# Basic Operators This document explains some of the most common operators used in ReactiveCocoa, and includes examples demonstrating their use. Note that “operators,” in this context, refers to functions that transform [signals][] and [signal producers][], _not_ custom Swift operators. In other words, these are composable primitives provided by ReactiveCocoa for working with event streams. This document will use the term “event stream” when dealing with concepts that apply to both `Signal` and `SignalProducer`. When the distinction matters, the types will be referred to by name. **[Performing side effects with event streams](#performing-side-effects-with-event-streams)** 1. [Observation](#observation) 1. [Injecting effects](#injecting-effects) **[Operator composition](#operator-composition)** 1. [Lifting](#lifting) 1. [Pipe](#pipe) **[Transforming event streams](#transforming-event-streams)** 1. [Mapping](#mapping) 1. [Filtering](#filtering) 1. [Aggregating](#aggregating) **[Combining event streams](#combining-event-streams)** 1. [Combining latest values](#combining-latest-values) 1. [Zipping](#zipping) **[Flattening producers](#flattening-producers)** 1. [Concatenating](#concatenating) 1. [Merging](#merging) 1. [Switching to the latest](#switching-to-the-latest) **[Handling errors](#handling-errors)** 1. [Catching errors](#catch) 1. [Mapping errors](#mapping-error) 1. [Retrying](#retrying) ## Performing side effects with event streams ### Observation `Signal`s can be observed with the `observe` function. It takes an `Observer` as argument to which any future events are sent. ```Swift signal.observe(Signal.Observer { event in switch event { case let .Next(next): println("Next: \(next)") case let .Error(error): println("Error: \(error)") case .Completed: println("Completed") case .Interrupted: println("Interrupted") } }) ``` Alternatively, callbacks for the `Next`, `Error`, `Completed` and `Interrupted` events can be provided which will be called when a corresponding event occurs. ```Swift signal.observe(next: { next in println("Next: \(next)") }, error: { error in println("Error: \(error)") }, completed: { println("Completed") }, interrupted: { println("Interrupted") }) ``` Note that it is not necessary to provide all four parameters - all of them are optional, you only need to provide callbacks for the events you care about. `observe` is also available as operator that can be used with [|>](#pipe) ### Injecting effects Side effects can be injected on a `SignalProducer` with the `on` operator without actually subscribing to it. ```Swift let producer = signalProducer |> on(started: { println("Started") }, event: { event in println("Event: \(event)") }, error: { error in println("Error: \(error)") }, completed: { println("Completed") }, interrupted: { println("Interrupted") }, terminated: { println("Terminated") }, disposed: { println("Disposed") }, next: { next in println("Next: \(next)") }) ``` Similar to `observe`, all the parameters are optional and you only need to provide callbacks for the events you care about. Note that nothing will be printed until `producer` is started (possibly somewhere else). ## Operator composition ### Pipe The `|>` operator can be used to apply a primitive to an event stream. Multiple operators can be chained after each other using the `|>` operator: ```Swift intSignal |> filter { num in num % 2 == 0 } |> map(toString) |> observe(next: { string in println(string) }) ``` ### Lifting `Signal` operators can be _lifted_ to operate upon `SignalProducer`s using the `lift` method. This will create a new `SignalProducer` which will apply the given operator to _every_ `Signal` created, just as if the operator had been applied to each produced `Signal` individually. The `|>` operator implicitly lifts `Signal` operators, so it can be used to apply them directly to `SignalProducer`s. ## Transforming event streams These operators transform an event stream into a new stream. ### Mapping The `map` operator is used to transform the values in a event stream, creating a new stream with the results. ```Swift let (signal, sink) = Signal.pipe() signal |> map { string in string.uppercaseString } |> observe(next: println) sendNext(sink, "a") // Prints A sendNext(sink, "b") // Prints B sendNext(sink, "c") // Prints C ``` [Interactive visualisation of the `map` operator.](http://neilpa.me/rac-marbles/#map) ### Filtering The `filter` operator is used to only include values in an event stream that satisfy a predicate. ```Swift let (signal, sink) = Signal.pipe() signal |> filter { number in number % 2 == 0 } |> observe(next: println) sendNext(sink, 1) // Not printed sendNext(sink, 2) // Prints 2 sendNext(sink, 3) // Not printed sendNext(sink, 4) // prints 4 ``` [Interactive visualisation of the `filter` operator.](http://neilpa.me/rac-marbles/#filter) ### Aggregating The `reduce` operator is used to aggregate a event stream’s values into a single combined value. Note that the final value is only sent after the input stream completes. ```Swift let (signal, sink) = Signal.pipe() signal |> reduce(1) { $0 * $1 } |> observe(next: println) sendNext(sink, 1) // nothing printed sendNext(sink, 2) // nothing printed sendNext(sink, 3) // nothing printed sendCompleted(sink) // prints 6 ``` The `collect` operator is used to aggregate a event stream’s values into a single array value. Note that the final value is only sent after the input stream completes. ```Swift let (signal, sink) = Signal.pipe() let collected = signal |> collect collected.observe(next: println) sendNext(sink, 1) // nothing printed sendNext(sink, 2) // nothing printed sendNext(sink, 3) // nothing printed sendCompleted(sink) // prints [1, 2, 3] ``` [Interactive visualisation of the `reduce` operator.](http://neilpa.me/rac-marbles/#reduce) ## Combining event streams These operators combine values from multiple event streams into a new, unified stream. ### Combining latest values The `combineLatest` function combines the latest values of two (or more) event streams. The resulting stream will only send its first value after each input has sent at least one value. After that, new values on any of the inputs will result in a new value on the output. ```Swift let (numbersSignal, numbersSink) = Signal.pipe() let (lettersSignal, lettersSink) = Signal.pipe() combineLatest(numbersSignal, lettersSignal) |> observe(next: println, completed: { println("Completed") }) sendNext(numbersSink, 0) // nothing printed sendNext(numbersSink, 1) // nothing printed sendNext(lettersSink, "A") // prints (1, A) sendNext(numbersSink, 2) // prints (2, A) sendCompleted(numbersSink) // nothing printed sendNext(lettersSink, "B") // prints (2, B) sendNext(lettersSink, "C") // prints (2, C) sendCompleted(lettersSink) // prints "Completed" ``` The `combineLatestWith` operator works in the same way, but as an operator. [Interactive visualisation of the `combineLatest` operator.](http://neilpa.me/rac-marbles/#combineLatest) ### Zipping The `zip` function joins values of two (or more) event streams pair-wise. The elements of any Nth tuple correspond to the Nth elements of the input streams. That means the Nth value of the output stream cannot be sent until each input has sent at least N values. ```Swift let (numbersSignal, numbersSink) = Signal.pipe() let (lettersSignal, lettersSink) = Signal.pipe() zip(numbersSignal, lettersSignal) |> observe(next: println, completed: { println("Completed") }) sendNext(numbersSink, 0) // nothing printed sendNext(numbersSink, 1) // nothing printed sendNext(lettersSink, "A") // prints (0, A) sendNext(numbersSink, 2) // nothing printed sendCompleted(numbersSink) // nothing printed sendNext(lettersSink, "B") // prints (1, B) sendNext(lettersSink, "C") // prints (2, C) & "Completed" ``` The `zipWith` operator works in the same way, but as an operator. [Interactive visualisation of the `zip` operator.](http://neilpa.me/rac-marbles/#zip) ## Flattening producers The `flatten` operator transforms a `SignalProducer`-of-`SignalProducer`s into a single `SignalProducer` whose values are forwarded from the inner producer in accordance with the provided `FlattenStrategy`. To understand, why there are different strategies and how they compare to each other, take a look at this example and imagine the column offsets as time: ```Swift let values = [ // imagine column offset as time [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8 ], ] let merge = [ 1, 4, 2, 7,5, 3,8,6 ] let concat = [ 1, 2, 3,4, 5, 6,7, 8] let latest = [ 1, 4, 7, 8 ] ``` Note, how the values interleave and which values are even included in the resulting array. ### Merging The `.Merge` strategy immediately forwards every value of the inner `SignalProducer`s to the outer `SignalProducer`. Any error sent on the outer producer or any inner producer is immediately sent on the flattened producer and terminates it. ```Swift let (producerA, lettersSink) = SignalProducer.buffer(5) let (producerB, numbersSink) = SignalProducer.buffer(5) let (signal, sink) = SignalProducer, NoError>.buffer(5) signal |> flatten(FlattenStrategy.Merge) |> start(next: println) sendNext(sink, producerA) sendNext(sink, producerB) sendCompleted(sink) sendNext(lettersSink, "a") // prints "a" sendNext(numbersSink, "1") // prints "1" sendNext(lettersSink, "b") // prints "b" sendNext(numbersSink, "2") // prints "2" sendNext(lettersSink, "c") // prints "c" sendNext(numbersSink, "3") // prints "3" ``` [Interactive visualisation of the `flatten(.Merge)` operator.](http://neilpa.me/rac-marbles/#merge) ### Concatenating The `.Concat` strategy is used to serialize work of the inner `SignalProducer`s. The outer producer is started immediately. Each subsequent producer is not started until the preceeding one has completed. Errors are immediately forwarded to the flattened producer. ```Swift let (producerA, lettersSink) = SignalProducer.buffer(5) let (producerB, numbersSink) = SignalProducer.buffer(5) let (signal, sink) = SignalProducer, NoError>.buffer(5) signal |> flatten(FlattenStrategy.Concat) |> start(next: println) sendNext(sink, producerA) sendNext(sink, producerB) sendCompleted(sink) sendNext(numbersSink, "1") // nothing printed sendNext(lettersSink, "a") // prints "a" sendNext(lettersSink, "b") // prints "b" sendNext(numbersSink, "2") // nothing printed sendNext(lettersSink, "c") // prints "c" sendCompleted(lettersSink) // prints "1", "2" sendNext(numbersSink, "3") // prints "3" sendCompleted(numbersSink) ``` [Interactive visualisation of the `flatten(.Concat)` operator.](http://neilpa.me/rac-marbles/#concat) ### Switching to the latest The `.Latest` strategy forwards only values from the latest input `SignalProducer`. ```Swift let (producerA, sinkA) = SignalProducer.buffer(5) let (producerB, sinkB) = SignalProducer.buffer(5) let (producerC, sinkC) = SignalProducer.buffer(5) let (signal, sink) = SignalProducer, NoError>.buffer(5) signal |> flatten(FlattenStrategy.Latest) |> start(next: println) sendNext(sink, producerA) // nothing printed sendNext(sinkC, "X") // nothing printed sendNext(sinkA, "a") // prints "a" sendNext(sinkB, "1") // nothing printed sendNext(sink, producerB) // prints "1" sendNext(sinkA, "b") // nothing printed sendNext(sinkB, "2") // prints "2" sendNext(sinkC, "Y") // nothing printed sendNext(sinkA, "c") // nothing printed sendNext(sink, producerC) // prints "X", "Y" sendNext(sinkB, "3") // nothing printed sendNext(sinkC, "Z") // prints "Z" ``` ## Handling errors These operators are used to handle errors that might occur on an event stream. ### Catching errors The `catch` operator catches any error that may occur on the input `SignalProducer`, then starts a new `SignalProducer` in its place. ```Swift let (producer, sink) = SignalProducer.buffer(5) let error = NSError(domain: "domain", code: 0, userInfo: nil) producer |> catch { error in SignalProducer(value: "Default") } |> start(next: println) sendNext(sink, "First") // prints "First" sendNext(sink, "Second") // prints "Second" sendError(sink, error) // prints "Default" ``` ### Retrying The `retry` operator will restart the original `SignalProducer` on error up to `count` times. ```Swift var tries = 0 let limit = 2 let error = NSError(domain: "domain", code: 0, userInfo: nil) let producer = SignalProducer { (sink, _) in if tries++ < limit { sendError(sink, error) } else { sendNext(sink, "Success") sendCompleted(sink) } } producer |> on(error: {e in println("Error")}) // prints "Error" twice |> retry(2) |> start(next: println, // prints "Success" error: { _ in println("Signal Error")}) ``` If the `SignalProducer` does not succeed after `count` tries, the resulting `SignalProducer` will fail. E.g., if `retry(1)` is used in the example above instead of `retry(2)`, `"Signal Error"` will be printed instead of `"Success"`. ### Mapping errors The `mapError` operator transforms any error in an event stream into a new error. ```Swift enum CustomError: String, ErrorType { case Foo = "Foo" case Bar = "Bar" case Other = "Other" var nsError: NSError { return NSError(domain: "CustomError.\(rawValue)", code: 0, userInfo: nil) } var description: String { return "\(rawValue) Error" } } let (signal, sink) = Signal.pipe() signal |> mapError { (error: NSError) -> CustomError in switch error.domain { case "com.example.foo": return .Foo case "com.example.bar": return .Bar default: return .Other } } |> observe(error: println) sendError(sink, NSError(domain: "com.example.foo", code: 42, userInfo: nil)) // prints "Foo Error" ``` ### Promote The `promoteErrors` operator promotes an event stream that does not generate errors into one that can. ```Swift let (numbersSignal, numbersSink) = Signal.pipe() let (lettersSignal, lettersSink) = Signal.pipe() numbersSignal |> promoteErrors(NSError) |> combineLatestWith(lettersSignal) ``` The given stream will still not _actually_ generate errors, but this is useful because some operators to [combine streams](#combining-event-streams) require the inputs to have matching error types. [Signals]: FrameworkOverview.md#signals [Signal Producers]: FrameworkOverview.md#signal-producers [Observation]: FrameworkOverview.md#observation