# Basic Operators This document explains some of the most common operators used in ReactiveCocoa, and includes examples demonstrating their use. Note that “operators”, in this context, refers to functions that transform [signals][] and [signal producers][], _not_ custom Swift operators. In other words, these are composable primitives provided by ReactiveCocoa for working with event streams. This document will use the term “event stream” when dealing with concepts that apply to both `Signal` and `SignalProducer`. When the distinction matters, the types will be referred to by name. **[Performing side effects with event streams](#performing-side-effects-with-event-streams)** 1. [Observation](#observation) 1. [Injecting effects](#injecting-effects) **[Operator composition](#operator-composition)** 1. [Lifting](#lifting) **[Transforming event streams](#transforming-event-streams)** 1. [Mapping](#mapping) 1. [Filtering](#filtering) 1. [Aggregating](#aggregating) **[Combining event streams](#combining-event-streams)** 1. [Combining latest values](#combining-latest-values) 1. [Zipping](#zipping) **[Flattening producers](#flattening-producers)** 1. [Concatenating](#concatenating) 1. [Merging](#merging) 1. [Switching to the latest](#switching-to-the-latest) **[Handling failures](#handling-failures)** 1. [Catching failures](#catch) 1. [Mapping errors](#mapping-errors) 1. [Retrying](#retrying) ## Performing side effects with event streams ### Observation `Signal`s can be observed with the `observe` function. It takes an `Observer` as argument to which any future events are sent. ```Swift signal.observe(Signal.Observer { event in switch event { case let .Next(next): print("Next: \(next)") case let .Failed(error): print("Failed: \(error)") case .Completed: print("Completed") case .Interrupted: print("Interrupted") } }) ``` Alternatively, callbacks for the `Next`, `Failed`, `Completed` and `Interrupted` events can be provided which will be called when a corresponding event occurs. ```Swift signal.observeNext { next in print("Next: \(next)") } signal.observeFailed { error in print("Failed: \(error)") } signal.observeCompleted { print("Completed") } signal.observeInterrupted { print("Interrupted") } ``` Note that it is not necessary to observe all four types of event - all of them are optional, you only need to provide callbacks for the events you care about. ### Injecting effects Side effects can be injected on a `SignalProducer` with the `on` operator without actually subscribing to it. ```Swift let producer = signalProducer .on(started: { print("Started") }, event: { event in print("Event: \(event)") }, failed: { error in print("Failed: \(error)") }, completed: { print("Completed") }, interrupted: { print("Interrupted") }, terminated: { print("Terminated") }, disposed: { print("Disposed") }, next: { value in print("Next: \(value)") }) ``` Similar to `observe`, all the parameters are optional and you only need to provide callbacks for the events you care about. Note that nothing will be printed until `producer` is started (possibly somewhere else). ## Operator composition ### Lifting `Signal` operators can be _lifted_ to operate upon `SignalProducer`s using the `lift` method. This will create a new `SignalProducer` which will apply the given operator to _every_ `Signal` created, just as if the operator had been applied to each produced `Signal` individually. ## Transforming event streams These operators transform an event stream into a new stream. ### Mapping The `map` operator is used to transform the values in a event stream, creating a new stream with the results. ```Swift let (signal, observer) = Signal.pipe() signal .map { string in string.uppercaseString } .observeNext { next in print(next) } observer.sendNext("a") // Prints A observer.sendNext("b") // Prints B observer.sendNext("c") // Prints C ``` [Interactive visualisation of the `map` operator.](http://neilpa.me/rac-marbles/#map) ### Filtering The `filter` operator is used to only include values in an event stream that satisfy a predicate. ```Swift let (signal, observer) = Signal.pipe() signal .filter { number in number % 2 == 0 } .observeNext { next in print(next) } observer.sendNext(1) // Not printed observer.sendNext(2) // Prints 2 observer.sendNext(3) // Not printed observer.sendNext(4) // prints 4 ``` [Interactive visualisation of the `filter` operator.](http://neilpa.me/rac-marbles/#filter) ### Aggregating The `reduce` operator is used to aggregate a event stream’s values into a single combined value. Note that the final value is only sent after the input stream completes. ```Swift let (signal, observer) = Signal.pipe() signal .reduce(1) { $0 * $1 } .observeNext { next in print(next) } observer.sendNext(1) // nothing printed observer.sendNext(2) // nothing printed observer.sendNext(3) // nothing printed observer.sendCompleted() // prints 6 ``` The `collect` operator is used to aggregate a event stream’s values into a single array value. Note that the final value is only sent after the input stream completes. ```Swift let (signal, observer) = Signal.pipe() signal .collect() .observeNext { next in print(next) } observer.sendNext(1) // nothing printed observer.sendNext(2) // nothing printed observer.sendNext(3) // nothing printed observer.sendCompleted() // prints [1, 2, 3] ``` [Interactive visualisation of the `reduce` operator.](http://neilpa.me/rac-marbles/#reduce) ## Combining event streams These operators combine values from multiple event streams into a new, unified stream. ### Combining latest values The `combineLatest` function combines the latest values of two (or more) event streams. The resulting stream will only send its first value after each input has sent at least one value. After that, new values on any of the inputs will result in a new value on the output. ```Swift let (numbersSignal, numbersObserver) = Signal.pipe() let (lettersSignal, lettersObserver) = Signal.pipe() let signal = combineLatest(numbersSignal, lettersSignal) signal.observeNext { next in print("Next: \(next)") } signal.observeCompleted { print("Completed") } numbersObserver.sendNext(0) // nothing printed numbersObserver.sendNext(1) // nothing printed lettersObserver.sendNext("A") // prints (1, A) numbersObserver.sendNext(2) // prints (2, A) numbersObserver.sendCompleted() // nothing printed lettersObserver.sendNext("B") // prints (2, B) lettersObserver.sendNext("C") // prints (2, C) lettersObserver.sendCompleted() // prints "Completed" ``` The `combineLatestWith` operator works in the same way, but as an operator. [Interactive visualisation of the `combineLatest` operator.](http://neilpa.me/rac-marbles/#combineLatest) ### Zipping The `zip` function joins values of two (or more) event streams pair-wise. The elements of any Nth tuple correspond to the Nth elements of the input streams. That means the Nth value of the output stream cannot be sent until each input has sent at least N values. ```Swift let (numbersSignal, numbersObserver) = Signal.pipe() let (lettersSignal, lettersObserver) = Signal.pipe() let signal = zip(numbersSignal, lettersSignal) signal.observeNext { next in print("Next: \(next)") } signal.observeCompleted { print("Completed") } numbersObserver.sendNext(0) // nothing printed numbersObserver.sendNext(1) // nothing printed lettersObserver.sendNext("A") // prints (0, A) numbersObserver.sendNext(2) // nothing printed numbersObserver.sendCompleted() // nothing printed lettersObserver.sendNext("B") // prints (1, B) lettersObserver.sendNext("C") // prints (2, C) & "Completed" ``` The `zipWith` operator works in the same way, but as an operator. [Interactive visualisation of the `zip` operator.](http://neilpa.me/rac-marbles/#zip) ## Flattening producers The `flatten` operator transforms a `SignalProducer`-of-`SignalProducer`s into a single `SignalProducer` whose values are forwarded from the inner producer in accordance with the provided `FlattenStrategy`. To understand, why there are different strategies and how they compare to each other, take a look at this example and imagine the column offsets as time: ```Swift let values = [ // imagine column offset as time [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8 ], ] let merge = [ 1, 4, 2, 7,5, 3,8,6 ] let concat = [ 1, 2, 3,4, 5, 6,7, 8] let latest = [ 1, 4, 7, 8 ] ``` Note, how the values interleave and which values are even included in the resulting array. ### Merging The `.Merge` strategy immediately forwards every value of the inner `SignalProducer`s to the outer `SignalProducer`. Any failure sent on the outer producer or any inner producer is immediately sent on the flattened producer and terminates it. ```Swift let (producerA, lettersObserver) = SignalProducer.buffer(5) let (producerB, numbersObserver) = SignalProducer.buffer(5) let (signal, observer) = SignalProducer, NoError>.buffer(5) signal.flatten(.Merge).startWithNext { next in print(next) } observer.sendNext(producerA) observer.sendNext(producerB) observer.sendCompleted() lettersObserver.sendNext("a") // prints "a" numbersObserver.sendNext("1") // prints "1" lettersObserver.sendNext("b") // prints "b" numbersObserver.sendNext("2") // prints "2" lettersObserver.sendNext("c") // prints "c" numbersObserver.sendNext("3") // prints "3" ``` [Interactive visualisation of the `flatten(.Merge)` operator.](http://neilpa.me/rac-marbles/#merge) ### Concatenating The `.Concat` strategy is used to serialize work of the inner `SignalProducer`s. The outer producer is started immediately. Each subsequent producer is not started until the preceeding one has completed. Failures are immediately forwarded to the flattened producer. ```Swift let (producerA, lettersObserver) = SignalProducer.buffer(5) let (producerB, numbersObserver) = SignalProducer.buffer(5) let (signal, observer) = SignalProducer, NoError>.buffer(5) signal.flatten(.Concat).startWithNext { next in print(next) } observer.sendNext(producerA) observer.sendNext(producerB) observer.sendCompleted() numbersObserver.sendNext("1") // nothing printed lettersObserver.sendNext("a") // prints "a" lettersObserver.sendNext("b") // prints "b" numbersObserver.sendNext("2") // nothing printed lettersObserver.sendNext("c") // prints "c" lettersObserver.sendCompleted() // prints "1", "2" numbersObserver.sendNext("3") // prints "3" numbersObserver.sendCompleted() ``` [Interactive visualisation of the `flatten(.Concat)` operator.](http://neilpa.me/rac-marbles/#concat) ### Switching to the latest The `.Latest` strategy forwards only values from the latest input `SignalProducer`. ```Swift let (producerA, observerA) = SignalProducer.buffer(5) let (producerB, observerB) = SignalProducer.buffer(5) let (producerC, observerC) = SignalProducer.buffer(5) let (signal, observer) = SignalProducer, NoError>.buffer(5) signal.flatten(.Latest).startWithNext { next in print(next) } observer.sendNext(producerA) // nothing printed observerC.sendNext("X") // nothing printed observerA.sendNext("a") // prints "a" observerB.sendNext("1") // nothing printed observer.sendNext(producerB) // prints "1" observerA.sendNext("b") // nothing printed observerB.sendNext("2") // prints "2" observerC.sendNext("Y") // nothing printed observerA.sendNext("c") // nothing printed observer.sendNext(producerC) // prints "X", "Y" observerB.sendNext("3") // nothing printed observerC.sendNext("Z") // prints "Z" ``` ## Handling failures These operators are used to handle failures that might occur on an event stream. ### Catching failures The `flatMapError` operator catches any failure that may occur on the input `SignalProducer`, then starts a new `SignalProducer` in its place. ```Swift let (producer, observer) = SignalProducer.buffer(5) let error = NSError(domain: "domain", code: 0, userInfo: nil) producer .flatMapError { _ in SignalProducer(value: "Default") } .startWithNext { next in print(next) } observer.sendNext("First") // prints "First" observer.sendNext("Second") // prints "Second" observer.sendFailed(error) // prints "Default" ``` ### Retrying The `retry` operator will restart the original `SignalProducer` on failure up to `count` times. ```Swift var tries = 0 let limit = 2 let error = NSError(domain: "domain", code: 0, userInfo: nil) let producer = SignalProducer { (observer, _) in if tries++ < limit { observer.sendFailed(error) } else { observer.sendNext("Success") observer.sendCompleted() } } producer .on(failed: {e in print("Failure")}) // prints "Failure" twice .retry(2) .start { event in switch event { case let .Next(next): print(next) // prints "Success" case let .Failed(error): print("Failed: \(error)") case .Completed: print("Completed") case .Interrupted: print("Interrupted") } } ``` If the `SignalProducer` does not succeed after `count` tries, the resulting `SignalProducer` will fail. E.g., if `retry(1)` is used in the example above instead of `retry(2)`, `"Signal Failure"` will be printed instead of `"Success"`. ### Mapping errors The `mapError` operator transforms the error of any failure in an event stream into a new error. ```Swift enum CustomError: String, ErrorType { case Foo = "Foo" case Bar = "Bar" case Other = "Other" var nsError: NSError { return NSError(domain: "CustomError.\(rawValue)", code: 0, userInfo: nil) } var description: String { return "\(rawValue) Error" } } let (signal, observer) = Signal.pipe() signal .mapError { (error: NSError) -> CustomError in switch error.domain { case "com.example.foo": return .Foo case "com.example.bar": return .Bar default: return .Other } } .observeFailed { error in print(error) } observer.sendFailed(NSError(domain: "com.example.foo", code: 42, userInfo: nil)) // prints "Foo Error" ``` ### Promote The `promoteErrors` operator promotes an event stream that does not generate failures into one that can. ```Swift let (numbersSignal, numbersObserver) = Signal.pipe() let (lettersSignal, lettersObserver) = Signal.pipe() numbersSignal .promoteErrors(NSError) .combineLatestWith(lettersSignal) ``` The given stream will still not _actually_ generate failures, but this is useful because some operators to [combine streams](#combining-event-streams) require the inputs to have matching error types. [Signals]: FrameworkOverview.md#signals [Signal Producers]: FrameworkOverview.md#signal-producers [Observation]: FrameworkOverview.md#observation