
PL/0 User’s Manual
Author: Adam Dunson

Last updated: 14 April 2012

PL/0 User’s Manual

Table of Contents
1.0 Programming in PL/0..1

1.1 Datatypes..1
1.1.1 Constants..2
1.1.2 Integers...2
1.1.3 Procedures...2

1.2 Expressions..3
1.3 Statements...3

1.3.1 Input/Output...3
1.3.2 Blocks..3
1.3.3 Assignment...3
1.3.4 Conditionals...3
1.3.5 Loops...4
1.3.6 Calling Procedures..5

1.4 Advanced Examples..6
1.4.1 Recursive Procedures..6
1.4.2 Nested Procedures...6

2.0 Compiling and Executing Programs Written in PL/0..8
2.1 Building pl0-compiler...8
2.2 Running PL/0 Programs with pl0-compiler...8

3.0 Reference..9
3.1 PL/0 EBNF Grammar...9
3.2 Complete List of Reserved Words and Tokens...9
3.3 Error Codes..11
3.4 PL/0 Instruction Set Architecture...12

Table of Contents iii

PL/0 User’s Manual

Index of Figures
Figure 1: Program with comments...1
Figure 2: Procedure that counts 1 to 10...2
Figure 3: while loop example..4
Figure 4: Complete source code for basic four-function calculator program in PL/0...5
Figure 5: Recursive procedure example..6
Figure 6: Modified calculator program using nested procedures..7
Figure 7: PL/0 EBNF Grammar..9

Index of Tables
Table 1: Complete List of Reserved Words and Tokens...10
Table 2: Error codes...12
Table 3: PL/0 Instruction Set Architecture...13

iv Tables and Figures

PL/0 User’s Manual

1.0 Programming in PL/0
PL/0 is a fairly simple language that supports constants, integers, and procedures. PL/0 programs have the
following structure:

1. constant definitions
2. variable declarations
3. procedure declarations

a. subroutine definition, same as program structure
4. statement(s)

For the most part, whitespace is ignored (except in certain cases in order to differentiate between reserved
keywords and identifiers). Additionally, anything between comment delimiters, e.g., /* and */, will be
ignored. Finally, PL/0 programs must end with a period.
Figure 1 shows an example of a simple PL/0 program with comments:

1.1 Datatypes
Currently, this implementation of PL/0 supports the following datatypes:

• constants (const)

• integers (int)

• procedures (procedure)
An identifier is used to refer to specific instances of each datatype. Identifiers must be no more than 11
characters in length, must begin with a character, may contain uppercase and lowercase letters as well as
numbers, and must not be any of the reserved keywords listed in Appendix A.
In addition to identifiers, number literals are used through the program for arithmetic and other
operations. Number literals must be integers and must be no more than 5 digits long. We do not currently
support negative number literals.

1.0 Programming in PL/0 1

Figure 1: Program with comments

int foo;
begin
 foo := /*here is a comment*/ 1;

 /*comments
 can
 span
 multiple
 lines*/

 out foo;
end.

PL/0 User’s Manual

1.1.1 Constants
Constants are integer types. They may only be defined once per program. Constants are immutable; that is,
you may not assign values to them after they have been defined. You may define more than one constant
at a time by separating the identifiers by commas. Constant definitions must end with a semicolon.
Constants are defined using the following syntax:

const FOO = 1, BAR = 2;

After you define a constant, you may use them throughout your program as you would an ordinary
number. The compiler converts constants to their respective values upon compilation, so the following
example,

foo := FOO + BAR;

is equivalent to this:

foo := 1 + 2;

1.1.2 Integers
Integers are mutable; meaning, you can define and reassign their values later on. Integers are declared at
the top of the file after any constants (if there are any), and you may declare more than one at a time.
Integers are defined with values as constants are. Instead, you must assign integers values using the
assignment operator := (as seen above). Here is an example of how to declare integers in PL/0:

int foo, bar, baz;

You may assign variables values of constants or other variables, number literals, or expressions (see
section 1.2.2).

1.1.3 Procedures
Procedures can be thought of as subroutines or sub-programs. They contain nearly everything that a
program could contain. Please be aware that this version of PL/0 currently supports up to 10 levels of
nested procedures (1 Main + 10 Procedures). Figure 2 shows a procedure that prints the numbers 1
through 10:

2 1.0 Programming in PL/0

Figure 2: Procedure that counts 1 to 10

procedure count10;
 int a;
 begin
 a := 1;
 while a <= 10 do
 begin
 out a;
 a := a + 1;
 end;
 end;

PL/0 User’s Manual

1.2 Expressions
Expressions get their name from mathematical expressions which represent or return a value. Expressions
can be composed of constant or variable identifiers, number literals, or the arithmetic symbols +, -, *, /,
(, and). PL/0 follows the standard order of operations when calculating the value of an expression.

1.3 Statements
Statements are how the program gets things done. Except for the last statement in a block, statements
must end with a semicolon.

1.3.1 Input/Output
Input is handled by using the in keyword followed by a variable identifier (you cannot use a constant or
procedure identifier), e.g.,

in foo;

This will assign whatever value the user inputs to foo.
Output is handled by using the out keyword followed by a constant or variable identifier, a number literal,
or an expression. Here are a few examples:

out foo;
out 42;
out (1 + 2) * (3 + 4);

1.3.2 Blocks
Blocks are collections of statements, each of which are separated by a semicolon. Blocks are denoted by the
begin and end keywords. See section 1.1.3 (Procedures) for how a block can be nested inside of other
statements.

1.3.3 Assignment
As mentioned before, variables can be assigned values by using constant or variable identifiers, number
literals, or expressions. The assignment operator, :=, only works for variables inside of a statement.
Currently, you are not able to assign variables initial values at the time of declaration.

1.3.4 Conditionals
To conditionally execute code, use the conditional keywords if, then, and else. These allow you to
check a condition and, if true, execute some code, or else execute some other code. A conditional
expression can either be two expressions separated by a relational operator (e.g., expression [rel-op]
expression) or else using the unary odd keyword:

odd x + y

The odd keyword will return true if the expression evaluates to an odd number, or else it will return false
if the expression evaluates to an even number.

1.0 Programming in PL/0 3

PL/0 User’s Manual

Valid relational operations are as follows:

• = (equal)

• <> (not equal)

• < (less than)

• <= (less than or equal)

• > (greater than)

• >= (greater than or equal to)
Here is an example of an if-then without an else:

if 1 = 1 then out 1;

And with an else:

if 1 <> 1 then out 1 else out 0;

Conditionals can be nested in one another. One such use is checking multiple conditions before executing
code. For example, here's a snippet from a basic four-function calculator program:

if op = ADD then call add
else if op = SUB then call sub
else if op = MULT then call mult
else if op = DIV then call div
else done := 1;

1.3.5 Loops
Loops are another useful construct delimited
by the while and do keywords. Often you
will need to iterate over a range of numbers,
or perhaps to perform the same set of
instructions until some condition is false.
From the same four-function calculator
program used above, Figure 3 shows an
example of a while loop.

4 1.0 Programming in PL/0

Figure 3: while loop example

while done = 0 do
 begin
 in op;
 in y;
 if op = ADD then call add
 else if op = SUB then call sub
 else if op = MULT then call mult
 else if op = DIV then call div
 else done := 1;
 end;

PL/0 User’s Manual

1.3.6 Calling Procedures
To invoke a procedure, use the call
keyword. There is no way to explicitly
pass arguments to a procedure.
However, procedures have access to any
variables and procedures that are
declared within their scope.
For instance, Figure 4 (right) shows the
complete source code for the calculator
program. Notice that the procedures are
able to use the x, y, and done variables
because they were declared within their
scope.

Using the Basic Calculator Program
First, the program will ask the user to
input the first value, x.
Next, the program will ask the user to
input an operation, op. This can be any
one of 1, 2, 3, or 4 (add, subtract,
multiply, or divide, respectively).
Inputting anything else will cause the
program to exit.
Then, the program will ask the user to
input the second value, y.
Finally, the program will call the
procedure corresponding to op. This
will assign a new value to x and will also
output this value.
The program returns to asking the user
to input an operation. It will continue
this process until the user inputs any
value other than 1, 2, 3, or 4 for the op.

1.0 Programming in PL/0 5

Figure 4: Complete source code for basic four-function calculator
program in PL/0.

const ADD = 1, SUB = 2, MULT = 3, DIV = 4;
int op, x, y, done;

procedure add;
 begin
 x := x + y;
 out x;
 end;

procedure sub;
 begin
 x := x – y;
 out x;
 end;

procedure mult;
 begin
 x := x * y;
 out x;
 end;

procedure div;
 begin
 /* check for divide-by-zero errors */
 if y <> 0 then
 begin
 x := x / y;
 out x;
 end
 else done := 1;
 end;

begin
 done := 0;
 in x;

 while done = 0 do
 begin
 in op;
 if op < 1 then done := 1
 else if op > 4 then done := 1;

 if done = 0 then
 begin
 in y;

 if op = ADD then call add
 else if op = SUB then call sub
 else if op = MULT then call mult
 else if op = DIV then call div
 else done := 1;
 end;
 end;
end.

PL/0 User’s Manual

1.4 Advanced Examples
PL/0 supports recursive and nested procedures. Nested procedures introduce some nuances into the
concept of scope that might be less than obvious.

1.4.1 Recursive Procedures
Figure 5 shows a program that uses a recursive procedure to calculate the factorial of a user-input integer.

1.4.2 Nested Procedures
Nested procedures give the programmer more control over where procedures may be called from.
Figure 6 on the next page is a modified version of the basic four-function calculator program example from
before. Notice that the main block now calls calculate, which in turn uses op to determine which of the
nested procedures to call. Be aware that you cannot call add, sub, mult, or div from inside the main
block as you could before. Finally, notice that mult now calls add (this is to demonstrate scope). The
variable c cannot be accessed outside of mult due to scope.

6 1.0 Programming in PL/0

Figure 5: Recursive procedure example

int f, n;
procedure fact;
 int ans1;
 begin
 ans1:=n;
 n:= n-1;
 if n < 0 then f := -1
 else if n = 0 then f := 1
 else call fact;
 f:=f*ans1;
 end;

begin
 in n;
 call fact;
 out f;
end.

PL/0 User’s Manual

1.0 Programming in PL/0 7

Figure 6: Modified
calculator
program using
nested procedures

const ADD = 1,SUB = 2,MULT = 3,DIV = 4;
int op,x,y,done;

procedure calculate;
 procedure add;
 begin
 x := x + y;
 end;
 procedure sub;
 begin
 x := x – y;
 end;
 procedure mult;
 int c;
 begin
 c := y - 1;
 y := x; /* resets y argument for calling add */
 while c > 0 do
 begin
 call add;
 c := c – 1;
 end;
 /* old method: x := x * y; */
 end;
 procedure div;
 begin
 /* check for divide-by-zero errors */
 if y <> 0 then
 begin
 x := x / y;
 end
 else done := 1;
 end;
 begin
 if op = ADD then call add
 else if op = SUB then call sub
 else if op = MULT then call mult
 else if op = DIV then call div
 else done := 1;
 if done = 0 then out x;
 end;

begin
 done := 0;
 in x;
 while done = 0 do
 begin
 in op;
 if op < 1 then done := 1
 else if op > 4 then done := 1;

 if done = 0 then
 begin
 in y;
 call calculate;
 end;
 end;
end.

PL/0 User’s Manual

2.0 Compiling and Executing Programs Written in PL/0
The pl0-compiler program is both a compiler and a virtual machine for PM/0 (the machine for which
the PL/0 ISA was designed).

2.1 Building pl0-compiler
These instructions assume you have experience using a terminal. You will need GCC and GNU Make prior
to building pl0-compiler.
To build the compiler’s executable file, do the following:

1. Obtain a copy of the source code for pl0-compiler
2. Open a terminal (or command prompt) and navigate to the project directory

• You should see a file called README.text and another called Makefile.
3. Run make

• This will output a file called pl0-compiler (or pl0-compiler.exe) into the bin/
directory.

Once you have an executable pl0-compiler, you are ready to run PL/0 programs.

2.2 Running PL/0 Programs with pl0-compiler
To begin, open a terminal (or command prompt) and navigate to wherever your pl0-compiler is
located. The default mode is to display only in/out calls from the PL/0 program. To do this, run the
following:

./pl0-compiler /path/to/your/file

If you want to see more output, there are three command-line flags available that you can use.

• The -l flag instructs pl0-compiler to display the internal representation of the PL/0 program.
That is, it displays the token file including both a raw and a pretty format.

• The -a flag instructs pl0-compiler to display the generated assembly code in both a raw and
pretty format.

• The -v flag instructs pl0-compiler to display a stack trace while the virtual machine executes
your program.

These flags may be used in any combination for more or less output. To use more than one flag, you can
run something like this:

./pl0-compiler -l -a -v /path/to/your/file

or else, like this:

./pl0-compiler -lav /path/to/your/file

The only restriction is that the filename of your PL/0 program must be the last argument.

8 2.0 Compiling and Executing Programs Written in PL/0

PL/0 User’s Manual

3.0 Reference

3.1 PL/0 EBNF Grammar

3.2 Complete List of Reserved Words and Tokens
Symbol Internal Name Internal Value Usage

nulsym 1 reserved
identsym 2 constant, variable, and procedure

identifiers
numbersym 3 number literals

+ plussym 4 addition in expressions
- minussym 5 subtraction in expressions
* multsym 6 multiplication in expressions
/ slashsym 7 division in expressions

odd oddsym 8 determining if an expression is odd
= eqlsym 9 constant definitions, checking the

equality of two expressions

3.0 Reference 9

Figure 7: PL/0 EBNF Grammar

program ::= block "." .
block ::= const-declaration var-declaration procedure-declaration statement
.
const-declaration ::= ["const" ident "=" number {"," ident "=" number} ";"]
.
var-declaration ::= ["int" ident {"," ident} ";"] .
procedure-declaration ::= { "procedure" ident ";" block ";" }
statement ::= [ident ":=" expression

| "call" ident
| "begin" statement { ";" statement } "end"
| "if" condition "then" statement ["else" statement]
| "while" condition "do" statement
| "read" ident
| "write" expression
| e] .

condition ::= "odd" expression
| expression rel-op expression .

rel-op ::= "=" | "<>" | "<" | "<=" | ">" | ">=" .
expression ::= ["+" | "-"] term { ("+" | "-") term} .
term ::= factor {("*" | "/") factor} .
factor ::= ident | number | "(" expression ")" .
number ::= digit {digit} .
ident ::= letter {letter | digit} .
digit ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" .
letter ::= "a" | "b" | ... | "y" | "z" | "A" | "B" | ... | "Y" | "Z" .

PL/0 User’s Manual

<> neqsym 10 checking that two expressions are not
equal

< lessym 11 checking that the left expression is less
than the right expression

<= leqsym 12 checking that the left expression is less
than or equal to the right expression

> gtrsym 13 checking that the left expression is
greater than the right expression

>= geqsym 14 checking that the left expression is
greater than or equal to the right
expression

(lparentsym 15 begin a factor
) rparentsym 16 end a factor
, commasym 17 separate constant, variable identifiers in

their respective declarations
; semicolomsym 18 end statements
. periodsym 19 end of program
:= becomessym 20 variable assignments

begin beginsym 21 begin a block of statements
end endsym 22 end a block of statements

if ifsym 23 begin an if-then statement, followed by a
condition

then thensym 24 part of if-then, followed by a statement
while whilesym 25 begin while loop, followed by a condition

do dosym 26 part of while loop, followed by a
statement

call callsym 27 calls a procedure
const constsym 28 begin constant declarations

int intsym 29 begin integer declarations
procedure procsym 30 begin a procedure declaration

out outsym 31 output the value of an expression
in insym 32 ask the user to input a value and assign it

to a variable
else elsesym 33 optionally follows if-then statements

Table 1: Complete List of Reserved Words and Tokens

10 3.0 Reference

PL/0 User’s Manual

3.3 Error Codes
Error

Number
Error Message Comments/Suggestions

0 No errors, program is syntactically correct. N/A

1 Use = instead of :=. You tried to assign a value to a variable
using =.

2 = must be followed by a number. Syntax error near constant declarations or
in a conditional expression.

3 Identifier must be followed by =. Syntax error near constant declarations.

4 const, int, procedure must be followed by identifier. Syntax error near constant, variable, or
procedure declarations.

5 Semicolon or comma missing. You missed a semicolon or a comma
somewhere. Also check that you aren’t
adding extra semicolons to if-then-else
and while-do’s.

6 Incorrect symbol after procedure declaration. Not currently used.

7 Statement expected. Not currently used.

8 Incorrect symbol after statement part in block. Not currently used.

9 Period expected. Missed a period at the end of the program.

10 Semicolon between statements missing. Except for the last one in a block, every
statement needs to end with a semicolon.

11 Undeclared identifier. You tried to use an undeclared constant,
variable, or procedure, or you tried to
access something that is outside of your
scope.

12 Assignment to constant or procedure is not allowed. You tried to assign a value to a constant or
a procedure. Check your variable names.

13 Assignment operator expected. You began a statement with an identifier,
but it wasn’t followed by an assignment
operator (:=).

14 call must be followed by an identifier. You used call, but you didn’t include the
procedure name.

15 Call of a constant or variable is meaningless. You tried to call a constant or a variable,
which is meaningless.

16 then expected. if [condition] must be followed by then
[statement].

17 Semicolon or end expected. Not currently used.

3.0 Reference 11

PL/0 User’s Manual

18 do expected. while [condition] must be followed by do
[statement].

19 Incorrect symbol following statement. Not currently used.

20 Relational operator expected. In a conditional expression, you are
missing a relational operator.

21 Expression must not contain a procedure identifier. You cannot use procedures in expressions
(since they do not return or represent
values).

22 Right parenthesis missing. Missing the right parenthesis at the end of
a factor.

23 The preceding factor cannot begin with this symbol. There is something wrong with a factor
used in an expression.

24 An expression cannot begin with this symbol. Not currently used.

25 This number is too large. Code generator exceeded the maximum
number of lines of code.

26 out must be followed by an expression. You used out, but didn’t specify anything
to output.

27 in must be followed by an identifier. You used in, but you didn’t specify what
variable to assign it to.

28 Cannot reuse this symbol here. Not currently used.

29 Cannot redefine constants. Constants cannot be redefined.

Table 2: Error codes

3.4 PL/0 Instruction Set Architecture
All PL/0 instructions are of the form OP L, M where OP is the op code, L is the lexicographical level, and M
is an address, data, or an ALU operation.

Op Code Syntax Description
1 LIT 0, M Push constant value (literal) M onto the stack
2 OPR 0, M Operation to be performed on the data at the top of the stack

OPR 0, 0 Return; used to return to the caller from a procedure.
OPR 0, 1 Negation; pop the stack and return the negative of the value
OPR 0, 2 Addition; pop two values from the stack, add and push the sum
OPR 0, 3 Subtraction; pop two values from the stack, subtract second from first and

push the difference
OPR 0, 4 Multiplication; pop two values from the stack, multiply and push the

product
OPR 0, 5 Division; pop two values from the stack, divide second by first and push the

quotient

12 3.0 Reference

PL/0 User’s Manual

OPR 0, 6 Is odd? (divisible by two); pop the stack and push 1 if odd, 0 if even
OPR 0, 7 Modulus; pop two values from the stack, divide second by first and push the

remainder
OPR 0, 8 Equality; pop two values from the stack and push 1 if equal, 0 if not
OPR 0, 9 Inequality; pop two values from the stack and push 0 if equal, 1 if not

OPR 0, 10 Less than; pop two values from the stack and push 1 if first is less than
second, 0 if not

OPR 0, 11 Less than or equal to; pop two values from the stack and push 1 if first is
less than or equal second, 0 if not

OPR 0, 12 Greater than; pop two values from the stack and push 1 if first is greater
than second, 0 if not

OPR 0, 13 Greater than or equal to; pop two values from the stack and push 1 if first is
greater than or equal second, 0 if not

3 LOD L, M Load value to top of stack from the stack location at offset M from L
lexicographical levels down

4 STO L, M Store value at top of stack in the stack location at offset M from L
lexicographical levels down

5 CAL L, M Call procedure at code index M
6 INC 0, M Increment the stack pointer by M (allocate M locals); by convention, this is

used as the first instruction of a procedure and will allocate space for the
Static Link (SL), Dynamic Link (DL), and Return Address (RA) of an
activation record

7 JMP 0, M Jump to instruction M
8 JPC 0, M Pop the top of the stack and jump to instruction M if it is equal to zero
9 SIO 0, 1 Start I/O; pop the top of the stack and output the value

10 SIO 0, 2 Start I/O; read input and push it onto the stack

Table 3: PL/0 Instruction Set Architecture

3.0 Reference 13

	1.0 Programming in PL/0
	1.1 Datatypes
	1.1.1 Constants
	1.1.2 Integers
	1.1.3 Procedures

	1.2 Expressions
	1.3 Statements
	1.3.1 Input/Output
	1.3.2 Blocks
	1.3.3 Assignment
	1.3.4 Conditionals
	1.3.5 Loops
	1.3.6 Calling Procedures
	Using the Basic Calculator Program

	1.4 Advanced Examples
	1.4.1 Recursive Procedures
	1.4.2 Nested Procedures

	2.0 Compiling and Executing Programs Written in PL/0
	2.1 Building pl0-compiler
	2.2 Running PL/0 Programs with pl0-compiler

	3.0 Reference
	3.1 PL/0 EBNF Grammar
	3.2 Complete List of Reserved Words and Tokens
	3.3 Error Codes
	3.4 PL/0 Instruction Set Architecture

