Description of Algorithms used in Cashlib

August 12, 2010

Contents

1 Security Parameters 4
2 Assumptions 4
3 Setup 4
4 Commitment Schemes 6
4.1 Fujisaki-Okamoto Commitment Scheme 6
4.2 Pedersen Commitment Scheme 7
5 Honest-Verifier Zero Knowledge Σ-Proofs 9
5.1 Proof of Knowledge of Discrete Logarithm Representation 10
5.2 Proof of equality of discrete logarithm representation 12
5.3 Proof that a committed value is a multiplication of other values (and in particular, 15
5.4 Proof that a committed value lies within an interval [lo,hi] 16
5.5 Proof that a committed value lies within an interval [mean-delta,mean+delta] 17
6 CL signatures 18
6.1 Obtaining a Blind CL signature 19
6.2 Proving a CL signature 20
7 E-cash 21
7.1 Compact E-Cash 21
7.1.1 Register 22
7.1.2 Withdraw 22
7.1.3 Spend 22
7.1.4 Deposit 23
7.2 Endorsed E-Cash 24
7.2.1 Spend 24
7.3 E-Cash FAQ 26
8 Verifiable Encryption 27
8.1 Encrypt 28
8.2 Verifiably Encrypt 28
8.3 Decrypt 30
8.4 Prove Decryption 30
9 Fair Exchange 30
9.1 Buy 30
9.1.1 Merkle tree 30
9.1.2 The Buy protocol 32
9.2 Barter 33
9.2.1 Alice 33
9.2 .2 Bob 33
9.2.3 Arbiter . 33
$\begin{array}{ll}\text { A Common Functionalities } & 33\end{array}$

1 Security Parameters

In our system, we will use a unified security parameter $s e c$, which corresponds to the conjecture that any attack that breaks the system must perform roughly $2^{s e c}$ steps. We also define the following security parameters for ease of notation:

RSALength defines the bit-length of an RSA modulus.
stat defines the statistical security parameter. That is to say, two statistically indistinguishable distributions will be $2^{-s t a t}$ close to each other.
hashLength defines the length of the output of a hash function used for collision resistance or as a random oracle.
orderLength defines the bit-length of the order of the prime-order group we will use. primeLength defines the bit-length of the modulus of $Z_{\text {primeModulus }}^{*}$. The prime-order group will be a subgroup of $Z_{\text {primeModulus }}^{*}$ of order primeOrder.

To get $s e c=80$, which is considered the bare minimum requirement for security, we need to have RSALength $=1024$, stat $=\sec =80$, hashLength $=2 *$ sec $=160$, orderLength $=2 *$ sec $=160$, primeLength $=1024$. We will use these numbers for performance evaluation. The reasoning for hash functions and prime order is related to the birthday bound, and states the best known algorithms break them in $2^{\text {hashLength } / 2}$ and $2^{\text {orderLength } / 2}$ time respectively (DON'T WE NEED A CITATION FOR THIS?). We will use SHA-1 as our hash function.

To get a longer-lasting security, we should use sec $=128$, which corresponds to RSALength $=$ 2048, stat $=$ sec $=128$, hashLength $=2 *$ sec $=256$, orderLength $=2 *$ sec $=256$, primeLength $=$ 1024. For our BitTorrent system, we should use AES-128 as the block cipher and SHA-256 as the hash function whenever necessary (note that these numbers correspond to $\mathrm{sec}=112[?, ?]$).

Finally, if we are feeling paranoid, we can easily set RSALength $=4096$, primeLength $=2048$, and use SHA-512 and AES-256. The only issue is that we will sacrifice some amount of efficiency.

2 Assumptions

The suggested security parameters above are set to satisfy the following assumptions (by conjecture).

Strong RSA Assumption: For $N=p q$ with p, q prime, it is difficult for any computationally bounded adversary \mathcal{A} to compute x on input N, e, and $y=x^{e} \bmod N$ for some e such that $\operatorname{gcd}(e, \phi(N))=1$, even if \mathcal{A} is allowed to pick e itself (note that this last condition is what makes this assumption the "strong" verison of the standard RSA assumption).

Discrete Logarithm Assumption: For a cyclic group G of order q with generator g, it is difficult for any computationally bounded adversary \mathcal{A} to compute x on input g^{x}, for $x \in \mathbb{Z}_{q}$.

3 Setup

In our system, we will use three different types of groups: special RSA groups, prime-order groups, and Paillier groups (i.e., groups of the form $\mathbb{Z}_{N^{2}}^{*}$). In this section we focus on the former two group types, as the Paillier groups are used only in a superficial way for verifiable encryption and are not considered parameters of the system. Our groups are usually generated by a trusted third party, but we also describe methods that can be used if for some reason the setup is untrusted.

In what follows, let $Q R_{n}$ denote the group of quadratic residues modulo n.

```
Algorithm 1: Setup for generating a special RSA group.
    Input: security parameter \(R S A L e n g t h\), number of generators \(m\)
    Pre-conditions: RSALength must be at least 1024. \(m\) must be at least 1.
    Output: modulus \(n\), primes \(p, q, p^{\prime}, q^{\prime}\), generators \(g_{1}, \ldots, g_{m}, h\), exponents \(a_{1}, \ldots, a_{m}\)
    Post-conditions: The length of \(n\) must be RSALength. \(n=p q, p=2 p^{\prime}+1, q=2 q^{\prime}+1\).
                    \(p, q, p^{\prime}, q^{\prime}\) are primes. \(p=3 \bmod 4, q=3 \bmod 4\).
                    \(|p|=|q|=R S A L e n g t h / 2\)
    Special RSA Group Setup
    1 Choose primes \(p, q\) of length \(R S A L e n g t h / 2\) each such that \(p=2 p^{\prime}+1\) and \(q=2 q^{\prime}+1\)
        where \(p^{\prime}, q^{\prime}\) are primes (so \(p, q\) are safe primes, \(p^{\prime}, q^{\prime}\) are Sophie Germain primes, and \(n\) is a
        special RSA modulus). Note that we will need \(p=3 \bmod 4\) and \(q=3 \bmod 4\) in order to
        have \(n\) be a Blum integer, and that this will indeed be the case for primes chosen as above.
    2 Compute \(n=p q\).
    3 Choose \(h \leftarrow Q R_{n}\). To do this, pick a random residue, square it, and check that
        \(h^{(p-1) / 2}=1 \bmod p\) and \(h^{(q-1) / 2}=1 \bmod q\). Alternatively, pick \(h_{p} \leftarrow Z_{p}^{*}\) and \(h_{q} \leftarrow Z_{q}^{*}\),
        and set \(h=h_{p}^{q-1} * h_{q}^{p-1} \bmod n\).
    4 for \(i\) : 1..m do
            Choose \(a_{i} \leftarrow\{0,1\}^{\text {RSALength }+ \text { stat }}\) and set \(g_{i}=h^{a_{i}} \bmod n\)
        Output modulus \(n\), primes \(p, q, p^{\prime}, q^{\prime}\), generators \(g_{1}, \ldots, g_{m}, h\), and exponents \(a_{1}, \ldots, a_{m}\).
```

Algorithm 2: Setup for generating a prime-order group.
Input: security parameters primeLength, orderLength, number of generators m
Pre-conditions: primeLength must be at least 512. orderLength must be at least 160 or $2 *$ stat, whichever is larger ${ }^{a} m$ must be at least 1.
Output: modulus primeModulus, order primeOrder, generators g_{1}, \ldots, g_{m}, h, exponents

$$
a_{1}, \ldots, a_{m}
$$

Post-conditions: The length of primeModulus must be primeLength. The length of primeOrder must be orderLength.
Prime Order Group Setup
1 Pick a prime order primeOrder of length orderLength and a prime modulus primeModulus of length primeLength where primeModulus -1 is divisible by primeOrder. This results in the order prime Order subgroup of $Z_{\text {primeModulus }}^{*}$.
2 Pick generator h for the subgroup with order primeOrder. To do this, pick $h^{\prime} \leftarrow Z_{\text {primeModulus }}^{*}$ and set $h=h^{(\text {primeModulus }-1) / \text { primeOrder }} \bmod$ primeModulus.
3 for i : 1..m do
4 Pick generators g_{i} each with order primeOrder (same method as above)
5 Output modulus primeModulus, order primeOrder, generators g_{1}, \ldots, g_{m}, h, exponents a_{1}, \ldots, a_{m}

[^0]Definitions of Groups:
Throughout this paper, the "definition of the RSA group" means the modulus n and possibly the
bases g_{1}, \ldots, g_{m}, h if they are not explicitly defined.
Similarly, the "definition of the prime-order group" means the modulus primeModulus and the order primeOrder, and possibly the bases g_{1}, \ldots, g_{m}, h if they are not explicitly defined.

Bases will generally be explicitly defined in the algorithms.
Group Operations:
A group operation is an operation on a group element. We will use multiplicative notation when denoting the group operation and inverse of an element. All group operations must be done modulo the modulus of the group. Therefore, all group operations will be done modulo n for the RSA group, and modulo primeModulus for the prime-order group. A simple example of this is $g * h \bmod n$.

Operations on Exponents:
An operation on exponents means the multiplication, addition, or inversion of exponents. In RSA groups, all such operations must be performed over integers, as the order of the group is not assumed to be known. In prime-order groups, all such operations will be done modulo primeOrder, as this value is always public. An example of such an operation is $g^{a * b} \bmod$ primeOrder \bmod primeModulus. Group Secrets:
When we emphasize that some party has not generated a group itself, we mean that that party may not know the secrets associated with the group generation. For an RSA group, the secrets will be p, q; the factorization of the modulus n. Furthermore, in both an RSA group and a prime-order group, the relative discrete logarithms of the generators are secrets.

4 Commitment Schemes

4.1 Fujisaki-Okamoto Commitment Scheme

Overview:

The Fujisaki-Okamoto commitment scheme [4, 3] is a statistically hiding, computationally binding commitment scheme. The Committer commits to something and sends the resulting commitment to the Verifier. At some later time, the Committer opens the commitment and the Verifier needs to verify that the opening matches the commitment sent before.

Setup:
This commitment scheme uses a special RSA group. In the case that an untrusted party (e.g., the Verifier) generates the RSA group, he needs to prove to the Committer that each g_{i} is in the group generated by h, so that the commitment is statistically hiding. This can be done by proving in zero knowledge the knowledge of a_{i} such that $g_{i}=h^{a_{i}} \bmod n$. The committer may not generate or know $p, q, p^{\prime}, q^{\prime}, a_{1}, \ldots, a_{m}$, as otherwise the scheme will not provide any meaningful binding property.

Assumptions:
The security of the scheme relies on the Strong RSA assumption.

Hiding:

The hiding property relies on the fact that g_{i}, h all generate the same group, so that when randomization is used the resulting commitment is a random group element.

Binding:
The binding property relies on the assumption that the Committer cannot find two different openings (using the same bases) that result in the same commitment. This follows from the Strong RSA assumption.

Warnings:
This commitment scheme requires at least two generators: g_{1}, h, otherwise it does not work.

```
Algorithm 3: Commitment procedure of the Fujisaki-Okamoto commitment scheme. This
procedure is run by the Committer.
    Input: Definition of the RSA group, number of secrets \(k\), bases \(g_{1}, \ldots, g_{k}, h\), secrets
            \(x_{1}, \ldots, x_{k}\)
    Pre-conditions: The RSA group must be generated by a trusted third party or it must be
                                    proven that each \(g_{i}, h\) generates \(Q R_{n}\).
    Output: commitment \(C\), opening open
    Commit
    1 Pick a random number \(r\) from \(\{0,1\}^{\text {RSALength }+ \text { stat }}\).
    2 Create the commitment \(C=h^{r} \prod_{i=1}^{k} g_{i}^{x_{i}} \bmod n\).
    3 Output commitment \(C\) and opening open \(=x_{1}, \ldots, x_{k}, r\).
```

Comments:
The random number r actually needs to be relatively prime to $\phi(n)$, but since this will be the case with high probability we omit the check.

To open a commitment, the Committer just sends the opening open to the Verifier. After that, the Verifier needs to verify the opening of the commitment. This is done as follows:

```
Algorithm 4: Verification procedure of the Fujisaki-Okamoto commitment scheme. This
procedure is run by the Verifier after receiving the opening open for a commitment \(C\).
    Input: Definition of the RSA group, number of secrets \(k\), bases \(g_{1}, \ldots, g_{k}, h\), commitment
            \(C\), opening open \(=x_{1}, \ldots, x_{k}, r\)
    Pre-conditions: The RSA group may NOT be generated by the Committer.
    Output: ACCEPT or REJECT
    Verify
        if \(C=h^{r} \prod_{i=1}^{k} g_{i}^{x_{i}} \bmod n\) then
            Output ACCEPT
        else
            Output REJECT
```


4.2 Pedersen Commitment Scheme

Overview:
The Pedersen commitment scheme [6] is a statistically hiding, computationally binding commitment scheme. It allows for commitments to values between 1 and primeOrder - 1 .

Setup:
This commitment scheme uses a prime-order group. If an untrusted party (e.g., the Verifier) generates the prime-order group, then the participants (both the Committer and the Verifier) need to check that both primeModulus and primeOrder are primes (such that primeOrder divides primeModulus -1) and that g_{i}, h have order primeOrder (which is equivalent to saying that $g_{i} \neq 1$ \bmod primeModulus and $g_{i}^{\text {primeOrder }}=1 \bmod$ primeModulus). It is important that the Committer
does not know the relative discrete logarithms of the bases, or otherwise the commitment is no longer binding.

Assumptions:
The security of the scheme relies on the Discrete Logarithm assumption.
Hiding:
The hiding property relies on the fact that g_{i}, h all generate the group with prime order primeOrder, so that when randomization is used the resulting commitment is a random element of the primeorder group.

Binding:
The binding property relies on the Committer not being able to find two different openings, using the same bases, that result in the same commitment. This follows directly from the Discrete Logarithm assumption.

```
Algorithm 5: Commitment procedure of the Pedersen commitment scheme. This procedure
is run by the Committer.
    Input: Definition of the prime-order group, number of secrets \(k\), bases \(g_{1}, \ldots, g_{k}, h\), secrets
    \(x_{1}, \ldots, x_{k}\)
    Pre-conditions: Group and the bases must adhere to guidelines in the SETUP in this
                        section. Each \(x_{i}\) must be between 1 and primeOrder -1 .
    Output: commitment \(C\), opening open
    Post-conditions: \(C\) should be sent to the Verifier.
    Commit
1 Pick a random number \(r\) from \(Z_{\text {primeOrder }}^{*}\).
2 Create the commitment \(C=h^{r} \prod_{i=1}^{k} g_{i}^{x_{i}} \bmod\) primeModulus.
3 Output commitment \(C\) and opening open \(=x_{1}, \ldots, x_{k}, r\).
```

To open a commitment, the Committer simply sends open to the Verifier. Upon receiving the opening, the Verifier needs to verify its validity. This is done as follows:

```
Algorithm 6: Verification procedure of the Pedersen commitment scheme. This procedure
is run by the Verifier after receiving the opening open for a commitment \(C\).
    Input: Definition of the prime-order group, number of secrets \(k\), bases \(g_{1}, \ldots, g_{k}, h\),
        commitment \(C\), opening open \(=x_{1}, \ldots, x_{k}, r\)
    Pre-conditions: The group may not be generated by the Committer. Each \(x_{i}, r\) must be
                        between 1 and primeOrder -1 .
    Output: ACCEPT or REJECT
    Verify
        if \(C=h^{r} \prod_{i=1}^{k} g_{i}^{x_{i}} \bmod\) primeModulus then
        Output ACCEPT
    else
        Output REJECT
```


Comments:

If only one generator exists (namely g_{1}), then the commitment is only computationally hiding based on the Discrete Logarithm assumption, although it still works.

5 Honest-Verifier Zero Knowledge Σ-Proofs

In these Σ-protocols, both the Prover and the Verifier know the definition of the group used, as well as some common information (typically a commitment) C. In all honest-verifier zero knowledge Σ-proofs, the Prover first sends a randomized proof R. The Verifier then replies with a challenge c (which is always generated in the same way). The Prover then responds to that challenge with some value A. Finally, the Verifier verifies the whole proof.

```
Algorithm 7: Randomized Proof round of a \(\Sigma\)-protocol. This procedure is run by the Prover.
    Input: Definition of the group, number of secrets \(k\), bases \(g_{1}, \ldots, g_{k}, h\),
    Output: randomized proof \(R\), its opening open \(R\)
    Randomize Proof
    1 Will be defined separately for each protocol.
```

Algorithm 8: Challenge round of a 3 -round Σ-protocol. This procedure is run by the Verifier upon receipt of randomized proof R from the Prover.
Input: Definition of the group, number of secrets k, bases g_{1}, \ldots, g_{k}, h, commitment C, randomized proof R
Pre-conditions: In many protocols we use, the group may not be generated by the Prover.
See the specific protocol specification for more on this.
Output: challenge c
Post-conditions: C, R and c should be kept for use in the verification procedure.

Challenge

1 Pick a random number c from the domain of challenges D_{C}.
2 Output challenge c
Domain of Challenges D_{C} :
If an RSA group is used, the domain of challenges is $D_{C}=\{0,1\}^{\text {stat }}$ (with the exception that the challenge must not be 0). If a prime-order group is used, the domain of challenges is $D_{C}=$ $Z_{\text {primeOrder }}^{*}$ (actually $D_{C}=\{0,1\}^{\text {stat }}$ will also work). When using non-interactive proofs, $D_{C}=$ $\{0,1\}^{2 * s t a t}$ will be used, which will be the same as $D_{C}=Z_{\text {primeOrder }}^{*}$. This means that in practice it will make sense to simply use $D_{C}=\{0,1\}^{2 * s t a t}-\{0\}$ for both groups.

Domain of Randomness D_{R} :
If an RSA group is used, the domain of randomness is $D_{R}=\{0,1\}^{\text {RSALength }+ \text { stat }}$ (except again the randomness must not be 0). If a prime-order group is used, the domain of randomness is $D_{R}=Z_{\text {primeOrder }}^{*}$. Note that, unlike the challenge domains, these domains are very different for both groups, and that the prime-order group is more efficient in terms of both computation and communication.

Non-Interactive Version:
If non-interactive proofs will be employed using the Fiat-Shamir heuristic [?], the challenge will be computed as $c=h a s h($ definition of the group and bases used $\|k\| C \| R)$. This computation can be carried out by the Prover and the Verifier separately, and then the Verifier can verify the proof as before. It is important to note that if the Fiat-Shamir heuristic is used, the resulting protocol is secure only in the Random Oracle model [?, ?].

Full Zero Knowledge:
Techniques for converting honest-verifier zero-knowledge proofs to full zero-knowledge proofs (i.e.
using trapdoor commitments as in [?]) should be applied for the interactive versions. Non-interactive versions using the Fiat-Shamir heuristic do not require this conversion, since the Random Oracle model essentially forces the Verifier to be honest. Since all the proofs we will use are non-interactive, we do not provide full zero-knowledge protocols here.

```
Algorithm 9: Response round of a \(\Sigma\)-protocol. This procedure is run by the Prover.
    Input: Definition of the group, number of secrets \(k\), bases \(g_{1}, \ldots, g_{k}, h\), opening of \(C\) :
            open \(C\), randomized proof \(R\) and its opening open \(R\), challenge \(c\)
    Output: response \(A\)
    Respond
1 Will be defined separately for each protocol.
```

```
Algorithm 10: Verification of a \(\Sigma\)-protocol. This procedure is run by the Verifier upon
receipt of response \(A\) from the Prover.
    Input: Definition of the group, number of secrets \(k\), bases \(g_{1}, \ldots, g_{k}, h\), commitment \(C\),
            randomized proof \(R\), challenge \(c\), response \(A\)
    Output: ACCEPT or REJECT
    Verify
    1 Will be defined separately for each protocol.
```

Non-Interactive Verification:
When verifying non-interactive proofs, the verification procedure is called with challenge $c=$ hash(definition of the group and bases used $\|k\| C \| R$), and the rest proceeds the same as the interactive version.

5.1 Proof of Knowledge of Discrete Logarithm Representation

This is the protocol used for proving knowledge of the discrete logarithm representation of a number using some well-defined bases in an honest verifier zero knowledge way [7]. The Verifier knows the number and the bases. We call this protocol PoKoDLR. It has two versions:

The RSA group version uses Fujisaki-Okamoto commitments. Therefore it requires the same setup and the same assumptions. Everything said for the Fujisaki-Okamoto commitments also applies here.

The prime-order group version uses Pedersen commitments. Therefore it requires the same setup and the same assumptions. Everything said for the Pedersen commitments also applies here.

All operations will be done in respective groups.
Assumptions:
RSA group version makes the Strong RSA assumption.
Prime-order group version makes no assumptions.
Honest-Verifier Zero Knowledge:
RSA group version is honest verifier zero knowledge provided that the Fujisaki-Okamoto commitment is hiding. This means that the RSA group must be generated by a trusted third party or it must be proven to the Prover that each g_{i}, h generates $Q R_{n}$.
Prime-order group version is honest verifier zero knowledge provided that the Pedersen commitment is hiding. This means that the prime-order group must be generated by a trusted third party or the Prover must verify that each g_{i}, h has order primeOrder.

Version	Commitments Used	HVZK Condition	Soundness Condition
RSA Group	Fujisaki-Okamoto	Fujisaki-Okamoto is hiding	Strong RSA
Prime-order Group	Pedersen	Pedersen is hiding	None or DLog*

Table 1: PoKoDLR Protocol Security Summary

Soundness:

In RSA group version, the extraction works under the Strong RSA assumption, which requires that the RSA group may NOT be generated by the Prover.
In prime-order group version, the extraction works without any assumption.
*WARNINGS:
In many uses of the prime-order group version of this protocol, for it to be meaningful, we would like the Pedersen commitments to be binding, which means the Prover may NOT generate g_{i}, h (and thus know the relative discrete logarithms of the bases), and that the Discrete Logarithm assumption holds.
Algorithm 11: Randomized Proof round of PoKoDLR protocol. This procedure is run by the Prover.
Input: Definition of the group, number of secrets k, bases g_{1}, \ldots, g_{k}, h
Pre-conditions: The group must be generated by a trusted third party, or it must be proven to the Prover that each g_{i}, h generates $Q R_{n}$ in a special RSA group, or the Prover must verify that each g_{i}, h has order primeOrder in a prime-order group.
Output: randomized proof R, its opening open R
Randomize Proof
1 for $i: 1 . . k$ do
$2 \quad$ Pick a random number s_{i} from domain of randomness D_{R}.
3 Create a random element R using Randomize(group definition, $\left.k+1, g_{1}, \ldots, g_{k}, h\right)$ as in Algorithm 39, Let the random exponents returned by the Randomize procedure be openR $=s_{1}, \ldots, s_{k}, t$.
4 Output randomized proof R and its opening open R.

```
Algorithm 12: Response round of PoKoDLR protocol. This procedure is run by the Prover.
    Input: Definition of the group, number of secrets \(k\), bases \(g_{1}, \ldots, g_{k}, h\), opening
                open \(=x_{1}, \ldots, x_{k}, r\), randomized proof \(R\) and its opening open \(R=s_{1}, \ldots, s_{k}, t\),
            challenge \(c\)
    Pre-conditions: The group must be generated by a trusted third party, or it must be
                                    proven to the Prover that each \(g_{i}, h\) generates \(Q R_{n}\) in a special RSA
                                    group, or the Prover must verify that each \(g_{i}, h\) has order primeOrder in a
                    prime-order group.
    Output: response \(A\)
    Respond
        for \(i: 1 . . k\) do
        Compute \(a_{i}=s_{i}+c x_{i}\)
        Compute \(b=t+c r\)
        [ In prime-order group version, let \(a_{i}=a_{i} \bmod\) primeOrder and \(b=b \bmod\) primeOrder ]
        Output response \(A=a_{1}, \ldots, a_{k}, b\)
```

 Algorithm 13: Verification of PoKoDLR protocol. This procedure is run by the Verifier
 upon receipt of response \(A\) from the Prover.
 Input: Definition of the group, number of secrets \(k\), bases \(g_{1}, \ldots, g_{k}, h\), commitment \(C\),
 randomized proof \(R\), challenge \(c\), response \(A=a_{1}, \ldots, a_{k}, b\)
 Pre-conditions: The RSA group may NOT be generated by the Prover
 Output: ACCEPT or REJECT
 Verify
 \(1 \quad\) if \(R C^{c}=h^{b} \prod_{i=1}^{k} g_{i}^{a_{i}}(\bmod n\) for \(R S A\) group version, \(\bmod\) primeModulus for
 Prime-order group version) then
 Output ACCEPT
 else
 Output REJECT
 Warnings:
In prime-order group version of this protocol, it's important for both parties to make sure that each x_{i}, r, s_{i}, t is between 1 and primeOrder -1 . Prover can only prove knowledge of x_{i} that is in that range.

5.2 Proof of equality of discrete logarithm representation

This is the protocol for proving knowledge of the equality of discrete logarithm representations of some numbers using some well-defined bases in an honest verifier zero knowledge way. The Verifier knows the bases. We call this protocol PoEoDLR. it has two versions:

The first version uses Fujisaki-Okamoto commitments. Therefore it requires the same setup and the same assumptions. Everything said for the Fujisaki-Okamoto commitments also applies there.

The second version uses Pederson commitments. Therefore it requires the same setup and the same assumptions. Everything said for the Pederson commitments also applies there.

All operations will be done in respective groups.

Assumptions:

RSA group version makes the Strong RSA assumption.
Prime-order group version makes no assumptions.
Honest-Verifier Zero Knowledge:
RSA group version is honest verifier zero knowledge provided that the Fujisaki-Okamoto commitment is hiding. This means that the RSA group must be generated by a trusted third party or it must be proven to the Prover that each g_{i}, h generates $Q R_{n}$.
Prime-order group version is honest verifier zero knowledge provided that the Pedersen commitment is hiding. This means that the prime-order group must be generated by a trusted third party or the Prover must verify that each g_{i}, h has order primeOrder.

Soundness:
In RSA group version, the extraction works under the Strong RSA assumption, which requires that the RSA group may NOT be generated by the Prover.
In prime-order group version, the extraction works without any assumption.
*WARNINGS:
In many uses of the prime-order group version of this protocol, for it to be meaningful, we would like the Pedersen commitments to be binding, which means the Prover may NOT generate g_{i}, h (and thus know the relative discrete logarithms of the bases), and that the Discrete Logarithm assumption holds.

```
Algorithm 14: Randomized Proof round of PoEoDLR protocol. This procedure is run by
the Prover.
    Input: Definition of the group, bases \(g_{1}, \ldots, g_{k}, h\), number of common secrets \(k\), number
        other secrets \(l\)
    Output: randomized proof set \(R\), its opening set open \(R\)
    Randomize Proof
    1 for \(i: 1 . . k\) do
        Pick a random number \(s_{i}\) from domain of randomness \(D_{R}\).
        for \(i\) : \(1 . . l\) do
            Create the randomized proof \(R_{i}\) to using Randomize(group definition, 1 (number of
            random elements), \(k\) (number of fixed elements), \(g_{1}, \ldots g_{k}, h\) (bases), \(s_{1}, \ldots, s_{k}\) (fixed
            elements)). Let the opening returned by the Commit procedure be
            open \(R_{i}=s_{1}, \ldots, s_{k}, t_{i}\).
    5 Output randomized proof set \(R\) (set of \(R_{i}\) 's) and opening set open \(R\) (set of open \(R_{i}\) 's).
```

```
Algorithm 15: Response round of PoEoDLR protocol. This procedure is run by the Prover.
    Input: Definition of the group, f the group, bases \(g_{1}, \ldots, g_{k}, h\), number of common secrets \(k\),
                number other secrets \(l\), common secrets \(x_{1}, \ldots, x_{k}\) and other secrets \(r_{1}, \ldots, r_{l}\),
                openings of randomized proofs open \(R_{1} \ldots\) open \(R_{l}\) where open \(R_{j}=s_{1}, \ldots, s_{k}, t_{j}\),
                challenge \(c\)
    Output: set of responses \(A=a_{1}, \ldots, a_{m}\)
    Respond
    1 for \(i: 1 . . k\) do
            Compute \(a_{i}=s_{i}+c x_{i}\)
        for \(j\) : \(1 . . l\) do
            Compute \(b_{j}=t_{j}+c r_{j}\)
        If no RSA group is involved, let \(a_{i}=a_{i} \bmod\) primeModulus and \(b_{i}=b_{i}\)
        mod primeModulus
    6 Output response \(A=a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{l}\)
```

```
Algorithm 16: Verification of PoEoDLR protocol. This procedure is run by the Verifier
upon receipt of response \(A\) from the Prover.
    Input: Definition of the group, number of common secrets \(k\), number of other secrets \(l\),
            bases \(g_{1}, \ldots, g_{k}, h\), set of commitments \(C=C_{1}, \ldots C_{l}\), set of randomized proofs
            \(R=R_{1}, \ldots R_{l}\), challenge \(c\), response \(A=a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{l}\)
    Output: ACCEPT or REJECT
    Verify
        if \(R_{1} C_{1}^{c}=h^{b_{1}} \prod_{i=1}^{k} g_{i}^{a_{i}} A N D \ldots A N D R_{l} C_{l}^{c}=h^{b_{l}} \prod_{i=1}^{k} g_{i}^{a_{i}}\) then
            Output ACCEPT
        else
            Output REJECT
```

The Simulator Here we present a simulator to simulate a 2 -base equality of discrete logarithm representation protocol. The purpose of the simulator is to show that an entity starting with knowledge of the challenge but not the secrets can simulate the Prover's work to the Verifier. This is turn shows that with an honest Verifier, the process of proving is zero-knowledge and gives no extra information about the secrets to the Verifier, because the Simulator does not know any more about the secrets than the Verifier does.
a, b, d - the three secrets
g, h - the group bases/ generators
$A=g^{a} h^{b}$ - commitment 1
$B=g^{a} h^{d}$ - commitment 2
o - group order
m - group modulus
c - the challenge that the Verifier will send

the simulator	S		V	the verifier
starting information	g, h, A, B, o, m, c		g, h, A, B, o, m	starting information
S picks responses ahead of time	pick random r_{1}, r_{2}, r_{3} s.t. $1 \leq r_{i} \leq o-1 \forall i$ $s_{1}=r_{1}, s_{2}=r_{2}, s_{3}=r_{3}$			
S computes randomized proofs based on responses and challenge c	$R_{A}=g^{r_{1}} h^{r_{2}} A^{-c}$ $R_{B}=g^{r_{1}} h^{r_{3}} B^{-c}$	$\xrightarrow{R_{A}, R_{B}}$		
		\xrightarrow{c}	pick $c \in D_{c}$	
S sends back pre-computed responses		$\xrightarrow{r_{1}, r_{2}, r_{3}}$	$R_{A} A^{c}==g^{s_{1}} h^{s_{2}} \bmod p$ $R_{B} A^{c}==g^{s_{1}} h^{s_{3}} \bmod p$ p	
			check that all these equal	

5.3 Proof that a committed value is a multiplication of other values (and in particular, a square)

This is the protocol used for proving that a discrete logarithm representation is a product of two discrete logarithm representations in an honest verifier zero knowledge way [?]. In particular, this protocol can be used to prove that a committed number is a square, as in [?].

Suppose the Prover knows secrets x, y, z such that $x=y * z$ and wants to prove this to an honest verifier. The Verifier knows commitments to each of these numbers: C_{x} is a commitment to x, C_{y} is to y and C_{z} is to z. We call this protocol Mult. It uses Fujisaki-Okamoto commitments. Therefore it requires the same setup and the same assumptions. Everything said for the Fujisaki-Okamoto commitments also applies here.

Assumptions:
The security of the scheme relies on Strong RSA assumption.
Honest-Verifier Zero Knowledge:
The protocol is honest verifier zero knowledge provided that the Fujisaki-Okamoto commitment is hiding. This means that the RSA group must be generated by a trusted third party or it must be proven to the Prover that each g_{i}, h generates $Q R_{n}$.

Soundness:
The extraction works under the Strong RSA assumption, which requires that the RSA group may

NOT be generated by the Prover.
Algorithm 17: Randomized Proof round of a Mult protocol for $x=y z$. This procedure is run by the Prover.
Input: Definition of the RSA group and bases: n, g_{1}, h
Output: randomized proof R, its opening open R
Randomize Proof
1 Pick a random number s from D_{R}.
2 Create a random element R_{1} using Randomize(group definition, $1,1, g_{1}, h, s$) as in Algorithm 39 where s is a fixed element. Let the random exponent returned by the Randomize procedure be open $R_{1}=t_{1}$.
3 Create a random element R_{2} using Randomize(group definition, 1, 1, $\left.C_{y}, h, s\right)$ as in Algorithm 39 where s is again a fixed element. Note the use of C_{y} as one of the bases in the procedure (it will be used with the fixed element). Let the random exponent returned by the Randomize procedure be open $R_{2}=t_{2}$.
4 Output randomized proof $R=R_{1}, R_{2}$ and opening open $R=s, t_{1}, t_{2}$.

```
Algorithm 18: Response round of a Mult protocol for \(x=y z\). This procedure is run by the
Prover.
    Input: Definition of the RSA group and bases: \(n, g_{1}, h\), openings to commitments \(C_{x}, C_{y}, C_{z}\)
                as open \(X=x, r_{x}\), open \(Y=y, r_{y}\), open \(Z=z, r_{z}\), randomized proof \(R=R_{1}, R_{2}\) and
                its opening open \(R=s, t_{1}, t_{2}\), challenge \(c\)
    Output: response \(A\)
    Respond
    1 Compute \(a=s+c z, b_{1}=t_{1}+c r_{z}, b_{2}=t_{2}+c\left(r_{x}-z r_{y}\right)\)
    2 Output response \(A=a, b_{1}, b_{2}\)
```

```
Algorithm 19: Verification of a Mult protocol for \(x=y z\). This procedure is run by the
Verifier upon receipt of response \(A\) from the Prover.
Input: Definition of the RSA group and bases: \(n, g_{1}, h\), commitments \(C_{x}, C_{y}, C_{z}\),
    randomized proof \(R=R_{1}, R_{2}\), challenge \(c\), response \(A=a, b_{1}, b_{2}\)
    Output: ACCEPT or REJECT
    Verify
    if \(R_{1} C_{z}^{c}=g_{1}^{a} h^{b_{1}} \bmod n\) AND \(R_{2} C_{x}^{c}=C_{y}^{a} h^{b_{2}} \bmod n\) then
        Output ACCEPT
    else
        Output REJECT
```

Proving knowledge of x, y SUCh that $x=y^{2}$:
Using the proof above, it is very easy to prove knowledge of x, y such that $x=y^{2}$. Just set $z=y$, which also means getting rid of C_{z}, or in other words, setting $C_{z}=C_{y}$ and hence open $C_{z}=$ open C_{y}.

5.4 Proof that a committed value lies within an interval [lo,hi]

We would like to prove that a secret value x lies within a publicly known interval $[l o, h i]$, as in $[?, ?]$. The protocol uses a special RSA group. The verifier knows a commitment C_{x} to x, and
$l o, h i$, along with the RSA group definition. The prover additionally knows the secret x.
Observe that x is in the interval [$l o, h i]$ iff $x-l o \geq 0$ and $h i-x \geq 0$. Furthermore, any non-negative integer can be represented as a sum of 4 squares [?] (e.g., $x-l o=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}$, whereas negative integers cannot. These numbers (v_{i}) can be computed efficiently [?, ?]. Let W_{i} be v_{i}^{2}.

Further observe that a commitment to $x-l o$ can easily be obtained by computing $C_{x} g_{1}^{-l o}$, and a commitment to $h i-x$ can easily be obtained by computing $g_{1}^{h i} C_{x}^{-1}$.

We have seen that using the Mult algorithm, we can prove that a committed number is actually a square. Therefore, the basic idea is to prove that each W_{i} is a square (by committing to them so that the verifier does not learn W_{i} or v_{i}), and then their sum is equal to $x-l o$. A similar proof also needs to be given for $h i-x$.

We call this protocol Range. It uses Fujisaki-Okamoto commitments. Therefore it requires the same setup and the same assumptions. Everything said for the Fujisaki-Okamoto commitments also applies here.

Assumptions:
The security of the scheme relies on Strong RSA assumption.
Honest-Verifier Zero Knowledge:
The protocol is honest verifier zero knowledge provided that the Fujisaki-Okamoto commitment is hiding. This means that the RSA group must be generated by a trusted third party or it must be proven to the Prover that each g_{i}, h generates $Q R_{n}$.

Soundness:
The extraction works under the Strong RSA assumption, which requires that the RSA group may NOT be generated by the Prover.

Below we provide the pseudocode for proving that a given value y is non-negative (≥ 0). We call this protocol Non-Negative. Then, proving the interval means running this protocol twice, one for $x-l o$ and one for $h i-x$.

In the Non-Negative protocol, the Prover is given a commitment C_{y} and its opening open ${ }_{y}=$ y, r_{y}, and the group definition. The Verifier is given C_{y} and the group definition.

1. The Prover computes $v_{1}, v_{2}, v_{3}, v_{4}$ using the four-squares algorithm [?, ?]. Let $W_{i}=v_{i}^{2}$.
2. The Prover computes commitments C_{i} to W_{i} with their openings open ${ }_{i}=W_{i}, r_{i}$, with the only rule that the last randomness is set to be $r_{4}=r_{y}-\left(r_{1}+r_{2}+r_{3}\right)$.
3. The Prover proves that each C_{i} is a commitment to a square, using the special case of the Mult protocol.
4. The Verifier, in addition to checking that each C_{i} is a commitment to a square, checks if $C_{y}=\Pi_{i=1}^{4} C_{i}$. If all checks pass, the Verifier accepts, otherwise he rejects.

5.5 Proof that a committed value lies within an interval [mean-delta,mean+delta]

The range proof given by the Range protocol can be made almost twice as efficient if the interval we want to prove has a special type: [mean-delta, mean+delta] [?]. Call this protocol SpecialRange, which should be used instead of Range whenever possible, even if not stated explicitly. Note that,
x is in that interval iff $l o^{2}-(x-m e a n)^{2} \geq 0$. As before, the interval (and hence $l o, h i$) are publicly known. Let $A=$ delta $^{2}-(x-\text { mean })^{2}=$ delta $^{2}-$ mean $^{2}+2 *$ mean $* x-x^{2}$.

For ease of notation, let $D=g_{1}^{\text {delta }^{2}-\text { mean }^{2}}, E=\left(g_{1}^{2 h i} C_{x}^{-1}\right)$. A commitment F to A can be computed as $D * E^{x} * h^{r_{A}}$. Note that the Prover can compute this, but the Verifier can only compute D and E.

The Verifier knows a commitment C_{x} to x, the interval (meaning $l o, h i$), and the RSA group definition, and can compute D and E. The Prover, in addition to these, also knows the opening open $_{x}=x, r_{x}$ to C_{x}.

1. The Prover computes $F=D * E^{x} * h^{r_{A}}=g_{1}^{A} h^{r_{A}^{\prime}}$ and proves that F and C_{x} are commitments to the same number under the bases D, E, h and $1, g, h$ using the PoEoDLR protocol.
2. The Prover runs the Non-Negative protocol for A using F as the commitment to A, where $r_{A}^{\prime}=r_{A}-x r_{x}$.

6 CL signatures

CL signatures is an example of blind signatures, where the signer may not know the values she signed. Besides, useful protocols such as proving existence of a CL signature on a secret value is also necessary. The version of CL signatures we will present here uses special RSA groups [?, ?, ?, ?].

Setup:
The key generation of CL signatures is exactly as generating a special RSA group as in Algorithm 1.

- We have the following generators: $f, g_{1}, \ldots, g_{m}, h$, and the key owner (signer) needs to provide a non-interactive proof that all these generators generate the same group (namely, $Q R_{n}$). This can be done by proving the knowledge of a_{i} such that $g_{i}=h^{a_{i}} \bmod n$ and a such that $f=h^{a}$ $\bmod n$.
- The public key (i.e. verification key) is $C L P K=n, f, g_{1}, \ldots, g_{m}, h$.
- The secret key (i.e. signing key) is $C L S K=p, q$.

Assumptions:
The security of the scheme relies on Strong RSA assumption.
Parameters:
This scheme uses the following (security) parameters: RSALength for the length of the RSA modulus, m for the number of bases (maximum number of messages that can be signed at once), l_{x} for the length of a message and D_{x} for the domain of messages (each message x_{i} is in $D_{x}=\{0,1\}^{l_{x}}$). We can also use messages in the domain $D_{x}=\left[-\left(2^{l_{x}}-1\right), 2^{l_{x}}-1\right]$. Further define $l_{e}=l_{x}+2$ and
$l_{v}=$ RSALength $+l_{x}+2 *$ stat.
Algorithm 20: Signing procedure for a CL signature. This is the signing procedure to sign a public message (not a blind signature yet). This procedure is run by the Signer.
Input: CL signature public key $C L P K=n, f, g_{1}, \ldots, g_{m}, h$, secret key $C L S K=p, q$, messages to be signed x_{1}, \ldots, x_{k}
Pre-conditions: Each message x_{i} needs to be in D_{x}.
Output: signature $\sigma=A, e, v$
Sign
1 Pick a random prime number e of length l_{e}.
2 Pick a random number v of length l_{v}.
3 Compute the value A such that $A^{e}=f h^{v} \Pi_{i=1}^{k} g_{i}^{x_{i}} \bmod n$. This can be done with the knowledge of the $C L S K=p, q$ by setting $A=\left[f h^{v} \Pi_{i=1}^{k} g_{i}^{x_{i}}\right]^{1 / e}$
4 Output the signature A, e, v.

```
Algorithm 21: Verification procedure for a CL signature. This is the verification procedure
to verify a public message (not a blind signature yet). This procedure is run by the Verifier.
    Input: CL signature public key \(C L P K=n, f, g_{1}, \ldots, g_{m}, h\), messages \(x_{1}, \ldots, x_{k}\), signature
        \(\sigma=A, e, v\)
    Pre-conditions: Each message \(x_{i}\) needs to be in \(D_{x}\). \(e\) needs to be of length \(l_{e}, v\) needs to
        be of length \(l_{v}\).
    Output: ACCEPT or REJECT
    Verify
        Check the pre-conditions (Length checks are important !!).
        if \(A^{e}=f h^{v} \Pi_{i=1}^{k} g_{i}^{x_{i}} \bmod n\) then
            Output ACCEPT
        else
            Output REJECT
```


6.1 Obtaining a Blind CL signature

Here, we present the protocol to obtain the CL signature on messages that are committed by the Recipient. Without loss of generality, let the first l out of k messages be the committed messages, and the rest be public messages.

Hence, both the Recipient and the Issuer knows the Fujisaki-Okamoto commitments C_{1}, \ldots, C_{l} to messages x_{1}, \ldots, x_{l} (note that another version can just use one commitment to all x_{1}, \ldots, x_{l} under different bases. The extension is very straightforward, and hence not shown). The Issuer knows the public (or issuer-chosen) messages x_{l+1}, \ldots, x_{k}. The Recipient knows all the messages
x_{1}, \ldots, x_{k}.
Algorithm 22: This procedure is run by the Recipient of a blind CL signature to initiate the signature issuing process.

Input: CL signature public key $C L P K=n, f, g_{1}, \ldots, g_{m}, h$, messages x_{1}, \ldots, x_{k}, commitments C_{1}, \ldots, C_{l} and their openings open C_{1}, \ldots, open C_{l} which include
r_{1}, \ldots, r_{l} (if there was only one commitment to those messages, there's just on r)
Pre-conditions: Each message x_{i} needs to be in D_{x}.
Receive
1 Choose a random v^{\prime} of length RSALength + stat.
2 Compute $C=h^{v^{\prime}} \Pi_{i=1}^{l} g_{i}^{x_{i}}$.
3 Prove using PoEoDLR protocol that the discrete logarithm representation of each secret x_{i} in C corresponds to those in C_{1}, \ldots, C_{l} and also prove that each secret x_{i} is in D_{x} (note that for $D_{x}=\left[-\left(2^{l_{x}}-1\right), 2^{l_{x}}-1\right]$, this is a SpecialRange proof).

```
Algorithm 23: This procedure is run by the Issuer of a blind CL signature to issue a blind
CL signature.
    Input: CL signature public key \(C L P K=n, f, g_{1}, \ldots, g_{m}, h\), secret key \(C L S K=p, q\),
    messages \(x_{l+1}, \ldots, x_{k}\), commitments \(C_{1}, \ldots, C_{l}\)
    Pre-conditions: Each message \(x_{i}\) needs to be in \(D_{x}\).
    Output: partial signature \(\sigma^{\prime}=A, e, v^{\prime \prime}\)
    Issue
    1 Pick a random prime number \(e\) of length \(l_{e}\).
    2 Choose a random \(v^{\prime \prime}\) of length RSALength \(+l_{x}+\) stat.
    3 Compute \(\left.A=\left[f C h^{v^{\prime \prime}} \Pi_{i=l+1}^{k} g_{i}^{x_{i}}\right)\right]^{1 / e}\). Let us explain this step in detail. The given
        commitment is re-randomized using \(v^{\prime \prime}\). Then, public messages are added to the signature
        in the \(\Pi\) clause. Finally, the signature is computed.
    4 Send \(A, e, v^{\prime \prime}\) to the Recipient and prove using PoKoDLR protocol the knowledge of \(1 / e\) in
        the equation above.
```

```
Algorithm 24: This procedure is run by the Recipient of a blind CL signature to construct
```

Algorithm 24: This procedure is run by the Recipient of a blind CL signature to construct
a CL signature upon receipt of the partial signature.
a CL signature upon receipt of the partial signature.
Input: CL signature public key $C L P K=n, f, g_{1}, \ldots, g_{m}, h$, partial signature $\sigma^{\prime}=A, e, v^{\prime \prime}$
Input: CL signature public key $C L P K=n, f, g_{1}, \ldots, g_{m}, h$, partial signature $\sigma^{\prime}=A, e, v^{\prime \prime}$
Pre-conditions: Each message x_{i} needs to be in D_{x}. e must be a prime of length $l_{e}, v^{\prime \prime}$
Pre-conditions: Each message x_{i} needs to be in D_{x}. e must be a prime of length $l_{e}, v^{\prime \prime}$
needs to be of length l_{v}.
needs to be of length l_{v}.
Output: signature $\sigma=A, e, v$
Output: signature $\sigma=A, e, v$
Construct
Construct
1 Check the range (and optionally primality) for e
1 Check the range (and optionally primality) for e
Set $v=v^{\prime}+v^{\prime \prime}$
Set $v=v^{\prime}+v^{\prime \prime}$
Output signature $\sigma=\{A, e, v\}$

```
    Output signature \(\sigma=\{A, e, v\}\)
```


6.2 Proving a CL signature

Now that the Recipient has a blind CL signature, he wants to prove that fact to a verifier, without revealing the signature. Without loss of generality, let the first l out of k messages be the committed
messages, and the rest be public messages.
Hence, both the Recipient and the Verifier knows the Fujisaki-Okamoto commitments C_{1}, \ldots, C_{l} to messages x_{1}, \ldots, x_{l} (as before, there can be just one commitment to all those messages). The Verifier knows the public (or issuer-chosen) messages x_{l+1}, \ldots, x_{k}. The Recipient knows all the messages x_{1}, \ldots, x_{k} and the signature $\sigma=A, e, v$. Of course, both parties know the CL signature public key $C L P K=n, f, g_{1}, \ldots, g_{m}, h$.

- The Recipient choses a random number r from $\{0,1\}^{\text {RSALength }+ \text { stat }}$.
- The Recipient computes $A^{\prime}=A h^{r}$ and sends A^{\prime} to the Verifier. Set $v^{\prime}=v+r * e$.
- The Verifier and the Recipient both separately computes the public value $D=\Pi_{i=l+1}^{k} g_{i}^{x_{i}}$ using public messages x_{l+1}, \ldots, x_{k}.
- The Recipient computes the commitment $C=h^{r_{C}} \prod_{i=1}^{l} g_{i}^{x_{i}}$ for secret messages (using a random r_{C} from $\{0,1\}^{\text {RSALength }+ \text { stat }}$), and proves to the Verifier using PoEoDLR protocol that the discrete logarithm representation of each secret x_{i} in C corresponds to those in C_{1}, \ldots, C_{l} and also proves that each secret x_{i} is in D_{x} (note that for $D_{x}=\left[-\left(2^{l_{x}}-1\right), 2^{l_{x}}-1\right]$, this is a SpecialRange proof), and of course the knowledge of r_{C}.
- Lastly, the Recipient proves using PoKoDLR protocol the knowledge of e, v^{\prime} such that $A^{\prime e} h^{r C}=$ $f h^{v^{\prime}} C D$ (actually, prove that $f C D=A^{\prime e} * h^{\left(r_{C}-v^{\prime}\right)}$ or equivalently $\left.f C D=A^{\prime e} *(1 / h)^{v^{\prime}-r_{C}}\right)$.

7 E-cash

In this section, we provide a description of the offline versions of compact e-cash [1 and endorsed ecash [2]. We require that all connections between a user and the bank must be over an authenticated and secure channel (i.e., an SSL connection using the bank's certificate).

7.1 Compact E-Cash

Compact E-Cash [?] enables a user to withdraw a wallet containing many coins at once. But, the coins need to be spent one by one. Some extensions addressing this issue will be discussed later. Using offline Compact E-Cash, the Bank can find the public keys of double-spenders. Double deposits can easily be detected using serial numbers. The use of CL signatures assure that the serial numbers are not known to the Bank during the withdrawal process, and hence the anonimity of an honest user is guaranteed.

Compact E-Cash works with a prime-order group, and utilizes CL signatures, so uses a special RSA group for the purposes of CL signatures. It's important that the orderLength $\leq l_{x}$, the CL signature message length.

Below, we will present a slightly modified version of Compact E-Cash. The modifications keep the scheme secure, while improving its efficiency greatly.

Assumptions:
Compact E-cash works in the Random Oracle model and makes Discrete Logarithm and Strong RSA assumptions, and also the following assumptions:
q-Decisional Diffie-Hellman Inversion Assumption:

7.1.1 Register

Every user must register with the Bank her public key. This is a very simple protocol, where the User just picks a random secret key $1<s k_{u}<$ primeOrder and sends her public key $p k_{u}=g^{s k_{u}}$ mod primeModulus to the Bank. The Bank registers the User's public key in a database, and associates it to an account.

Later on, whenever a user contacts the Bank and needs to prove her identity, the User proves knowledge of $s k_{u}$ that corresponds to $p k_{u}$ using the PoKoDLR protocol using only one base and Pedersen commitments.

7.1.2 Withdraw

To withdraw a coin, a user contacts the Bank. Before this, the User must have been registered with the Bank. First, the User proves her identity to the Bank. Then, the User and the Bank execute the following randomization procedure:
Algorithm 25: Randomization procedure between the User and the Bank. This procedure needs to be executed for each wallet, before the withdrawal.
Input: Both parties know the definition of the prime-order group. The User knows his secret key $s k_{u}$ registered with the bank.
Pre-conditions: The group must be generated by a trusted third party, or the Prover must verify that each g_{i}, h has order primeOrder in a prime-order group.
Output: The User's output is s, t, A, the Bank's output is A.
Randomize Together
1 The User picks secrets s^{\prime} and t from $Z_{\text {primeOrder }}^{*}$.
2 The User creates a Pedersen commitment to $s k_{u}, s^{\prime}, t$. Call this commitment A^{\prime}. The User sends A^{\prime} to the Bank.
The Bank picks a random number r^{\prime} from $Z_{\text {primeOrder }}^{*}$. The Bank sends r^{\prime} to the User.
The User sets $s=s^{\prime}+r^{\prime}$. The User and the Bank independently compute $A=A^{\prime} * g^{r^{\prime}}$.
The User's output is s, t, A, the Bank's output is A.
After the Randomize Together protocol, the User gets a blind CL signature from the Bank. The User starts with the commitment A, which he needs to prove that the secrets in A correspond to the the secrets he committed to in the CL signature protocol, and the first secret corresponds to his secret key. Furthermore, the User also sends the Bank a wallet size W, which must be picked from a choice of wallet sizes (e.g., $1,10,100,1000,10000$) and must be at most the User's current account balance. After checking the User's balance, the Bank signs $s k_{u}, s, t, W$ using blind CL signatures (where W is public input), and decrements the User's account balance. At the end of the Withdraw protocol, the User's wallet is composed of $s k_{u}, s, t, W, \sigma\left(s k_{u}, s, t, W\right)$ where $\sigma\left(s k_{u}, s, t, W\right)$ denotes the Bank's CL signature on $s k_{u}, s, t, W$, and a data structure to keep track of spent and remaining coins in the wallet (even though this can be a simple counter, we would like to spend coins with random indices, and so we need to keep a shuffled list of coin indices).

7.1.3 Spend

This is the protocol between a user and a merchant. To prevent man-in-the-middle attacks, before the exchange of the money, the User and the Merchant perform a secure key exchange protocol
without setup. This can be a simple Diffie-Hellman key exchange over an RSA group using fresh randomly generated keys for both parties. Let the session secret derived from the key exchange be ses $=$ hash (session key).

At the beginning, the Merchant picks a random info and sends this to the User. Both the Merchant and the User computes $R=h a s h(s e s$, info $)$. Note that only the User and the Merchant can compute this value. Furthermore, the Merchant needs to use a different info for every transaction. This is to prevent man-in-the-middle attacks.

Next, the User picks the next unused coin index (i.e. the next random index in the shuffled list of coin indices). Call this index J.

Algorithm 26: Spend-Earn procedure between the User and the Merchant for Compact E-Cash.

Input: Both parties know the definition of the prime-order group, and the Bank's CL signature public key $C L P K$. The User knows her wallet $s k_{u}, s, t, W, \sigma\left(s k_{u}, s, t, W\right)$, and the index J. Both parties know $R=$ hash (info, ses).
Pre-conditions: The User must have withdrawn a wallet from the Bank, and the wallet must contain an unused coin. Furthermore, R must be computed as directed above.
Output: The Merchant outputs coin $=B, C, D, W, S, T, J, \pi_{C L}, \pi_{S T}$, info, ses.
Spend Compact E-Cash
1 The User creates Pedersen commitments B to $s k_{u}, C$ to s, and D to t. The User prepares a non-interactive proof of knowledge of a CL signature on these values, where W is a public value. Call this proof $\pi_{C L}$.
2 The User computes $S=g^{1 /(s+J)}$ and $T=p k_{u} * g^{R /(t+J)}$.
3 The User prepares a non-interactive proof that S, T are formed correctly. This is done by proving the knowledge of $s, t, s k_{u}, r_{B}, \alpha, r_{1}, \beta, r_{2}$ such that $B=g^{s k_{u}} * h^{r_{B}}, g=\left(g^{J} * C\right)^{\alpha} h^{r_{1}}$ (the Prover knows $r_{1}=-r_{C} /(s+J) \bmod$ primeOrder), $g=\left(g^{J} * D\right)^{\beta} h^{r_{2}}$ (the Prover knows $r_{2}=-r_{D} /(t+J) \bmod$ primeOrder $), S=g^{\alpha}, T=g^{s k_{u}} *\left(g^{R}\right)^{\beta}$. Call this proof $\pi_{S T}$.
4 The User sends $B, C, D, W, S, T, J, \pi_{C L}, \pi_{S T}$ to the Merchant.
5 The Merchant checks if the coin index is correct: $0 \leq J<W$, the proof of knowledge of the CL signature $\pi_{C L}$ verifies, and S, T are correct under the proof $\pi_{S T}$. If all these are satisfied, the Merchant stores coin $=B, C, D, W, S, T, J, \pi_{C L}, \pi_{S T}$, info, ses.

7.1.4 Deposit

Depositing the coin is very easy. The Merchant contacts the Bank over a secure and one-way authenticated channel (i.e. SSL), proves his identity to the Bank, and then sends the coin to the Bank (coin $=B, C, D, W, S, T, J, \pi_{C L}, \pi_{S T}$, info, ses). The Bank performs the exact check on line 5 of the Spend protocol in Algorithm 26. This verifies that the coin is formed correctly.

The bank then performs double-spending checks. First, the bank checks if S appears in the list of deposited coins. If it does not exist in the deposited coins database, the Bank credits the Merchant's account, and adds the coin to the database. If S indeed does exist, it exists together with an R^{\prime}. If $R=R^{\prime}$, then the Merchant is trying to deposit twice, and thus the Bank rejects the deposit. Otherwise, $R \neq R^{\prime}$, and so the User double-spent the coin. The Bank runs the following Identify Double-Spender algorithm to find the public key (and hence the account) of the
double-spender. An appropriate punishment can be performed afterwards.

```
Algorithm 27: Identify Double-Spender procedure run by the Bank.
    Input: Two coins coin \(_{1}\), coin \(_{2}\) with the same serial number \(S\) but different \(R_{1}, T_{1}\) and \(R_{2}, T_{2}\).
    Output: the public key of the double-spender \(p k_{u}\), and proof of double-spending
                    \(\pi_{D S}=\) coin \(_{1}\), coin \(_{2}\).
    Identify Double-Spender
    1 Verify the coins, if not already verified.
    The Bank computes \(p k_{u}=\left(T_{2}^{R_{1}} / T_{1}^{R_{2}}\right)^{\left(R_{1}-R_{2}\right)^{-1}} \bmod\) primeModulus.
    The Bank outputs the public key of the double-spender \(p k_{u}\), and proof of double-spending
        \(\pi_{D S}=\) coin \(_{1}\), coin \(_{2}\).
```

Given the proof of double-spending, anyone can run the Identify Double-Spender protocol and be assured that the user with public key $p k_{u}$ has really double-spent. This is because the coins require the knowledge of the secret key of the user.

7.2 Endorsed E-Cash

The Withdraw, Deposit, and Identify Double-Spenders protocols of Endorsed E-Cash [?] are the same as the Compact E-Cash. It makes different assumptions, though.

Assumptions:
Endorsed E-cash works in the Random Oracle model and makes Discrete Logarithm and Strong RSA assumptions, and also the following assumptions:

Diffie-Hellman Assumption:
q-Diffie-Hellman Inversion Assumption:

7.2.1 Spend

The only different part of the Endorsed E-Cash is how to spend a coin. The spend algorithm below is run by the user, who, on input a valid set of values for (info, ses), outputs the unendorsed coin
and its endorsment.
Algorithm 28: The algorithm whereby a user generates an unendorsed coin together with a valid endorsement
Input: The User, as well as the Merchant who will ultimately receive the coin, know the definition of the prime-order group, and the Bank's CL signature public key CLPK. The User knows her wallet $s k_{u}, s, t, W, \sigma\left(s k_{u}, s, t, W\right)$, and the index J. Both parties know $R=$ hash (info, ses).
Pre-conditions: The User must have withdrawn a wallet from the Bank, and the wallet must contain an unused coin. Furthermore, R must be computed as directed above.
Output: The unendorsed coin is uecoin $=\left(B, C, D, W, S, T, J, \pi_{C L}, \pi_{S T}\right)$. The corresponding endorsement is endorsement $=\left(x_{1}, x_{2}, r_{y}\right)$

Spend Endorsed E-Cash

$1 \quad$ The User creates Pedersen commitments B to $s k_{u}, C$ to s, and D to t. The User prepares a non-interactive proof of knowledge of a CL signature on these values, where W is a public value. Call this proof $\pi_{C L}$.
2 The User picks random x_{1}, x_{2}, r_{y} from $Z_{\text {primeOrder }}^{*}$. The User sets $y=g_{1}^{x_{1}} * g_{2}^{x_{2}} * f^{r_{y}}$; i.e., y is a Pedersen commitment to $\left(x_{1}, x_{2}, x_{3}\right)$. (The bases used for y are also generators of the prime-order group, but they are different generators than used for B, C, D, S, T.)
3 The User computes $S=g^{1 /(s+J)} * g^{x_{1}}$ and $T=p k_{u} * g^{R /(t+J)} * g^{x_{2}}$.
4 The User prepares a non-interactive proof that S, T, E are formed correctly. This is done by proving the knowledge of $s, t, s k_{u}, r_{B}, \alpha, r_{1}, \beta, r_{2}, x_{1}, x_{2}, r_{y}$ such that $y=g_{1}^{x_{1}} * g_{2}^{x_{2}} * f^{r_{y}}$, $B=g^{s k_{u}} * h^{r_{B}}, g=\left(g^{J} * C\right)^{\alpha} h^{r_{1}}$ (the Prover knows $r_{1}=-r_{C} /(s+J) \bmod$ primeOrder), $g=\left(g^{J} * D\right)^{\beta} h^{r_{2}}$ (the Prover knows $r_{2}=-r_{D} /(t+J) \bmod$ primeOrder), $S=g^{\alpha} * g^{x_{1}}$, $T=g^{s k_{u}} *\left(g^{R}\right)^{\beta} * g^{x_{2}}$. Call this proof $\pi_{S T}$.
5 The unendorsed coin is uecoin $=\left(B, C, D, W, S, T, J, \pi_{C L}, \pi_{S T}, y\right)$.
6 The endorsement is $\left(x_{1}, x_{2}, r_{y}\right)$.
Algorithm 29: The algorithm to verify an unendorsed coin.
Input: The input is a purported unendorsed coin uecoin $=\left(B, C, D, W, S, T, J, \pi_{C L}, \pi_{S T}\right)$.
Pre-conditions: The Merchant verifying the coin knows the definition of the prime-order group, the Bank's CL signature public key $C L P K$, and the values info, ses and $R=$ hash (info, ses).
Output: Accept or reject
1 To verify that uecoin is a valid unendorsed coin for a given $R=h a s h(i n f o, s e s)$, check that
(1) the coin index is correct: $0 \leq J<W$; (2) the proof of knowledge of the CL signature $\pi_{C L}$ verifies; (3) S, T, y are correct under the proof $\pi_{S T}$. If all three checks pass, output Accept. Else, output Reject.

Algorithm 30: The algorithm to verify the endorsement for a given unendorsed coin.
Input: The input is an unendorsed coin uecoin $=\left(B, C, D, W, S, T, J, \pi_{C L}, \pi_{S T}\right)$ and an endorsement endorsement $=\left(x_{1}, x_{2}, r_{y}\right)$.
Pre-conditions: The Merchant verifying the coin knows the definition of the prime-order group; the unendorsed coin uecoin has already been verified using Algorithm 29 .
Output: Accept or reject
1 Check that y (from the unendorsed coin) is 玉多 follows: $y=g_{1}^{x_{1}} g_{2}^{x_{2}} f^{r_{y}}$. If so, accept, else, reject.

The Deposit protocol consists of doing Algorithms 29 and 30 together. Notice that, the resulting coin is the same as in the Compact E-Cash, except that the proofs $\pi_{C L}, \pi_{S T}$ are slightly different, and that we should use $S^{\prime}=S / g^{x_{1}}, T^{\prime}=T / g^{x_{2}}$ for double-spending detection and identification purposes.

The Withdraw protocol stays the same since no extra information needs to be stored in the wallet for the Endorsed E-Cash. The usefulness of Endorsed E-Cash will be clear once we see Verifiable Encryption and Fair Exchange protocols.

7.3 E-Cash FAQ

Q: Why do we have Algorithm 25 before the withdrawal to randomize s ?
A: If multiple users use the same s, then their coins will have identical S values. This means, to identify a double-spender, the Bank needs to check all 2 -combinations of those coins. Therefore, malicious users might mount a denial-of-service attack on the Bank this way.

Q: Why does the user pick the wallet size W from only a limited list of wallet sizes?
A: The problem occurs since for efficiency we send both W and the coin index J in clear when spending. Consider a wallet size of 1 million coins. Only very few people will have such a wallet, and once anyone sees a coin index that's very large, the spender can be identified as one of the rich guys. A fully flexible and secure version would commit to W and J and change the proofs accordingly. A range proof that proves a value is in a committed range (as opposed to a public range) is also required.

Q: Why do we need Endorsed E-Cash?
A: The values x_{1}, x_{2}, r_{y} can be easily used in verifiable encryption to prove that y, and hence the coin is formed correctly. Then, it is very easy and fast to fairly exchange x_{1}, x_{2}, r_{y} with the material being bought.

Q: What is the deal with the randomness R in the coin?
A: We use $R=$ hash (ses, info) for mainly two reasons. Use of ses ensures that no one other than the User and Merchant knows that value, and thus prevents man-in-the-middle attacks. The use of info ensures that the Merchant uses different R values for each transaction, which means all the coins he receives will be honored, and so the Bank can catch double-spenders.

Note that other types of contracts can also be used. What is required from a contract is that it is different for each transaction. This benefits the Merchant and the Bank, but not the User who wants to cheat. Therefore, the Merchant needs to input enough randomness (in the form of info above) into the contract. The other use of the contract prevents man-in-the-middle attacks. Consider the case above where ses is not used and only info is used. Then, an attacker can just forward the coin he gets from the User to the Merchant. One possible problem of this is that the man-in-the-middle gets the service in effect "for free". This may not present a problem in all the scenarios, but we choose to be on the safe side. With ses in use, the connections of the attacker to the User and the Merchant will be distinguished.

Q: We can identify the public keys of double-spenders, but can we do more?
A: Another version of e-cash is available where the Bank gets enough information to trace all the coins spent from a wallet of a double-spender. The idea is that during withdrawal, the Bank learns a verifiable encryption of the wallet secret under some other secret. Later on, when doublespending occurs, the Bank learns the secret encryption key similar to the way he learns the User's public key. Using the wallet decrypted secret, the Bank can create a blacklist for wallets/coins that the merchants should not accept. This way, further double-spending will be prevented online.

Unfortunately, this version reveals all purchases of the double-spender. The double-spending may be accidental (faulty software, stolen card, etc.), and so the privacy of an innocent user may be lost this way. There are "glitch protection" methods [?] to let some number of accidents happen, but this means all the adversarial users will double-spend some allowed number of coins every time. Therefore, blacklisting only "future" coins is an important open problem.

8 Verifiable Encryption

We will be using Caminisch-Shoup verifiable encryption [?]. This will later be the verifiable escrow method used in fair exchange.

Assumptions:
The security of the scheme relies on Strong RSA assumption, Paillier's Decision Composite Residuosity assumption [?], and existence of a collision-resistant family of hash functions.

Parameters:
The parameter m denotes the number of messages that can be verifiably encrypted at once. For Endorsed E-Cash, we need $m=3$.

Setup:
The key generation of CS verifiable encryption uses two runs of special RSA group generation as in Algorithm 1. The important differences are clearly identified below:

- Let N be the modulus returned by the first special RSA group generation. The generators will be picked in a completely different way. In fact, the group that will be in use will be a subgroup of $Z_{N^{2}}^{*}$ instead of Z_{N}^{*}.
- Pick a random number f^{\prime} from $Z_{N^{2}}^{*}$. Compute $f=f^{\prime 2 n} \bmod N^{2}$.
- Pick random numbers $x_{1}, \ldots, x_{m}, y, z$ from the interval $\left(0, N^{2} / 4\right)$. Compute $a_{i}=f^{x_{i}} \bmod N^{2}$ for $1 \leq i \leq m, d=f^{y} \bmod N^{2}, e=f^{z} \bmod N^{2}$.
- Compute $b=(1+N) \bmod N^{2}$. Notice that b is an element of order N in $Z_{N^{2}}^{*}$.
- Let the second special RSA group generation return a group with modulus n and generators g_{1}, \ldots, g_{m}, h.
- Also, pick a key $h k$ as the key for a keyed hash function. For simplicity in presentation below, we will omit the key in hashes, but it will be used for every hash calculation.
- The public key (i.e. encryption and verification key) is composed of all public parts of the groups, and the hash function key: $\operatorname{VEPK}=N, a_{1}, \ldots, a_{m}, b, d, e, f, n, g_{1}, \ldots, g_{m}, h, h k$.
- The secret key (i.e. decryption key) is the secret parts of the groups $V E S K=P, Q, x_{1}, \ldots, x_{m}, y, z, p, q$ such that $N=P Q$ and $n=p q$.

The absolute value algorithm below will be used in the verifiable encryption scheme a lot.

```
Algorithm 31: Absolute Value procedure for Camenisch-Shoup verifiable encryption scheme.
    Input: \(x\) in range ( \(0, N^{2}\) )
    Pre-conditions: \(x\) needs to be in range ( \(0, N^{2}\) )
    Output: \(a b s(x)\)
    abs
        if \(x>N^{2} / 2\) then
            Output \(\left(N^{2}-x\right) \bmod N^{2}\)
        else
            Output \(x \bmod N^{2}\)
```


8.1 Encrypt

The encryption procedure creates a ciphertext. To turn it into verifiable encryption, we will need some specialized non-interactive zero knowledge proofs. Just as we need for fair exchange, this is a labeled encryption scheme [?]. The label is also known as tag, or contract.

```
Algorithm 32: Encryption procedure for Camenisch-Shoup verifiable encryption scheme.
This procedure is run by the Encryptor. This is a sub-procedure; it's not verifiable yet.
    Input: Verifiable encryption public key \(V E P K=N, a_{1}, \ldots, a_{m}, b, d, e, f, n, g_{1}, \ldots, g_{m}, h, h k\),
            messages to be verifiably encrypted \(x_{1}, \ldots, x_{m}\), a label \(L\)
    Output: Ciphertext \(u_{1}, \ldots, u_{m}, v, w\).
    Encrypt
        Pick a random number \(r\) from the interval \((0, N / 4)\).
        for \(i\) : \(1 . . m\) do
            Compute \(u_{i}=b^{x_{i}} * a_{i}^{r} \bmod N^{2}\).
        Compute \(v=f^{r} \bmod N^{2}\)
        Compute \(w=a b s\left(\left[d * e^{h a s h}\left(u_{1}\|\ldots . .\| u_{m}\|v\| L\right)\right]^{r} \bmod N^{2}\right)\)
        Output \(u_{1}, \ldots, u_{m}, v, w\).
```


8.2 Verifiably Encrypt

We will now provide a conversion from regular encryption to verifiable encryption for CamenischShoup verifiable encryption scheme. This will involve non-interactive zero knowledge proofs.

This verification can be used to prove correct encryption of discrete logarithms. When we consider Endorsed E-Cash, the Prover will verifiably encrypt x_{1}, x_{2}, r_{y} such that $y=g_{1}^{x_{1}} * g_{2}^{x_{2}} * f^{r_{y}}$ in the group chosen by the Endorsed E-Cash setup. Take a note that it is a different group than
the ones used in verifiable encryption here. X below will be y of the Endorsed E-Cash.
Algorithm 33: Verifiable Encryption procedure for Camenisch-Shoup verifiable encryption scheme. This procedure is run by the Encryptor/Prover.
Input: Verifiable encryption public key $V E P K=N, a_{1}, \ldots, a_{m}, b, d, e, f, n, g_{1}, \ldots, g_{m}, h, h k$, commitment X to all messages x_{1}, \ldots, x_{m} (or a commitment X_{i} to each one of them), a label L
Output: Ciphertext and its proof $u_{1}, \ldots, u_{m}, v, w, X^{\prime}, \pi_{V E}$.
Verifiably Encrypt
1 Get the ciphertext $u_{1}, \ldots, u_{m}, v, w$ from the Encrypt function in Algorithm 32, along with the randomness r used in the encryption.
2 Pick a random number s from the interval $(0, N / 4)$.
3 Compute a Fujisaki-Okamoto commitment X^{\prime} to x_{1}, \ldots, x_{m} using the randomness s in the group defined by $n, g_{1}, \ldots, g_{m}, h$ (the second RSA group generated for verifiable encryption purposes).
4 Prove knowledge of $r, s, x_{1}, \ldots, x_{m}$ such that $v^{2}=f^{2 r} \bmod N^{2}$, $w^{2}=\left[d * e^{\text {hash }\left(u_{1}\|\ldots\| u_{m}\|v\| L\right)}\right]^{2 r} \bmod N^{2}$, and that each $u_{i}^{2}=b^{2 x_{i}} * a_{i}^{2 r} \bmod N^{2}$, and that each x_{i} corresponds to the one in X^{\prime} and X, and that the range of each x_{i} is $(-N / 2, N / 2)$ (SpecialRange). Call this proof $\pi_{V E}$.
5 Output $u_{1}, \ldots, u_{m}, v, w, X^{\prime}, \pi_{V E}$.
Any party with the verifiable encryption public key can verify the encryption.

```
Algorithm 34: Verification procedure for Camenisch-Shoup verifiable encryption scheme.
This procedure is run by the Verifier.
    Input: Verifiable encryption public key \(V E P K=N, a_{1}, \ldots, a_{m}, b, d, e, f, n, g_{1}, \ldots, g_{m}, h, h k\),
            commitment \(X\) (or commitments \(X_{1}, \ldots, X_{m}\) ), a label \(L\), ciphertext and its proof
            \(u_{1}, \ldots, u_{m}, v, w, X^{\prime}, \pi_{V E}\)
    Output: ACCEPTor REJECT.
    Verify
    1 Verify \(\pi_{V E}\). If verification fails, output REJECT.
    if \(a b s(w)=w \bmod N^{2}\) then
            Output ACCEPT.
    else
            Output REJECT.
```


8.3 Decrypt

Only a party equipped with the correct secret key can decrypt. In the fair exchange, this party will be the Arbiter.

```
Algorithm 35: Decryption procedure for Camenisch-Shoup verifiable encryption scheme.
This procedure is run by the Decryptor/Arbiter.
    Input: Verifiable encryption public key \(V E P K=N, a_{1}, \ldots, a_{m}, b, d, e, f, n, g_{1}, \ldots, g_{m}, h, h k\),
            associated secret key \(\operatorname{VESK}=P, Q, x_{1}, \ldots, x_{m}, y, z, p, q\), a label \(L\), ciphertext
            \(u_{1}, \ldots, u_{m}, v, w\)
    Output: Plaintext \(m_{1}, \ldots, m_{m}\) or ERROR.
    Decrypt
        if \(\left.a b s(w) \neq w \bmod N^{2} O R v^{y+z * h a s h\left(u_{1} \| \ldots\right.}\left\|u_{m}\right\| v \| L\right) \neq w^{2} \bmod N^{2}\) then
        Output ERROR.
    Compute \(t=2^{-1} \bmod N\).
    for \(i\) : \(1 . . m\) do
        Compute \(m_{i}^{\prime}=\left(u_{i} / v^{x_{i}}\right)^{2 t} \bmod N^{2}\).
        Set \(m_{i}=\left(m_{i}^{\prime}-1\right) / N \bmod N^{2}\).
        if \(m_{i}\) is not in range \((0, N)\) then
            Output ERROR.
    Output \(m_{1}, \ldots, m_{m}\)
```


8.4 Prove Decryption

This part is complicated, and for now, will not be employed since the Arbiter in the fair exchange will be a trusted entity.

9 Fair Exchange

Use regular encryption, signatures, public-key encryption, e-cash and verifiable encryption to perform fair exchange.

9.1 Buy

Let Alice be the buyer and Bob be the seller. As a precondition, the protocol assumes that Alice already knows bhash, which is the root of the Merkle hash tree computed on the block block that Alice wants to buy.

9.1.1 Merkle tree

First, we give the procedure $\operatorname{MHash}(h$, block, ℓ) to compute bhash, the Merkle hash function that outputs the root of the depth- ℓ Merkle tree of a given block with hash function h. Next, we give (1) the procedure to compute the proof $M \operatorname{Prove}((h, b l o c k, \ell), i)$ that a particular value is the $i^{\text {th }}$ leaf of the Merkle hash tree of which bhash is the root; the procedure MVerify $((h, \ell),($ bhash,i, chunk $))$ to verify the proof MProof that the value chunk is the $i^{\text {th }}$ leaf of the Merkle hash tree of which bhash is the root.

First, let us explain the idea of the MHash procedure. Consider a rooted binary tree with 2^{ℓ} leaves (i.e. it is a binary tree of height ℓ). Associated with every node the tree, there is the address a of the node. Specifically, the label a associated with the root node is the empty string ε. The label of a left (resp. right) child is derived by concatenating 0 (resp., 1) to the label of the parent node. Thus, the label a associated with the $i^{\text {th }}$ leaf is the integer i written in binary. Stored at a node labeled with a, is a value v_{a}. In a Merkle tree, stored at each leaf $0 \leq a \leq 2^{\ell}-1$ is the value $v_{a}=h\left(\right.$ chunk $\left._{a}\right)$, where chunk_{a} is the $a^{\text {th }}$ chunk of the block; and stored at every internal node $0 \leq a \leq 2^{i}-1$ at depth $i \geq 1$ is the value $v_{a}=h\left(v_{a \mid 0} \| v_{a \| 1}\right)$. Finally, the value corresponding to the root node is $v_{\varepsilon}=h\left(v_{0} \| v_{1}\right)$. The algorithm MHash outputs this value.
Algorithm 36: MHash: Generating a Merkle hash tree.
Input: A collision-resistant hash function $h:\{0,1\}^{*} \mapsto\{0,1\}^{\text {hashLength }}$, the data block block, the desired tree height ℓ.
Pre-conditions: None.
Output: The value bhash.
Post-conditions: None.
1 If $\ell=0$, output $h(b l o c k)$.
2 Otherwise, divide the block block into block $_{0}$ and block $_{1}, 2$ strings of approximately equal byte lengths (this has to be done in a deterministic fashion so that running twice on same input gives same results) and output $h\left(M H a s h\left(h\right.\right.$, block $\left._{0}, \ell-1\right) \| M H a s h\left(h\right.$, block $\left.\left._{1}, \ell-1\right)\right)$

To prove that chunk is the $i^{\text {th }}$ chunk of the block represented by bhash $=$ MHash(block), reveal the values $v_{a_{j}}$ where for $1 \leq j \leq \ell$, the label a_{j} is obtained by taking the first $j-1$ bits of the binary representation of i, and concatenating to them the negation of the $j^{\text {th }}$ bit. (For example, if $i=0101$, then $a_{1}=1, a_{2}=00, a_{3}=011$ and $a_{4}=0100$.) In the Merkle tree, the node a_{j} will be the sibling of the $j^{\text {th }}$ node on the path from the root to the chunk in question. The procedure for doing this is as follows:

```
Algorithm 37: Generating the proof MProof \(=\left(v_{1}, \ldots, v_{j}\right.\), chunk \()\) that chunk is the \(i^{\text {th }}\) leaf
of the Merkle tree.
    Input: A collision-resistant hash function \(h:\{0,1\}^{*} \mapsto\{0,1\}^{\text {hashLength }}\), the data block
            block, the desired tree height \(\ell\); the index \(i\).
    Pre-conditions: \(0 \leq i<2^{\ell}\)
    Output: The value MProof.
    Post-conditions: None.
    1 If \(\ell=0\), return block.
2 Otherwise, divide the block block into block \(_{0}\) and block \(_{1}, 2\) strings of approximately equal
        byte lengths (this has to be done in a deterministic fashion, the same as what is done by
        the algorithm MHash).
    3 If \(i \geq 2^{\ell-1}\), return \(\left(M \operatorname{Hash}\left(h\right.\right.\), block \(\left._{0}, \ell-1\right)\), \(\operatorname{MProve}\left(\left(h\right.\right.\), block \(\left.\left.\left._{1}, \ell-1\right), i-2^{\ell-1}\right)\right)\).
        Else return (MHash \(\left(h\right.\), block \(\left._{1}, \ell-1\right)\), MProve \(\left(\left(h\right.\right.\), block \(\left.\left.\left._{0}, \ell-1\right), i\right)\right)\).
```

To verify that $\left(v_{1}, \ldots, v_{\ell}\right)$ is a valid proof that chunk is the $i^{\text {th }}$ chunk of block associated with bhash, we recompute the labels a_{j} (as above). We know that $v_{j}=v_{a_{j}}$ is the value that should be associated with node labelled a_{j}. Let $i=i_{1} i_{2} \ldots i_{\ell}$, i.e. i_{j} is the $j^{\text {th }}$ bit of the ℓ-bit binary representation of i. Let $b_{j}=i_{1} \ldots i_{j}$ be the j-bit prefix of i. First, we know that $v_{i}=h(c h u n k)$.

For each $j, \ell-1 \geq j \geq 0$, compute $v_{b_{j}}=h\left(v_{b_{j} \| 0} \| v_{b_{j} \| 1}\right)$. We can do it because one of $\left(v_{b_{j} \| 0}, v_{b_{j} \| 1}\right)$ is $v_{a_{j+1}}$, and the other one is computed in the previous step. Finally, verify that $v_{\varepsilon}=b h a s h$. The pseudocode for this procedure is as follows:
Algorithm 38: Verifying the proof MProof $=\left(v_{1}, \ldots, v_{j}\right.$, chunk $)$ that chunk is the $i^{\text {th }}$ leaf of the Merkle tree.
Input: A collision-resistant hash function $h:\{0,1\}^{*} \mapsto\{0,1\}^{\text {hashLength }}$, the value bhash, the desired tree height ℓ; the proof MProof, the index i.
Pre-conditions: $0 \leq i<2^{\ell}$
Output: Accept or reject.
Post-conditions: None.

1 TO BE WRITTEN

If two conflicting proofs can be constructed (i.e. for chunk $\neq c h u n k{ }^{\prime}$, there are proofs that each of them is the $i^{\text {th }}$ chunk of block associated with bhash), then a collision in h is found, contradicting the assumption that h is collision-resistant.

9.1.2 The Buy protocol

We present our protocol that lets the Buyer buy a file block from the Seller. Before the start of the protocol, the Buyer has (1) bhash $=$ MHash (block); and (2) has withdrawn a wallet from the Bank and is ready to create unendorsed coins together with their endorsements. from a trusted authority (i.e. tracker). Alice and Bob will agree on a timeout by when Bob must provide Alice with the block. The protocol works as follows:

9.2 Barter

9.2.1 Alice

9.2.2 Bob

9.2.3 Arbiter

A Common Functionalities

Randomization:

```
Algorithm 39: Procedure to generate a random group element with associated random
exponents. Call this procedure Randomize.
    Input: Definition of the group, number of random elements \(k\), number of fixed elements \(l\),
            bases \(g_{1}, \ldots, g_{k+l-1}, h\), fixed elements \(x_{1}, \ldots, x_{l}\) if any.
    Pre-conditions: \(l<k, k \geq 1, l \geq 0\)
    Output: random element \(R\), random exponenets open \(R\)
    Randomize
    1 Pick \(k-1\) random numbers \(s_{i}\) from the domain of randomness \(D_{R}\).
    2 Pick another random number \(t\) from the domain of randomness \(D_{R}\).
    3 Compute \(R=\left[\prod_{i=1}^{l} g_{i}^{x_{i}}\right]\left[\prod_{i=1}^{k-1} g_{l+i}^{s_{i}}\right] h^{t}\) using group operations.
    4 Output the random group element \(R\) and random exponents open \(R=s_{1}, \ldots, s_{k-1}, t\).
```


References

[1] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash. In Proc. Eurocrypt '05, volume 3494 of Lecture Notes in Computer Science, pages 302-321. Springer-Verlag, 2005.
[2] Jan Camenisch, Anna Lysyanskaya, and Mira Meyerovich. Endorsed e-cash. In IEEE Symposium on Security and Privacy, pages 101-115, 2007.
[3] Ivan Damgård and Eiichiro Fujisaki. A statistically-hiding integer commitment scheme based on groups with hidden order. In Proc. Asiacrypt '02, volume 2501 of Lecture Notes in Computer Science, pages 125-142. Springer-Verlag, 2002.
[4] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to prove modular polynomial relations. In Proc. Crypto '97, volume 1294 of Lecture Notes in Computer Science, pages 16-30. Springer-Verlag, 1997.
[5] Alfred J. Menezes, Paul van Oorschot, and Scott Vanstone. Handbook of Applied Cryptography. CRC Press, 1997.
[6] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Proc. Crypto '91, volume 576 of Lecture Notes in Computer Science. Springer-Verlag, 1992.
[7] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161-174, 1991.

[^0]: ${ }^{a}$ The best algorithms to solve Discrete Logarithm problem in prime-order groups have running time that depends on the size of either the order of the subgroup or the modulus of the group [?, 5]

