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ABSTRACT
Enhanced expectancies and autonomy-support through self-
controlled practice conditions form the motivation pillar of
OPTIMAL theory [Wulf, G., & Lewthwaite, R. (2016). Optimizing
performance through intrinsic motivation and attention for
learning: The OPTIMAL theory of motor learning. Psychonomic
Bulletin & Review, 23(5), 1382–1414. https://doi.org/10.3758/
s13423-015-0999-9]. The influence of these practice variables on
motor learning was recently evaluated in two separate meta-
analyses. Both meta-analyses found that the published literature
suggested a moderate and significant benefit on motor learning;
however, evidence for reporting bias was found in both
literatures. Although multiple bias-corrected estimates were
reported in the self-controlled meta-analysis, there was no
principled way to prefer one over the other. In the enhanced
expectancies meta-analysis, the trim-and-fill-technique failed to
correct the estimated effects. Here, we addressed these
limitations by reanalyzing the data from both meta-analyses
using robust Bayesian meta-analysis methods. Our reanalysis
revealed that reporting bias substantially exaggerated the
benefits of these practice variables in the original meta-analyses.
The true effects appear small, uncertain, and potentially null. We
found the estimated average statistical power among all studies
from the original meta-analyses was 6% (95% confidence interval
[5%, 13%]). These results provide compelling and converging
evidence that strongly suggests the available literature is
insufficient to support the motivation pillar of OPTIMAL theory.
Our results highlight the need for adequately powered
experimental designs if motor learning scientists want to make
evidence-based recommendations.
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For nearly 20 years, motor learning and performance research has been accumulating that
some (e.g. Wulf & Lewthwaite, 2016, 2021; Wulf et al., 2010) have argued is not well-
explained by classic information-processing-based theories (Guadagnoli & Lee, 2004;
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Salmoni et al., 1984; Schmidt, 1975). Examples range from putative motor learning
benefits from receiving bogus social comparison feedback (e.g. Ávila et al., 2012) to osten-
sive learning and performance enhancement as a consequence of making incidental
choices during practice (e.g. Lewthwaite et al., 2015). In the Optimizing Performance
Through Intrinsic Motivation and Attention for Learning (OPTIMAL) theory, Wulf and
Lewthwaite (2016) argued that information processing theories account for only a tem-
porary influence of motivation, but fail to capture the more permanent influences of
motivation on motor learning suggested by these findings; this failure to account for
more permanent motor learning effects created the need for a new theory. The
OPTIMAL theory provided an account of these, and numerous other lines of research, pro-
posing that autonomy support and enhanced expectancies increase motivation, which
explains the learning and performance benefits observed with self-controlled practice
(see Sanli et al., 2013 for a review), positive feedback (e.g. Chiviacowsky & Wulf, 2007),
social comparative feedback (e.g. Ávila et al., 2012), perceived task difficulty (e.g. Lee
et al., 2011), conceptions of ability (e.g. Cimpian et al., 2007), self-modeling (e.g. Ste-
Marie et al., 2011), and extrinsic rewards (e.g. Abe et al., 2011). While motivation had
been deemphasized in previous motor learning theories, within OPTIMAL theory numer-
ous lines of 21st century research may also be explained by motivational mechanisms,
rather than or in addition to informational mechanisms.

Unfortunately, it has become recognized throughout social science that reporting bias
in the literature can seriously distort the evidence (Collaboration, 2015; Fanelli, 2010;
Hagger et al., 2016; Munafò et al., 2017). The results explained by the motivational
factors in OPTIMAL theory may therefore be exaggerated or even non-existent (Gelman
& Carlin, 2014). Research on the motor learning literature specifically has found evidence
of the pernicious combination of low statistical power, high multiplicity (i.e. many statisti-
cal tests), and selective reporting (Lohse et al., 2016). Therefore, it is necessary to carefully
examine the literature supporting OPTIMAL theory predictions to identify and potentially
correct for selective reporting and publication.

The evidence underpinning the autonomy support predictions in OPTIMAL theory has
been questioned in a recent meta-analysis, suggesting that low power combined with
reporting bias may be responsible for the apparent benefits of self-controlled practice
(McKay, Yantha et al., 2022). In that study, it was observed that published experiments
found an average self-controlled practice benefit of g =.54. However, several models of
reporting bias provided a better fit to the data than the naive random effects model.
Each of the models suggested the true average effect was small or potentially zero.
Self-controlled practice was the primary literature addressed by the autonomy support
factor in OPTIMAL theory; yet, these findings call into question whether there was even
a robust phenomenon to explain.

Bacelar, Parma, Murrah et al. (2022) investigated the literature addressed by the second
motivation factor in OPTIMAL theory – enhanced expectancies. In their meta-analysis, it
was found that the average benefit of studies that manipulated expectancies via interven-
tions described in OPTIMAL theory was also g =.54. However, there was evidence of
reporting bias that could not be accounted for with moderators in the study. The
authors applied the trim-and-fill method in an effort to adjust for reporting bias, but it
made no corrections and no other corrections were applied. It is noteworthy that self-
controlled practice studies and the studies included in the enhanced expectancies
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meta-analysis have much in common (in addition to identical random effects point esti-
mates based on the published literature): (a) both literatures are comprised of variables
predicted by OPTIMAL theory to increase motivation and in turn motor performance
and learning; (b) both include a study or two examined in a meta-analysis by Lohse
et al. (2016) that found evidence of low power, multiplicity, and bias; and (c) both
showed signs of small study effects in their funnel plots. If both literatures have been
affected similarly by reporting bias, then the current estimate of g =.54 for variables
thought to enhance expectancies may be a substantial overestimate.

Addressing reporting bias presents substantial challenges to meta-analysts. Since
reporting bias limits the information we have access to, it is impossible to know for
certain how much bias is present or how large the impact is (Carter et al., 2019;
McShane et al., 2016). The best we can do is think carefully about the mechanisms
that potentially underlie reporting bias and attempt to model them accurately. In con-
trast, a naive random effects analysis assumes there is no reporting bias. Complicating
matters, reporting bias can take several different forms with unique impacts on the
final sample (Maier et al., 2022; Stefan & Schönbrodt, 2022; Thornton & Lee, 2000).
To account for this, multiple models of reporting bias need to be attempted
without knowing which is most likely a priori. Thus, bias-correction analyses are inher-
ently sensitivity analyses (Mathur & VanderWeele, 2020; Sutton et al., 2000; Vevea &
Woods, 2005). Until recently, if the results of multiple sensitivity analyses differed
widely, there was no mechanism to reconcile the estimates. We now have Robust
Bayesian Meta-Analysis (RoBMA) methods that apply Bayesian model averaging to
allow meta-analysts to fit several plausible models (see Table 1 for descriptions) and
give greater weight to the models that best account for the data (Bartoš et al.,
2022; Maier et al., 2022). The RoBMA method provides single estimates of the
average effect and heterogeneity, along with Bayes factors to quantify the evidence
in support of a true effect, the presence of heterogeneity, and the presence of report-
ing bias. Results from simulation studies and analyses of real data with known report-
ing bias mechanisms suggest that RoBMA is substantially more accurate and less
biased than naive random effects models, and also performs better than other compet-
ing reporting bias models (Bartoš et al., 2022).

A challenge for most reporting bias models is large heterogeneity in true effects
(Carter et al., 2019). While RoBMA appears to perform well with moderate levels of het-
erogeneity, its performance has not been evaluated when heterogeneity is high and
the performance of each of its constituent reporting bias models suffers with high het-
erogeneity. The z-curve model was designed specifically to perform well regardless of
heterogeneity (Bartoš & Schimmack, 2022). While z-curve does not provide adjusted
effect size estimates (and such estimates may be meaningless with high heterogen-
eity), it instead estimates the average underlying power of included experiments. A sig-
nificant difference between the estimated power of studies and the observed
proportion of significant results can indicate the presence of reporting bias in a
literature.

Here, we leveraged state-of-the-art robust Bayesian meta-analysis and z-curve
methods to re-analyze the meta-analyses by McKay, Yantha et al. (2022) and Bacelar,
Parma, Murrah et al. (2022). Considering the potential importance of OPTIMAL theory
for the field of motor learning and performance (see Lee & Carnahan, 2021 for a
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Table 1. The selection and regression models used in our robust Bayesian meta-analysis approach.
Type of selection Visualization Example scenario

Selection models Direction not important
Significant results are more likely to be
reported in either direction (two-
tailed)

Researcher conducts test and observes a
null result. They decide the experiment
did not work and move on. Significant
results get reported.

Significant results are most likely to be
reported, but ‘non-significant trends’
are more likely to be reported than
other null results in either direction
(two-tailed).

Authors report significant results and
‘non-significant trends’. The latter may
be interpreted as fair evidence the
manipulation worked. Some reviewers
take issue with trends, so only some
make it through and get reported. Null
results unlikely to be written up.

Direction important
Significant results and non-significant
trends are more likely to be reported
in the predicted direction.

Researcher is confident in the hypothesis
being tested in an experiment and
doubts the validity of null or opposing
findings. Reports results they are
confident in.

Significant results in the predicted
direction are more likely to be
reported than trends, which are more
likely to be reported than other null
results and significant results in the
opposite (i.e. ‘wrong’) direction.

A preference for reporting findings with a
compelling narrative results in
preferring significant results and
occasionally trends. Null or conflicting
results less likely to add to the
narrative.

Significant results and trends in the
predicted (i.e. ‘correct’) direction are
more likely to be reported than null
findings in the predicted (i.e. ‘correct’)
direction, which are more likely to be
reported than results in the opposite
(i.e. ‘wrong’) direction.

A student observes results in the
opposite direction of what was
expected. Supervisor thinks something
may have went wrong so results not
published. Other students publish
results consistent with predictions.

(Continued )
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discussion), it is imperative that the evidence buttressing its motivation predictions be
evaluated as rigorously as possible. Critically, our re-analysis addresses limitations in
both previous meta-analyses. First, the analysis of enhanced expectancies fit only one
bias correction model – the trim-and-fill method (Duval & Tweedie, 1998) – and that
model has been shown to result in exaggerated effect size estimates and severely
inflated Type 1 error rates in the presence of publication bias and small or null effects
(Bartoš et al., 2022; Carter et al., 2019; Hong & Reed, 2021). Second, although the
results from multiple reporting bias models coalesced around small effect sizes (ranged
from g = -.11 to g =.26) in the analysis of self-controlled practice, there are no principled
reasons for preferring one estimate over another. We now consider a wider range of
plausible models of reporting bias than that used in the previous meta-analyses. We
also leverage Bayesian model averaging to upweight the best performing models,
which has the advantage of evaluating single model-averaged posterior distributions
for each parameter of interest. Lastly, we fit z-curve models to the data in both meta-ana-
lyses. With this technique, the average power can be estimated and compared to the rate
of significant results, providing crucial insight into the quality of the evidence-base sup-
porting motivation predictions in OPTIMAL theory.

Table 1. Continued.
Type of selection Visualization Example scenario

Full selection model. Significant results
most likely, then trends, then null
results in the predicted (i.e. ‘correct’)
direction. The least likely to be
reported are results in the opposite
(i.e. ‘wrong’) direction.

An editor prefers to publish interesting
results. Prediction successes are
interesting. Some trends are interesting
if they are believable. Results in the
opposite direction are interesting, but
only if replicated.

Regression models
Conditioning on smaller p-values in the
predicted direction creates a
relationship between effect sizes and
standard errors. Called ‘small study
effects’ because all else being equal
smaller studies need larger effects to
achieve significant results.

This models the dependency caused by
selective reporting, not the underlying
mechanism itself. Dependency can be
caused by a third variable, such as
intensity of the interventions used in
smaller compared to larger studies.

Quadratic relationship between effect
and standard errors. Large studies
likely to be reported independent of
results, while smaller studies need
increasingly large effects in the
predicted (i.e. ‘correct’) direction to
avoid censorship.

Researchers invest in conducting a large
study and are motivated to publish
regardless of the results. They
persevere if null results are rejected.
Small studies are abandoned unless the
results are impressive.
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1. Materials and methods

Data and code used in this study can be accessed using either of the following links:
https://osf.io/vfza7/ or https://github.com/cartermaclab/proj_sc-ee-optimal-theory.

1.1. Description of datasets

The original meta-analyses followed similar inclusion criteria and data extraction policies
(see Figure 1). All data were extracted by two independent researchers with conflicts
settled by including a third researcher. The literature search for the self-controlled practice
meta-analysis (for further details see McKay, Yantha et al., 2022) ended in August 2019 and
in June 2020 for the enhanced expectancies meta-analysis (for further details see Bacelar,
Parma, Murrah et al., 2022).

1.2. Robust Bayesian meta-analysis

The self-controlled practice and enhanced expectancy meta-data were reanalyzed using
robust Bayesian meta-analysis with publication selection model-averaging (RoBMA-
PSMA) (Bartoš et al., 2022). The RoBMA-PSMA method evaluates the evidence for report-
ing bias and adjusts effect size estimates and 95% credible intervals to account for the
estimated bias. Since the true data generating process underlying the data is unknown,
the RoBMA-PSMA method fits several plausible models to the data. The models vary

Figure 1. Description of the original meta-analyses. Diagram outlining the shared and unique
inclusion criteria, dependent variable selection, the number of studies screened, and the number
of outcomes included in each meta-analysis.
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with respect to whether (a) an effect is present or absent, (b) homogeneous studies are
summarized with a common effect (fixed effects) or a distribution of heterogeneous
studies summarized with a mean effect and heterogeneity (random effects), (c) reporting
bias is present or absent, and (d) if present, how results are selected for publishing.

Two classes of models are included to account for selective publishing of results. The
first class of models are known as selection models. In a selection model, a weight-func-
tion based on p-values is fit to the data and the probability that a result survives censor-
ship to be included in the model is estimated for each p-value interval. For example, a
one-tailed p-value cut point of .025 might be specified, corresponding to a two-sided
p-value of .05 in the positive direction. The probability that non-significant results
survive censorship is estimated relative to the probability that positive significant
results are published, which is set at 1. Selection models can be used to model a
variety of potential forms of selective publishing. For example, selection may be con-
cerned with significance but not the direction of the effect; in which case a two-sided
p-value of .05 can be fit to the model. Selection may also be based on both statistical sig-
nificance in the positive direction and the direction of the point estimate; in which case
one-sided p-values of .025 and .5 can be fit to the model. The RoBMA-PSMA method
fits six different selection models corresponding to various plausible forms of selection
based on discrete p-values.

The second class of models fit in the RoBMA-PSMA method model the relationship
between observed effect sizes and their standard errors. A positive relationship
between effect sizes and their standard errors has been termed ‘small study effects’
(Sterne et al., 2000). The RoBMA-PSMA includes the precision-effect test (PET) and the pre-
cision-effect test with standard errors (PEESE) for small study effects. The PET model fits
the relationship between observed effect sizes and their standard errors, while the
PEESE model instead includes the square of the standard errors (i.e. their variances)
(Stanley & Doucouliagos, 2014). The difference between the PET and PEESE models is
that the PET model fits a linear relationship between the effect observed in a study
and the precision with which that effect was estimated. The PEESE model fits a quadratic
relationship. Thus, the PET and PEESE models differ with respect to the assumed under-
lying selection process (Stanley & Doucouliagos, 2014). The PET model assumes that
effect sizes increase in step with decreases in precision, consistent with selection based
on statistical significance. The PEESE model assumes that studies with high precision
are likely to be published regardless of statistical significance, whereas increasingly impre-
cise studies require increasingly larger effect size estimates to survive censorship.

RoBMA includes 36 separate models: (a) six weight-function selection models in each
level of a 2 (Effect: present, absent) x 2 (Heterogeneity: present, absent) matrix (24 models
in total), (b) PET and PEESE regression models in each level of the 2 x 2 Effect x Hetero-
geneity matrix (8 models in total), and (c) models assuming no reporting bias at each
level of the Effect x Heterogeneity matrix (4 models in total). The prior probabilities for
the reporting-bias adjusted and unadjusted models are both set to .5; thus, summing
to 1.0. The prior for the reporting-bias adjusted models is spread evenly between the
selection and PET-PEESE regression model classes, so the priors for the two model
classes sum to .5. Similarly, the prior distribution for the presence of an effect was
divided evenly between a spike prior equal to zero effect (i.e. the null) and a normal dis-
tribution of plausible true effects withM = 0 and SD = 1. Likewise, the prior probabilities of
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a fixed effect and heterogenous effects were divided evenly, with plausible values of τ fol-
lowing an inverse gamma distribution with shape = 1 and scale = .15. We chose neutral
priors1 to allow the data to dominate our posterior estimates and not impose our own
opinions on the analysis. Admittedly, our prior beliefs were that publication bias is
likely, so the analysis we report is somewhat conservative in this respect relative to our
personal priors. Estimates from all 36 models are combined using Bayesian model-aver-
aging, which weights each model estimate based on its posterior probability. Models
that better account for the data are given greater weight in the RoBMA-PSMA model
and models that provide a poor fit are down-weighted. The adjusted effect size estimate
is produced by averaging across all models. This preserves the uncertainty about the true
data generating process while weighting the component models based on their relative
performance.

In addition to providing an overall effect estimate, the RoBMA-PSMAmodel can also be
used to calculate Bayes factors (BF) quantifying the strength of support for the presence
(or absence) of an intervention effect, heterogeneity, or reporting bias. To illustrate, con-
sider the question of whether there is or is not an intervention effect. Since we used a
neutral prior that considered each possibility equally likely, we can take the ratio of the
posterior probabilities of model ensembles that included an effect to those that did
not. We always report the BFs so they can be interpreted as how many times more
likely the data were assuming the best supported hypothesis compared to the other
hypothesis. For example, a BF01 = 2.0 for the absence of an intervention effect suggests
that the models assuming all variation is random fit the data twice as well as models pre-
dicting an effect is present.2 Bayes factors should be interpreted as a continuous measure
of the relative support for one hypothesis versus another, not as the probability a hypoth-
esis is true.

RoBMA-PSMA outperforms other meta-analytic approaches, including each constitu-
ent model included in RoBMA-PSMA, in simulations covering a range of plausible scen-
arios (Maier et al., 2022). Further, an analysis of real data from an approximately known
data generating process (multi-lab registered replication report) suggested that
RoBMA-PSMA outperforms other available techniques (Bartoš et al., 2022). Simulations
do suggest a simpler version of the RoBMA approach that includes only the PET-PEESE
publication bias models (RoBMA-PP) is more effective in scenarios with strong
p-hacking and publication bias. These strong performance indices combined with the
ability to simultaneously model various plausible manifestations of reporting bias made
RoBMA-PSMA (and RoBMA-PP) an attractive choice for re-analyzing the enhanced expec-
tancies and self-controlled practice meta-analyses.

1.3. Z-curve

The self-controlled practice meta-data,3 enhanced expectancy meta-data, and the combi-
nation of both the enhanced expectancy and self-controlled practice meta-data were ana-
lyzed with a z-curve. A z-curve analysis estimates the statistical power of all studies ever
conducted within a given literature, even if those studies were not reported, on the basis
of the significant results that are present (Bartoš & Schimmack, 2022). That power estimate
is equivalent to the expected discovery rate, that is, the expected rate of significant results
for a given literature. The expected discovery rate estimated by a z-curve and its
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corresponding 95% confidence interval can be compared to the observed discovery rate
in the literature (the actual rate of significant results). A discrepancy between the 95%
confidence interval of the expected discovery rate estimate and the observed discovery
rate provides evidence of reporting bias.

Z-curve analyzes two-tailed p-values or absolute z-scores, which do not preserve the
direction of the effect and therefore follow a folded normal distribution. Because the
selection process that determines whether non-significant results survive censorship is
unknown, z-curve includes only significant results. Therefore, the expected distribution
of z-scores in a z-curve analysis is a folded normal distribution truncated at z = 1.96, cor-
responding to the conventional threshold for statistical significance. Z-curve is intended
to be applied in both standard meta-analytic situations as well as broader investigations
of entire fields, journals, or researcher publication histories. Therefore, the expected dis-
tribution of z-values in z-curve is heterogeneous, forming a mixture of truncated folded
normal distributions with means equal to the population mean for each study and a stan-
dard deviation of 1. Critically, the mixture of truncated folded normal distributions for a
given set of significant studies is a function of the average power of the population of
studies from which they were sampled. By approximating this distribution z-curve can
estimate the average power of all studies conducted within a given literature, the so-
called expected discovery rate. Z-curve estimates the mixture model by using the expec-
tation maximization algorithm (Dempster et al., 1977; Lee & Scott, 2012) to fit a finite
mixture model of seven truncated folded normal distributions with population means
of 0, 1, 2, 3, 4, 5, and 6.

Similar to RoBMA-PSMA (Maier et al., 2022), z-curve has also performed well in simu-
lation studies and when applied to multi-lab registered replication data (Bartoš & Schim-
mack, 2022). Z-curve is a tool that can provide insight into the possible power
shortcomings of a particular literature. Further, as z-curve was designed to accommodate
highly heterogeneous inputs, it is ideal for exploring power and reporting bias among
studies that used a variety of methods to manipulate the two motivational factors in
Wulf and Lewthwaite (2016) OPTIMAL theory of motor learning.

1.4. Data analysis

We fit two RoBMA-PSMAmodels to the enhanced expectancies meta-data using the effect
sizes and variances calculated by Bacelar et al. (2022). The first model included all studies,
while the second excluded two influential cases, consistent with the primary results
reported in their original meta-analysis. The self-controlled practice effect sizes and stan-
dard errors reported by McKay et al. (2022) were analyzed using the same strategy.

Z-curve models were fit to the enhanced expectancy and self-controlled practice meta-
data separately, as well as combined. The same strategy was followed regarding influen-
tial cases. For all analyses, the model excluding influential cases is reported in detail and
models with all studies included are discussed only when there are meaningful
differences.

Statistical analyses were conducted using R (Version 4.2.2; R Core Team, 2021) and the
R-packages geomtextpath (Version 0.1.0; Cameron, 2022), gt (Version 0.6.0; Iannone et al.,
2022), invgamma (Version 1.1; Kahle & Stamey, 2017), metafor (Version 3.4.0; Viechtbauer,
2010), papaja (Version 0.1.0.9999; Aust & Barth, 2020), patchwork (Version 1.1.0.9000;
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Pedersen, 2022), plotly (Version 4.10.0; Sievert, 2020), pwr (Version 1.3.0; Champely, 2020),
renv (Version 0.15.5; Ushey, 2022), RoBMA (Version 2.2.2; Bartoš & Maier, 2020), tidyverse
(Version 1.3.1; Wickham et al., 2019), tinylabels (Version 0.2.3; Barth, 2022), truncdist
(Version 1.0.2; Novomestky & Nadarajah, 2016), and zcurve (Version 2.1.2; Bartoš & Schim-
mack, 2020) were used in this project.

2. Results

2.1. Robust Bayesian meta-analysis

2.1.1. Self-controlled practice
The model-averaged posterior distribution of the average effect from the RoBMA-PSMA
model is displayed in Figure 2(b). The results suggest moderate evidence against the pres-
ence of an effect, BF01 = 3.16, very weak evidence against the presence of heterogeneity,
BFrf = 1.7, and overwhelming evidence for the presence of reporting bias,
BFpb = 18, 399. The overall model ensemble estimated the effect of self-controlled prac-
tice as d = .034 (95% credible interval [.0, .248]). Heterogeneity was estimated as τ = .05
(95% credible interval [.0, .261]). A model fit with two influential cases4 included found
overwhelming evidence for the presence of heterogeneity, BFrf = 1, 924, 516 and esti-
mated τ = .559 (95% credible interval [.36, .78]). There were no other meaningful differ-
ences between models.

2.1.2. Enhanced expectancies
The model-averaged posterior distribution of the average effect from the RoBMA-PSMA
model is displayed in Figure 2(c). The results revealed weak evidence for the presence
of an effect BF10 = 1.9, weak evidence for the presence of reporting bias, BFpb = 2.3,
and very strong evidence for the presence of heterogeneity, BFrf = 47.6. The model
ensemble estimated an average effect of d = .26 (95% credible interval [-.07, .63]). Hetero-
geneity was estimated as τ = .35 (95% credible interval [.07, .54]). A model fit with two
influential cases5 included found weak evidence for the absence of an effect
BF01 = 2.5, strong evidence for the presence of reporting bias, BFpb = 21, and over-
whelming evidence for the presence of heterogeneity, BFrf = 45, 300. The model ensem-
ble estimated an average effect of d = .00 (95% credible interval [-.62, .59]), τ = .49 (95%
credible interval [.32, .68]).

The RoBMA-PSMA models with and without influential cases differed primarily with
respect to the fit of the PEESE models. When two large effect sizes with large standard
errors were included in the analysis, the PEESE model provided a very strong fit to the
data (BF10 = 39.9) when assuming no true effect but the presence of heterogeneity.
When the two influential cases were excluded, the best fitting model was the PET
under the same assumptions (BF10 = 9.4).6

2.2. Z-curve

2.2.1. Self-controlled practice
The results of the z-curve analysis can be seen in Figure 3(b). The analysis estimated
the average statistical power (expected discovery rate) of all experiments examining
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the effect of self-controlled practice was 6% (95% confidence intervals [5%, 12%]).
Since the upper bound of the expected discovery rate does not overlap with
the observed discovery rate of 48% (95% confidence interval [35%, 62%]), there is
evidence of significant reporting bias. The estimated conditional power of
the statistically significant results (expected replication rate) was 11% (95% confi-
dence interval [3%, 30%]). Including influential cases did not markedly change the
results.

2.2.2. Enhanced expectancies
The results of the z-curve analysis can be seen in Figure 3(c). The analysis estimated that
the expected discovery rate of studies conducted on enhanced expectancies was 8% (95%
confidence interval [5%, 18%]). The observed discovery rate was 44% (95% confidence
interval [31%, 59%]). Since the upper bound of the expected discovery rate does not

Figure 2. Results from the robust Bayesian meta-analysis with publication selection model-averaging
(RoBMA-PSMA) method. (A) Prior spike and distribution (purple) with 50% of prior probability density
concentrated on the null hypothesis and 50% reflecting plausible true effects with M = 0 and SD =
1. The model-averaged posterior distribution of the mean effect (Mu) of (B) self-controlled practice
on motor learning (blue). The increased height of the spike at mu = 0 reflects increased belief in
the null hypothesis. The remaining distribution reflects updated belief in the size and direction of a
possible true effect. The mean estimate for the posterior distribution is M = .034. The model-averaged
posterior distribution of the mean effect of (C) enhanced expectancies on motor learning (red). The
decreased height of the spike at mu = 0 reflects decreased belief in the null hypothesis. The remaining
distribution reflected updated belief in the size and direction of a possible true effect. The mean esti-
mate for the posterior distribution is M = .26. The model-averaged posterior distribution generated
from an analysis of (D) simulated data (green). In the simulation, 49 studies were sampled from a
population with a true effect of mu = .54 and no reporting bias. The mean estimate for the posterior
isM = .504. Outliers were not included in the self-controlled (n = 2) and enhanced expectancies (n = 2)
models.
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overlap with the lower bound of the observed discovery rate, there is evidence of signifi-
cant reporting bias. The expected replication rate of the statistically significant results was
33% (95% confidence interval [8%, 59%]). Including influential cases did not meaningfully
change the results.

Figure 3. Results of the z-curve analyses. Distribution of z-values for (A) our simulation with 47%
results and no reporting bias (green), (B, left) self-controlled practice (blue), (C, left) enhanced expec-
tancies (red), and (D, left) motivational factors combined (purple). Values in the z-score distributions
for each analysis that are to the right of the significance line (z = 1.96; solid, black) are statistically
significant with a two-tailed α of .05. Bootstrapped confidence distributions for the expected discovery
rate (EDR; dark) and expected replication rate (ERR; light) for (B, right) self-controlled practice (blue),
(C, right) enhanced expectancies (red), and (D, right) motivational factors combined (purple). Note,
reported confidence intervals include 5 extra points (EDR) and 3 extra points (ERR) added to the quan-
tiles of the bootstrapped distributions in the right panel, consistent with Bartoš et al. (2022). The
expected discovery rate is the estimated average power of all studies that have been conducted.
The expected replication rate is the estimated power of all studies that observed a statistically signifi-
cant result. The analysis estimated the average statistical power to be 6%, 8%, and 6% for self-con-
trolled practice, enhanced expectancies, and motivational factors combined, respectively. The
estimated conditional power of the statistically significant results was 11%, 33%, and 21% for self-con-
trolled practice, enhanced expectancies, and motivational factors combined, respectively. Note that a
minimum power of 80% (dashed line, black) is often recommended. Outliers were not included in the
self-controlled (n = 2), enhanced expectancies (n = 2), and motivational factors combined (n = 4)
analyses.
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2.2.3. Motivational factors in OPTIMAL theory
The results of the z-curve analysis of enhanced expectancy and self-controlled practice
meta-data combined can be seen in Figure 3(d). The expected discovery rate of all
studies conducted on the motivational factors in OPTIMAL theory is 6% (95% confidence
interval [5%, 13%]). The observed discovery rate was 46% (95% confidence interval [37%,
56%]). The lower bound of the observed discovery rate does not overlap with the upper
bound of the expected discovery rate, providing evidence of significant reporting bias in
this literature. The expected replication rate of the statistically significant results was 21%
(95% confidence interval [4%, 39%]). Including influential cases did not meaningfully
change the results.

3. Discussion

A theory is formed based on observations of study results and/or real-world phenomena. It
is evaluated by subsequent studies testing hypotheses derived from the theory. Thus, a
theory’s basis and support depend on the evidential value of the relevant studies. The
OPTIMAL theory of motor learning (Wulf & Lewthwaite, 2016) was established through
study results showing that enhancing learners’ expectancies and control over practice con-
ditions improves learning and further supported by studies testing these hypotheses (Wulf
& Lewthwaite, 2021). Two recent meta-analyses were conducted to appraise the evidential
value of studies testing whether self-controlled practice (McKay, Yantha et al., 2022) and/or
enhanced expectancies (Bacelar, Parma, Murrah et al., 2022) improve motor learning. McKay
et al.’s (2022) meta-analysis found self-controlled practice benefited motor learning when
using a naive random-effects model of published studies (g = 0.54), but little evidence
for a benefit was observed when a suite of bias correction techniques were employed
(g’s ranged from -0.11 to 0.26). McKay et al. also used a z-curve analysis to estimate the stat-
istical power of self-controlled practice studies and found them to be severely underpow-
ered (power = 6%, 95% confidence interval [5%, 13%]). Bacelar et al.’s (2022) meta-analysis
found evidence that enhanced expectancies improve motor learning when utilizing a naive
random-effects model (g = 0.54). Despite evidence of bias (i.e. funnel plot asymmetry),
applying a trim-and-fill bias correction technique did not change the naive random-
effects model estimate. Crucially, however, the trim-and-fill bias correction technique
only slightly reduces bias and Type I error (Carter et al., 2019). Bacelar et al. did not estimate
the statistical power of enhanced expectancies studies; although they did note that the
included studies had small sample sizes.

Our objective in the current study was to conduct a holistic assessment of the motiv-
ation pillar of OPTIMAL theory. Specifically, we used RoBMA-PSMA – a state-of-the-art bias
correction technique – to evaluate the effect of self-controlled practice and enhanced
expectancies on motor learning (see Figure 2). Additionally, we used z-curve analyses
to estimate the statistical power of the enhanced expectancies studies alone and then
combined with the self-controlled practice studies to assess the motivation pillar of
OPTIMAL theory (see Figure 3). Using RoBMA-PSMA to model the effect of self-controlled
practice on motor learning, we found moderate evidence against the presence of an
effect (BF01 = 3.16). The model ensemble estimated a small average effect of d = .034
with a 95% credible interval that reached zero [.0, .248]. We also found overwhelming evi-
dence for the presence of reporting bias (BFpb = 18, 399). When modeling the effect of
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enhanced expectancies on motor learning with RoBMA-PSMA, we found weak evidence
for the presence of an effect (BF10 = 1.9). The model ensemble estimated a small
average effect of d = .26 with a 95% credible interval that included zero [-.07, .63].
Weak evidence for the presence of reporting bias (BFpb = 2.3) was also found. There
was very strong support for the presence of heterogeneity in the enhanced expectancies
literature (BFrf = 47.6). The likely presence of heterogeneity suggests there is not one true
effect, so individual studies may have been testing interventions with real benefits.
However, this also means individual studies may have been testing interventions with
real detriments as well, and we cannot discern which studies fall into which category.
The estimated τ of .35 suggests the possibility of substantial variation in the effect of
enhanced expectancies, highlighting the importance of cautious interpretation given
the effect modifiers remain unknown.

Heterogeneity can be problematic for modeling reporting bias with the selection and
regression models employed in RoBMA-PSMA (Carter et al., 2019). Fortunately, the z-curve
was designed for heterogeneous samples and may therefore be a better method of eval-
uating reporting bias in the enhanced expectancies data. The z-curve analysis estimated
the average statistical power of enhanced expectancies studies to be 8%. The 95% confi-
dence interval [5%, 18%] did not overlap with the 95% confidence interval of the
observed discovery rate [31%, 59%], providing evidence of significant reporting bias.
Visual inspection of the distribution of z-values reveals a large concentration of barely sig-
nificant results and a dearth of barely not significant results (Figure 3(b)). This pattern is
consistent with selective reporting, and it is difficult to imagine an alternate process
that would generate these results. To evaluate the potential presence of reporting bias
across both motivation factors, as well as estimate the average power of studies that
have investigated these phenomena, we applied a z-curve to studies from both meta-ana-
lyses. The z-curve analysis combining the enhanced expectancies and self-controlled prac-
tice studies estimated the average statistical power to be 6%. The 95% confidence interval
[5%, 13%] did not overlap with the 95% confidence interval of the observed discovery rate
[37%, 56%], indicating significant reporting bias.

Our results are mostly consistent with other recent meta-analyses and pre-registered
experiments with large sample sizes that have raised concerns about the state of evidence
for the motivation pillar in OPTIMAL theory. Concerning self-controlled practice, the
RoBMA-PSMA estimate of d =.034 is within the range of estimates reported by McKay,
Corson et al. (2022), which showed g’s ranging from -0.11 to 0.26. Our finding of over-
whelming evidence for reporting bias is also consistent with McKay et al.’s z-curve
showing the 95% confidence interval for average statistical power was 5% to 13% and
an observed discovery rate of 37% to 56%. Four recent pre-registered studies with rela-
tively large sample sizes have all failed to observe a self-controlled practice or learning
benefit (Bacelar, Parma, Cabral et al., 2022; McKay & Ste-Marie, 2022; St. Germain et al.,
2022; Yantha et al., 2022). For example, Bacelar, Parma, Cabral et al. (2022) had 100 par-
ticipants practice a non-dominant arm bean bag tossing task with self-controlled aug-
mented knowledge of results feedback and 100 participants practice the task without
choice, and did not find a self-controlled learning advantage. Regarding enhanced expec-
tancies, our RoMBA-PSMA estimate of d = 0.26 is consistent with Bacelar et al.’s (2022)
concern that their meta-analysis yielded an overestimated effect size (g = 0.54). Indeed,
the present study uses new methods and different assumptions to correct for the bias
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that Bacelar et al.(2022) suspected in their previous study. Further, the Bayesian approach
currently employed offers an updated belief in the likelihood of bias, heterogeneity, and
the presence of an effect while considering plausible forms of selective reporting. Conver-
sely, the frequentist approach employed previously offers a test of the null hypothesis
that there is no effect of enhanced expectancies manipulations while assuming selective
reporting is absent. The two studies offer valid answers to different questions. In addition,
our z-curve result that enhanced expectancies are underpowered and subject to reporting
bias is consistent with Bacelar et al.’s findings of small sample sizes (median = 14/group)
and small-study effects (i.e. significant funnel plot asymmetry). Estimates of reporting bias
from the RoBMA-PSMA models were sensitive to the removal of two outliers, showing
strong support for bias only when one or two outliers were included but not when
both were removed. The evidence of reporting bias observed in the z-curve was not sen-
sitive to removal of outliers and with the heterogeneity in the sample the z-curve may
provide a better test of bias than RoBMA-PSMA. Considering these motivational factors
combined, the z-curve result that studies supporting OPTIMAL theory are underpowered
and subject to reporting bias is consistent with McKay et al.’s (2022) meta-analysis that
drew the same conclusion about self-controlled practice studies. Taken together, past
and present results suggest that the our samples of studies demonstrating the benefit
of enhancing learners’ expectancies and giving them control over practice conditions pre-
sents a distorted reality due to reporting bias. These effects are not reliably different from
zero, highlighting that the motivation pillar of OPTIMAL theory lacks evidential value.

3.1. Limitations

Our efforts to model selective reporting and adjust our parameter estimates accordingly
are limited by the difficult nature of this task. We simply cannot know the extent of report-
ing bias in the extant literature, nor can we know the underlying mechanisms responsible
for it. While our models correspond nicely to plausible selection processes, there are other
possible mechanisms that could cause the data to fit our bias-correction models. For
instance, it is possible researchers were able to intuit the size of the effects they would
observe with their specific sample and paradigm, and they carefully adjusted their
sample sizes based on these intuitions. If this was the case, we would expect large
studies for small effects and small studies for large ones, consistent with the regression
models included in the RoBMA-PSMA. Although we consider this unlikely – how could
researchers have such a fine-grained understanding of the effects they are studying
given the uncertainty in the literature? – the reader should be aware of the sensitivity
of our models to assumptions about the underlying data generating process. The likely
presence of heterogeneity in the enhanced expectancies literature suggests there is
not one true effect, so individual studies may have been testing interventions with real
benefits. However, this also means individual studies may have been testing interventions
with real detriments as well, and we cannot discern which studies fall into which category.

4. Conclusion

Our analyses suggest a lack of evidence in support of enhanced expectancies and self-
controlled practice as beneficial motor learning interventions. The lack of evidence
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supporting the motivational branch in OPTIMAL theory is not evidence that the predicted
effects are absent. Indeed, even the null effects for a self-controlled practice benefit
reported by pre-registered studies with large sample sizes (Bacelar, Parma, Cabral et al.,
2022; McKay & Ste-Marie, 2022; St. Germain et al., 2022; Yantha et al., 2022) are not con-
clusive that an effect is absent. Rather, these null effects leave open the possibility that the
effect is very small and, thus, not detectable even with relatively large sample sizes (e.g. N
= 200 as in Bacelar, Parma, Cabral et al. (2022)). Motor learning researchers often study
skills performed in sports, which are often games of inches, so very small effects may
be of practical interest. Nonetheless, the field of motor learning is not past asking
whether self-controlled practice and enhanced expectancies have any benefit, so con-
cerns about estimating the magnitude of a potential benefit are premature (Simonsohn,
2015). Thus, we urge any motor learning scientist(s) interested in clarifying whether self-
controlled practice or enhanced expectancies boost motor learning to address the pro-
blems of underpowered and overworked study designs (Lohse et al., 2016) and the report-
ing bias revealed in the present meta-analysis and those by McKay, Yantha et al. (2022)
and Bacelar, Parma, Cabral et al. (2022).

There are multiple ways to increase statistical power, such as accounting for
between-subjects variance by using a covariate, like pretest motor performance, in an
ANCOVA design (Vickers & Altman, 2001), and/or increasing the number of pretest
and posttest trials (Maxwell et al., 1991). Perhaps the most common and effective
way to boost power is to increase sample size. Lakens (2022) describes several
approaches for determining sample size, including conducting an a priori power analy-
sis. A recent survey of three popular motor learning journals revealed a low prevalence
(84/635 or 13% in McKay, Corson et al. (2022)) and low reproducibility (7/84 or 8% in
(2023)) of reported a priori power analyses. The usefulness of an a priori power analysis
depends on reasonable assumptions about effect sizes. Assumptions about the effect
size for self-controlled practice and enhanced expectancies studies should be based
on the bias-corrected estimates found in the present study (self-controlled practice: d
= .034; enhanced expectancies: d = 0.26) given the evidence of reporting bias. Research-
ers could also use the smallest effect size of interest (Lakens, 2022), but this effect may
be even smaller than those from the meta-analyses, as noted earlier. Simonsohn (2015)
described another approach to determine sample size for replication studies termed the
‘small telescopes’ approach. This approach recommends the replication sample size be
2.5 times that of the original sample. With questions surrounding the face value of orig-
inal studies supporting OPTIMAL theory, we believe replication studies are crucial and
the ‘small telescopes’ approach to determine sample size for these studies should be
the minimally accepted approach. Irrespective of which of the above approaches
researchers use to make reasonable assumptions about effect sizes, their a priori
power analyses will likely lead to sample sizes that are larger than they are used to col-
lecting. Thus, researchers may want to consider ways to improve the efficiency of their
data collection, for example by using sequential analyses (Lakens, 2014; Lakens et al.,
2021; Wald, 1945) or conducting multi-laboratory studies. Finally, clarity about the
effect of self-controlled practice and/or enhanced expectancies on motor learning can
only be achieved if a complete picture of the evidence is available. Researchers and
gatekeepers to scientific publication (e.g. peer-reviewers, journal editors) should take
measures to eliminate reporting bias, for example by publishing registered reports,
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undertaking/encouraging replication attempts (at a minimum using the ‘small tele-
scopes’ approach), and publishing null effects.

Notes

1. We considered a more informed distribution of plausible effects based on the empirical
benchmarks reported by Lovakov and Agadullina (2021) for social psychological phenomena.
In this sensitivity analysis, we included a normal prior distribution with M = 0 and SD = .36.
The results of this sensitivity analysis were nearly identical to the primary analysis.

2. BF10 is the inverse of BF01, so while BF01 indicates evidence in support of the null hypothesis,
BF10 indicates evidence in support of the alternative hypothesis.

3. Z-curve results for self-controlled practice were reported previously in McKay, Yantha et al.
(2022). We reproduce them here for comparison to enhanced expectancies and motivational
factors combined analyses.

4. The two outliers in the self-controlled practice were studies by Lemos et al. (2017) and
Marques et al. (2017). Lemos et al. (2017) measured ballet movement form and tested the
effect of choosing among video demonstrations while Marques et al. (2017) measured
front crawl movement form and tested the effect of choosing which self-modeling video
to watch during practice.

5. The two outliers in the enhanced expectancies meta-analysis were Goudini et al. (2018) and
Navaee et al. (2018). The study by Goudini et al. measured linear tracing performance and
tested the effect of feedback after good and bad trials. The study by Navaee et al. measured
beanbag tossing performance and tested the effect of providing children on the autism
spectrum with nonveridical feedback suggesting performance was 20% better than the
average.

6. We also fit RoBMA-PP models that perform better than RoBMA-PSMA models in the presence
of strong p-hacking and publication bias. The RoBMA-PP models did not lead to substantively
different conclusions for the analysis of self-controlled practice or enhanced expectancies.
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