function photoreceptors = DefaultPhotoreceptors(kind) % photoreceptors = DefaultPhotoreceptors(kind) % % Return a structure containing default sources % for photoreceptor complements of various kinds. % % Available kinds % LivingHumanFovea (Default) - Human foveal cones in the eye % CIE2Deg - Leads to CIE 2-Deg fundamentals % CIE10Deg - Leads to CIE 10-Deg fundamentals % LivingHumanMelanopsin - Most recent melanopsin spectral sensitivity in living eye. % LivingHumanMelanopsinTsujimura2010 - Older estimate of melanopsin gc spectral sensitivity in living eye % LivingDog - Canine % GuineaPig - Guinea pig in dish % % See also: FillInPhotoreceptors, PrintPhotoreceptors, RetIrradianceToIsoRecSec % IsomerizationsInEyeDemo, IsomerizationsInDishDemo, ComputeCIEConeFundamentals, % RodFundamentalTest, MelanopsinFundamentalTest. % % 7/25/03 dhb Wrote it. % 12/04/07 dhb Added dog parameters % 8/14/11 dhb Added fieldSizeDegrees and ageInYears fields to photoreceptors for LivingHumanFovea case. % These defaults match the CIE standard. % 4/20/12 dhb Add LivingHumanMelanopsin % 5/10/12 dhb Changed name for LivingHumanMelanopsin to postpend Tsujimura2010 % 8/12/13 dhb Change field order to make printouts look nicer. % 11/13/13 dhb Add 'LivingHumanRod' and 'LivingHumanMelanopsin' options. % 5/26/14 dhb Add pupilDimater.value = [] to fix FillInPhotoreceptors. % 1/11/21 dhb Comment tuning. % Default if (nargin < 1 || isempty(kind)) kind = 'LivingHumanFovea'; end % Fill it in switch (kind) % CIE 2-Deg fundamentals case 'CIE2Deg' photoreceptors.species = 'Human'; photoreceptors.types = {'FovealLCone' 'FovealMCone' 'FovealSCone'}; photoreceptors.nomogram.S = WlsToS((390:5:780)'); photoreceptors.OSlength.source = 'None'; photoreceptors.ISdiameter.source = 'Rodieck'; photoreceptors.specificDensity.source = 'None'; photoreceptors.axialDensity.source = 'CIE'; photoreceptors.nomogram.source = 'None'; photoreceptors.quantalEfficiency.source = 'Generic'; photoreceptors.fieldSizeDegrees = 2; photoreceptors.ageInYears = 32; photoreceptors.pupilDiameter.value = 3; photoreceptors.eyeLengthMM.source = 'Rodieck'; photoreceptors.absorbance = 'log10coneabsorbance_ss'; photoreceptors.lensDensity.source = 'CIE'; photoreceptors.macularPigmentDensity.source = 'CIE'; % CIE 10-Deg fundamentals case 'CIE10Deg' photoreceptors.species = 'Human'; photoreceptors.types = {'LCone' 'MCone' 'SCone'}; photoreceptors.nomogram.S = WlsToS((390:5:780)'); photoreceptors.OSlength.source = 'None'; photoreceptors.ISdiameter.source = 'Webvision'; photoreceptors.specificDensity.source = 'None'; photoreceptors.axialDensity.source = 'CIE'; photoreceptors.nomogram.source = 'None'; photoreceptors.quantalEfficiency.source = 'Generic'; photoreceptors.fieldSizeDegrees = 10; photoreceptors.ageInYears = 32; photoreceptors.pupilDiameter.value = 3; photoreceptors.eyeLengthMM.source = 'Rodieck'; photoreceptors.absorbance = 'log10coneabsorbance_ss'; photoreceptors.lensDensity.source = 'CIE'; photoreceptors.macularPigmentDensity.source = 'CIE'; % LivingHumanRod % % The choices of values here were chosen in the Brainard % lab (by Manuel Spitschan) to provide a pretty good fit to the CIE % 1924 scotopic sensitivity curve. Many combinations of lambda max, % nomogram, and axial densitiy will provide a good fit. We chose the ones % below because the lambda-max and axial density parameters seem % in accord with values in the literature and the fit is quite good. % Ref [1] gives lambda max of 491, and the average of the rod axial density values in % [2] and [3] is the value 0.334. % % See RodFundamentalTest to obtain a plot of the agreement with the tabulated 1924 function. % % Depending on what you are using this for, you may want to override the default 3 mm pupil. % % [1] Baylor DA, Nunn BJ, Schnapf JL. The photocurrent, noise, and spectral % sensitivity of rods of the monkey Macaca fascicularis. J Physiol. 1984; 357: 575?607. % % [2] Alpern, M. & Pugh, E.N. (1974). The density and photosensitivity of human rhodopsin in % the living retina. Journal of Physiology, London, 237, 341-370. [0.342 from densitometry] % % [3] Zwas, F. & Alpern, M. (1976). The density of human rhodopsin in the rods. Vision Research 16, % 121-127. [0.318 from brightness matching, 0.342 from dark adaptation curves] case 'LivingHumanRod' photoreceptors.species = 'Human'; photoreceptors.types = {'Rod'}; photoreceptors.nomogram.S = WlsToS((390:5:780)'); photoreceptors.OSlength.source = 'None'; photoreceptors.ISdiameter.source = 'Webvision'; photoreceptors.specificDensity.source = 'None'; photoreceptors.axialDensity.source = 'Value Provided Directly'; photoreceptors.axialDensity.value = 0.334; photoreceptors.nomogram.source = 'Govardovskii'; photoreceptors.nomogram.lambdaMax = 491; photoreceptors.quantalEfficiency.source = 'Generic'; photoreceptors.fieldSizeDegrees = 10; photoreceptors.ageInYears = 32; photoreceptors.pupilDiameter.value = 3; photoreceptors.eyeLengthMM.source = 'Rodieck'; photoreceptors.lensDensity.source = 'CIE'; photoreceptors.macularPigmentDensity.source = 'CIE'; % LivingHumanMelanopsin % % The choices of values here were chosen in the Brainard % lab to privde an estimate of a reasonable fundamental for % melanopin ipRGCs. We follow work from the Lucas lab [1,2] % and use a very low (essentially zero) axial density and no % macular pigment (because the ipRGCs are in front of most of % the macular pigment, as we understand it [3]. We inherit the % CIE standard for lens density, and this can be adjusted via % the CIE formulae by overriding the default age and pupil size % parameters. % % [1] Enezi, J, Revell, V, Brown, T, Wynne, J, Schlangen, L. & Lucas, R. (2011). % A "melanopic" spectral efficiency function predicts the sensitivity of melanopsin % photoreceptors to polychromatic lights. J Biol Rhythms 26(4), 314-23. % doi: 10.1177/0748730411409719 % % [2] Brown, T, Allen, A, Al-Enezi, J., Wynne, J., Schlangen, L., Hommes, V. & Lucas, R. (2013). % The Melanopic Sensitivity Function Accounts for Melanopsin-Driven Responses in Mice under % Diverse Lighting Conditions. PLoS One, 8(1), e53583. doi: 10.1371/journal.pone.0053583. % % [3] Vienot, F., Brettel, H., Dang, T.V., Le Rohellec, J. (2012). Domain of metamers exciting % intrinsically photosensitive retinal ganglion cells (ipRGCs) and rods. J Opt Soc Am A Opt % Image Sci Vis. 29(2): A366-76. doi: 10.1364/JOSAA.29.00A366. case 'LivingHumanMelanopsin' photoreceptors.species = 'Human'; photoreceptors.types = {'Melanopsin'}; photoreceptors.nomogram.S = WlsToS((390:5:780)'); photoreceptors.axialDensity.source = 'Value provided directly'; photoreceptors.axialDensity.value = 0.015; photoreceptors.nomogram.source = 'Govardovskii'; photoreceptors.nomogram.lambdaMax = 480; photoreceptors.quantalEfficiency.source = 'Generic'; photoreceptors.fieldSizeDegrees = 10; photoreceptors.ageInYears = 32; photoreceptors.pupilDiameter.value = 3; photoreceptors.lensDensity.source = 'CIE'; photoreceptors.macularPigmentDensity.source = 'None'; case 'LivingHumanFovea' photoreceptors.species = 'Human'; photoreceptors.types = {'FovealLCone' 'FovealMCone' 'FovealSCone'}; photoreceptors.nomogram.S = [380 1 401]; photoreceptors.OSlength.source = 'Rodieck'; photoreceptors.ISdiameter.source = 'Rodieck'; photoreceptors.specificDensity.source = 'Rodieck'; photoreceptors.nomogram.source = 'StockmanSharpe'; photoreceptors.nomogram.lambdaMax = [558.9 530.3 420.7]'; photoreceptors.quantalEfficiency.source = 'Generic'; photoreceptors.fieldSizeDegrees = 2; photoreceptors.ageInYears = 32; photoreceptors.pupilDiameter.source = 'PokornySmith'; photoreceptors.pupilDiameter.value = []; photoreceptors.eyeLengthMM.source = 'Rodieck'; photoreceptors.lensDensity.source = 'StockmanSharpe'; photoreceptors.macularPigmentDensity.source = 'Bone'; % This creates Tsujiumura's (2010) estimate of the melanopsin gc % spectral sensitivity in the human eye. The quantal efficiency % is just made up, though, so that the code runs. % % Tsujimura has used different lambda-max in different papers. % The 482 value given here is from the 2010 paper. His email % suggests he may have used 489 and 502 at different times. Also % by email, he used Stockman-Sharpe not Govardovskii nomogram % for the 2010 paper, despite what the paper says. % % The value Tsujimura uses for axial density seems way too high, % given what the physiologists tell us about the fact that % the melanopsin receptors live in a very thin layer in the ganglion % cells. case 'LivingHumanMelanopsinTsujimura2010' photoreceptors.species = 'Human'; photoreceptors.types = {'Melanopsin'}; photoreceptors.nomogram.S = [380 1 401]; photoreceptors.axialDensity.source = 'Tsujimura'; photoreceptors.axialDensity.value = 0.5; photoreceptors.nomogram.source = 'StockmanSharpe'; photoreceptors.nomogram.lambdaMax = [482]'; photoreceptors.quantalEfficiency.source = 'None'; photoreceptors.quantalEfficiency.value = 1; photoreceptors.fieldSizeDegrees = 10; photoreceptors.ageInYears = 32; photoreceptors.lensDensity.source = 'CIE'; photoreceptors.macularPigmentDensity.source = 'CIE'; case 'LivingDog' photoreceptors.species = 'Dog'; photoreceptors.types = {'LCone' 'SCone' 'Rod'}; photoreceptors.nomogram.S = [380 1 401]; photoreceptors.OSlength.source = 'PennDog'; photoreceptors.ISdiameter.source = 'PennDog'; photoreceptors.specificDensity.source = 'Generic'; photoreceptors.pupilDiameter.source = 'PennDog'; photoreceptors.pupilDiameter.value = []; photoreceptors.eyeLengthMM.source = 'PennDog'; photoreceptors.nomogram.source = 'Govardovskii'; photoreceptors.nomogram.lambdaMax = [555 429 506]'; photoreceptors.quantalEfficiency.source = 'Generic'; photoreceptors.lensDensity.source = 'None'; photoreceptors.macularPigmentDensity.source = 'None'; case 'GuineaPig' photoreceptors.species = 'GuineaPig'; photoreceptors.types = {'MCone' 'SCone' 'Rod'}; photoreceptors.nomogram.S = [380 1 401]; photoreceptors.OSlength.source = 'SterlingLab'; photoreceptors.OSdiameter.source = 'SterlingLab'; photoreceptors.ISdiameter.source = 'SterlingLab'; photoreceptors.specificDensity.source = 'Bowmaker'; photoreceptors.pupilDiameter.source = 'None'; photoreceptors.pupilDiameter.value = []; photoreceptors.eyeLengthMM.source = 'None'; photoreceptors.nomogram.source = 'Govardovskii'; photoreceptors.nomogram.lambdaMax = [529 430 500]'; photoreceptors.quantalEfficiency.source = 'Generic'; photoreceptors.lensDensity.source = 'None'; photoreceptors.macularPigmentDensity.source = 'None'; otherwise error('Unknown photoreceptor kind specified'); end