along the task-redundant dimension compared to the task-relevant dimension. Van Beers and

colleagues (2013) suggested that greater exploratory random walk behaviour along the task-

redundant dimension arose due to the lack of an error signal relative to the target and the

accumulation of planned movement variability. However, without an error signal, the accu-

mulation of planned movement variability would eventually cause the executed movement to

be off the target. It is likely that some form of error signal remains along the task-redundant

dimension, particularly along the edges of the target. As previously mentioned, one does not

need to aim for the center when throwing a ball into a large pool. Rather, aiming to a point

between the center and edge of the pool would also produce a successful movement. This raises

a simple question: where do participants aim on a large target? Thus, as part of our modelling

work, we investigated the error signal used by the sensorimotor system to make corrections

along task-redundant dimensions.

The results of our best-fit model (Model 4) suggest that the error signal utilized along the

task-redundant dimension is the difference between the executed reach and the previously

intended movement. While conceptually different, utilizing the difference between the exe-

cuted reach and the previously intended movement as an error signal is mathematically similar

to the van Beers and colleagues (2013) model (see S1 Appendix). Specifically, in both models a

portion of the movement variability that produces the executed movement is used to update

the intended movement of the subsequent trial. A notable difference between our best-fit

model (Model 4) and the model of van Beers and colleagues (2013) is that our model does not

use planned movement variability that constantly accumulates, but instead uses exploratory

movement variability conditioned on success. Planned movement variability results from the

noise arising in the premotor cortex during the planning stages of movement [38, 86], which

results in the same planned movement being executed slightly differently on different trials. As

mentioned in our prior work [3], it is unclear whether planned movement variability arising

from the premotor cortex [38, 39] and exploratory movement variability arising from the basal

ganglia [15, 16, 87] are unrelated processes. Indeed, the premotor cortex and basal ganglia are

known to be linked through a neural loop [88, 89]. Thus, it would be useful for future work to

further investigate how motor, planned, and exploratory movement variability individually

contribute to sensorimotor behaviour.

Here we investigated the roles and interplay between reinforcement-based processes and

error-based processes on sensorimotor exploration. Across three reaching experiments and a

gait study [49], we found evidence that reinforcement-based processes update movement aim
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towards a success while error-based processes correct movement aim towards the intended

movement. We also found when acting in concert that these reinforcement-based and error-

based processes interact by opposing one another and cause moderate levels of exploratory

random walk behaviour. Our findings for those with Parkinson’s disease found less explor-

atory random walk behaviour but, unlike previous work [6], no changes in exploratory move-

ment variability following a failure. Thus, Parkinson’s disease may have led to reduced

knowledge of exploratory movement variability that is used to update movement aim. Under-

standing the individual and interacting processes underpinning sensorimotor exploration may

lead to the development of better informed neurorehabilitation paradigms that aim to discover

new and successful functional motor skills during recovery [1, 2, 13, 14].

Methods

Ethics statement

Each participant provided written informed consent to procedures approved by the University

of Delaware’s International Review Board.

Participants

Across all three experiments we recruited 94 participants. We recruited 72 young neurotypical

participants across Experiment 1 (n = 36, 20.4 years ± 2.7 SD) and Experiment 2 (n = 36, 20.6

years ± 2.2 SD). Participants reported they were right-handed and free of neuromuscular

disease.

In Experiment 3, we collected data from participants with Parkinson’s disease (n = 10, 69.7

years ± 6.9 SD) and neurotypical age-matched controls (n = 12, 68.4 years ± 8.4 SD). All partic-

ipants with Parkinson’s disease and neurotypical age-matched controls were free of dementia

as assessed by the Mini-Mental State Exam [59] (MMSE score > 26). All participants were free

of neurological disease other than Parkinson’s disease. Participants with Parkinson’s disease

were on their normal dopaminergic medication at the time of testing [6], consistent with their

normal functioning state. Two members of the research team, including an occupational ther-

apist, jointly scored disease severity using the Unified Parkinson’s Disease Rating Scale [90]

(UPDRS). The results of the screening are reported in Table 1.

Apparatus

Participants grasped the handle of a robotic manipulandum (Fig 1A, KINARM, BKIN Tech-

nologies, Kingston, ON, Canada) and made reaching movements in the horizontal plane. A

semi-silvered mirror blocked vision of both the participant’s upper-limb and the robotic arm,

and projected images (start position, target) from an LCD screen onto the horizontal plane of

motion. Hand position was recorded at 1000 Hz and stored offline for data analysis.

General task protocol

Participants were presented with virtual images of a start position (white circle,

radius = 0.75cm) and a target. The start position was aligned with the sagittal plane and

approximately 15 cm away from their body. Displayed targets were located 45 degrees to the

left of the sagittal plane and 15 cm away from the start position (Fig 1A). The rectangular target

was rotated so that its major axis aligned with the center of the start position. For each trial,

participants began from the start position and were instructed to “reach and stop inside the

target.” The start position turned yellow after a short, randomized delay (250–1000 ms) to sig-

nal the beginning of the trial. Final hand position was defined as the participant’s hand
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location 100 ms after their hand velocity went below 0.045 cm/s. Participants would then

receive feedback on task performance (see below). One second after stopping, the robot used a

minimum jerk trajectory to return their hand to the start position.

During baseline (50 trials) and each block of washout trials (50 trials each), participants

reached towards and attempted to stop within a white circular target (radius = 0.5 cm). For the

first 40 baseline and the first 40 washout trials in a block, participants received error-based

feedback in the form of a small cursor (radius = 0.25 cm) aligned with their final hand position.

No feedback was given for the final 10 baseline and final 10 washout trials. For all experimental

conditions, participants reached towards and attempted to stop within a long rectangular tar-

get that encourages sensorimotor exploration [3, 8]. Here the major target axis aligns with the

task-redundant dimension, while the minor target axis corresponds to the task-relevant

dimension (Fig 1A). Past work has shown that movement variability can vary between the

movement extent and lateral direction [91, 92], which may impact exploratory behaviour.

Thus, as in our previous work [3, 18], we designed the task such that all comparisons are made

along the same movement direction (movement extent) corresponding to the target’s major

axis. The major axis length of the target was 12 cm [3, 8, 18]. The minor axis length of the tar-

get was proportional to each participant’s lateral movement variability during the last 10 base-

line trials [3, 18] (0.65σ, Experiment 1: 1.16 ± 0.41 cm; Experiment 2: 1.06 ± 0.31cm;

Experiment 3 Parkinson’s Disease: 1.07 ± 0.91 cm; Experiment 3 Age-Matched Control:

0.96 ± 0.34 cm).

Participants were told that base compensation was $5.00 USD and they could earn an addi-

tional $5.00 USD performance bonus based on task performance. After completing the experi-

ment, all participants received $10.00 USD irrespective of task performance.

Experiment 1 design

In Experiment 1 we addressed how reinforcement-based feedback and error-based feedback

differentially influence exploration along task-redundant dimensions. Participants performed

two conditions. In the first condition, participants received reinforcement feedback when they

stopped within the target: 1) the target would expand, 2) they would hear a pleasant sound,

and 3) they would earn a small monetary reward. In the second condition, participants

received error feedback each time they stopped within or near the target: a small cursor

(radius = 0.25 cm) would be placed at their final hand position. We expected to find greater

exploration with reinforcement feedback compared to error feedback. For Experiment 1, par-

ticipants performed 50 baseline trials, 200 experimental trials, 50 washout trials, and then

another 200 experimental trials. Condition order was counterbalanced.

Experiment 2 design

In Experiment 2 we addressed how reinforcement-based feedback and error-based feedback

interact to influence task-redundant exploration, while also replicating the results of Experi-

ment 1. Participants performed three conditions (Fig 1C): isolated reinforcement feedback,

isolated error feedback, or both simultaneous reinforcement & error feedback. As in Experi-

ment 1, we expected to find greater exploration with isolated reinforcement feedback com-

pared to isolated error feedback. Additionally, we expected to find exploration with both

reinforcement & error feedback to be greater than isolated error feedback, but less than iso-

lated reinforcement feedback. For Experiment 2, participants performed 50 baseline trials,

200 experimental trials, 50 washout trials, 200 experimental trials, 50 washout trials, and then

another 200 experimental trials. Condition order was counterbalanced.
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Experiment 3 design

In Experiment 3, we recruited participants with Parkinson’s disease and neurotypical age-

matched controls to gain mechanistic insight into the role of the basal ganglia and associated

reinforcement (reward) pathways on sensorimotor exploration. As in Experiment 2, partici-

pants performed three conditions (Fig 1D): isolated reinforcement feedback, isolated error

feedback, or reinforcement & error feedback simultaneously. We expected participants with

Parkinson’s disease to display lower levels of exploration compared to age-matched controls in

both the reinforcement condition and reinforcement & error condition. For Experiment 3,

participants performed 50 baseline trials, 100 experimental trials, 50 washout trials, 100 experi-

mental trials, 50 washout trials, and then another 100 experimental trials. Condition order was

randomized across participants.

Data analysis

We performed data analysis using custom Python 3.8.12 scripts. For all experiments, final

hand position coordinates were projected onto a rotated cartesian coordinate system that was

aligned with the major and minor axes of the rectangular targets [3, 18]. Thus the x-axis and y-

axis of the rotated coordinate system aligned with the minor and major axis of the target

respectively. The origin of this coordinate system was the center of the virtually displayed tar-

gets. In this study, we primarily focus on the major target axis as it aligns with the task-redun-

dant dimension (Fig 1A). Focusing on the task-redundant dimension helps to mitigate the

influence of cognitive processes, such as aiming strategies, while observing exploratory behav-

iour in response to failures along the task-relevant dimension.

Quantifying exploration using Lag-1 autocorrelation

We [3, 18] and others [8] have used the lag-1 autocorrelation of final hand positions to quantify

the amount of exploration along task dimensions. A larger lag-1 autocorrelation indicates

greater exploration by using knowledge of movement variability to update movement aim [3].

Low lag-1 autocorrelations are associated with greater error corrections [8]. Unlike other met-

rics of exploration such as interquartile range and trial-by-trial movement variability, lag-1 auto-

correlation captures the temporal structure of trial-by-trial data. The temporal structure of

repeated movements can help to gain insight into if and how intended movements are updated

on a trial-by-trial basis [3]. Lag-1 autocorrelation can take on a range of values, where a value of

+1 would an update towards the previous reach every trial and a value of -1 would be over-cor-

rection on every trial (i.e. hand positions cross over the central axis every trial). Thus, a contin-

uum of lag-1 autocorrelation values can occur due to a combination of movement updates

toward the recent success and error-based corrections. In Experiment 1 and Experiment 2, par-

ticipants performed 200 reaches per condition, yielding 199 data points for the lag-1 autocorre-

lation analysis. In Experiment 3, participants performed 100 reaches per condition, yielding 99

data points for the lag-1 autocorrelation analysis. Utilizing a large number of trials in the lag-1

autocorrelation analysis mitigates the influence of the occasional large change in reach position.

We recently postulated that reinforcement feedback and error feedback may differentially

affect task exploration [3], but we have yet to test this empirically. Additionally, it has been

shown that Parkinson’s disease can decrease the magnitude of exploration following an unsuc-

cessful action [6]. Thus, we also expected that Parkinson’s disease would disrupt the explor-

atory random walk behaviour of reinforcement-based exploration. As in our previous work [3,

18], we performed a lag-1 autocorrelation analysis separately along the major and minor axes

of the rectangular target.
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Models of final hand position

Model 1 -task-relevant dimension: Correct to movement aim and target center; Task-

redundant dimension: Correct to movement aim and target center.

Reinforcement-based and error-based motor adaptation models have used various assump-

tions regarding how the sensorimotor system updates the intended movement aim following

feedback. Here we have developed a general set of equations (Model 1) that models both rein-

forcement-based and error-based processes when reaching towards a target. Our general

model also captures how these two processes act in concert with one another, since they are

simultaneously used to update movement aim. We used this general model to make a priori
predictions of 2D endpoint reach behaviour and resulting exploratory behaviour. For all mod-

els, we simulated final hand position along the task-relevant dimension (Xt) and task-redun-

dant dimension (Yt) as

Xt ¼ Xaim
t þ �

M;x
t þ ð1 � rt� 1Þ�

E;x
t ð1AÞ

Yt ¼ Yaim
t þ �

M;y
t þ ð1 � rt� 1Þ�

E;y
t ð1BÞ

Xaim
tþ1
¼ Xaim

t þ rta
x½ð1 � rt� 1Þ�

E;x
t � � b

aim;x
ðXt � Xaim

t Þ � b
target;x
ðXt � TxÞ ð1CÞ

Yaim
tþ1
¼ Yaim

t þ rta
y½ð1 � rt� 1Þ�

E;y
t � � b

aim;y
ðYt � Yaim

t Þ � b
target;y
ðYt � TyÞ ð1DÞ

Final reach position on the current trial (Xt, Yt) is equal to the intended movement aim

(Xaim
t ;Yaim

t ) with additive Gaussian noise (�it � Nð0; s2
i Þ). Superscripts represent the source of

the variability: motor movement variability [56–58] (M) and exploratory movement variability

(E). Note that exploratory movement variability is added only if the previous trial was unsuc-

cessful [3–6] (rt−1 = 0). If the trial is successful (rt = 1) and reinforcement feedback is given, the

intended movement aim is updated proportionally (α) to exploratory movement variability

[3]. On trials where visual feedback of the final hand position is given, movement aim is par-

tially corrected towards the intended movement aim [54] (βaim) and partially corrected

towards the center of the target [8, 10, 50–53] (βtarget).

We used Model 1 to make a priori predictions of both individual level and group level

behaviour (Fig 2). During the reinforcement feedback condition, there are no acting error-

based corrective processes (i.e. βi = 0). During the error feedback condition, there are no acting

reinforcement-based processes (i.e. αi = 0). During the reinforcement & error feedback condi-

tion, there are acting reinforcement-based and error-based processes. Group level predictions

are generated by simulating 500 individuals. Movement aim (Xaim
t ;Yaim

t ) was initialized to the

target center (Tx = 0, Ty = 0). Model 1 has 10 free parameters.

As in our previous work [3], our goal was to find the simplest model that best explains our

results across all three experiments. Models with large numbers of free parameters can be

prone to overfitting. Thus, we systematically reduced the number of free parameters from the

general model (Model 1). Each reduced model provides a different interpretation of the mech-

anism governing sensorimotor exploration and error correction. We used Akaike Information

Criterion (AIC) and Bayesian Information Criterion (BIC) to capture how well a model fits

the data given its number of free parameters. In addition to Model 1, we considered 8 addi-

tional models. For all models, the equations governing movement execution are the same.

Consistent with our past work [3] each model uses the same reinforcement-based process of

expanding movement variability after a miss, and updating movement aim after a success by

using a portion of the movement variability. However, we systematically varied the model
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parameters responsible for error-based corrections. Each model tests a different mechanism

by which the sensorimotor system may make corrections to movement aim when given visual

error feedback. Model descriptions can be found in S1 Appendix.

Experiment 1 & 2 model fitting

We used the same fitting procedure for each of our nine models [3]. Model fitting was per-

formed using the Powell algorithm in the minimize function from the Scipy Python library.

For each model, we simulated 500 participants in each experiment to obtain a stable esti-

mate of the mean lag-1 autocorrelation. We calculated the mean lag-1 autocorrelation along

both the major and minor axes of the rectangular target. We defined the loss function as the

difference between the average simulated and average participant lag-1 autocorrelations along

the major and minor axes of the target. The optimizer minimized the sum of the loss across

both Experiments 1 and 2.

The fitting procedure began with a “warm-start” where we minimized the model loss using

a randomized initial parameter guess. We repeated this process 10,000 times. From these

10,000 initializations, we selected the set of parameters that resulted in the lowest final loss.

These parameters were used as the initial guess of a bootstrapping procedure (10,000 itera-

tions) to find the 95% confidence intervals of the posterior distribution for each free parame-

ter. Participant lag-1 autocorrelations were randomly sampled with replacement for each

iteration of the bootstrap procedure. The average lag-1 autocorrelation from this resampled

group was used to determine the loss for that iteration. Both reinforcement-based (α) and

error-based (βi) terms were bounded from 0 to 1. Variances used for movement variability

terms were bounded based on the smallest and largest observed participant movement

variability.

Experiment 3 model fitting

In Experiment 3, we fit both the age-matched controls and participants with Parkinson’s dis-

ease simultaneously using the same set of movement variability terms, but a separate set of

reinforcement-based (α) and error-based (βi) parameters for each group. This was done to

capture the influence of Parkinson’s disease on the underlying mechanisms of sensorimotor

exploration. Additionally, behavioural results suggest that movement variability following suc-

cessful and unsuccessful trials is not significantly different between the group with Parkinson’s

disease and age-matched control group (Fig 7). All other model fitting procedures were carried

out as described in the section above.

Best-fit model selection

We defined the median from the correspondent posterior distribution of each parameter as

the best parameter set for each model. Using these median parameter values (Θ), we simulated

each experiment and each condition with each model. We used a loss function (Li) that took

the squared difference between the simulated (ACFModel) and average participant (ACFData)

lag-1 autocorrelation along the two target axes (j; major and minor) in each condition (k) for

Experiment 1 (Eq 10), Experiment 2 (Eq 11), and both groups (l) in Experiment 3 (Eq 12):

L1 ¼
X2

j¼1

X2

k¼1

ðACFData
j;k � ACFModel

j;k ðYÞÞ
2

ð10Þ
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L2 ¼
X2

j¼1

X3

k¼1

ðACFData
j;k � ACFModel

j;k ðYÞÞ
2

ð11Þ

L3 ¼
X2

j¼1

X3

k¼1

X2

l¼1

ðACFData
j;k;l � ACFModel

j;k;l ðYÞÞ
2

ð12Þ

Ltotal ¼ L1 þ L2 þ L3 ð13Þ

By defining the loss function this way, a model that closely resembles the data across all experi-

ments will result in a low final loss (Ltotal). We used the loss from the best parameter set of each

model for both the Bayesian Information Criteria (BIC) and Akaike Information Criteria

(AIC) analyses. Using both analyses helps us select the simplest model that best represents the

data. Bayesian Information Criteria (Eq 14) weights the number of free parameters (k) by the

number of datapoints (n) used to calculate the loss (Ltotal). Note that using a squared loss func-

tion is equivalent to calculating the likelihood function under the assumption of normality.

We also considered Akaike Information Criteria (Eq 15) which uniformly weights free param-

eters (k) used in the model. Bayesian Information Criteria can be biased towards models with

fewer parameters compared to Akaike Information Criteria. For both BIC and AIC analyses, a

lower score indicates a better fit. We considered both analyses when selecting the best-fit

model. We defined our best-fit model as the model that yielded the lowest BIC and AIC scores

across all three experiments.

BIC ¼ k lnðnÞ þ n lnðLtotalÞ ð14Þ

AIC ¼ 2kþ n lnðLtotalÞ ð15Þ

Parameter posterior probability distributions for the best-fit model can be found in Fig I in S1

Appendix. A limitation of our models is that they hold parameters constant when simulating

multiple participants. That is, while they are stochastic and account for within participant vari-

ability, they do not consider between participant variability. Not accounting for between par-

ticipant variability would to some degree likely influence plotted error bars in figures that

contain simulations (e.g., Fig 4A and 4B). However through the bootstrapping procedure we

are able to acquire confidence internals of model parameters that would account for the many

possible sources of variance.

Trial-by-trial movement variability

We [3, 18] and others [4–6, 62] have shown that movement variability is modulated by task

outcome. Furthermore, Parkinson’s disease has been shown to reduce movement variability

following an unsuccessful action compared to age-matched controls [6]. We defined move-

ment variability as the standard deviation of the trial-by-trial change in reach position [3, 6,

18] (ΔX). Movement variability was calculated separately along the major and minor target

axes. Movement variability within experimental conditions was also calculated separately for

successful (target hit) and unsuccessful (target miss) reaches.

DXhit ¼ Xtþ1 � Xhit
t ð16Þ

DXmiss ¼ Xtþ1 � Xmiss
t ð17Þ
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Here, X represents participant final hand position on a given trial (t). Superscripts represent

whether the trial was successful (hit) or unsuccessful (miss).

Statistical analysis

Non-parametric bootstrap hypothesis tests (1,000,000 iterations) were used for follow-up

mean comparisons [3, 4, 18, 48, 93–97]. We used directional tests when testing theory-driven

predictions, and non-directional tests otherwise. Spearman’s Rank correlation was used for all

correlation measures. Common language effect size was computed for all mean comparisons.

Statistical tests were considered significant at p< 0.05.

Supporting information
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