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1 Introduction

This document covers the Machine Learning API of the OpenCV2 C++ API. It helps you with setting
up your system, gives a brief introduction into Support Vector Machines and Neural Networks and
shows how it’s implemented with OpenCV. Machine Learning is a branch of Artificial Intelligence
and concerned with the question how to make machines able to learn from data. The core idea is to
enable a machine to make intelligent decisions and predictions, based on experiences from the past.
Algorithms of Machine Learning require interdisciplinary knowledge and often intersect with topics
of statistics, mathematics, physics, pattern recognition and more.
OpenCV2 comes with a machine learning library for:
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• Decision Trees

• Boosting

• Support Vector Machines

• Expectation Maximization

• Neural Networks

• k-Nearest Neighbor

OpenCV (Open Source Computer Vision) is a popular computer vision library started by Intel in
1999. The cross-platform library sets its focus on real-time image processing and includes patent-
free implementations of the latest computer vision algorithms. In 2008 Willow Garage took over
support and OpenCV 2.3.1 now comes with a programming interface to C, C++, Python and Android.
OpenCV is released under a BSD license, so it is used in academic and commercial projects such as
Google Streetview.
Please don’t copy and paste the code from this document, the project has been uploaded to http:

//www.github.com/bytefish/opencv. All code is released under a BSD license, so feel free to use it
for your projects.

2 Installation Guide

This installation guide explains how to install the software for this document. CMake is used as build
system for the examples, MinGW (Minimalist GNU for Windows) is used as the compiler for Windows
and OpenCV2 is compiled from source. There are binaries for OpenCV2 already, so why is it useful
to build it from source at all? Your architecture may not be supported by the binaries, your toolchain
may differ or the OpenCV version in your repository may not be the latest. Please note: You can
always use the binaries supplied by WillowGarage or the binaries supplied by your distribution if they
work for you.
The following guide was tested on Microsoft Windows XP SP3 and Ubuntu 10.10.

2.1 Installing CMake

CMake is an open-source, cross-platform build system. It manages the build process in a compiler-
independent manner and is able to generate native build environments to compile the source code
(Make, Apple Xcode, Microsoft Visual Studio, MinGW, . . .). Projects like OpenCV, KDE or Blender
3D recently switched to CMake due to its flexibility. The CMake build process itself is controlled by
configuration files, placed in the source directory (called CMakeLists.txt). Each CMakeLists.txt consists
of CMake commands in the form of COMMAND(arguments...), that describe how to include header files,
build libraries and executables. Please see the CMake Documentation for a list of available commands.
A Windows installer is available at cmake.org/resources/software.html (called cmake-<version>-win32

-x86.exe). Make sure to select ”Add CMake to the system PATH for all users” during setup or
manually add it, so you can use cmake, ccmake and the cmake-gui from command line (see Microsoft
Support: How To Manage Environment Variables in Windows XP for details). Linux users should
check the repository of their distribution, because the CMake binaries are often available already.
If CMake is not available one can build it from source by:

./ bootstrap

make

make install

Or install generic Linux binaries (called cmake-<version>-<os>-<architecture>.sh):

sudo sh cmake -<version >-<os >-<architecture >.sh --prefix =/usr/local

2.2 Installing MinGW

MinGW (Minimalist GNU for Windows) is a port of the GNU Compiler Collection (GCC) and can be
used for the development of native Microsoft Windows applications. The easiest way to install MinGW
is to use the automated mingw-get-installer from sourceforge.net/projects/mingw/files/Automated
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MinGW Installer/mingw-get-inst/ (called mingw-get-inst-20101030.exe at time of writing this). If
the path to the download changes, please navigate there from mingw.org.
Make sure to select ”C++ Compiler” in the Compiler Suite dialog during setup. Since MinGW doesn’t
add its binaries to the Windows PATH environment, you’ll need to manually add it. The MinGW
Page says: Add C:\MinGW\bin to the PATH environment variable by opening the System control panel,
going to the Advanced tab, and clicking the Environment Variables button. If you currently have a
Command Prompt window open, it will not recognize the change to the environment variables; you
will need to open a new Command Prompt window to get the new PATH.
Linux users should install gcc and make (or a build tool supported by CMake) from the repository of
their distribution. In Ubuntu the build-essential package contains all necessary tools to get started,
in Fedora and SUSE you’ll need to install it from the available development tools.

2.3 Building OpenCV

Please skip this section if you are using the OpenCV binaries supplied by WillowGarage or your
distribution. To build OpenCV you’ll need CMake (see section 2.1), a C/C++ compiler (see section
2.2) and the OpenCV source code. At time of writing this, the latest OpenCV sources are available at
http://sourceforge.net/projects/opencvlibrary/. I’ve heard the OpenCV page will see some
changes soon, so if the sourceforge isn’t used for future versions anymore navigate from the official
page: http://opencv.willowgarage.com.
In this guide I’ll use OpenCV 2.3.0 for Windows and OpenCV 2.3.1 for Linux. If you need the latest
Windows version download the superpack, which includes binaries and sources for Windows.

Create the build folder

First of all extract the source code to a folder of your choice, then open a terminal and cd into this
folder. Then create a folder build, where we will build OpenCV in:

mkdir build

cd build

Build OpenCV in Windows

Now we’ll create the Makefiles to build OpenCV. You need to specify the path you want to install
OpenCV to (e.g. C:/opencv), preferrably it’s not the source folder. Note, that CMake expects a slash
(/) as path separator. So if you are using Windows you’ll now write:

cmake -G "MinGW Makefiles" -D:CMAKE_BUILD_TYPE=RELEASE -D:BUILD_EXAMPLES =1 -D:

CMAKE_INSTALL_PREFIX=C:/ opencv ..

mingw32 -make

mingw32 -make install

Usually CMake is good at guessing the parameters, but there are a lot more options you can set (for
Qt, Python, ..., see WillowGarage’s Install Guide for details). It’s a good idea to use the cmake-gui to
see and set the available switches. For now you can stick to the Listing, it works fine for Windows
and Linux.
Better get a coffee, because OpenCV takes a while to compile! Once it is finished and you’ve decided
to build dynamic libraries (assumed in this installation guide), you have to add the bin path of the
installation to Windows PATH variable (e.g. C:/opencv/bin). If you don’t know how to do that, see
Microsoft Support: How To Manage Environment Variables in Windows XP for details.

Build OpenCV in Linux

Creating the Makefiles in Linux is (almost) similar to Windows. Again choose a path you want to
install OpenCV to (e.g. /usr/local), preferrably it’s not the source folder.

1 cmake -D CMAKE_BUILD_TYPE=RELEASE -D BUILD_EXAMPLES =1 -D CMAKE_INSTALL_PREFIX =/usr/

local ..

2 make

3 sudo make install
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Sample CMakeLists.txt

Once CMake is installed a simple CMakeLists.txt is sufficient for building an OpenCV project (this is
the build file for the example in this document):

CMAKE_MINIMUM_REQUIRED( VERSION 2.8 )

PROJECT( ml_opencv )

FIND_PACKAGE( OpenCV REQUIRED )

ADD_EXECUTABLE( ml main.cpp )

TARGET_LINK_LIBRARIES(ml ${OpenCV_LIBS })

To build and run the project one would simply do (assuming we’re in the folder with CMakeLists.txt):

# create build directory

mkdir build

# ... and cd into

cd build

# generate platform -dependent makefiles

cmake ..

# build the project

make

# run the executable

./ml

Or if you are on Windows with MinGW you would do:

mkdir build

cd build

cmake -G "MinGW Makefiles" ..

mingw32 -make

ml.exe

3 Generating Data: Random Numbers in OpenCV

We want to see how the Machine Learning algorithms perform on linearly separable and non-linearly
separable datasets. For this we’ll simply generate some random data from several functions. Each
thread in OpenCV has access to a default random number generator cv::theRNG(). For a single pass
the seed for the random number generator doesn’t have to be set, but if many random numbers have
to be generated (for example in a loop) the seed has to be set.
This can be done by assigning the local time to the random number generator:

cv:: theRNG () = cv::RNG(time (0))

3.1 Uniform Distribution

Uniform Distributions can be generated in OpenCV with the help of cv::randu. The signature of
cv::randu is:

void randu(Mat& mtx , const Scalar& low , const Scalar& high);

Where

• mtx is the Matrix to be filled with uniform distributed random numbers

• low is the inclusive lower boundary of generated random numbers

• high is the exclusive upper boundary of generated random numbers

3.2 Normal Distribution

A Normal Distribution can be generated in OpenCv with the help of cv::randn.

void randn(Mat& mtx , const Scalar& mean , const Scalar& stddev);

Where

• mtx is the Matrix to be filled with normal distributed random numbers

• mean the mean value of the generated random numbers

• stddev the standard deviation of the generated random numbers
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4 Preparing the Training and Test Dataset for OpenCV ML

In the C++ Machine Learning API of OpenCV training and test data is given as a cv::Mat matrix.
The constructor of cv::Mat is defined as:

Mat::Mat(int rows , int cols , int type);

Where

• rows is the number of samples (for all classes!)

• columns is the number of dimensions

• type is the image type

In the machine learning library of OpenCV each row or column in the training data is a n-dimensional
sample. The default ordering is row sampling and class labels are given in a matrix with equal length
(one column only, of course).

cv::Mat trainingData(numTrainingPoints , 2, CV_32FC1);

cv::Mat testData(numTestPoints , 2, CV_32FC1);

cv:: randu(trainingData ,0,1);

cv:: randu(testData ,0,1);

cv::Mat trainingClasses = labelData(trainingData , equation);

cv::Mat testClasses = labelData(testData , equation);

Since only binary classification problems are considered the function f returns the classes −1 and 1
for a given two-dimensional data point:

// function to learn

int f(float x, float y, int equation) {

switch(equation) {

case 0:

return y > sin(x*10) ? -1 : 1;

break;

case 1:

return y > cos(x * 10) ? -1 : 1;

break;

case 2:

return y > 2*x ? -1 : 1;

break;

case 3:

return y > tan(x*10) ? -1 : 1;

break;

default:

return y > cos(x*10) ? -1 : 1;

}

}

And to label data one can use the function labelData:

cv::Mat labelData(cv::Mat points , int equation) {

cv::Mat labels(points.rows , 1, CV_32FC1);

for(int i = 0; i < points.rows; i++) {

float x = points.at <float >(i,0);

float y = points.at <float >(i,1);

labels.at<float >(i, 0) = f(x, y, equation);

}

return labels;

}

5 Support Vector Machines (SVM)

Support Vector Machines were first introduced by Vapnik and Chervonenkis in [6]. The core idea is
to find the optimal hyperplane to seperate a dataset, while there are theoretically infinite hyperplanes
to seperate the dataset. A hyperplane is chosen, so that the distance to the nearest datapoint of both
classes is maximized (Figure 1). The points spanning the hyperplane are the Support Vectors, hence
the name Support Vector Machines. [2]
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Figure 1: Maxmimum Margin Classifier.

5.1 Definition

Given a Set of Datapoints D:

D = {(xi, yi)|xi ∈ Rp, yi ∈ {−1, 1}}ni=1

where

• xi is a point in p-dimensional vector

• yi is the corresponding class label

We search for ω ∈ Rn and bias b, forming the Hyperplane H:

ωTx+ b = 0

that seperates both classes so that:
ωTx+ b = 1, if y = 1

ωTx+ b = −1, if y = −1

The optimization problem that needs to be solved is:

min
1

2
ωTω

subject to:
ωTx+ b ≥ 1, y = 1

ωTx+ b ≤ 1, y = −1

Such quadratic optimization problems can be solved with standard solvers, such as GNU Octave or
Matlab.

5.1.1 Non-linear SVM

The kernel trick is used for classifying non-linear datasets. It works by transforming data points into
a higher dimensional feature space with a kernel function, where the dataset can be seperated again
(see Figure 2).
Commonly used kernel functions are RBF kernels:

k(x, x′) = exp(
‖x− x′‖2

σ2
)

or polynomial kernels:
k(x, x′) = (x · x′)d

.
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Input space Feature space

Figure 2: Kernel Trick

5.2 SVM in OpenCV

Parameters for a SVM have to be defined in the structure CvSVMParams.

Parameters

Listing 1: Example CvSVMParams

CvSVMParams param = CvSVMParams ();

param.svm_type = CvSVM :: C_SVC;

param.kernel_type = CvSVM:: LINEAR;

param.degree = 0; // for poly

param.gamma = 20; // for poly/rbf/sigmoid

param.coef0 = 0; // for poly/sigmoid

param.C = 7; // for CV_SVM_C_SVC , CV_SVM_EPS_SVR and CV_SVM_NU_SVR

param.nu = 0.0; // for CV_SVM_NU_SVC , CV_SVM_ONE_CLASS , and CV_SVM_NU_SVR

param.p = 0.0; // for CV_SVM_EPS_SVR

param.class_weights = NULL; // for CV_SVM_C_SVC

param.term_crit.type = CV_TERMCRIT_ITER | CV_TERMCRIT_EPS;

param.term_crit.max_iter = 1000;

param.term_crit.epsilon = 1e-6;

Where the parameters are (taken from the OpenCV documentation):

• svm_type

– CvSVM::C_SVC n-class classification (n ≥ 2), allows imperfect separation of classes with penalty
multiplier C for outliers.

– CvSVM::NU_SVC n-class classification with possible imperfect separation. Parameter nu (in the
range 0 . . . 1, the larger the value, the smoother the decision boundary) is used instead of
C.

– CvSVM::ONE_CLASS one-class SVM. All the training data are from the same class, SVM builds
a boundary that separates the class from the rest of the feature space.

– CvSVM::EPS_SVR regression. The distance between feature vectors from the training set and
the fitting hyper-plane must be less than p. For outliers the penalty multiplier C is used.

– CvSVM::NU_SVR regression; nu is used instead of p.

• kernel_type

– CvSVM::LINEAR no mapping is done, linear discrimination (or regression) is done in the original
feature space. It is the fastest option. d(x, y) = x · y == (x, y).

– CvSVM::POLY polynomial kernel: d(x, y) = (gamma ∗ (x · y) + coef0)degree.
– CvSVM::RBF radial-basis-function kernel; a good choice in most cases: d(x, y) = exp(−gamma∗
|x− y|2).

– CvSVM::SIGMOID sigmoid function is used as a kernel: d(x, y) = tanh(gamma∗ (x ·y)+coef0).

• C, nu, p Parameters in the generalized SVM optimization problem.
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• class_weights Optional weights, assigned to particular classes. They are multiplied by C and thus
affect the misclassification penalty for different classes. The larger weight, the larger penalty on
misclassification of data from the corresponding class.

• term_criteria Termination procedure for iterative SVM training procedure (which solves a partial
case of constrained quadratic optimization problem)

– type is either CV_TERMCRIT_ITER or CV_TERMCRIT_ITER

– max_iter is the maximum number of iterations in training.
– epsilon is the error to stop training.

Training

Training can either be done by passing the vector with the training data and vector with the corre-
sponding class labels to the constructor or the train method.

CvSVM(const CvMat* _train_data ,

const CvMat* _responses ,

const CvMat* _var_idx=0,

const CvMat* _sample_idx =0,

CvSVMParams _params=CvSVMParams ());

where

• train data is a Matrix with the n-dimensional feature vectors

• responses is a vector with the class for the corresponding feature vector

• var idx identifies features of interest (can be left empty for this example, in code: cv::Mat())

• sample idx identifies samples of interest (can be left empty for this example, in code: cv::Mat())

• params Parameter for the SVM from Listing 1

This applies to the train method aswell:

virtual bool train(const CvMat* _train_data ,

const CvMat* _responses ,

const CvMat* _var_idx=0,

const CvMat* _sample_idx =0,

CvSVMParams _params=CvSVMParams () );

The train methods of the SVM has some limitations (at time of writing this):

• Only CV_ROW_SAMPLE is supported

• Missing measurements are not supported

The train auto method finds the best parameters with a Gridsearch and a k-fold cross validation.
This method is available for OpenCV Versions ≥ 2.0.

Prediction

Self explaining code.

for(int i = 0; i < testData.rows; i++) {

cv::Mat sample = testData.row(i);

float result = svm.predict(sample);

}

Support Vectors

The support vectors of a SVM can be obtained using the get_support_vector function of the API:

int svec_count = svm.get_support_vector_count ();

for(int vecNum = 0; vecNum < svec_count; vecNum ++) {

const float* vec = svm.get_support_vector(vecNum);

}

A complete example for Support Vector Machines in OpenCV is given in the Appendix.
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6 Multi Layer Perceptron

An Artificial Neural Network is a biological inspired computational model. Inputs multiplied by
weights result in an activation and form the output of a network. Research in Artificial Neural
Networks (ANN) began in 1943, when McCulloch and Pitts gave a definition of a formal neuron in
their paper ”A Logical Calculus of the Ideas Immanent in Nervous Activity” [4]. In 1958 Rosenblatt
invented the perceptron, which is a simple feedforward neural network. The downfall of the perceptron
algorithm is that it only converges on lineary seperable datasets and is not able to solve non-lineary
problems such as the XOR problem. This was proven by Minsky and Papert in their monograph
”Perceptrons”, but they showed that a two-layer feedforward architecture can overcome this limitation.
It was until 1986 when Rumelhart, Hinton and Williams presented a learning rule for Aritificial Neural
Networks with hidden units in their paper ”Learning Internal Representations by Error Propagation”.
The original discovery of backpropagation is actually credited to Werbos who described the algorithm
in his 1974 Ph.D. thesis at Havard University, see [7] for the roots of backpropagation.
A detailed introduction to Pattern Recognition with Neural Networks is given by [1].

6.1 Backpropagation

1. Initilaize weights with random values

2. Present the input vector to the network

3. Evaluate the output of the network after a forward propagation of the signal

4. Calculate δj = (yj − dj) where dj is the target output of neuron j and yj is the actual output
yj = g(

∑
i wijxi) = (1 + e−

∑
i wijxi)−1, (when the activation function is of a sigmoid type).

5. For all other neurons (from the first to the last layer) calculate δj =
∑

k wjkg
′(x)δk, where δk is

δj of the succeeding layer and g′(x) = yk(1− yk)

6. Update weights with wij(t+ 1) = wij(t)− ηyiyj(1− yj)δj , where η is the learning rate.

7. Termination Criteria. Goto Step 2 for a fixed number of iterations or an error.

The network error is defined as:

E =
1

2

m∑
j=1

(dj − yj)2

6.2 MLP in OpenCV

A Multilayer Perceptron in OpenCV is an instance of CvANN_MLP.

CvANN_MLP mlp;

Parameters

The performance of a Multilayer perceptron depends on its parameters:

CvTermCriteria criteria;

criteria.max_iter = 100;

criteria.epsilon = 0.00001f;

criteria.type = CV_TERMCRIT_ITER | CV_TERMCRIT_EPS;

CvANN_MLP_TrainParams params;

params.train_method = CvANN_MLP_TrainParams :: BACKPROP;

params.bp_dw_scale = 0.05f;

params.bp_moment_scale = 0.05f;

params.term_crit = criteria;

Where the parameters are (taken from the OpenCV 1.0 documentation1):

• term_crit The termination criteria for the training algorithm. It identifies how many iterations
is done by the algorithm (for sequential backpropagation algorithm the number is multiplied by
the size of the training set) and how much the weights could change between the iterations to
make the algorithm continue.

1http://www.cognotics.com/opencv/docs/1.0/ref/opencvref_ml.htm
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• train_method The training algoithm to use; can be one of CvANN_MLP_TrainParams::BACKPROP (se-
quential backpropagation algorithm) or CvANN_MLP_TrainParams::RPROP (RPROP algorithm, default
value).

• bp_dw_scale (Backpropagation only): The coefficient to multiply the computed weight gradient
by. The recommended value is about 0.1.

• bp_moment_scale (Backpropagation only): The coefficient to multiply the difference between weights
on the 2 previous iterations. This parameter provides some inertia to smooth the random fluc-
tuations of the weights. It can vary from 0 (the feature is disabled) to 1 and beyond. The value
0.1 or so is good enough.

• rp_dw0 (RPROP only): Initial magnitude of the weight delta. The default value is 0.1.

• rp_dw_plus (RPROP only): The increase factor for the weight delta. It must be > 1, default
value is 1.2 that should work well in most cases, according to the algorithm’s author.

• rp_dw_minus (RPROP only): The decrease factor for the weight delta. It must be < 1, default
value is 0.5 that should work well in most cases, according to the algorithm’s author.

• rp_dw_min (RPROP only): The minimum value of the weight delta. It must be > 0, the default
value is FLT_EPSILON.

• rp_dw_max (RPROP only): The maximum value of the weight delta. It must be > 1, the default
value is 50.

Layers

The purpose of a neural network is to generalize, which is the ability to approximate outputs for
inputs not available in the training set. [5] While small networks may not be able to approximate a
function, large networks tend to overfit and not find any relationship in data.2 It has been shown that,
given enough data, a multi layer perceptron with one hidden layer can approximate any continuous
function to any degree of accuracy. [3]
The number of neurons per layer is stored in a row-ordered cv::Mat.

cv::Mat layers = cv::Mat(4, 1, CV_32SC1);

layers.row (0) = cv:: Scalar (2);

layers.row (1) = cv:: Scalar (10);

layers.row (2) = cv:: Scalar (15);

layers.row (3) = cv:: Scalar (1);

mlp.create(layers);

Training

The API for training a multilayer perceptron takes the training data, training classes and the structure
for the parameters.

mlp.train(trainingData , trainingClasses , cv::Mat(), cv::Mat(), params);

Prediction

The API for the prediction is slightly different from the SVM API. Activations of the output layer are
stored in a cv::Mat response, simply because one can design neural networks with multiple neurons in
the output layer.
Since the problem used in this example is a binary classification problem, it is sufficient to have only
one neuron in the output layer. It is therefore the only activation to check.

mlp.predict(sample , response);

float result = response.at<float >(0 ,0);

2The model describes random error or noise instead of the relationship of the data.
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7 Evaluation

In this section the following algorithms will be used for classification:

• Support Vector Machine

• Multi Layer Perceptron

• k-Nearest-Neighbor

• Normal Bayes

• Decision Tree

To evaluate a predictor it is possible to calculate its accuracy. For two classes it is given as:

Accuracy =
true positive

true positive + false positive

The performance of Support Vector Machines and especially Neural Networks depend on the pa-
rameters chosen. In case of a neural network it is difficult to find the appropriate parameters and
architecture. Designing an Artifical Neural Network is often more a rule of thumb and networks
should be optimized iteratively starting with one hidden layer and few neurons. Parameters for a
Support Vector Machine can be estimated using Cross Validation and Grid Search (both can be used
as train_auto in OpenCV ≥ 2.0).
Parameters are not optimized in this experiment, remember to optimize the parameters yourself when
using one of the algorithms.

7.1 Experiment Data

In this experiment linear and non-linear functions are learned. 200 points for training and 2000 points
for testing are generated.

7.2 y = 2x

Predictor Accuracy

Support Vector Machine 0.99
Multi Layer Perceptron (2, 10, 15, 1) 0.994

k-Nearest-Neighbor (k = 3) 0.9825
Normal Bayes 0.9425
Decision Tree 0.923

7.2.1 Plot
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7.3 y = sin(10x)

Predictor Accuracy

Support Vector Machine 0.913
Multi Layer Perceptron (2, 10, 15, 1) 0.6855

k-Nearest-Neighbor (k = 3) 0.9
Normal Bayes 0.632
Decision Tree 0.886

7.3.1 Plot

7.4 y = tan(10x)

Predictor Accuracy

Support Vector Machine 0.7815
Multi Layer Perceptron (2, 10, 15, 1) 0.5115

k-Nearest-Neighbor (k = 3) 0.8195
Normal Bayes 0.542
Decision Tree 0.9155

7.4.1 Plot

A main.cpp
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Listing 2: main.cpp

#include <iostream >

#include <math.h>

#include <string >

#include "cv.h"

#include "ml.h"

#include "highgui.h"

using namespace cv;

using namespace std;

bool plotSupportVectors=true;

int numTrainingPoints =200;

int numTestPoints =2000;

int size =200;

int eq=0;

// accuracy

float evaluate(cv::Mat& predicted , cv::Mat& actual) {

assert(predicted.rows == actual.rows);

int t = 0;

int f = 0;

for(int i = 0; i < actual.rows; i++) {

float p = predicted.at<float >(i,0);

float a = actual.at <float >(i,0);

if((p >= 0.0 && a >= 0.0) || (p <= 0.0 && a <= 0.0)) {

t++;

} else {

f++;

}

}

return (t * 1.0) / (t + f);

}

// plot data and class

void plot_binary(cv::Mat& data , cv::Mat& classes , string name) {

cv::Mat plot(size , size , CV_8UC3);

plot.setTo(cv:: Scalar (255.0 ,255.0 ,255.0));

for(int i = 0; i < data.rows; i++) {

float x = data.at<float >(i,0) * size;

float y = data.at<float >(i,1) * size;

if(classes.at<float >(i, 0) > 0) {

cv:: circle(plot , Point(x,y), 2, CV_RGB (255,0,0) ,1);

} else {

cv:: circle(plot , Point(x,y), 2, CV_RGB (0,255,0) ,1);

}

}

cv:: imshow(name , plot);

}

// function to learn

int f(float x, float y, int equation) {

switch(equation) {

case 0:

return y > sin(x*10) ? -1 : 1;

break;

case 1:

return y > cos(x * 10) ? -1 : 1;

break;

case 2:

return y > 2*x ? -1 : 1;

break;

case 3:

return y > tan(x*10) ? -1 : 1;

break;

default:

return y > cos(x*10) ? -1 : 1;

}

}
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// label data with equation

cv::Mat labelData(cv::Mat points , int equation) {

cv::Mat labels(points.rows , 1, CV_32FC1);

for(int i = 0; i < points.rows; i++) {

float x = points.at<float >(i,0);

float y = points.at<float >(i,1);

labels.at<float >(i, 0) = f(x, y, equation);

}

return labels;

}

void svm(cv::Mat& trainingData , cv::Mat& trainingClasses , cv::Mat& testData , cv::Mat&

testClasses) {

CvSVMParams param = CvSVMParams ();

param.svm_type = CvSVM :: C_SVC;

param.kernel_type = CvSVM::RBF; //CvSVM ::RBF , CvSVM:: LINEAR ...

param.degree = 0; // for poly

param.gamma = 20; // for poly/rbf/sigmoid

param.coef0 = 0; // for poly/sigmoid

param.C = 7; // for CV_SVM_C_SVC , CV_SVM_EPS_SVR and CV_SVM_NU_SVR

param.nu = 0.0; // for CV_SVM_NU_SVC , CV_SVM_ONE_CLASS , and CV_SVM_NU_SVR

param.p = 0.0; // for CV_SVM_EPS_SVR

param.class_weights = NULL; // for CV_SVM_C_SVC

param.term_crit.type = CV_TERMCRIT_ITER +CV_TERMCRIT_EPS;

param.term_crit.max_iter = 1000;

param.term_crit.epsilon = 1e-6;

// SVM training (use train auto for OpenCV >=2.0)

CvSVM svm(trainingData , trainingClasses , cv::Mat(), cv::Mat(), param);

cv::Mat predicted(testClasses.rows , 1, CV_32F);

for(int i = 0; i < testData.rows; i++) {

cv::Mat sample = testData.row(i);

float x = sample.at <float >(0,0);

float y = sample.at <float >(0,1);

predicted.at<float >(i, 0) = svm.predict(sample);

}

cout << "Accuracy_{SVM} = " << evaluate(predicted , testClasses) << endl;

plot_binary(testData , predicted , "Predictions SVM");

// plot support vectors

if(plotSupportVectors) {

cv::Mat plot_sv(size , size , CV_8UC3);

plot_sv.setTo(cv:: Scalar (255.0 ,255.0 ,255.0));

int svec_count = svm.get_support_vector_count ();

for(int vecNum = 0; vecNum < svec_count; vecNum ++) {

const float* vec = svm.get_support_vector(vecNum);

cv:: circle(plot_sv , Point(vec [0]*size , vec [1]* size), 3 , CV_RGB(0, 0, 0));

}

cv:: imshow("Support Vectors", plot_sv);

}

}

void mlp(cv::Mat& trainingData , cv::Mat& trainingClasses , cv::Mat& testData , cv::Mat&

testClasses) {

cv::Mat layers = cv::Mat(4, 1, CV_32SC1);

layers.row (0) = cv:: Scalar (2);

layers.row (1) = cv:: Scalar (10);

layers.row (2) = cv:: Scalar (15);

layers.row (3) = cv:: Scalar (1);
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CvANN_MLP mlp;

CvANN_MLP_TrainParams params;

CvTermCriteria criteria;

criteria.max_iter = 100;

criteria.epsilon = 0.00001f;

criteria.type = CV_TERMCRIT_ITER | CV_TERMCRIT_EPS;

params.train_method = CvANN_MLP_TrainParams :: BACKPROP;

params.bp_dw_scale = 0.05f;

params.bp_moment_scale = 0.05f;

params.term_crit = criteria;

mlp.create(layers);

// train

mlp.train(trainingData , trainingClasses , cv::Mat(), cv::Mat(), params);

cv::Mat response(1, 1, CV_32FC1);

cv::Mat predicted(testClasses.rows , 1, CV_32F);

for(int i = 0; i < testData.rows; i++) {

cv::Mat response(1, 1, CV_32FC1);

cv::Mat sample = testData.row(i);

mlp.predict(sample , response);

predicted.at<float >(i,0) = response.at<float >(0 ,0);

}

cout << "Accuracy_{MLP} = " << evaluate(predicted , testClasses) << endl;

plot_binary(testData , predicted , "Predictions Backpropagation");

}

void knn(cv::Mat& trainingData , cv::Mat& trainingClasses , cv::Mat& testData , cv::Mat&

testClasses , int K) {

CvKNearest knn(trainingData , trainingClasses , cv::Mat(), false , K);

cv::Mat predicted(testClasses.rows , 1, CV_32F);

for(int i = 0; i < testData.rows; i++) {

const cv::Mat sample = testData.row(i);

predicted.at<float >(i,0) = knn.find_nearest(sample , K);

}

cout << "Accuracy_{KNN} = " << evaluate(predicted , testClasses) << endl;

plot_binary(testData , predicted , "Predictions KNN");

}

void bayes(cv::Mat& trainingData , cv::Mat& trainingClasses , cv::Mat& testData , cv::Mat

& testClasses) {

CvNormalBayesClassifier bayes(trainingData , trainingClasses);

cv::Mat predicted(testClasses.rows , 1, CV_32F);

for (int i = 0; i < testData.rows; i++) {

const cv::Mat sample = testData.row(i);

predicted.at<float > (i, 0) = bayes.predict(sample);

}

cout << "Accuracy_{BAYES} = " << evaluate(predicted , testClasses) << endl;

plot_binary(testData , predicted , "Predictions Bayes");

}

void decisiontree(cv::Mat& trainingData , cv::Mat& trainingClasses , cv::Mat& testData ,

cv::Mat& testClasses) {

CvDTree dtree;

cv::Mat var_type(3, 1, CV_8U);

// define attributes as numerical

var_type.at<unsigned int >(0,0) = CV_VAR_NUMERICAL;

var_type.at<unsigned int >(0,1) = CV_VAR_NUMERICAL;

// define output node as numerical

var_type.at<unsigned int >(0,2) = CV_VAR_NUMERICAL;
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dtree.train(trainingData ,CV_ROW_SAMPLE , trainingClasses , cv::Mat(), cv::Mat(),

var_type , cv::Mat(), CvDTreeParams ());

cv::Mat predicted(testClasses.rows , 1, CV_32F);

for (int i = 0; i < testData.rows; i++) {

const cv::Mat sample = testData.row(i);

CvDTreeNode* prediction = dtree.predict(sample);

predicted.at<float > (i, 0) = prediction ->value;

}

cout << "Accuracy_{TREE} = " << evaluate(predicted , testClasses) << endl;

plot_binary(testData , predicted , "Predictions tree");

}

int main() {

cv::Mat trainingData(numTrainingPoints , 2, CV_32FC1);

cv::Mat testData(numTestPoints , 2, CV_32FC1);

cv:: randu(trainingData ,0,1);

cv:: randu(testData ,0,1);

cv::Mat trainingClasses = labelData(trainingData , eq);

cv::Mat testClasses = labelData(testData , eq);

plot_binary(trainingData , trainingClasses , "Training Data");

plot_binary(testData , testClasses , "Test Data");

svm(trainingData , trainingClasses , testData , testClasses);

mlp(trainingData , trainingClasses , testData , testClasses);

knn(trainingData , trainingClasses , testData , testClasses , 3);

bayes(trainingData , trainingClasses , testData , testClasses);

decisiontree(trainingData , trainingClasses , testData , testClasses);

cv:: waitKey ();

return 0;

}
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