''' Described at PyMOL wiki: http://www.pymolwiki.org/index.php/propka #------------------------------------------------------------------------------- # Name: propka for pymol # Purpose: To fetch and display the pka values for protein of intetest # # Author: Troels E. Linnet # # Created: 14/08/2011 # Copyright: (c) Troels E. Linnet 2011 # Contact: tlinnet snabela gmail dot com # Licence: Free for all # # #------------------------------------------------------------------------------- The PROPKA method is developed by the Jensen Research Group Department of Chemistry University of Copenhagen Please cite these references in publications: Hui Li, Andrew D. Robertson, and Jan H. Jensen "Very Fast Empirical Prediction and Interpretation of Protein pKa Values" Proteins, 2005, 61, 704-721. Delphine C. Bas, David M. Rogers, and Jan H. Jensen "Very Fast Prediction and Rationalization of pKa Values for Protein-Ligand Complexes" Proteins, 2008, 73, 765-783. Mats H.M. Olsson, Chresten R. Soendergard, Michal Rostkowski, and Jan H. Jensen "PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa predictions" Journal of Chemical Theory and Computation, 2011 7 (2), 525-537 Chresten R. Soendergaard, Mats H.M. Olsson, Michaz Rostkowski, and Jan H. Jensen "Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pKa Values" Journal of Chemical Theory and Computation, 2011 in press """ #------------------------------------------------------------------------------- # The script needs mechanize to run. # On windows, it is not easy to make additional modules available for pymol. So put in into your working folder. #1)The easy manual way: #a)Go to: http://wwwsearch.sourceforge.net/mechanize/download.html #b)Download mechanize-0.2.5.zip. http://pypi.python.org/packages/source/m/mechanize/mechanize-0.2.5.zip #c)Extract to .\mechanize-0.2.5 then move the in-side folder "mechanize" to your folder with propka.py. The rest of .\mechanize-0.2.5 you don't need. #You can also see other places where you could put the "mechanize" folder. Write this in pymol to see the paths where pymol is searching for "mechanize" # import sys; print(sys.path) #------------------------------------------------------------------------------- """ Example for pymol script to start the functions. For example: trypropka.pml Execute with pymol or start pymol and: File->Run->trypropka.pml ############################################################################################################################################################################################################################## ### Point to your directory with your pdb file and where to save the results #cd /homes/linnet/Documents/Speciale/5NT-project/Mutant-construct/predict_reactivity/propka cd C:/Users/tlinnet/Documents/My Dropbox/Speciale/5NT-project/Mutant-construct/predict_reactivity/propka ### The fastest method is just to write propka. Then the last pymol molecule is assumed and send to server. verbose=yes makes the script gossip mode. import propka fetch 4ins, async=0 propka #fetch 1hp1, async=0 #propka logtime=_, resi=5-10.20-30, resn=CYS.ATP.TRP, verbose=yes ### Fetch 4ins from web. async make sure, we dont execute script before molecule is loaded. The resi and resn prints the interesting results right to command line. #fetch 4ins, async=0 #propka chain=*, resi=5-10.20-30, resn=ASP.CYS, logtime=_ ### If there is no web connection, one can process a local .pka file. Either from a previous run or from a downloaded propka webpage result. ### Then run and point to .pka file with: pkafile=./Results_propka/pkafile.pka Remember the dot "." in the start, to make it start in the current directory. #load 4ins.pdb #propka pkafile=./Results_propka/4ins_.pka, resi=18.25-30, resn=cys, ### Some more examples. This molecule has 550 residues, so takes a longer time. We select to run the last molecule, by writing: molecule=1hp1 #fetch 4ins, async=0 #fetch 1hp1, async=0 #propka molecule=1hp1, chain=A, resi=300-308.513, resn=CYS.ATP.TRP, logtime=_, verbose=no, showresult=no #propka molecule=1hp1, pkafile=./Results_propka/1hp1_.pka, verbose=yes ### One can also just make a lookup for a protein. Use function: getpropka ### Note. This does only print the result to the pymol command line #getpropka source=ID, PDBID=4ake, logtime=_, showresult=yes #getpropka source=ID, PDBID=4ins, logtime=_, server_wait=10.0, verbose=yes, showresult=no ############################################Input parameters: propka############################################ ############# The order of input and changable things: ############# propka(molecule="NIL",chain="*",resi="0",resn="NIL",method="upload",logtime=time.strftime("%m%d",time.localtime()),server_wait=3.0,version="v3.1",verbose="no",showresult="no",pkafile="NIL") # method : method=upload is default. This sends .pdb file and request result from propka server. ## method=file will only process a manual .pka file, and write a pymol command file. No use of mechanize. ## If one points to an local .pka file, then method is auto-changed to method=file. This is handsome in off-line environment, ex. teaching or seminar. # pkafile: Write the path to .pka file. Ex: pkafile=./Results_propka/4ins_.pka # molecule : name of the molecule. Ending of file is assumed to be .pdb # chain : which chains are saved to file, before molecule file is send to server. Separate with "." Ex: chain=A.b # resi : Select by residue number, which residues should be printed to screen and saved to the log file: /Results_propka/_Results.log. ## Separate with "." or make ranges with "-". Ex: resi=35.40-50 # resn : Select by residue name, which residues should be printed to screen and saved to the log file: /Results_propka/_Results.log. ## Separate with "." Ex: resn=cys.tyr # logtime : Each execution give a set of files with the job id=logtime. If logtime is not provided, the current time is used. ## Normal it usefull to set it empty. Ex: logtime=_ # verbose : Verbose is switch, to turn on messages for the mechanize section. This is handsome to see how mechanize works, and for error searching. # showresult : Switch, to turn on all results in pymol command window. Ex: showresult=yes # server_wait=10.0 is default. This defines how long time between asking the server for a result. Set no lower than 3 seconds. # version=v3.1 is default. This is what version of propka which would be used. ## Possible: 'v3.1','v3.0','v2.0'. If a newer version is available than the current v3.1, a error message is raised to make user update the script. ############################################Input parameters: getpropka############################################ ############# The order of input and changable things: ############# getpropka(PDB="NIL",chain="*",resi="0",resn="NIL",source="upload",PDBID="",logtime=time.strftime("%Y%m%d%H%M%S",time.localtime()),server_wait=3.0,version="v3.1",verbose="no",showresult="no") # PDB: points the path to a .pdb file. This is auto-set from propka function. # source : source=upload is default and is set at the propka webpage. # source=ID, PDBID=4ake , one can print to the command line, the pka value for any official pdb ID. No files are displayed in pymol. # PDBID: is used as the 4 number/letter pdb code, when invoking source=ID. ############################################################################################################################################################################################################################## ''' from __future__ import print_function try: from pymol import cmd runningpymol = 'yes' except: runningpymol = 'no' pass import time import platform import os import sys def propka(molecule="NIL", chain="*", resi="0", resn="NIL", method="upload", logtime=time.strftime("%m%d", time.localtime()), server_wait=3.0, version="v3.1", verbose="no", showresult="no", pkafile="NIL", makebonds="yes"): Script_Version = "20110823" # First we have to be sure, we give reasonable arguments if pkafile != "NIL": method = 'file' assert method in ['upload', 'file'], "'method' has to be either: method=upload or method=file" # If molecule="all", then try to get the last molecule ##assert molecule not in ['NIL'], "You always have to provide molecule name. Example: molecule=4ins" if molecule == "NIL": assert len(cmd.get_names()) != 0, "Did you forget to load a molecule? There are no objects in pymol." molecule = cmd.get_names()[-1] # To print out to screen for selected residues. Can be separated with "." or make ranges with "-". Example: resi="4-8.10" if resi != "0": resi_range = ResiRange(resi) else: resi_range = [] # Also works for residue names. They are all converted to bigger letters. Example: resn="cys.Tyr" if resn != "NIL": resn_range = ResnRange(resn) else: resn_range = resn # Make chain range, and upper case. chain = ChainRange(chain) # Make result directory. We also the absolut path to the new directory. Newdir = createdirs() if method == "upload": # We try to load mechanize. If this fail, one can always get the .pka file manual and the run: method=file try: from modules import mechanize importedmechanize = 'yes' except ImportError: print("Import error. Is a module missing?") print(sys.exc_info()) print("Look if missing module is in your python path\n%s" % sys.path) importedmechanize = 'no' import modules.mechanize as mechanize # The name for the new molecule newmolecule = "%s%s" % (molecule, logtime) # Create the new molecule from original loaded and for the specified chains. Save it, and disable the old molecule. cmd.create("%s" % newmolecule, "%s and chain %s" % (molecule, chain)) cmd.save("%s%s.pdb" % (Newdir, newmolecule), "%s" % newmolecule) cmd.disable("%s" % molecule) if molecule == "all": cmd.enable("%s" % molecule) cmd.show("cartoon", "%s" % molecule) # Let the new molecule be shown in cartoon. cmd.hide("everything", "%s" % newmolecule) cmd.show("cartoon", "%s" % newmolecule) # Make the absolut path to the newly created .pdb file. PDB = "%s%s.pdb" % (Newdir, newmolecule) source = "upload" PDBID = "" # Request server, and get the absolut path to the result file. pkafile = getpropka(PDB, chain, resi, resn, source, PDBID, logtime, server_wait, version, verbose, showresult) # Open the result file and put in into a handy list. list_results, ligands_results = importpropkaresult(pkafile) if method == "file": assert pkafile not in ['NIL'], "You have to provide path to file. Example: pkafile=./Results_propka/4ins_2011.pka" assert ".pka" in pkafile, 'The propka result file should end with ".pka" \nExample: pkafile=./Results_propka/4ins_2011.pka \npkafile=%s' % (pkafile) # The name for the molecule we pass to the writing script of pymol commands newmolecule = "%s" % molecule cmd.hide("everything", "%s" % newmolecule) cmd.show("cartoon", "%s" % newmolecule) # We open the result file we have got in the manual way and put in into a handy list. list_results, ligands_results = importpropkaresult(pkafile) # Then we print the interesting residues to the screen. printpropkaresult(list_results, resi, resi_range, resn, resn_range, showresult, ligands_results) # Now create the pymol command file. This should label the protein. We get back the absolut path to the file, so we can execute it. result_pka_pymol_name = writepymolcmd(newmolecule, pkafile, verbose, makebonds) # Now run our command file. But only if we are running pymol. if runningpymol == 'yes': cmd.do("run %s" % result_pka_pymol_name) ##if runningpymol=='yes': cmd.do("@%s"%result_pka_pymol_name) return(list_results) if runningpymol != 'no': cmd.extend("propka", propka) def getpropka(PDB="NIL", chain="*", resi="0", resn="NIL", source="upload", PDBID="", logtime=time.strftime("%Y%m%d%H%M%S", time.localtime()), server_wait=3.0, version="v3.1", verbose="no", showresult="no"): try: import modules.mechanize as mechanize importedmechanize = 'yes' except ImportError: print("Import error. Is a module missing?") print(sys.exc_info()) print("Look if missing module is in your python path \n %s" % sys.path) importedmechanize = 'no' propka_v_201108 = 3.1 url = "http://propka.ki.ku.dk/" assert version in ['v2.0', 'v3.0', 'v3.1'], "'version' has to be either: 'v2.0', 'v3.0', 'v3.1'" assert source in ['ID', 'upload', 'addr', 'input_file'], "'source' has to be either: 'ID', 'upload', 'addr', 'input_file'" if source == "upload": assert PDB not in ['NIL'], "You always have to provide PDB path. Example: PDB=.\Results_propka\4ins2011.pdb" if source == "ID": assert len(PDBID) == 4, "PDBID has to be 4 characters" # To print out to screen for selected residues. Can be separated with "." or make ranges with "-". Example: resi="4-8.10" if resi != "0": resi_range = ResiRange(resi) else: resi_range = [] # Also works for residue names. They are all converted to bigger letters. Example: resn="cys.Tyr" if resn != "NIL": resn_range = ResnRange(resn) else: resn_range = resn # Start the browser br = mechanize.Browser() # We pass to the server, that we are not a browser, but this python script. Can be used for statistics at the propka server. br.addheaders = [('User-agent', 'pythonMechanizeClient')] # To turn on debugging messages # br.set_debug_http(True) # To open the start page. page_start = br.open(url) read_start = page_start.read() if verbose == 'yes': print(br.title()) print(br.geturl()) # To get available forms page_forms = [f.name for f in br.forms()] if verbose == 'yes': print(page_forms) # Select first form br.select_form(name=page_forms[0]) # Print the current selected form, so we see that we values we start with. if verbose == 'yes': print(br.form) # Print the parameters of the 'version' RadioControl button and current value if verbose == 'yes': print(br.find_control(name='version'), br.find_control(name='version').value) # This is to check, that the current script is "up-to-date". propka_v_present = float(br.find_control(name='version').value[0].replace('v', '')) if propka_v_present > propka_v_201108: raise UserWarning('\nNew version of propka exist.\nCheck/Update your script.\nPresent:v%s > Script:v%s' % (propka_v_present, propka_v_201108)) # Change the parameters of the 'version' radio button and then reprint the new value. Input has to be in a list [input]. br.form['version'] = [version] if verbose == 'yes': print(br.find_control(name='version').value) # Print the parameters of the 'source' RadioControl button and current value if verbose == 'yes': print(br.find_control(name='source'), br.find_control(name='source').value) # Change the parameters of the 'source' radio button and then reprint the new value. Input has to be in a list [input]. br.form['source'] = [source] if verbose == 'yes': print(br.find_control(name='source').value) # This step was the must strange and took a long time. For finding the information and the double negative way. # One have to enable the pdb button. Read more here: http://wwwsearch.sourceforge.net/old/ClientForm/ ("# All Controls may be disabled.....) PDBID_control = br.find_control("PDBID") PDB_control = br.find_control("PDB") if verbose == 'yes': print(PDBID_control.disabled, PDB_control.disabled) if source == "ID": PDBID_control.disabled = False PDB_control.disabled = True if source == "upload": PDBID_control.disabled = True PDB_control.disabled = False if verbose == 'yes': print(PDBID_control.disabled, PDB_control.disabled) # We create the result dir, and take with us the 'path' to the result dir. Newdir = createdirs() # Open all the files, and assign them. if source == "upload": filename = PDB if source == "ID": filename = PDBID files = openfiles(Newdir, filename, logtime, source) result_pka_file = files[0] result_input_pka_file = files[1] result_log = files[2] filepath = files[3] result_pka_pkafile = files[4] result_pka_file_stripped = files[5] result_pka_file_bonds = files[6] # Print the parameters of the 'PDBID' TextControl button and current value if source == "ID" and verbose == 'yes': print(br.find_control(name='PDBID')) print(br.find_control(name='PDBID').value) # Change the parameters of the 'PDBID' TextControl and then reprint the new value. Input has just to be a string. if source == "ID": br.form["PDBID"] = PDBID if source == "ID" and verbose == 'yes': print(br.find_control(name='PDBID').value) # Print the parameters of the 'PDB' TextControl button and current value if source == "upload" and verbose == 'yes': print(br.find_control(name='PDB')) print(br.find_control(name='PDB').value) # Change the parameters of the 'PDB' FileControl and then reprint the new value. Input has just to be a string. if source == "upload": PDBfilename = PDB PDBfilenamepath = PDB if source == "upload": br.form.add_file(open(PDBfilename), 'text/plain', PDBfilenamepath, name='PDB') if source == "upload" and verbose == 'yes': print(br.find_control(name='PDB')) print(br.find_control(name='PDB').value) # Now reprint the current selected form, so we see that we have the right values. if verbose == 'yes': print(br.form) # Make "how" we would like the next request. We would like to "Click the submit button", but we have not opened the request yet. req = br.click(type="submit", nr=0) # Have to pass by a mechanize exception. Thats the reason for the why True # The error was due to: br.open(req) # mechanize._response.httperror_seek_wrapper: HTTP Error refresh: The HTTP server returned a redirect error that would lead to an infinite loop. # The last 30x error message was: # OK # I haven't been able to find the refresh problem or extend the time. So we make a pass on the raised exception. try: print("Now sending request to server") br.open(req) # If there is raised an exception, we jump through to the result page after some sleep. except mechanize.HTTPError: # We can extract the jobid from the current browser url. jobid = br.geturl()[32:-5] # We notice how the script at the server presents the final result page. url_result = url + "pka/" + jobid + ".html" # Now we continue to try to find the result page, until we have succes. If page doesn't exist, we wait a little. while True: print("Result still not there. Waiting %s seconds more" % server_wait) time.sleep(float(server_wait)) # To pass the "break" after the exception, we make a hack, wait and then go to the result page, which is the jobid. try: page_result = br.open(url_result) read_result = page_result.read() # If we don't receive a error in getting the result page, we break out of the while loop. break # If the page doesn't exist yet. We go back in the while loop. except mechanize.HTTPError: # Wait another round pass # If we get a timeout, we also wait. except mechanize.URLError: # Wait another round pass htmlresult = "The detailed result is now available at: %s" % br.geturl() print(htmlresult) read_result = br.response().read() # Now save the available links from the current page. But only links that satisfy the expression. links_result = [] for l in br.links(url_regex='http://propka.ki.ku.dk/pka'): links_result.append(l) # We also extract the information for neighbour bons. This is given in the url links. bonds = [] for l in br.links(url_regex='http://propka.ki.ku.dk/view/new_view.cgi'): l_split = str(l).split() lresn = l_split[2] lresi = l_split[3] lchain = l_split[4] lurl = l_split[1] lurl_split = lurl.split("&") lresn2 = lurl_split[1] lchain2 = lurl_split[2] lpka = lurl_split[3] ldesolvation = lurl_split[4] lneighbours = lurl_split[5:] for i in range(len(lneighbours)): bonds.append([lresn, lresi, lchain, lresn2, lchain2, lpka, ldesolvation, lneighbours[i]]) # Now follow the link to the .propka_input resultpage if len(links_result) > 1: br.follow_link(links_result[1]) # Now get the page text for the current link if len(links_result) > 1: read_result1 = br.response().read() # Save the result if len(links_result) > 1: result_input_pka_file.write(read_result1) # Now follow the link to the .pka resultpage if len(links_result) > 1: br.back() result_input_pka_file.close() # Now follow first link. "Should be" available for all versions of propka. br.follow_link(links_result[0]) # Now get the page for the current link read_result0 = br.response().read() # Save the result and close file. result_pka_file.write(read_result0) result_pka_file.close() # Now get the result in a list, which is sorted list_results, ligands_results = importpropkaresult(result_pka_pkafile) # Print to log file result_log.write("# executed: %s \n# logtime: %s \n# source=%s \n# PDB=%s \n# chain=%s \n# PDBID=%s \n# server_wait=%s version=%s verbose=%s showresult=%s \n# resi=%s resn=%s\n# %s \n" % (time.strftime("%Y%m%d%H%M%S", time.localtime()), logtime, source, PDB, chain, PDBID, server_wait, version, verbose, showresult, resi, resn, htmlresult)) # Print to screen printpropkaresult(list_results, resi, resi_range, resn, resn_range, showresult, ligands_results) # Now write to log and the stripped file for l in list_results: if resi != "0" and int(l[1]) in resi_range: result_log.write("%3s %3s %s %6s %3s %5s %3s %4s %s" % (l[0], l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8]) + '\n') if resn != "NIL" and l[0] in resn_range and int(l[1]) not in resi_range: result_log.write("%3s %3s %s %6s %3s %5s %3s %4s %s" % (l[0], l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8]) + '\n') result_pka_file_stripped.write("%3s %3s %s %6s %3s %5s %3s %4s %s" % (l[0], l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8]) + '\n') for l in ligands_results: if resn != "NIL" and l[0] in resn_range: result_log.write("%3s %3s %s %6s %3s %5s %3s %4s %s" % (l[0], l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8]) + '\n') result_pka_file_stripped.write("%3s %3s %s %6s %3s %5s %3s %4s %s" % (l[0], l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8]) + '\n') result_pka_file_stripped.close() result_log.close() # Now handle the bonds. We have to delete dublicates first. bonds.sort() last = bonds[-1] for i in range(len(bonds) - 2, -1, -1): if last == bonds[i]: del bonds[i] else: last = bonds[i] # Now make a selection for known residue bonds_selected = [] bonds_ligands = [] for l in bonds: if l[0][6:] in ['ASP', 'GLU', 'ARG', 'LYS', 'HIS', 'CYS', 'TYR', 'C-', 'N+']: bonds_selected.append(l) else: bonds_ligands.append(l) # And now sort it. bonds_selected.sort(key=lambda residue: int(residue[1])) # Now write it to file bonddic = {'=': ' ', ':': ' ', ',': ' ', "'": " "} for l in bonds_selected: nb = replace_all(l[7], bonddic) result_pka_file_bonds.write("%3s %3s %s %7s %7s %9s %17s %s" % (l[0][6:], l[1], l[2][:1], l[3][8:], l[4], l[5], l[6], nb) + '\n') for l in bonds_ligands: nb = replace_all(l[7], bonddic) result_pka_file_bonds.write("%3s %3s %s %7s %7s %9s %17s %s" % (l[0][6:], l[1], l[2][:1], l[3][8:], l[4], l[5], l[6], nb) + '\n') result_pka_file_bonds.close() return(result_pka_pkafile) if runningpymol != 'no': cmd.extend("getpropka", getpropka) def openpymolfiles(pkafile): result_pka_pymol_name = pkafile.replace(".pka", ".pml") result_pka_pymol = open(result_pka_pymol_name, "w") return(result_pka_pymol, result_pka_pymol_name) def printpropkaresult(list_results, resi, resi_range, resn, resn_range, showresult, ligands_results): for l in list_results: if resi != "0" and int(l[1]) in resi_range: if showresult != 'yes': print("%3s %3s %s %6s %3s %5s %3s %4s %s" % (l[0], l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8])) if resn != "NIL" and l[0] in resn_range and int(l[1]) not in resi_range: if showresult != 'yes': print("%3s %3s %s %6s %3s %5s %3s %4s %s" % (l[0], l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8])) if showresult == 'yes': print("%3s %3s %s %6s %3s %5s %3s %4s %s" % (l[0], l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8])) for l in ligands_results: if resn != "NIL" and l[0] in resn_range: if showresult != 'yes': print("%3s %3s %s %6s %3s %5s %3s %4s %s" % (l[0], l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8])) if showresult == 'yes': print("%3s %3s %s %6s %3s %5s %3s %4s %s" % (l[0], l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8])) def importpropkaresult(result_pka_pkafile): result_pka_file = open(result_pka_pkafile, "r") list_results = [] ligands_results = [] ##bonding_partners = [] for l in result_pka_file: if not l.strip(): continue else: # To search for the right lines if l.strip().split()[0] in ['ASP', 'GLU', 'ARG', 'LYS', 'HIS', 'CYS', 'TYR', 'C-', 'N+'] and len(l.strip().split()) > 20: list_results.append([l.strip().split()[0], l.strip().split()[1], l.strip().split()[2], l.strip().split()[3], l.strip().split()[4], l.strip().split()[6], l.strip().split()[7], l.strip().split()[8], l.strip().split()[9]]) # bonding_partners.append(l.strip().split()[11]);bonding_partners.append(l.strip().split()[15]);bonding_partners.append(l.strip().split()[19]) if l.strip().split()[0] not in ['ASP', 'GLU', 'ARG', 'LYS', 'HIS', 'CYS', 'TYR', 'C-', 'N+'] and len(l.strip().split()) > 20: ligands_results.append([l.strip().split()[0], l.strip().split()[1], l.strip().split()[2], l.strip().split()[3], l.strip().split()[4], l.strip().split()[6], l.strip().split()[7], l.strip().split()[8], l.strip().split()[9]]) # bonding_partners.append(l.strip().split()[11]);bonding_partners.append(l.strip().split()[15]);bonding_partners.append(l.strip().split()[19]) # Sort the result after the residue number and then chain. list_results.sort(key=lambda residue: int(residue[1])) list_results.sort(key=lambda chain: chain[2]) # bonding_partners=uniqifi(bonding_partners) ##bonding_partners[:] = [x for x in bonding_partners if x != "XXX"] result_pka_file.close() return(list_results, ligands_results) def importpropkabonds(result_pka_pkafile): bonds = [] result_pka_file_bonds = open(result_pka_pkafile[:-4] + ".bonds", "r") for l in result_pka_file_bonds: bonds.append(l.split()) result_pka_file_bonds.close() return(bonds) def createdirs(): if platform.system() == 'Windows': Newdir = os.getcwd() + "\Results_propka\\" if platform.system() == 'Linux': Newdir = os.getcwd() + "/Results_propka/" if not os.path.exists(Newdir): os.makedirs(Newdir) return(Newdir) def openfiles(Newdir, filename, logtime, source): if source == "upload": result_pka_pkafile = filename.replace(".pdb", ".pka") result_pka_input_pkafile = filename.replace(".pdb", ".propka_input") result_log_name = "%s_Results.log" % (Newdir) result_pka_file_stripped_name = filename.replace(".pdb", ".stripped") result_pka_file_bonds_name = filename.replace(".pdb", ".bonds") if source == "ID": result_pka_pkafile = "%s%s%s.pka" % (Newdir, filename, logtime) result_pka_input_pkafile = "%s%s%s.propka_input" % (Newdir, filename, logtime) result_log_name = "%s_Results.log" % (Newdir) result_pka_file_stripped_name = "%s%s%s.stripped" % (Newdir, filename, logtime) result_pka_file_bonds_name = "%s%s%s.bonds" % (Newdir, filename, logtime) if platform.system() == 'Windows': filepath = "\\" if platform.system() == 'Linux': filepath = "/" # Open the files result_pka_file = open(result_pka_pkafile, "w") result_input_pka_file = open(result_pka_input_pkafile, "w") result_log = open(result_log_name, "a") result_pka_file_stripped = open(result_pka_file_stripped_name, "w") result_pka_file_bonds = open(result_pka_file_bonds_name, "w") return(result_pka_file, result_input_pka_file, result_log, filepath, result_pka_pkafile, result_pka_file_stripped, result_pka_file_bonds) def ResiRange(resi): resi = resi.split('.') resiList = [] for i in resi: if '-' in i: tmp = i.split('-') resiList.extend(list(range(int(tmp[0]), int(tmp[-1]) + 1))) if '-' not in i: resiList.append(int(i)) return(resiList) def ResnRange(resn): resn_split = resn.split('.') resn_range = [resnr.upper() for resnr in resn_split] return(resn_range) def ChainRange(chain): chainstring = chain.replace(".", "+").upper() return(chainstring) def writepymolcmd(newmolecule, pkafile, verbose, makebonds): list_results, ligands_results = importpropkaresult(pkafile) # Now find the available bonding partners that pymol knows of bonding_partners = [] bonding_partners_str = cmd.get_pdbstr("%s and resn * and not resn ASP+GLU+ARG+LYS+HIS+CYS+TYR+GLN+ASN+SER+THR+GLY+PHE+LEU+ALA+ILE+TRP+MET+PRO+VAL+HOH" % (newmolecule)) for i in range(len(bonding_partners_str.splitlines()) - 1): bonding_partners_split = bonding_partners_str.splitlines()[i].split() if bonding_partners_split[0] == "HETATM" or bonding_partners_split[0] == "ATOM": bonding_partners_single = bonding_partners_split[3] bonding_partners.append(bonding_partners_single) bonding_partners = uniqifi(bonding_partners) if verbose == 'yes': print("And other possible bonding partners is: %s" % bonding_partners) # Read in the bond file, if it exists writebonds = "no" if os.path.isfile(pkafile[:-4] + ".bonds") and makebonds == "yes": bonds = importpropkabonds(pkafile) writebonds = "yes" # Open the pymol command file for writing files_pka_pymol = openpymolfiles(pkafile) result_pka_pymol = files_pka_pymol[0] result_pka_pymol_name = files_pka_pymol[1] # Make some dictionary for propka->pymol name conversion dictio = {'ASP': 'CG', 'GLU': 'CD', 'ARG': 'CZ', 'LYS': 'NZ', 'HIS': 'CG', 'CYS': 'SG', 'TYR': 'OH', 'C-': 'C', 'N+': 'N', 'NTR': 'N', 'CTR': 'C', 'GLN': 'CD', 'ASN': 'CG', 'SER': 'OG', 'THR': 'OG1', 'GLY': 'CA', 'PHE': 'CZ', 'LEU': 'CG', 'ALA': 'CB', 'ILE': 'CD1', 'TRP': 'NE1', 'MET': 'SD', 'PRO': 'CG', 'VAL': 'CB'} dictio2 = {'ASP': 'D', 'GLU': 'E', 'ARG': 'R', 'LYS': 'K', 'HIS': 'H', 'CYS': 'C', 'TYR': 'Y', 'C-': 'C-', 'N+': 'N+'} # This list is from: http://en.wikipedia.org/wiki/Protein_pKa_calculations pkaaminoacid = ['ASP', 'GLU', 'ARG', 'LYS', 'HIS', 'CYS', 'TYR'] pkadictio = {'ASP': 3.9, 'GLU': 4.3, 'ARG': 12.0, 'LYS': 10.5, 'HIS': 6.0, 'CYS': 8.3, 'TYR': 10.1} # Now start write to the file. # Try to make silent # result_pka_pymol.write("cmd.feedback('disable','all','actions')\n") # result_pka_pymol.write("cmd.feedback('disable','all','results')\n") # Change the GUI width, to make the long names possible. result_pka_pymol.write("cmd.set('internal_gui_width','360')\n") # Set fonts result_pka_pymol.write("cmd.set('label_font_id','12')\n") result_pka_pymol.write("cmd.set('label_size','-0.5')\n") result_pka_pymol.write("cmd.set('label_color','grey')\n") # No auto zoom the new objects result_pka_pymol.write("cmd.set('auto_zoom','off')\n") # The name for the molecules are defined here pkamolecule = "%spKa" % (newmolecule) pkalabelmolecule = "%sLab" % (newmolecule) # Create the groups now, so they come in order. They will be empty result_pka_pymol.write("cmd.group('%sResi','Res*')\n" % (newmolecule)) result_pka_pymol.write("cmd.group('%sLigands','Lig*')\n" % (newmolecule)) if writebonds == "yes": result_pka_pymol.write("cmd.group('%sBonds','%sBond*')\n" % (newmolecule, newmolecule)) # Create new empty pymol pka molecules. For pka atoms and its label. This is a "bucket" we where we will put in the atoms together. result_pka_pymol.write("cmd.create('%s','None')\n" % (pkamolecule)) result_pka_pymol.write("cmd.create('%s','None')\n" % (pkalabelmolecule)) # Now make the pka atoms and alter, color and such for l in list_results: name = dictio[l[0]] resn = dictio2[l[0]] resi = l[1] chain = l[2] pka = l[3] buried = l[4] if "*" in pka: pka = pka.replace("*", "") comment = "*Coupled residue" else: comment = "" if l[0] in pkaaminoacid: pkadiff = (float(pka) - pkadictio[l[0]]) pkadiff = "(%s)" % pkadiff if pka == "99.99": pkadiff = "" else: pkadiff = "" # Make the selection for which atom to copy newselection = ("/%s//%s/%s/%s" % (newmolecule, chain, resi, name)) protselect = ("%sRes_%s%s%s" % (newmolecule, chain, resn, resi)) result_pka_pymol.write("cmd.select('%s','byres %s')\n" % (protselect, newselection)) result_pka_pymol.write("cmd.show('sticks','byres %s')\n" % (protselect)) # The temporary name tempname = ("%s%s%s%s" % (pkamolecule, chain, resi, name)) tempnamelabel = ("%s%s%s%s" % (pkalabelmolecule, chain, resi, name)) tempselect = ("/%s//%s/%s" % (tempname, chain, resi)) tempselectlabel = ("/%s//%s/%s" % (tempnamelabel, chain, resi)) # Copy the atom, call it by the residue name result_pka_pymol.write("cmd.create('%s','%s',quiet=1)\n" % (tempname, newselection)) # Alter the name and the b value of the newly created atom result_pka_pymol.write("cmd.alter('%s','b=%s')\n" % (tempselect, pka)) result_pka_pymol.write("cmd.alter('%s','vdw=0.5')\n" % (tempselect)) result_pka_pymol.write("cmd.alter('%s','name=%s%s%s')\n" % (tempselect, '"', pka, '"')) # Now create a fake label atom, and translate it result_pka_pymol.write("cmd.create('%s','%s',quiet=1)\n" % (tempnamelabel, tempname)) movelabelxyz = (1.5, 0, 0) result_pka_pymol.write("cmd.translate('[%s,%s,%s]','%s',camera=0)\n" % (movelabelxyz[0], movelabelxyz[1], movelabelxyz[2], tempnamelabel)) # Labelling alternate positions are not allowed, so we delete that attribute for the label atoms. result_pka_pymol.write("cmd.alter('%s','alt=%s%s')\n" % (tempselectlabel, '"', '"')) result_pka_pymol.write("cmd.label('%s','text_type=%spka=%s%s Bu:%s%s%s%s')\n" % (tempselectlabel, '"', pka, pkadiff, buried, '%', comment, '"')) # Now put the atoms into a bucket of atoms result_pka_pymol.write("cmd.create('%s','%s or (%s)',quiet=1)\n" % (pkamolecule, pkamolecule, tempselect)) result_pka_pymol.write("cmd.create('%s','%s or (%s)',quiet=1)\n" % (pkalabelmolecule, pkalabelmolecule, tempselectlabel)) # Remove the temporary atoms result_pka_pymol.write("cmd.remove('%s')\n" % (tempname)) result_pka_pymol.write("cmd.remove('%s')\n" % (tempnamelabel)) # Delete the temporary molecule/selection result_pka_pymol.write("cmd.delete('%s')\n" % (tempname)) result_pka_pymol.write("cmd.delete('%s')\n" % (tempnamelabel)) # Group the resi together result_pka_pymol.write("cmd.group('%sResi','%sRes*')\n" % (newmolecule, newmolecule)) for l in ligands_results: resn = l[0] atom = l[1] chain = l[2] pka = l[3] buried = l[4] if verbose == 'yes': print("Ligand. resn:%s atom:%s chain:%s pka:%s buried:%s" % (resn, atom, chain, pka, buried)) if Check_bonding_partners(bonding_partners, resn)[0]: if "*" in pka: pka = pka.replace("*", "") comment = "*Coupled residue" else: comment = "" # Make the selection for which atom to copy ligselection = ("/%s and chain %s and resn %s and name %s" % (newmolecule, chain, resn, atom)) ligselect = ("%sLig_%s%s%s" % (newmolecule, chain, resn, atom)) result_pka_pymol.write("cmd.select('%s','%s')\n" % (ligselect, ligselection)) result_pka_pymol.write("cmd.show('sticks','byres %s')\n" % (ligselect)) result_pka_pymol.write("cmd.util.cbap('byres %s')\n" % (ligselect)) # The temporary name tempname = ("%s%s%s%s" % (pkamolecule, chain, resn, atom)) tempnamelabel = ("%s%s%s%s" % (pkalabelmolecule, chain, resn, atom)) tempselect = ("/%s and chain %s and resn %s" % (tempname, chain, resn)) tempselectlabel = ("/%s and chain %s and resn %s" % (tempnamelabel, chain, resn)) # Copy the atom, call it by the residue name result_pka_pymol.write("cmd.create('%s','%s',quiet=1)\n" % (tempname, ligselection)) # Alter the name and the b value of the newly created atom result_pka_pymol.write("cmd.alter('%s','b=%s')\n" % (tempselect, pka)) result_pka_pymol.write("cmd.alter('%s','vdw=0.5')\n" % (tempselect)) result_pka_pymol.write("cmd.alter('%s','name=%s%s%s')\n" % (tempselect, '"', pka, '"')) # Now create a fake label atom, and translate it result_pka_pymol.write("cmd.create('%s','%s',quiet=1)\n" % (tempnamelabel, tempname)) movelabelxyz = (1.5, 0, 0) result_pka_pymol.write("cmd.translate('[%s,%s,%s]','%s',camera=0)\n" % (movelabelxyz[0], movelabelxyz[1], movelabelxyz[2], tempnamelabel)) # Labelling alternate positions are not allowed, so we delete that attribute for the label atoms. result_pka_pymol.write("cmd.alter('%s','alt=%s%s')\n" % (tempselectlabel, '"', '"')) result_pka_pymol.write("cmd.label('%s','text_type=%spka=%s Bu:%s%s%s%s')\n" % (tempselectlabel, '"', pka, buried, '%', comment, '"')) # Now put the atoms into a bucket of atoms result_pka_pymol.write("cmd.create('%s','%s or (%s)',quiet=1)\n" % (pkamolecule, pkamolecule, tempselect)) result_pka_pymol.write("cmd.create('%s','%s or (%s)',quiet=1)\n" % (pkalabelmolecule, pkalabelmolecule, tempselectlabel)) # Remove the temporary atoms result_pka_pymol.write("cmd.remove('%s')\n" % (tempname)) result_pka_pymol.write("cmd.remove('%s')\n" % (tempnamelabel)) # Delete the temporary molecule/selection result_pka_pymol.write("cmd.delete('%s')\n" % (tempname)) result_pka_pymol.write("cmd.delete('%s')\n" % (tempnamelabel)) # Group the resi together result_pka_pymol.write("cmd.group('%sLigands','%sLig*')\n" % (newmolecule, newmolecule)) # Finish the pka atoms, and show spheres result_pka_pymol.write("cmd.show('spheres','%s')\n" % (pkamolecule)) result_pka_pymol.write("cmd.spectrum('b','red_white_blue',selection='%s',minimum='0',maximum='14')\n" % (pkamolecule)) result_pka_pymol.write("cmd.alter('%s and name 99.9','vdw=0.8')\n" % (pkamolecule)) result_pka_pymol.write("cmd.show('spheres','%s and name 99.9')\n" % (pkamolecule)) result_pka_pymol.write("cmd.color('sulfur','%s and name 99.9')\n" % (pkamolecule)) # Now we make the bonds if writebonds == "yes": Bondgroups = [] naturalaminoacids = ['ASP', 'GLU', 'ARG', 'LYS', 'HIS', 'CYS', 'TYR', 'NTR', 'N+', 'CTR', 'C-', 'GLN', 'ASN', 'SER', 'THR', 'GLY', 'PHE', 'LEU', 'ALA', 'ILE', 'TRP', 'MET', 'PRO', 'VAL'] for l in bonds: if l[0] in naturalaminoacids: name = dictio[l[0]] resi = l[1] chain = l[2] desolvation = l[6][12:] pkachange = l[11] NBresi = l[8][3:] NBchain = l[9] NBbond = l[-1][:2] if l[8][:3] in naturalaminoacids: NBname, cutoff = BondTypeName(dictio[l[8][:3]], NBbond) fromselection = ("/%s//%s/%s/%s" % (newmolecule, chain, resi, name)) toselection = ("/%s//%s/%s/%s" % (newmolecule, NBchain, NBresi, NBname)) if l[8][:3] == 'NTR': extind = cmd.identify("chain %s and name N" % (NBchain))[0] toselection = ("/%s and id %s and name N" % (newmolecule, extind)) NBresi = "N+" if l[8][:3] == 'CTR': extind = cmd.identify("chain %s and name C" % (NBchain))[-1] toselection = ("/%s and id %s and name C" % (newmolecule, extind)) NBresi = "C-" distname = ("%s_%s%s%s%s_%s_%s" % (newmolecule, chain, resi, NBchain, NBresi, NBbond, pkachange)) result_pka_pymol.write("cmd.distance('%s','%s','%s'%s)\n" % (distname, fromselection, toselection, cutoff)) result_pka_pymol.write("cmd.color('%s','%s')\n" % (SetDashColor(NBbond), distname)) # result_pka_pymol.write("cmd.disable('%s')\n"%(distname)) Bondgroups.append("%s%s" % (chain, resi)) if l[8][:3] not in naturalaminoacids and Check_bonding_partners(bonding_partners, l[8])[0]: cutoff = "" NBresn = Check_bonding_partners(bonding_partners, l[8])[1] NBname = l[8][len(NBresn):] + "*" fromselection = ("/%s//%s/%s/%s" % (newmolecule, chain, resi, name)) toselection = ("/%s and chain %s and resn %s and name %s" % (newmolecule, NBchain, NBresn, NBname)) if verbose == 'yes': print("Res->Ligand: (%s) -> (%s)" % (fromselection, toselection)) result_pka_pymol.write("cmd.show('sticks','%s')\n" % (toselection)) distname = ("%s_%s%s%s_%s_%s" % (newmolecule, chain, resi, NBresn, NBbond, pkachange)) result_pka_pymol.write("cmd.distance('%s','%s','%s'%s)\n" % (distname, fromselection, toselection, cutoff)) result_pka_pymol.write("cmd.color('%s','%s')\n" % (SetDashColor(NBbond), distname)) # result_pka_pymol.write("cmd.disable('%s')\n"%(distname)) Bondgroups.append("%s%s" % (chain, resi)) if l[0] in bonding_partners: resn = l[0] atom = l[1] chain = l[2] desolvation = l[6][12:] pkachange = l[11] NBresi = l[8][3:] NBchain = l[9] NBbond = l[-1][:2] if not Check_bonding_partners(bonding_partners, l[8])[0]: NBname, cutoff = BondTypeName(dictio[l[8][:3]], NBbond) fromselection = ("/%s and chain %s and resn %s and name %s" % (newmolecule, chain, resn, atom)) toselection = ("/%s//%s/%s/%s" % (newmolecule, NBchain, NBresi, NBname)) if l[8][:3] == 'NTR': extind = cmd.identify("chain %s and name N" % (NBchain))[0] toselection = ("/%s and id %s and name N" % (newmolecule, extind)) NBresi = "N+" if l[8][:3] == 'CTR': extind = cmd.identify("chain %s and name C" % (NBchain))[-1] toselection = ("/%s and id %s and name C" % (newmolecule, extind)) NBresi = "C-" distname = ("%s_%s%s%s%s%s_%s_%s" % (newmolecule, chain, resn, atom, NBchain, NBresi, NBbond, pkachange)) result_pka_pymol.write("cmd.distance('%s','%s','%s'%s)\n" % (distname, fromselection, toselection, cutoff)) result_pka_pymol.write("cmd.color('%s','%s')\n" % (SetDashColor(NBbond), distname)) Bondgroups.append("%s%s%s" % (chain, resn, atom)) # result_pka_pymol.write("cmd.disable('%s')\n"%(distname)) if Check_bonding_partners(bonding_partners, l[8])[0]: cutoff = "" NBresn = Check_bonding_partners(bonding_partners, l[8])[1] NBname = l[8][len(NBresn):] + "*" fromselection = ("/%s and chain %s and resn %s and name %s" % (newmolecule, chain, resn, atom)) toselection = ("/%s and chain %s and resn %s and name %s" % (newmolecule, NBchain, NBresn, NBname)) if verbose == 'yes': print("Ligand->Ligand: (%s) -> (%s)" % (fromselection, toselection)) result_pka_pymol.write("cmd.show('sticks','%s')\n" % (toselection)) distname = ("%s_%s%s%s%s_%s_%s" % (newmolecule, chain, resn, atom, NBresn, NBbond, pkachange)) result_pka_pymol.write("cmd.distance('%s','%s','%s'%s)\n" % (distname, fromselection, toselection, cutoff)) result_pka_pymol.write("cmd.color('%s','%s')\n" % (SetDashColor(NBbond), distname)) # result_pka_pymol.write("cmd.disable('%s')\n"%(distname)) Bondgroups.append("%s%s%s" % (chain, resn, atom)) Bondgroups = uniqifi(Bondgroups) for l in Bondgroups: result_pka_pymol.write("cmd.group('%sBonds_%s','%s_%s*')\n" % (newmolecule, l, newmolecule, l)) result_pka_pymol.write("cmd.disable('%sBonds_%s')\n" % (newmolecule, l)) result_pka_pymol.write("cmd.group('%sBonds','%sBonds_*')\n" % (newmolecule, newmolecule)) result_pka_pymol.write("cmd.set('auto_zoom','on')\n") # result_pka_pymol.write("cmd.feedback('enable','all','actions')\n") # result_pka_pymol.write("cmd.feedback('enable','all','results')\n") result_pka_pymol.close() return(result_pka_pymol_name) def replace_all(text, dic): for i, j in dic.items(): text = text.replace(i, j) return(text) def uniqifi(seq, idfun=None): # Order preserving if idfun is None: def idfun(x): return x seen = {} result = [] for item in seq: marker = idfun(item) if marker in seen: continue seen[marker] = 1 result.append(item) return(result) def BondTypeName(NBname, NBbond): if NBbond == "SH": cutoff = "" return(NBname, cutoff) if NBbond == "BH": cutoff = "" return("N", cutoff) else: cutoff = "" return(NBname, cutoff) def Check_bonding_partners(bonding_partners, NBname): answer = False for l in bonding_partners: if l in NBname: answer = True NBname = l break else: answer = False return(answer, NBname) def SetDashColor(NBbond): if NBbond == "SH": color = "brightorange" if NBbond == "BH": color = "lightorange" if NBbond == "CC": color = "red" return(color)