
Description of Algorithms used in Cashlib

August 12, 2010

1

Contents

1 Security Parameters 4

2 Assumptions 4

3 Setup 4

4 Commitment Schemes 6
4.1 Fujisaki-Okamoto Commitment Scheme . 6
4.2 Pedersen Commitment Scheme . 7

5 Honest-Verifier Zero Knowledge Σ-Proofs 9
5.1 Proof of Knowledge of Discrete Logarithm Representation 10
5.2 Proof of equality of discrete logarithm representation 12
5.3 Proof that a committed value is a multiplication of other values (and in particular,

a square) . 15
5.4 Proof that a committed value lies within an interval [lo,hi] 16
5.5 Proof that a committed value lies within an interval [mean-delta,mean+delta] 17

6 CL signatures 18
6.1 Obtaining a Blind CL signature . 19
6.2 Proving a CL signature . 20

7 E-cash 21
7.1 Compact E-Cash . 21

7.1.1 Register . 22
7.1.2 Withdraw . 22
7.1.3 Spend . 22
7.1.4 Deposit . 23

7.2 Endorsed E-Cash . 24
7.2.1 Spend . 24

7.3 E-Cash FAQ . 26

8 Verifiable Encryption 27
8.1 Encrypt . 28
8.2 Verifiably Encrypt . 28
8.3 Decrypt . 30
8.4 Prove Decryption . 30

9 Fair Exchange 30
9.1 Buy . 30

9.1.1 Merkle tree . 30
9.1.2 The Buy protocol . 32

9.2 Barter . 33
9.2.1 Alice . 33
9.2.2 Bob . 33

2

9.2.3 Arbiter . 33

A Common Functionalities 33

3

1 Security Parameters

In our system, we will use a unified security parameter sec, which corresponds to the conjecture that
any attack that breaks the system must perform roughly 2sec steps. We also define the following
security parameters for ease of notation:

RSALength defines the bit-length of an RSA modulus.
stat defines the statistical security parameter. That is to say, two statistically indistinguishable

distributions will be 2−stat close to each other.
hashLength defines the length of the output of a hash function used for collision resistance or

as a random oracle.
orderLength defines the bit-length of the order of the prime-order group we will use. primeLength

defines the bit-length of the modulus of Z∗primeModulus . The prime-order group will be a subgroup
of Z∗primeModulus of order primeOrder .

To get sec = 80, which is considered the bare minimum requirement for security, we need to
have RSALength = 1024, stat = sec = 80, hashLength = 2∗sec = 160, orderLength = 2∗sec = 160,
primeLength = 1024. We will use these numbers for performance evaluation. The reasoning for hash
functions and prime order is related to the birthday bound, and states the best known algorithms
break them in 2hashLength/2 and 2orderLength/2 time respectively (DON’T WE NEED A CITATION
FOR THIS?). We will use SHA-1 as our hash function.

To get a longer-lasting security, we should use sec = 128, which corresponds to RSALength =
2048, stat = sec = 128, hashLength = 2 ∗ sec = 256, orderLength = 2 ∗ sec = 256, primeLength =
1024. For our BitTorrent system, we should use AES-128 as the block cipher and SHA-256 as the
hash function whenever necessary (note that these numbers correspond to sec = 112 [?, ?]).

Finally, if we are feeling paranoid, we can easily set RSALength = 4096, primeLength = 2048,
and use SHA-512 and AES-256. The only issue is that we will sacrifice some amount of efficiency.

2 Assumptions

The suggested security parameters above are set to satisfy the following assumptions (by conjec-
ture).

Strong RSA Assumption: For N = pq with p, q prime, it is difficult for any computationally
bounded adversary A to compute x on input N , e, and y = xe mod N for some e such that
gcd(e, φ(N)) = 1, even if A is allowed to pick e itself (note that this last condition is what makes
this assumption the “strong” verison of the standard RSA assumption).

Discrete Logarithm Assumption: For a cyclic group G of order q with generator g, it is difficult
for any computationally bounded adversary A to compute x on input gx, for x ∈ Zq.

3 Setup

In our system, we will use three different types of groups: special RSA groups, prime-order groups,
and Paillier groups (i.e., groups of the form Z∗N2). In this section we focus on the former two group
types, as the Paillier groups are used only in a superficial way for verifiable encryption and are not
considered parameters of the system. Our groups are usually generated by a trusted third party,
but we also describe methods that can be used if for some reason the setup is untrusted.

4

In what follows, let QRn denote the group of quadratic residues modulo n.
Algorithm 1: Setup for generating a special RSA group.

Input: security parameter RSALength, number of generators m
Pre-conditions: RSALength must be at least 1024. m must be at least 1.
Output: modulus n, primes p, q, p′, q′, generators g1, . . . , gm, h, exponents a1, . . . , am
Post-conditions: The length of n must be RSALength. n = pq, p = 2p′ + 1, q = 2q′ + 1.

p, q, p′, q′ are primes. p = 3 mod 4, q = 3 mod 4.
|p| = |q| = RSALength/2

Special RSA Group Setup
Choose primes p, q of length RSALength/2 each such that p = 2p′ + 1 and q = 2q′ + 11

where p′, q′ are primes (so p, q are safe primes, p′, q′ are Sophie Germain primes, and n is a
special RSA modulus). Note that we will need p = 3 mod 4 and q = 3 mod 4 in order to
have n be a Blum integer, and that this will indeed be the case for primes chosen as above.
Compute n = pq.2

Choose h← QRn. To do this, pick a random residue, square it, and check that3

h(p−1)/2 = 1 mod p and h(q−1)/2 = 1 mod q. Alternatively, pick hp ← Z∗p and hq ← Z∗q ,
and set h = hq−1

p ∗ hp−1
q mod n.

for i : 1..m do4

Choose ai ← {0, 1}RSALength+stat and set gi = hai mod n5

Output modulus n, primes p, q, p′, q′, generators g1, . . . , gm, h, and exponents a1, . . . , am.6

Algorithm 2: Setup for generating a prime-order group.
Input: security parameters primeLength, orderLength, number of generators m
Pre-conditions: primeLength must be at least 512. orderLength must be at least 160 or

2 ∗ stat , whichever is larger.a m must be at least 1.
Output: modulus primeModulus, order primeOrder , generators g1, . . . , gm, h, exponents

a1, . . . , am
Post-conditions: The length of primeModulus must be primeLength. The length of

primeOrder must be orderLength.

Prime Order Group Setup
Pick a prime order primeOrder of length orderLength and a prime modulus primeModulus1

of length primeLength where primeModulus − 1 is divisible by primeOrder . This results in
the order primeOrder subgroup of Z∗primeModulus .
Pick generator h for the subgroup with order primeOrder . To do this, pick2

h′ ← Z∗primeModulus and set h = h′(primeModulus−1)/primeOrder mod primeModulus.
for i : 1..m do3

Pick generators gi each with order primeOrder (same method as above)4

Output modulus primeModulus, order primeOrder , generators g1, . . . , gm, h, exponents5

a1, . . . , am

aThe best algorithms to solve Discrete Logarithm problem in prime-order groups have running time that depends
on the size of either the order of the subgroup or the modulus of the group [?, 5]

Definitions of Groups:
Throughout this paper, the “definition of the RSA group” means the modulus n and possibly the

5

bases g1, . . . , gm, h if they are not explicitly defined.
Similarly, the “definition of the prime-order group” means the modulus primeModulus and the

order primeOrder , and possibly the bases g1, . . . , gm, h if they are not explicitly defined.
Bases will generally be explicitly defined in the algorithms.
Group Operations:

A group operation is an operation on a group element. We will use multiplicative notation when
denoting the group operation and inverse of an element. All group operations must be done modulo
the modulus of the group. Therefore, all group operations will be done modulo n for the RSA group,
and modulo primeModulus for the prime-order group. A simple example of this is g ∗ h mod n.

Operations on Exponents:
An operation on exponents means the multiplication, addition, or inversion of exponents. In RSA
groups, all such operations must be performed over integers, as the order of the group is not assumed
to be known. In prime-order groups, all such operations will be done modulo primeOrder , as this
value is always public. An example of such an operation is ga∗b mod primeOrder mod primeModulus.

Group Secrets:
When we emphasize that some party has not generated a group itself, we mean that that party
may not know the secrets associated with the group generation. For an RSA group, the secrets will
be p, q; the factorization of the modulus n. Furthermore, in both an RSA group and a prime-order
group, the relative discrete logarithms of the generators are secrets.

4 Commitment Schemes

4.1 Fujisaki-Okamoto Commitment Scheme

Overview:
The Fujisaki-Okamoto commitment scheme [4, 3] is a statistically hiding, computationally binding
commitment scheme. The Committer commits to something and sends the resulting commitment
to the Verifier. At some later time, the Committer opens the commitment and the Verifier needs
to verify that the opening matches the commitment sent before.

Setup:
This commitment scheme uses a special RSA group. In the case that an untrusted party (e.g., the
Verifier) generates the RSA group, he needs to prove to the Committer that each gi is in the group
generated by h, so that the commitment is statistically hiding. This can be done by proving in
zero knowledge the knowledge of ai such that gi = hai mod n. The committer may not generate
or know p, q, p′, q′, a1, . . . , am, as otherwise the scheme will not provide any meaningful binding
property.

Assumptions:
The security of the scheme relies on the Strong RSA assumption.

Hiding:
The hiding property relies on the fact that gi, h all generate the same group, so that when random-
ization is used the resulting commitment is a random group element.

Binding:
The binding property relies on the assumption that the Committer cannot find two different open-
ings (using the same bases) that result in the same commitment. This follows from the Strong RSA
assumption.

6

Warnings:
This commitment scheme requires at least two generators: g1, h, otherwise it does not work.

Algorithm 3: Commitment procedure of the Fujisaki-Okamoto commitment scheme. This
procedure is run by the Committer.

Input: Definition of the RSA group, number of secrets k, bases g1, . . . , gk, h, secrets
x1, . . . , xk

Pre-conditions: The RSA group must be generated by a trusted third party or it must be
proven that each gi, h generates QRn.

Output: commitment C, opening open

Commit

Pick a random number r from {0, 1}RSALength+stat .1

Create the commitment C = hr
∏k
i=1 g

xi
i mod n.2

Output commitment C and opening open = x1, . . . , xk, r.3

Comments:
The random number r actually needs to be relatively prime to φ(n), but since this will be the case
with high probability we omit the check.

To open a commitment, the Committer just sends the opening open to the Verifier. After that,
the Verifier needs to verify the opening of the commitment. This is done as follows:

Algorithm 4: Verification procedure of the Fujisaki-Okamoto commitment scheme. This
procedure is run by the Verifier after receiving the opening open for a commitment C.

Input: Definition of the RSA group, number of secrets k, bases g1, . . . , gk, h, commitment
C, opening open = x1, . . . , xk, r

Pre-conditions: The RSA group may NOT be generated by the Committer.
Output: ACCEPT or REJECT

Verify

if C = hr
∏k
i=1 g

xi
i mod n then1

Output ACCEPT2

else3

Output REJECT4

4.2 Pedersen Commitment Scheme

Overview:
The Pedersen commitment scheme [6] is a statistically hiding, computationally binding commitment
scheme. It allows for commitments to values between 1 and primeOrder − 1.

Setup:
This commitment scheme uses a prime-order group. If an untrusted party (e.g., the Verifier)
generates the prime-order group, then the participants (both the Committer and the Verifier)
need to check that both primeModulus and primeOrder are primes (such that primeOrder divides
primeModulus − 1) and that gi, h have order primeOrder (which is equivalent to saying that gi 6= 1
mod primeModulus and gprimeOrder

i = 1 mod primeModulus). It is important that the Committer

7

does not know the relative discrete logarithms of the bases, or otherwise the commitment is no
longer binding.

Assumptions:
The security of the scheme relies on the Discrete Logarithm assumption.

Hiding:
The hiding property relies on the fact that gi, h all generate the group with prime order primeOrder ,
so that when randomization is used the resulting commitment is a random element of the prime-
order group.

Binding:
The binding property relies on the Committer not being able to find two different openings, using
the same bases, that result in the same commitment. This follows directly from the Discrete
Logarithm assumption.

Algorithm 5: Commitment procedure of the Pedersen commitment scheme. This procedure
is run by the Committer.

Input: Definition of the prime-order group, number of secrets k, bases g1, . . . , gk, h, secrets
x1, . . . , xk

Pre-conditions: Group and the bases must adhere to guidelines in the Setup in this
section. Each xi must be between 1 and primeOrder − 1.

Output: commitment C, opening open
Post-conditions: C should be sent to the Verifier.

Commit
Pick a random number r from Z∗primeOrder .1

Create the commitment C = hr
∏k
i=1 g

xi
i mod primeModulus.2

Output commitment C and opening open = x1, . . . , xk, r.3

To open a commitment, the Committer simply sends open to the Verifier. Upon receiving the
opening, the Verifier needs to verify its validity. This is done as follows:

Algorithm 6: Verification procedure of the Pedersen commitment scheme. This procedure
is run by the Verifier after receiving the opening open for a commitment C.

Input: Definition of the prime-order group, number of secrets k, bases g1, . . . , gk, h,
commitment C, opening open = x1, . . . , xk, r

Pre-conditions: The group may not be generated by the Committer. Each xi, r must be
between 1 and primeOrder − 1.

Output: ACCEPT or REJECT

Verify

if C = hr
∏k
i=1 g

xi
i mod primeModulus then1

Output ACCEPT2

else3

Output REJECT4

Comments:
If only one generator exists (namely g1), then the commitment is only computationally hiding based
on the Discrete Logarithm assumption, although it still works.

8

5 Honest-Verifier Zero Knowledge Σ-Proofs

In these Σ-protocols, both the Prover and the Verifier know the definition of the group used, as well
as some common information (typically a commitment) C. In all honest-verifier zero knowledge
Σ-proofs, the Prover first sends a randomized proof R. The Verifier then replies with a challenge
c (which is always generated in the same way). The Prover then responds to that challenge with
some value A. Finally, the Verifier verifies the whole proof.

Algorithm 7: Randomized Proof round of a Σ-protocol. This procedure is run by the Prover.
Input: Definition of the group, number of secrets k, bases g1, . . . , gk, h,
Output: randomized proof R, its opening openR

Randomize Proof
Will be defined separately for each protocol.1

Algorithm 8: Challenge round of a 3-round Σ-protocol. This procedure is run by the Verifier
upon receipt of randomized proof R from the Prover.

Input: Definition of the group, number of secrets k, bases g1, . . . , gk, h, commitment C,
randomized proof R

Pre-conditions: In many protocols we use, the group may not be generated by the Prover.
See the specific protocol specification for more on this.

Output: challenge c
Post-conditions: C,R and c should be kept for use in the verification procedure.

Challenge
Pick a random number c from the domain of challenges DC .1

Output challenge c2

Domain of Challenges DC :
If an RSA group is used, the domain of challenges is DC = {0, 1}stat (with the exception that
the challenge must not be 0). If a prime-order group is used, the domain of challenges is DC =
Z∗primeOrder (actually DC = {0, 1}stat will also work). When using non-interactive proofs, DC =
{0, 1}2∗stat will be used, which will be the same as DC = Z∗primeOrder . This means that in practice
it will make sense to simply use DC = {0, 1}2∗stat − {0} for both groups.

Domain of Randomness DR:
If an RSA group is used, the domain of randomness is DR = {0, 1}RSALength+stat (except again
the randomness must not be 0). If a prime-order group is used, the domain of randomness is
DR = Z∗primeOrder . Note that, unlike the challenge domains, these domains are very different for
both groups, and that the prime-order group is more efficient in terms of both computation and
communication.

Non-Interactive Version:
If non-interactive proofs will be employed using the Fiat-Shamir heuristic [?], the challenge will be
computed as c = hash(definition of the group and bases used || k || C || R). This computation can
be carried out by the Prover and the Verifier separately, and then the Verifier can verify the proof
as before. It is important to note that if the Fiat-Shamir heuristic is used, the resulting protocol
is secure only in the Random Oracle model [?, ?].

Full Zero Knowledge:
Techniques for converting honest-verifier zero-knowledge proofs to full zero-knowledge proofs (i.e.

9

using trapdoor commitments as in [?]) should be applied for the interactive versions. Non-interactive
versions using the Fiat-Shamir heuristic do not require this conversion, since the Random Oracle
model essentially forces the Verifier to be honest. Since all the proofs we will use are non-interactive,
we do not provide full zero-knowledge protocols here.

Algorithm 9: Response round of a Σ-protocol. This procedure is run by the Prover.
Input: Definition of the group, number of secrets k, bases g1, . . . , gk, h, opening of C:

openC, randomized proof R and its opening openR, challenge c
Output: response A

Respond
Will be defined separately for each protocol.1

Algorithm 10: Verification of a Σ-protocol. This procedure is run by the Verifier upon
receipt of response A from the Prover.

Input: Definition of the group, number of secrets k, bases g1, . . . , gk, h, commitment C,
randomized proof R, challenge c, response A

Output: ACCEPT or REJECT

Verify
Will be defined separately for each protocol.1

Non-Interactive Verification:
When verifying non-interactive proofs, the verification procedure is called with challenge c =
hash(definition of the group and bases used || k || C || R), and the rest proceeds the same as
the interactive version.

5.1 Proof of Knowledge of Discrete Logarithm Representation

This is the protocol used for proving knowledge of the discrete logarithm representation of a number
using some well-defined bases in an honest verifier zero knowledge way [7]. The Verifier knows the
number and the bases. We call this protocol PoKoDLR. It has two versions:

The RSA group version uses Fujisaki-Okamoto commitments. Therefore it requires the same
setup and the same assumptions. Everything said for the Fujisaki-Okamoto commitments also
applies here.

The prime-order group version uses Pedersen commitments. Therefore it requires the same
setup and the same assumptions. Everything said for the Pedersen commitments also applies here.

All operations will be done in respective groups.
Assumptions:

RSA group version makes the Strong RSA assumption.
Prime-order group version makes no assumptions.

Honest-Verifier Zero Knowledge:
RSA group version is honest verifier zero knowledge provided that the Fujisaki-Okamoto commit-
ment is hiding. This means that the RSA group must be generated by a trusted third party or it
must be proven to the Prover that each gi, h generates QRn.
Prime-order group version is honest verifier zero knowledge provided that the Pedersen commit-
ment is hiding. This means that the prime-order group must be generated by a trusted third party
or the Prover must verify that each gi, h has order primeOrder .

10

Version Commitments Used HVZK Condition Soundness Condition
RSA Group Fujisaki-Okamoto Fujisaki-Okamoto is hiding Strong RSA
Prime-order Group Pedersen Pedersen is hiding None or DLog*

Table 1: PoKoDLR Protocol Security Summary

Soundness:
In RSA group version, the extraction works under the Strong RSA assumption, which requires that
the RSA group may NOT be generated by the Prover.
In prime-order group version, the extraction works without any assumption.

*Warnings:
In many uses of the prime-order group version of this protocol, for it to be meaningful, we would
like the Pedersen commitments to be binding, which means the Prover may NOT generate gi, h
(and thus know the relative discrete logarithms of the bases), and that the Discrete Logarithm
assumption holds.

Algorithm 11: Randomized Proof round of PoKoDLR protocol. This procedure is run by
the Prover.

Input: Definition of the group, number of secrets k, bases g1, . . . , gk, h
Pre-conditions: The group must be generated by a trusted third party, or it must be

proven to the Prover that each gi, h generates QRn in a special RSA
group, or the Prover must verify that each gi, h has order primeOrder in a
prime-order group.

Output: randomized proof R, its opening openR

Randomize Proof
for i : 1..k do1

Pick a random number si from domain of randomness DR.2

Create a random element R using Randomize(group definition, k + 1, g1, . . . , gk, h) as in3

Algorithm 39. Let the random exponents returned by the Randomize procedure be
openR = s1, . . . , sk, t.
Output randomized proof R and its opening openR.4

11

Algorithm 12: Response round of PoKoDLR protocol. This procedure is run by the Prover.
Input: Definition of the group, number of secrets k, bases g1, . . . , gk, h, opening

open = x1, . . . , xk, r, randomized proof R and its opening openR = s1, . . . , sk, t,
challenge c

Pre-conditions: The group must be generated by a trusted third party, or it must be
proven to the Prover that each gi, h generates QRn in a special RSA
group, or the Prover must verify that each gi, h has order primeOrder in a
prime-order group.

Output: response A

Respond
for i : 1..k do1

Compute ai = si + cxi2

Compute b = t+ cr3

[In prime-order group version, let ai = ai mod primeOrder and b = b mod primeOrder]4

Output response A = a1, . . . , ak, b5

Algorithm 13: Verification of PoKoDLR protocol. This procedure is run by the Verifier
upon receipt of response A from the Prover.

Input: Definition of the group, number of secrets k, bases g1, . . . , gk, h, commitment C,
randomized proof R, challenge c, response A = a1, . . . , ak, b

Pre-conditions: The RSA group may NOT be generated by the Prover
Output: ACCEPT or REJECT

Verify

if RCc = hb
∏k
i=1 g

ai
i (mod n for RSA group version, mod primeModulus for1

Prime-order group version) then
Output ACCEPT2

else3

Output REJECT4

Warnings:
In prime-order group version of this protocol, it’s important for both parties to make sure that
each xi, r, si, t is between 1 and primeOrder − 1. Prover can only prove knowledge of xi that is in
that range.

5.2 Proof of equality of discrete logarithm representation

This is the protocol for proving knowledge of the equality of discrete logarithm representations of
some numbers using some well-defined bases in an honest verifier zero knowledge way. The Verifier
knows the bases. We call this protocol PoEoDLR. it has two versions:

The first version uses Fujisaki-Okamoto commitments. Therefore it requires the same setup and
the same assumptions. Everything said for the Fujisaki-Okamoto commitments also applies there.

The second version uses Pederson commitments. Therefore it requires the same setup and the
same assumptions. Everything said for the Pederson commitments also applies there.

All operations will be done in respective groups.

12

Assumptions:
RSA group version makes the Strong RSA assumption.
Prime-order group version makes no assumptions.

Honest-Verifier Zero Knowledge:
RSA group version is honest verifier zero knowledge provided that the Fujisaki-Okamoto commit-
ment is hiding. This means that the RSA group must be generated by a trusted third party or it
must be proven to the Prover that each gi, h generates QRn.
Prime-order group version is honest verifier zero knowledge provided that the Pedersen commit-
ment is hiding. This means that the prime-order group must be generated by a trusted third party
or the Prover must verify that each gi, h has order primeOrder .

Soundness:
In RSA group version, the extraction works under the Strong RSA assumption, which requires that
the RSA group may NOT be generated by the Prover.
In prime-order group version, the extraction works without any assumption.

*Warnings:
In many uses of the prime-order group version of this protocol, for it to be meaningful, we would
like the Pedersen commitments to be binding, which means the Prover may NOT generate gi, h
(and thus know the relative discrete logarithms of the bases), and that the Discrete Logarithm
assumption holds.

Algorithm 14: Randomized Proof round of PoEoDLR protocol. This procedure is run by
the Prover.

Input: Definition of the group, bases g1, ..., gk, h, number of common secrets k, number
other secrets l

Output: randomized proof set R, its opening set openR

Randomize Proof
for i : 1..k do1

Pick a random number si from domain of randomness DR.2

for i : 1..l do3

Create the randomized proof Ri to using Randomize(group definition, 1 (number of4

random elements), k (number of fixed elements), g1, ...gk, h (bases), s1, . . . , sk (fixed
elements)). Let the opening returned by the Commit procedure be
openRi = s1, . . . , sk, ti.

Output randomized proof set R (set of Ri’s) and opening set openR (set of openRi’s).5

13

Algorithm 15: Response round of PoEoDLR protocol. This procedure is run by the Prover.
Input: Definition of the group, f the group, bases g1, ..., gk, h, number of common secrets k,

number other secrets l, common secrets x1, . . . , xk and other secrets r1, . . . , rl,
openings of randomized proofs openR1 . . . openRl where openRj = s1, . . . , sk, tj ,
challenge c

Output: set of responses A = a1, . . . , am

Respond
for i : 1..k do1

Compute ai = si + cxi2

for j : 1..l do3

Compute bj = tj + crj4

If no RSA group is involved, let ai = ai mod primeModulus and bi = bi5

mod primeModulus
Output response A = a1, . . . , ak, b1, . . . , bl6

Algorithm 16: Verification of PoEoDLR protocol. This procedure is run by the Verifier
upon receipt of response A from the Prover.

Input: Definition of the group, number of common secrets k, number of other secrets l,
bases g1, . . . , gk, h, set of commitments C = C1, . . . Cl, set of randomized proofs
R = R1, . . . Rl, challenge c, response A = a1, . . . , ak, b1, . . . , bl

Output: ACCEPT or REJECT

Verify

if R1C
c
1 = hb1

∏k
i=1 g

ai
i AND . . . AND RlC

c
l = hbl

∏k
i=1 g

ai
i then1

Output ACCEPT2

else3

Output REJECT4

The Simulator Here we present a simulator to simulate a 2-base equality of discrete logarithm
representation protocol. The purpose of the simulator is to show that an entity starting with
knowledge of the challenge but not the secrets can simulate the Prover’s work to the Verifier. This
is turn shows that with an honest Verifier, the process of proving is zero-knowledge and gives no
extra information about the secrets to the Verifier, because the Simulator does not know any more
about the secrets than the Verifier does.
a, b, d - the three secrets
g, h - the group bases/ generators
A = gahb - commitment 1
B = gahd - commitment 2
o - group order
m - group modulus
c - the challenge that the Verifier will send

14

the simulator S V the verifier
starting g, h,A,B, o,m, c g, h,A,B, o,m starting

information information
S picks pick random r1, r2, r3

responses s.t. 1 ≤ ri ≤ o− 1 ∀i
ahead of time s1 = r1, s2 = r2, s3 = r3
S computes RA = gr1hr2A−c

randomized RB = gr1hr3B−c

proofs based RA, RB−−−−−→
on responses
and challenge c

c←− pick c ∈ Dc

S sends back RAA
c == gs1hs2 mod p check that

pre-computed r1, r2, r3−−−−−→
RBA

c == gs1hs3 mod p all these

responses equal
if equal
->accept
if not
->reject

5.3 Proof that a committed value is a multiplication of other values (and in
particular, a square)

This is the protocol used for proving that a discrete logarithm representation is a product of two
discrete logarithm representations in an honest verifier zero knowledge way [?]. In particular, this
protocol can be used to prove that a committed number is a square, as in [?].

Suppose the Prover knows secrets x, y, z such that x = y∗z and wants to prove this to an honest
verifier. The Verifier knows commitments to each of these numbers: Cx is a commitment to x, Cy is
to y and Cz is to z. We call this protocol Mult. It uses Fujisaki-Okamoto commitments. Therefore
it requires the same setup and the same assumptions. Everything said for the Fujisaki-Okamoto
commitments also applies here.

Assumptions:
The security of the scheme relies on Strong RSA assumption.

Honest-Verifier Zero Knowledge:
The protocol is honest verifier zero knowledge provided that the Fujisaki-Okamoto commitment is
hiding. This means that the RSA group must be generated by a trusted third party or it must be
proven to the Prover that each gi, h generates QRn.

Soundness:
The extraction works under the Strong RSA assumption, which requires that the RSA group may

15

NOT be generated by the Prover.
Algorithm 17: Randomized Proof round of a Mult protocol for x = yz. This procedure is
run by the Prover.

Input: Definition of the RSA group and bases: n, g1, h
Output: randomized proof R, its opening openR

Randomize Proof
Pick a random number s from DR.1

Create a random element R1 using Randomize(group definition, 1, 1, g1, h, s) as in2

Algorithm 39 where s is a fixed element. Let the random exponent returned by the
Randomize procedure be openR1 = t1.
Create a random element R2 using Randomize(group definition, 1, 1, Cy, h, s) as in3

Algorithm 39 where s is again a fixed element. Note the use of Cy as one of the bases in
the procedure (it will be used with the fixed element). Let the random exponent returned
by the Randomize procedure be openR2 = t2.
Output randomized proof R = R1, R2 and opening openR = s, t1, t2.4

Algorithm 18: Response round of a Mult protocol for x = yz. This procedure is run by the
Prover.

Input: Definition of the RSA group and bases: n, g1, h, openings to commitments Cx, Cy, Cz
as openX = x, rx, openY = y, ry, openZ = z, rz, randomized proof R = R1, R2 and
its opening openR = s, t1, t2, challenge c

Output: response A

Respond
Compute a = s+ cz, b1 = t1 + crz, b2 = t2 + c(rx − zry)1

Output response A = a, b1, b22

Algorithm 19: Verification of a Mult protocol for x = yz. This procedure is run by the
Verifier upon receipt of response A from the Prover.

Input: Definition of the RSA group and bases: n, g1, h, commitments Cx, Cy, Cz,
randomized proof R = R1, R2, challenge c, response A = a, b1, b2

Output: ACCEPT or REJECT

Verify

if R1C
c
z = ga1h

b1 mod n AND R2C
c
x = Cayh

b2 mod n then1

Output ACCEPT2

else3

Output REJECT4

Proving knowledge of x, y such that x = y2:
Using the proof above, it is very easy to prove knowledge of x, y such that x = y2. Just set z = y,
which also means getting rid of Cz, or in other words, setting Cz = Cy and hence openCz = openCy.

5.4 Proof that a committed value lies within an interval [lo,hi]

We would like to prove that a secret value x lies within a publicly known interval [lo, hi], as in
[?, ?]. The protocol uses a special RSA group. The verifier knows a commitment Cx to x, and

16

lo, hi, along with the RSA group definition. The prover additionally knows the secret x.
Observe that x is in the interval [lo, hi] iff x − lo ≥ 0 and hi − x ≥ 0. Furthermore, any

non-negative integer can be represented as a sum of 4 squares [?] (e.g., x− lo = v2
1 + v2

2 + v2
3 + v2

4),
whereas negative integers cannot. These numbers (vi) can be computed efficiently [?, ?]. Let Wi

be v2
i .

Further observe that a commitment to x− lo can easily be obtained by computing Cxg−lo1 , and
a commitment to hi− x can easily be obtained by computing ghi1 C

−1
x .

We have seen that using the Mult algorithm, we can prove that a committed number is actually
a square. Therefore, the basic idea is to prove that each Wi is a square (by committing to them so
that the verifier does not learn Wi or vi), and then their sum is equal to x − lo. A similar proof
also needs to be given for hi− x.

We call this protocol Range. It uses Fujisaki-Okamoto commitments. Therefore it requires the
same setup and the same assumptions. Everything said for the Fujisaki-Okamoto commitments
also applies here.

Assumptions:
The security of the scheme relies on Strong RSA assumption.

Honest-Verifier Zero Knowledge:
The protocol is honest verifier zero knowledge provided that the Fujisaki-Okamoto commitment is
hiding. This means that the RSA group must be generated by a trusted third party or it must be
proven to the Prover that each gi, h generates QRn.

Soundness:
The extraction works under the Strong RSA assumption, which requires that the RSA group may
NOT be generated by the Prover.

Below we provide the pseudocode for proving that a given value y is non-negative (≥ 0). We
call this protocol Non-Negative. Then, proving the interval means running this protocol twice,
one for x− lo and one for hi− x.

In the Non-Negative protocol, the Prover is given a commitment Cy and its opening openy =
y, ry, and the group definition. The Verifier is given Cy and the group definition.

1. The Prover computes v1, v2, v3, v4 using the four-squares algorithm [?, ?]. Let Wi = v2
i .

2. The Prover computes commitments Ci to Wi with their openings openi = Wi, ri, with the
only rule that the last randomness is set to be r4 = ry − (r1 + r2 + r3).

3. The Prover proves that each Ci is a commitment to a square, using the special case of the
Mult protocol.

4. The Verifier, in addition to checking that each Ci is a commitment to a square, checks if
Cy = Π4

i=1Ci. If all checks pass, the Verifier accepts, otherwise he rejects.

5.5 Proof that a committed value lies within an interval [mean-delta,mean+delta]

The range proof given by the Range protocol can be made almost twice as efficient if the interval we
want to prove has a special type: [mean−delta,mean+delta] [?]. Call this protocol SpecialRange,
which should be used instead of Range whenever possible, even if not stated explicitly. Note that,

17

x is in that interval iff lo2− (x−mean)2 ≥ 0. As before, the interval (and hence lo, hi) are publicly
known. Let A = delta2 − (x−mean)2 = delta2 −mean2 + 2 ∗mean ∗ x− x2.

For ease of notation, let D = gdelta
2−mean2

1 , E = (g2hi
1 C−1

x). A commitment F to A can be
computed as D ∗ Ex ∗ hrA . Note that the Prover can compute this, but the Verifier can only
compute D and E.

The Verifier knows a commitment Cx to x, the interval (meaning lo, hi), and the RSA group
definition, and can compute D and E. The Prover, in addition to these, also knows the opening
openx = x, rx to Cx.

1. The Prover computes F = D ∗Ex ∗hrA = gA1 h
r′A and proves that F and Cx are commitments

to the same number under the bases D,E, h and 1, g, h using the PoEoDLR protocol.

2. The Prover runs the Non-Negative protocol for A using F as the commitment to A, where
r′A = rA − xrx.

6 CL signatures

CL signatures is an example of blind signatures, where the signer may not know the values she
signed. Besides, useful protocols such as proving existence of a CL signature on a secret value is also
necessary. The version of CL signatures we will present here uses special RSA groups [?, ?, ?, ?].

Setup:
The key generation of CL signatures is exactly as generating a special RSA group as in Algorithm
1:

• We have the following generators: f, g1, . . . , gm, h, and the key owner (signer) needs to provide
a non-interactive proof that all these generators generate the same group (namely, QRn). This
can be done by proving the knowledge of ai such that gi = hai mod n and a such that f = ha

mod n.

• The public key (i.e. verification key) is CLPK = n, f, g1, . . . , gm, h.

• The secret key (i.e. signing key) is CLSK = p, q.

Assumptions:
The security of the scheme relies on Strong RSA assumption.

Parameters:
This scheme uses the following (security) parameters: RSALength for the length of the RSA mod-
ulus, m for the number of bases (maximum number of messages that can be signed at once), lx for
the length of a message and Dx for the domain of messages (each message xi is in Dx = {0, 1}lx).
We can also use messages in the domain Dx = [−(2lx − 1), 2lx − 1]. Further define le = lx + 2 and

18

lv = RSALength + lx + 2 ∗ stat .
Algorithm 20: Signing procedure for a CL signature. This is the signing procedure to sign
a public message (not a blind signature yet). This procedure is run by the Signer.

Input: CL signature public key CLPK = n, f, g1, . . . , gm, h, secret key CLSK = p, q,
messages to be signed x1, . . . , xk

Pre-conditions: Each message xi needs to be in Dx.
Output: signature σ = A, e, v

Sign
Pick a random prime number e of length le.1

Pick a random number v of length lv.2

Compute the value A such that Ae = fhvΠk
i=1g

xi
i mod n. This can be done with the3

knowledge of the CLSK = p, q by setting A = [fhvΠk
i=1g

xi
i]1/e

Output the signature A, e, v.4

Algorithm 21: Verification procedure for a CL signature. This is the verification procedure
to verify a public message (not a blind signature yet). This procedure is run by the Verifier.

Input: CL signature public key CLPK = n, f, g1, . . . , gm, h, messages x1, . . . , xk, signature
σ = A, e, v

Pre-conditions: Each message xi needs to be in Dx. e needs to be of length le, v needs to
be of length lv.

Output: ACCEPT or REJECT

Verify
Check the pre-conditions (Length checks are important !!).1

if Ae = fhvΠk
i=1g

xi
i mod n then2

Output ACCEPT3

else4

Output REJECT5

6.1 Obtaining a Blind CL signature

Here, we present the protocol to obtain the CL signature on messages that are committed by the
Recipient. Without loss of generality, let the first l out of k messages be the committed messages,
and the rest be public messages.

Hence, both the Recipient and the Issuer knows the Fujisaki-Okamoto commitments C1, . . . , Cl
to messages x1, . . . , xl (note that another version can just use one commitment to all x1, . . . , xl
under different bases. The extension is very straightforward, and hence not shown). The Issuer
knows the public (or issuer-chosen) messages xl+1, . . . , xk. The Recipient knows all the messages

19

x1, . . . , xk.
Algorithm 22: This procedure is run by the Recipient of a blind CL signature to initiate
the signature issuing process.

Input: CL signature public key CLPK = n, f, g1, . . . , gm, h, messages x1, . . . , xk,
commitments C1, . . . , Cl and their openings openC1, . . . , openCl which include
r1, . . . , rl (if there was only one commitment to those messages, there’s just on r)

Pre-conditions: Each message xi needs to be in Dx.

Receive
Choose a random v′ of length RSALength + stat .1

Compute C = hv
′
Πl
i=1g

xi
i .2

Prove using PoEoDLR protocol that the discrete logarithm representation of each secret3

xi in C corresponds to those in C1, . . . , Cl and also prove that each secret xi is in Dx (note
that for Dx = [−(2lx − 1), 2lx − 1], this is a SpecialRange proof).

Algorithm 23: This procedure is run by the Issuer of a blind CL signature to issue a blind
CL signature.

Input: CL signature public key CLPK = n, f, g1, . . . , gm, h, secret key CLSK = p, q,
messages xl+1, . . . , xk, commitments C1, . . . , Cl

Pre-conditions: Each message xi needs to be in Dx.
Output: partial signature σ′ = A, e, v′′

Issue
Pick a random prime number e of length le.1

Choose a random v′′ of length RSALength + lx + stat .2

Compute A = [fChv
′′
Πk
i=l+1g

xi
i)]1/e. Let us explain this step in detail. The given3

commitment is re-randomized using v′′. Then, public messages are added to the signature
in the Π clause. Finally, the signature is computed.
Send A, e, v′′ to the Recipient and prove using PoKoDLR protocol the knowledge of 1/e in4

the equation above.

Algorithm 24: This procedure is run by the Recipient of a blind CL signature to construct
a CL signature upon receipt of the partial signature.

Input: CL signature public key CLPK = n, f, g1, . . . , gm, h, partial signature σ′ = A, e, v′′

Pre-conditions: Each message xi needs to be in Dx. e must be a prime of length le, v′′

needs to be of length lv.
Output: signature σ = A, e, v

Construct
Check the range (and optionally primality) for e1

Set v = v′ + v′′2

Output signature σ = {A, e, v}3

6.2 Proving a CL signature

Now that the Recipient has a blind CL signature, he wants to prove that fact to a verifier, without
revealing the signature. Without loss of generality, let the first l out of k messages be the committed

20

messages, and the rest be public messages.
Hence, both the Recipient and the Verifier knows the Fujisaki-Okamoto commitments C1, . . . , Cl

to messages x1, . . . , xl (as before, there can be just one commitment to all those messages). The
Verifier knows the public (or issuer-chosen) messages xl+1, . . . , xk. The Recipient knows all the
messages x1, . . . , xk and the signature σ = A, e, v. Of course, both parties know the CL signature
public key CLPK = n, f, g1, . . . , gm, h.

• The Recipient choses a random number r from {0, 1}RSALength+stat .

• The Recipient computes A′ = Ahr and sends A′ to the Verifier. Set v′ = v + r ∗ e.

• The Verifier and the Recipient both separately computes the public value D = Πk
i=l+1g

xi
i

using public messages xl+1, . . . , xk.

• The Recipient computes the commitment C = hrC Πl
i=1g

xi
i for secret messages (using a random

rC from {0, 1}RSALength+stat), and proves to the Verifier using PoEoDLR protocol that the
discrete logarithm representation of each secret xi in C corresponds to those in C1, . . . , Cl
and also proves that each secret xi is in Dx (note that for Dx = [−(2lx − 1), 2lx − 1], this is a
SpecialRange proof), and of course the knowledge of rC .

• Lastly, the Recipient proves using PoKoDLR protocol the knowledge of e, v′ such thatA′ehrC =
fhv

′
CD (actually, prove that fCD = A′e ∗ h(rC−v′) or equivalently fCD = A′e ∗ (1/h)v

′−rC).

7 E-cash

In this section, we provide a description of the offline versions of compact e-cash [1] and endorsed e-
cash [2]. We require that all connections between a user and the bank must be over an authenticated
and secure channel (i.e., an SSL connection using the bank’s certificate).

7.1 Compact E-Cash

Compact E-Cash [?] enables a user to withdraw a wallet containing many coins at once. But, the
coins need to be spent one by one. Some extensions addressing this issue will be discussed later.
Using offline Compact E-Cash, the Bank can find the public keys of double-spenders. Double
deposits can easily be detected using serial numbers. The use of CL signatures assure that the
serial numbers are not known to the Bank during the withdrawal process, and hence the anonimity
of an honest user is guaranteed.

Compact E-Cash works with a prime-order group, and utilizes CL signatures, so uses a special
RSA group for the purposes of CL signatures. It’s important that the orderLength ≤ lx, the CL
signature message length.

Below, we will present a slightly modified version of Compact E-Cash. The modifications keep
the scheme secure, while improving its efficiency greatly.

Assumptions:
Compact E-cash works in the Random Oracle model and makes Discrete Logarithm and Strong
RSA assumptions, and also the following assumptions:

q-Decisional Diffie-Hellman Inversion Assumption:

21

7.1.1 Register

Every user must register with the Bank her public key. This is a very simple protocol, where the
User just picks a random secret key 1 < sku < primeOrder and sends her public key pku = gsku

mod primeModulus to the Bank. The Bank registers the User’s public key in a database, and
associates it to an account.

Later on, whenever a user contacts the Bank and needs to prove her identity, the User proves
knowledge of sku that corresponds to pku using the PoKoDLR protocol using only one base and
Pedersen commitments.

7.1.2 Withdraw

To withdraw a coin, a user contacts the Bank. Before this, the User must have been registered with
the Bank. First, the User proves her identity to the Bank. Then, the User and the Bank execute
the following randomization procedure:

Algorithm 25: Randomization procedure between the User and the Bank. This procedure
needs to be executed for each wallet, before the withdrawal.

Input: Both parties know the definition of the prime-order group. The User knows his
secret key sku registered with the bank.

Pre-conditions: The group must be generated by a trusted third party, or the Prover must
verify that each gi, h has order primeOrder in a prime-order group.

Output: The User’s output is s, t, A, the Bank’s output is A.

Randomize Together
The User picks secrets s′ and t from Z∗primeOrder .1

The User creates a Pedersen commitment to sku, s′, t. Call this commitment A′. The User2

sends A′ to the Bank.
The Bank picks a random number r′ from Z∗primeOrder . The Bank sends r′ to the User.3

The User sets s = s′ + r′. The User and the Bank independently compute A = A′ ∗ gr′ .4

The User’s output is s, t, A, the Bank’s output is A.5

After the Randomize Together protocol, the User gets a blind CL signature from the Bank. The
User starts with the commitment A, which he needs to prove that the secrets in A correspond to
the the secrets he committed to in the CL signature protocol, and the first secret corresponds to his
secret key. Furthermore, the User also sends the Bank a wallet size W , which must be picked from
a choice of wallet sizes (e.g., 1,10,100,1000,10000) and must be at most the User’s current account
balance. After checking the User’s balance, the Bank signs sku, s, t,W using blind CL signatures
(where W is public input), and decrements the User’s account balance. At the end of the Withdraw
protocol, the User’s wallet is composed of sku, s, t,W, σ(sku, s, t,W) where σ(sku, s, t,W) denotes
the Bank’s CL signature on sku, s, t,W , and a data structure to keep track of spent and remaining
coins in the wallet (even though this can be a simple counter, we would like to spend coins with
random indices, and so we need to keep a shuffled list of coin indices).

7.1.3 Spend

This is the protocol between a user and a merchant. To prevent man-in-the-middle attacks, before
the exchange of the money, the User and the Merchant perform a secure key exchange protocol

22

without setup. This can be a simple Diffie-Hellman key exchange over an RSA group using fresh
randomly generated keys for both parties. Let the session secret derived from the key exchange be
ses = hash(session key).

At the beginning, the Merchant picks a random info and sends this to the User. Both the Mer-
chant and the User computes R = hash(ses, info). Note that only the User and the Merchant can
compute this value. Furthermore, the Merchant needs to use a different info for every transaction.
This is to prevent man-in-the-middle attacks.

Next, the User picks the next unused coin index (i.e. the next random index in the shuffled list
of coin indices). Call this index J .

Algorithm 26: Spend-Earn procedure between the User and the Merchant for Compact
E-Cash.

Input: Both parties know the definition of the prime-order group, and the Bank’s CL
signature public key CLPK. The User knows her wallet sku, s, t,W, σ(sku, s, t,W),
and the index J . Both parties know R = hash(info, ses).

Pre-conditions: The User must have withdrawn a wallet from the Bank, and the wallet
must contain an unused coin. Furthermore, R must be computed as
directed above.

Output: The Merchant outputs coin = B,C,D,W, S, T, J, πCL, πST , info, ses.

Spend Compact E-Cash
The User creates Pedersen commitments B to sku, C to s, and D to t. The User prepares1

a non-interactive proof of knowledge of a CL signature on these values, where W is a
public value. Call this proof πCL.
The User computes S = g1/(s+J) and T = pku ∗ gR/(t+J).2

The User prepares a non-interactive proof that S, T are formed correctly. This is done by3

proving the knowledge of s, t, sku, rB, α, r1, β, r2 such that B = gsku ∗hrB , g = (gJ ∗C)αhr1
(the Prover knows r1 = −rC/(s+ J) mod primeOrder), g = (gJ ∗D)βhr2 (the Prover
knows r2 = −rD/(t+J) mod primeOrder), S = gα, T = gsku ∗ (gR)β. Call this proof πST .
The User sends B,C,D,W, S, T, J, πCL, πST to the Merchant.4

The Merchant checks if the coin index is correct: 0 ≤ J < W , the proof of knowledge of5

the CL signature πCL verifies, and S, T are correct under the proof πST . If all these are
satisfied, the Merchant stores coin = B,C,D,W, S, T, J, πCL, πST , info, ses.

7.1.4 Deposit

Depositing the coin is very easy. The Merchant contacts the Bank over a secure and one-way
authenticated channel (i.e. SSL), proves his identity to the Bank, and then sends the coin to the
Bank (coin = B,C,D,W, S, T, J, πCL, πST , info, ses). The Bank performs the exact check on line 5
of the Spend protocol in Algorithm 26. This verifies that the coin is formed correctly.

The bank then performs double-spending checks. First, the bank checks if S appears in the
list of deposited coins. If it does not exist in the deposited coins database, the Bank credits the
Merchant’s account, and adds the coin to the database. If S indeed does exist, it exists together
with an R′. If R = R′, then the Merchant is trying to deposit twice, and thus the Bank rejects
the deposit. Otherwise, R 6= R′, and so the User double-spent the coin. The Bank runs the
following Identify Double-Spender algorithm to find the public key (and hence the account) of the

23

double-spender. An appropriate punishment can be performed afterwards.
Algorithm 27: Identify Double-Spender procedure run by the Bank.

Input: Two coins coin1, coin2 with the same serial number S but different R1, T1 and R2, T2.
Output: the public key of the double-spender pku, and proof of double-spending

πDS = coin1, coin2.

Identify Double-Spender
Verify the coins, if not already verified.1

The Bank computes pku = (TR1
2 /TR2

1)(R1−R2)−1
mod primeModulus.2

The Bank outputs the public key of the double-spender pku, and proof of double-spending3

πDS = coin1, coin2.

Given the proof of double-spending, anyone can run the Identify Double-Spender protocol and
be assured that the user with public key pku has really double-spent. This is because the coins
require the knowledge of the secret key of the user.

7.2 Endorsed E-Cash

The Withdraw, Deposit, and Identify Double-Spenders protocols of Endorsed E-Cash [?] are the
same as the Compact E-Cash. It makes different assumptions, though.

Assumptions:
Endorsed E-cash works in the Random Oracle model and makes Discrete Logarithm and Strong
RSA assumptions, and also the following assumptions:

Diffie-Hellman Assumption:
q-Diffie-Hellman Inversion Assumption:

7.2.1 Spend

The only different part of the Endorsed E-Cash is how to spend a coin. The spend algorithm below
is run by the user, who, on input a valid set of values for (info, ses), outputs the unendorsed coin

24

and its endorsment.
Algorithm 28: The algorithm whereby a user generates an unendorsed coin together with a
valid endorsement

Input: The User, as well as the Merchant who will ultimately receive the coin, know the
definition of the prime-order group, and the Bank’s CL signature public key CLPK.
The User knows her wallet sku, s, t,W, σ(sku, s, t,W), and the index J . Both parties
know R = hash(info, ses).

Pre-conditions: The User must have withdrawn a wallet from the Bank, and the wallet
must contain an unused coin. Furthermore, R must be computed as
directed above.

Output: The unendorsed coin is uecoin = (B,C,D,W, S, T, J, πCL, πST). The
corresponding endorsement is endorsement = (x1, x2, ry)

Spend Endorsed E-Cash
The User creates Pedersen commitments B to sku, C to s, and D to t. The User prepares1

a non-interactive proof of knowledge of a CL signature on these values, where W is a
public value. Call this proof πCL.
The User picks random x1, x2, ry from Z∗primeOrder . The User sets y = gx1

1 ∗ g
x2
2 ∗ f ry ; i.e., y2

is a Pedersen commitment to (x1, x2, x3). (The bases used for y are also generators of the
prime-order group, but they are different generators than used for B,C,D, S, T .)
The User computes S = g1/(s+J) ∗ gx1 and T = pku ∗ gR/(t+J) ∗ gx2 .3

The User prepares a non-interactive proof that S, T,E are formed correctly. This is done4

by proving the knowledge of s, t, sku, rB, α, r1, β, r2, x1, x2, ry such that y = gx1
1 ∗ g

x2
2 ∗ f ry ,

B = gsku ∗ hrB , g = (gJ ∗ C)αhr1 (the Prover knows r1 = −rC/(s+ J) mod primeOrder),
g = (gJ ∗D)βhr2 (the Prover knows r2 = −rD/(t+ J) mod primeOrder), S = gα ∗ gx1 ,
T = gsku ∗ (gR)β ∗ gx2 . Call this proof πST .
The unendorsed coin is uecoin = (B,C,D,W, S, T, J, πCL, πST , y).5

The endorsement is (x1, x2, ry).6

Algorithm 29: The algorithm to verify an unendorsed coin.
Input: The input is a purported unendorsed coin uecoin = (B,C,D,W, S, T, J, πCL, πST).
Pre-conditions: The Merchant verifying the coin knows the definition of the prime-order

group, the Bank’s CL signature public key CLPK, and the values info,
ses and R = hash(info, ses).

Output: Accept or reject

To verify that uecoin is a valid unendorsed coin for a given R = hash(info, ses), check that1

(1) the coin index is correct: 0 ≤ J < W ; (2) the proof of knowledge of the CL signature
πCL verifies; (3) S, T, y are correct under the proof πST . If all three checks pass, output
Accept. Else, output Reject.

Algorithm 30: The algorithm to verify the endorsement for a given unendorsed coin.
Input: The input is an unendorsed coin uecoin = (B,C,D,W, S, T, J, πCL, πST) and an

endorsement endorsement = (x1, x2, ry).
Pre-conditions: The Merchant verifying the coin knows the definition of the prime-order

group; the unendorsed coin uecoin has already been verified using
Algorithm 29.

Output: Accept or reject

Check that y (from the unendorsed coin) is as follows: y = gx1
1 gx2

2 f ry . If so, accept, else,1

reject.
25

The Deposit protocol consists of doing Algorithms 29 and 30 together. Notice that, the resulting
coin is the same as in the Compact E-Cash, except that the proofs πCL, πST are slightly different,
and that we should use S′ = S/gx1 , T ′ = T/gx2 for double-spending detection and identification
purposes.

The Withdraw protocol stays the same since no extra information needs to be stored in the
wallet for the Endorsed E-Cash. The usefulness of Endorsed E-Cash will be clear once we see
Verifiable Encryption and Fair Exchange protocols.

7.3 E-Cash FAQ

Q: Why do we have Algorithm 25 before the withdrawal to randomize s?
A: If multiple users use the same s, then their coins will have identical S values. This means, to
identify a double-spender, the Bank needs to check all 2-combinations of those coins. Therefore,
malicious users might mount a denial-of-service attack on the Bank this way.

Q: Why does the user pick the wallet size W from only a limited list of wallet sizes?
A: The problem occurs since for efficiency we send both W and the coin index J in clear when
spending. Consider a wallet size of 1 million coins. Only very few people will have such a wallet,
and once anyone sees a coin index that’s very large, the spender can be identified as one of the
rich guys. A fully flexible and secure version would commit to W and J and change the proofs
accordingly. A range proof that proves a value is in a committed range (as opposed to a public
range) is also required.

Q: Why do we need Endorsed E-Cash?
A: The values x1, x2, ry can be easily used in verifiable encryption to prove that y, and hence the
coin is formed correctly. Then, it is very easy and fast to fairly exchange x1, x2, ry with the material
being bought.

Q: What is the deal with the randomness R in the coin?
A: We use R = hash(ses, info) for mainly two reasons. Use of ses ensures that no one other than
the User and Merchant knows that value, and thus prevents man-in-the-middle attacks. The use
of info ensures that the Merchant uses different R values for each transaction, which means all the
coins he receives will be honored, and so the Bank can catch double-spenders.

Note that other types of contracts can also be used. What is required from a contract is that
it is different for each transaction. This benefits the Merchant and the Bank, but not the User
who wants to cheat. Therefore, the Merchant needs to input enough randomness (in the form of
info above) into the contract. The other use of the contract prevents man-in-the-middle attacks.
Consider the case above where ses is not used and only info is used. Then, an attacker can just
forward the coin he gets from the User to the Merchant. One possible problem of this is that the
man-in-the-middle gets the service in effect “for free”. This may not present a problem in all the
scenarios, but we choose to be on the safe side. With ses in use, the connections of the attacker to
the User and the Merchant will be distinguished.

Q: We can identify the public keys of double-spenders, but can we do more?
A: Another version of e-cash is available where the Bank gets enough information to trace all
the coins spent from a wallet of a double-spender. The idea is that during withdrawal, the Bank
learns a verifiable encryption of the wallet secret under some other secret. Later on, when double-
spending occurs, the Bank learns the secret encryption key similar to the way he learns the User’s
public key. Using the wallet decrypted secret, the Bank can create a blacklist for wallets/coins
that the merchants should not accept. This way, further double-spending will be prevented online.

26

Unfortunately, this version reveals all purchases of the double-spender. The double-spending may
be accidental (faulty software, stolen card, etc.), and so the privacy of an innocent user may be
lost this way. There are “glitch protection” methods [?] to let some number of accidents happen,
but this means all the adversarial users will double-spend some allowed number of coins every time.
Therefore, blacklisting only “future” coins is an important open problem.

8 Verifiable Encryption

We will be using Caminisch-Shoup verifiable encryption [?]. This will later be the verifiable escrow
method used in fair exchange.

Assumptions:
The security of the scheme relies on Strong RSA assumption, Paillier’s Decision Composite Resid-
uosity assumption [?], and existence of a collision-resistant family of hash functions.

Parameters:
The parameter m denotes the number of messages that can be verifiably encrypted at once. For
Endorsed E-Cash, we need m = 3.

Setup:
The key generation of CS verifiable encryption uses two runs of special RSA group generation as
in Algorithm 1. The important differences are clearly identified below:

• Let N be the modulus returned by the first special RSA group generation. The generators
will be picked in a completely different way. In fact, the group that will be in use will be a
subgroup of Z∗N2 instead of Z∗N .

• Pick a random number f ′ from Z∗N2 . Compute f = f ′2n mod N2.

• Pick random numbers x1, . . . , xm, y, z from the interval (0, N2/4). Compute ai = fxi mod N2

for 1 ≤ i ≤ m, d = fy mod N2, e = fz mod N2.

• Compute b = (1 +N) mod N2. Notice that b is an element of order N in Z∗N2 .

• Let the second special RSA group generation return a group with modulus n and generators
g1, . . . , gm, h.

• Also, pick a key hk as the key for a keyed hash function. For simplicity in presentation below,
we will omit the key in hashes, but it will be used for every hash calculation.

• The public key (i.e. encryption and verification key) is composed of all public parts of the
groups, and the hash function key: V EPK = N, a1, . . . , am, b, d, e, f, n, g1, . . . , gm, h, hk .

• The secret key (i.e. decryption key) is the secret parts of the groups V ESK = P,Q, x1, . . . , xm, y, z, p, q
such that N = PQ and n = pq.

27

The absolute value algorithm below will be used in the verifiable encryption scheme a lot.
Algorithm 31: Absolute Value procedure for Camenisch-Shoup verifiable encryption scheme.

Input: x in range (0, N2)
Pre-conditions: x needs to be in range (0, N2)
Output: abs(x)

abs
if x > N2/2 then1

Output (N2 − x) mod N22

else3

Output x mod N24

8.1 Encrypt

The encryption procedure creates a ciphertext. To turn it into verifiable encryption, we will need
some specialized non-interactive zero knowledge proofs. Just as we need for fair exchange, this is a
labeled encryption scheme [?]. The label is also known as tag, or contract.

Algorithm 32: Encryption procedure for Camenisch-Shoup verifiable encryption scheme.
This procedure is run by the Encryptor. This is a sub-procedure; it’s not verifiable yet.

Input: Verifiable encryption public key V EPK = N, a1, . . . , am, b, d, e, f, n, g1, . . . , gm, h, hk ,
messages to be verifiably encrypted x1, . . . , xm, a label L

Output: Ciphertext u1, . . . , um, v, w.

Encrypt
Pick a random number r from the interval (0, N/4).1

for i : 1..m do2

Compute ui = bxi ∗ ari mod N2.3

Compute v = f r mod N24

Compute w = abs([d ∗ ehash(u1||...||um||v||L)]r mod N2)5

Output u1, . . . , um, v, w.6

8.2 Verifiably Encrypt

We will now provide a conversion from regular encryption to verifiable encryption for Camenisch-
Shoup verifiable encryption scheme. This will involve non-interactive zero knowledge proofs.

This verification can be used to prove correct encryption of discrete logarithms. When we
consider Endorsed E-Cash, the Prover will verifiably encrypt x1, x2, ry such that y = gx1

1 ∗ g
x2
2 ∗ f ry

in the group chosen by the Endorsed E-Cash setup. Take a note that it is a different group than

28

the ones used in verifiable encryption here. X below will be y of the Endorsed E-Cash.
Algorithm 33: Verifiable Encryption procedure for Camenisch-Shoup verifiable encryption
scheme. This procedure is run by the Encryptor/Prover.

Input: Verifiable encryption public key V EPK = N, a1, . . . , am, b, d, e, f, n, g1, . . . , gm, h, hk ,
commitment X to all messages x1, . . . , xm (or a commitment Xi to each one of
them), a label L

Output: Ciphertext and its proof u1, . . . , um, v, w,X
′, πV E .

Verifiably Encrypt
Get the ciphertext u1, . . . , um, v, w from the Encrypt function in Algorithm 32, along with1

the randomness r used in the encryption.
Pick a random number s from the interval (0, N/4).2

Compute a Fujisaki-Okamoto commitment X ′ to x1, . . . , xm using the randomness s in the3

group defined by n, g1, . . . , gm, h (the second RSA group generated for verifiable
encryption purposes).
Prove knowledge of r, s, x1, . . . , xm such that v2 = f2r mod N2,4

w2 = [d ∗ ehash(u1||...||um||v||L)]2r mod N2, and that each u2
i = b2xi ∗ a2r

i mod N2, and that
each xi corresponds to the one in X ′ and X, and that the range of each xi is (−N/2, N/2)
(SpecialRange). Call this proof πV E .
Output u1, . . . , um, v, w,X

′, πV E .5

Any party with the verifiable encryption public key can verify the encryption.
Algorithm 34: Verification procedure for Camenisch-Shoup verifiable encryption scheme.
This procedure is run by the Verifier.

Input: Verifiable encryption public key V EPK = N, a1, . . . , am, b, d, e, f, n, g1, . . . , gm, h, hk ,
commitment X (or commitments X1, . . . , Xm), a label L, ciphertext and its proof
u1, . . . , um, v, w,X

′, πV E
Output: ACCEPTor REJECT.

Verify
Verify πV E . If verification fails, output REJECT.1

if abs(w) = w mod N2 then2

Output ACCEPT.3

else4

Output REJECT.5

29

8.3 Decrypt

Only a party equipped with the correct secret key can decrypt. In the fair exchange, this party will
be the Arbiter.

Algorithm 35: Decryption procedure for Camenisch-Shoup verifiable encryption scheme.
This procedure is run by the Decryptor/Arbiter.

Input: Verifiable encryption public key V EPK = N, a1, . . . , am, b, d, e, f, n, g1, . . . , gm, h, hk ,
associated secret key V ESK = P,Q, x1, . . . , xm, y, z, p, q, a label L, ciphertext
u1, . . . , um, v, w

Output: Plaintext m1, . . . ,mm or ERROR.

Decrypt

if abs(w) 6= w mod N2 OR vy+z∗hash(u1||...||um||v||L) 6= w2 mod N2 then1

Output ERROR.2

Compute t = 2−1 mod N .3

for i : 1..m do4

Compute m′i = (ui/vxi)2t mod N2.5

Set mi = (m′i − 1)/N mod N2.6

if mi is not in range (0, N) then7

Output ERROR.8

Output m1, . . . ,mm9

8.4 Prove Decryption

This part is complicated, and for now, will not be employed since the Arbiter in the fair exchange
will be a trusted entity.

9 Fair Exchange

Use regular encryption, signatures, public-key encryption, e-cash and verifiable encryption to per-
form fair exchange.

9.1 Buy

Let Alice be the buyer and Bob be the seller. As a precondition, the protocol assumes that Alice
already knows bhash, which is the root of the Merkle hash tree computed on the block block that
Alice wants to buy.

9.1.1 Merkle tree

First, we give the procedure MHash(h, block , `) to compute bhash, the Merkle hash function that
outputs the root of the depth-` Merkle tree of a given block with hash function h. Next, we give (1)
the procedure to compute the proof MProve((h, block , `), i) that a particular value is the ith leaf of
the Merkle hash tree of which bhash is the root; the procedure MVerify((h, `), (bhash, i, chunk)) to
verify the proof MProof that the value chunk is the ith leaf of the Merkle hash tree of which bhash
is the root.

30

First, let us explain the idea of the MHash procedure. Consider a rooted binary tree with 2`

leaves (i.e. it is a binary tree of height `). Associated with every node the tree, there is the address
a of the node. Specifically, the label a associated with the root node is the empty string ε. The
label of a left (resp. right) child is derived by concatenating 0 (resp., 1) to the label of the parent
node. Thus, the label a associated with the ith leaf is the integer i written in binary. Stored at a
node labeled with a, is a value va. In a Merkle tree, stored at each leaf 0 ≤ a ≤ 2` − 1 is the value
va = h(chunka), where chunka is the ath chunk of the block; and stored at every internal node
0 ≤ a ≤ 2i − 1 at depth i ≥ 1 is the value va = h(va||0||va||1). Finally, the value corresponding to
the root node is vε = h(v0||v1). The algorithm MHash outputs this value.

Algorithm 36: MHash: Generating a Merkle hash tree.
Input: A collision-resistant hash function h : {0, 1}∗ 7→ {0, 1}hashLength , the data block

block , the desired tree height `.
Pre-conditions: None.
Output: The value bhash.
Post-conditions: None.

If ` = 0, output h(block).1

Otherwise, divide the block block into block0 and block1, 2 strings of approximately equal2

byte lengths (this has to be done in a deterministic fashion so that running twice on same
input gives same results) and output h(MHash(h, block0, `− 1)||MHash(h, block1, `− 1))

To prove that chunk is the ith chunk of the block represented by bhash = MHash(block), reveal
the values vaj where for 1 ≤ j ≤ `, the label aj is obtained by taking the first j − 1 bits of the
binary representation of i, and concatenating to them the negation of the jth bit. (For example, if
i = 0101, then a1 = 1, a2 = 00, a3 = 011 and a4 = 0100.) In the Merkle tree, the node aj will be
the sibling of the jth node on the path from the root to the chunk in question. The procedure for
doing this is as follows:

Algorithm 37: Generating the proof MProof = (v1, . . . , vj , chunk) that chunk is the ith leaf
of the Merkle tree.

Input: A collision-resistant hash function h : {0, 1}∗ 7→ {0, 1}hashLength , the data block
block , the desired tree height `; the index i.

Pre-conditions: 0 ≤ i < 2`

Output: The value MProof .
Post-conditions: None.

If ` = 0, return block .1

Otherwise, divide the block block into block0 and block1, 2 strings of approximately equal2

byte lengths (this has to be done in a deterministic fashion, the same as what is done by
the algorithm MHash).
If i ≥ 2`−1, return (MHash(h, block0, `− 1),MProve((h, block1, `− 1), i− 2`−1)).3

Else return (MHash(h, block1, `− 1),MProve((h, block0, `− 1), i)).4

To verify that (v1, ..., v`) is a valid proof that chunk is the ith chunk of block associated with
bhash, we recompute the labels aj (as above). We know that vj = vaj is the value that should
be associated with node labelled aj . Let i = i1i2 . . . i`, i.e. ij is the jth bit of the `-bit binary
representation of i. Let bj = i1 . . . ij be the j-bit prefix of i. First, we know that vi = h(chunk).

31

For each j, `− 1 ≥ j ≥ 0, compute vbj = h(vbj ||0||vbj ||1). We can do it because one of (vbj ||0, vbj ||1)
is vaj+1 , and the other one is computed in the previous step. Finally, verify that vε = bhash. The
pseudocode for this procedure is as follows:

Algorithm 38: Verifying the proof MProof = (v1, . . . , vj , chunk) that chunk is the ith leaf
of the Merkle tree.

Input: A collision-resistant hash function h : {0, 1}∗ 7→ {0, 1}hashLength , the value bhash,
the desired tree height `; the proof MProof , the index i.

Pre-conditions: 0 ≤ i < 2`

Output: Accept or reject.
Post-conditions: None.

TO BE WRITTEN1

If two conflicting proofs can be constructed (i.e. for chunk 6= chunk ′, there are proofs that each
of them is the ith chunk of block associated with bhash), then a collision in h is found, contradicting
the assumption that h is collision-resistant.

9.1.2 The Buy protocol

We present our protocol that lets the Buyer buy a file block from the Seller. Before the start of
the protocol, the Buyer has (1) bhash = MHash(block); and (2) has withdrawn a wallet from the
Bank and is ready to create unendorsed coins together with their endorsements. from a trusted
authority (i.e. tracker). Alice and Bob will agree on a timeout by when Bob must provide Alice
with the block. The protocol works as follows:

32

9.2 Barter

9.2.1 Alice

9.2.2 Bob

9.2.3 Arbiter

A Common Functionalities

Randomization:

Algorithm 39: Procedure to generate a random group element with associated random
exponents. Call this procedure Randomize.

Input: Definition of the group, number of random elements k, number of fixed elements l,
bases g1, . . . , gk+l−1, h, fixed elements x1, . . . , xl if any.

Pre-conditions: l < k, k ≥ 1, l ≥ 0
Output: random element R, random exponenets openR

Randomize
Pick k − 1 random numbers si from the domain of randomness DR.1

Pick another random number t from the domain of randomness DR.2

Compute R = [
∏l
i=1 g

xi
i][

∏k−1
i=1 g

si
l+i]h

t using group operations.3

Output the random group element R and random exponents openR = s1, . . . , sk−1, t.4

References

[1] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash. In Proc. Euro-
crypt ’05, volume 3494 of Lecture Notes in Computer Science, pages 302–321. Springer-Verlag,
2005.

[2] Jan Camenisch, Anna Lysyanskaya, and Mira Meyerovich. Endorsed e-cash. In IEEE Sympo-
sium on Security and Privacy, pages 101–115, 2007.

[3] Ivan Damg̊ard and Eiichiro Fujisaki. A statistically-hiding integer commitment scheme based
on groups with hidden order. In Proc. Asiacrypt ’02, volume 2501 of Lecture Notes in Computer
Science, pages 125–142. Springer-Verlag, 2002.

[4] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. In Proc. Crypto ’97, volume 1294 of Lecture Notes in Computer Science,
pages 16–30. Springer-Verlag, 1997.

[5] Alfred J. Menezes, Paul van Oorschot, and Scott Vanstone. Handbook of Applied Cryptography.
CRC Press, 1997.

[6] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing.
In Proc. Crypto ’91, volume 576 of Lecture Notes in Computer Science. Springer-Verlag, 1992.

33

[7] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, 1991.

34

	Security Parameters
	Assumptions
	Setup
	Commitment Schemes
	Fujisaki-Okamoto Commitment Scheme
	Pedersen Commitment Scheme

	Honest-Verifier Zero Knowledge -Proofs
	Proof of Knowledge of Discrete Logarithm Representation
	Proof of equality of discrete logarithm representation
	Proof that a committed value is a multiplication of other values (and in particular, a square)
	Proof that a committed value lies within an interval [lo,hi]
	Proof that a committed value lies within an interval [mean-delta,mean+delta]

	CL signatures
	Obtaining a Blind CL signature
	Proving a CL signature

	E-cash
	Compact E-Cash
	Register
	Withdraw
	Spend
	Deposit

	Endorsed E-Cash
	Spend

	E-Cash FAQ

	Verifiable Encryption
	Encrypt
	Verifiably Encrypt
	Decrypt
	Prove Decryption

	Fair Exchange
	Buy
	Merkle tree
	The Buy protocol

	Barter
	Alice
	Bob
	Arbiter

	Common Functionalities

