Project 1

Diffusion Equation

Due: Mon., Oct. 18, 2010 at 6:00 pm

Two parallel plates extended to infinity are a distance of h = 4 cm apart. The fluid within the plates has a kinematic viscosity of $\nu = 0.000217 \, m^2/s$ and density of $800 \, kg/m^3$. The upper plate is stationary and the lower one is suddenly set in motion with a constant velocity of $U_0 = 40 \, m/s$. The governing equation is Navier-Stokes simplified as:

$$\frac{\partial u}{\partial t} = \nu \frac{\partial^2 u}{\partial y^2}$$

where y is the cross-stream direction and u(y,t) is the streamwise velocity component. Use a first-order forward-time and second-order central space (FTCS) scheme to discretize the PDE. The analytical solution for this PDE is given by:

$$u(\eta) = U_0 \left(\sum_{n=0}^{\infty} \operatorname{erfc}(2n\eta_1 + \eta) - \sum_{n=1}^{\infty} \operatorname{erfc}(2n\eta_1 - \eta) \right)$$

where $\eta = y/2\sqrt{\nu t}$, $\eta_1 = h/2\sqrt{\nu t}$ and $erfc(z) = \frac{2}{\sqrt{\pi}} \int_z^{\infty} e^{-r^2} dr$ is the complementary error function.

- 1. Derive the truncation error of the finite-difference equation. Is FTCS scheme consistent?
- 2. The stability condition for FTCS is given by: $d = \nu \Delta t / \Delta y^2 \le 0.5$. Verify this condition numerically by examining the velocity profile for different Δt and Δy .
- 3. Decrease Δy (adjust Δt accordingly to satisfy the stability condition). At what Δy value does the solution become independent of Δy . This is called the *grid* independent solution.
- 4. Show that the accuracy of the solution improves on a finer mesh (as Δy decreases). The error can be calculated as:

$$\%error = \frac{Analytical - Numerical}{Analytical} \times 100$$

- 5. Plot the velocity profile for t = 0, 0.18, 1.08 sec and compare the numerical results with the analytical solution.
- 6. Continue the numerical solution in time untill it reaches steady-state. Compare this solution with the analytical solution as well as that obtained from the PDE directly (i.e. by solving the $\frac{\partial^2 u}{\partial y^2} = 0$ analytically).