
Concord: Homogeneous Programming for 
Heterogeneous Architectures

Rajkishore Barik, Intel Labs

Brian T.Lewis, Intel Labs



Heterogeneous Platforms

• Heterogeneity is ubiquitous: mobile devices, laptops, servers, & 
supercomputers

• Emerging hardware trend: CPU & GPU cores integrated on same die, 
share physical memory & even last-level cache

23/2/2014

Intel 4th generation core processors AMD Trinity

Source: http://www.hardwarezone.com.my/feature-amd-trinity-apu-look-inside-2nd-generation-apu/conclusion-118

Programming Systems Lab, Intel Labs

How do we program these integrated GPU systems?

http://www.hardwarezone.com.my/feature-amd-trinity-apu-look-inside-2nd-generation-apu/conclusion-118


Motivation: GPU Programming

• Existing work: regular data-parallel applications using array-
based data structures map well to the GPUs
– OpenCL 1.x, CUDA, OpenACC, C++ AMP, …

• Enable other existing multi-core applications to quickly take 
advantage of the integrated GPUs
– Often use object-oriented design, pointers

• Enable pointer-based data structures on the GPU

– Irregular applications on GPU: benefits are not well-understood

• Data-dependent control flow

– Graph-based algorithms such as BFS, SSSP, etc.

3/2/2014 Programming Systems Lab, Intel Labs 3

Widen the set of applications that target GPUs



Contributions

• Concord: a seamless C++ heterogeneous 
programming framework for integrated CPU 
and GPU processors
– Shared Virtual Memory (SVM) in software

• share pointer-containing data structures like trees

– Adapts existing data-parallel C++ constructs to 
heterogeneous computing: TBB, OpenMP

– Supports most C++ features including virtual functions

– Demonstrates programmability, performance, and 
energy benefits of SVM

• Available open source as Intel Heterogeneous 
Research Compiler (iHRC) at 
https://github.com/IntelLabs/iHRC/

3/2/2014 Programming Systems Lab, Intel Labs 4



Concord Framework

3/2/2014 5

OpenCL to 
GPU ISA

GPU 
binary

OpenCL JIT 
Compiler

CLANG

LLVM

OpenCL 
code gen

Object: IA binary + OpenCL

IA 
code gen

Linker

Executable: IA binary + OpenCL

Static
Concord
compiler

Concord C++

Compute 
runtime

CPU GPU

Programming Systems Lab, Intel Labs



Concord C++ programming constructs

Concord extends TBB APIs:

template <class Body>
parallel_for_hetero (int numiters, const Body &B, 

bool device);

template <class Body>
parallel_reduce_hetero (int numiters, const Body &B,                                                   

bool device);

Supported C++ features: 
• Classes
• Namespaces
• Multiple inheritance
• Templates
• Operator and function overloading

• Virtual functions

63/2/2014 Programming Systems Lab, Intel Labs

Existing TBB APIs:

template <typename Index, typename Body> 
parallel_for (Index first, Index last, const Body& B)

template <typename Index, typename Body> 
parallel_reduce (Index first, Index last, const Body& B)



class ListSearch {

…

void operator()(int tid)  const{

... list->key...

}};

…

ListSearch *list_object = new ListSearch(…);

parallel_for_hetero (num_keys, *list_object, GPU); 

class ListSearch {

…

void operator()(int tid) const{

... list->key...

}};

…

ListSearch *list_object = new ListSearch(…);

parallel_for(0, num_keys, *list_object); 

Concord Version

Run on CPU  
or GPU

Concord C++ Example: Parallel LinkedList Search

Minimal differences between two versions

Concord VersionTBB Version

3/2/2014 Programming Systems Lab, Intel Labs 7



Example: parallel_for_hetero

class Foo {

float *A, *B, *C;

public:

Foo(float *a_, float *b_, float *c_):A(a_),B(b_),C(c_)  { }

void operator()(int i) const { // execute in parallel

A[i] = B[i] + C[i];

}

};

……

Foo *f = new Foo(A,B,C);

parallel_for_hetero (1024, *f, GPU); // Data parallel operation for GPU

3/2/2014 Programming Systems Lab, Intel Labs 8



Example: parallel_reduce_hetero

class Bar {

float *A, sum;

public:

Bar(float *a_): A(a_), sum(0.0f) {  }

void operator()(int i) { // execute in parallel

sum = f(A[i]);  // compute local sum

}

void join(Bar &rhs) {

sum += rhs.sum;  // perform reduction

}

};

……

Bar *b = new Bar(A);

parallel_reduce_hetero (1024, *b, GPU);  // Data  parallel reduction on GPU

3/2/2014 Programming Systems Lab, Intel Labs 9



Restrictions

• No guarantee that the parallel loop iterations will be executed 
in parallel

• No ordering among different parallel iterations
– Floating-point determinism is not guaranteed

• Features not yet supported on the GPU
– Recursion (except tail recursion which can be converted to loop)

– Exception

– Taking address of local variable

– Memory allocation and de-allocation

– Function calls via function pointers (virtual functions are handled)

3/2/2014 Programming Systems Lab, Intel Labs 10

Silently execute on CPU if these features are present in GPU code



Key Implementation Challenges

• Shared Virtual Memory (SVM) support to enable pointer-
sharing between CPU and GPU
• Compiler optimization to reduce SVM translation overheads

• Virtual functions on GPU

• Parallel reduction on GPU

• Compiler optimizations to reduce cache line contention 

113/2/2014 Programming Systems Lab, Intel Labs



SVM Implementation on x86

0x0…0

Shared 
physical memory

CPU 
virtual memory

SVM: Address 
shared with 
GPU (pinned)

CPU_Base

CPU_ptr

GPU 
virtual memory

GPU surface 
mapped to 
shared area

GPU_Base

GPU_ptr

123/2/2014

GPU_ptr = GPU_Base + CPU_ptr – CPU_Base

Programming Systems Lab, Intel Labs

offset

offset



SVM Translation in OpenCL code

3/2/2014 13

class ListSearch {

…

void operator()(int tid)  const{

... list->key...

}};

…

ListSearch *list_object = new ListSearch(…);

parallel_for_hetero (num_keys, *list_object, GPU); 

//__global char * svm_const = (GPU_Base – CPU_Base);

#define AS_GPU_PTR(T,p) (__global T *) (svm_const + p)

__kernel void opencl_operator (

__global char *svm_const, 

unsigned long B_ptr) {

AS_GPU_PTR(LinkedList, list)->key…

}

• svm_const is a runtime constant and is computed once

• Every CPU pointer before dereference on the GPU is converted into GPU 
addressspace using AS_GPU_PTR

Generated OpenCLConcord C++

Programming Systems Lab, Intel Labs



Compiler Optimization of SVM Translations

• Best strategy:
– Eagerly convert to GPU addressspace & keep both CPU & GPU representations

– If a store is encountered, use CPU representation

– Additional optimizations
• Dead-code elimination

• Optimal code motion to perform redundancy elimination and place the translations

int **a = data->a;

for ( int i=0; i<N; i++)

… = a[i];

// a[i] is not used after this

3/2/2014 14

int **a = AS_GPU_PTR(int *, data->a);

for ( int i=0; i<N; i++)

… = AS_CPU_PTR(int, 

AS_GPU_PTR(int, a[i]));

int **a = data->a;

for ( int i=0; i<N; i++)

… = AS_GPU_PTR(int *, a)[i];

int **a = AS_GPU_PTR(int *, data->a);

for ( int i=0; i<N; i++)

… = a[i];

Eager Best

Overhead: 2N + 1 Overhead: N Overhead: 1

Lazy

Programming Systems Lab, Intel Labs



Virtual Functions on GPU

Original hierarchy:
class Shape {

virtual void intersect() {…}

virtual void compute() {…}

};

class Triangle : Shape {

virtual void intersect() {…}

};

Virtual Function call:
void foo(Shape *s) {

s->compute();

} CPU Virtual Function call:
void foo(Shape *s) {

(s->vtableptr[1])();

}

3/2/2014 15

Object layout with vtable:

Generated codeOriginal code

Programming Systems Lab, Intel Labs

GPU Virtual Function call:
void foo(Shape *s, void *gCtx) {

if (s->vtableptr[1] == gCtx->     

Shape::compute) 

Shape::compute();

}

• Copy necessary metadata into shared memory for GPU access
• Translate virtual function calls into if-then-else statements

vtableptr intersect

compute

Shape Shape::vtable

vtableptr intersect

Shape:compute

Triangle Triangle::vtable

Copy to 
shared 
memory



Parallel Reduction on GPU

3/2/2014 16

parallel_reduce_hetero(16, B, GPU)

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9
B10 B11

B12 B13 B14 B15

B0 B8

B

Hierarchical 
reduction 
in local 
memory

Private 
copies of B 
& parallel 
operation 

Programming Systems Lab, Intel Labs

class Body {
…
void operator()(int tid)  const { … }
void join(Body &rhs) { … }
}

join join



Compiler Optimization for Cache Contention

3/2/2014 17

void operator ()(int i) {
for (j=0; j<N; j++) 

... = a[j];
}

• Key idea: Ensure that the j loop is accessed in a different 
order for each GPU core

void operator ()(int i) {
int start = i / W; /* W: no. of GPU cores */
for (j=0; j<N; j++) {

j_tmp = (j + start ) % N;
... = a[j_tmp];

}}

• Integrated GPUs often use a unified cache among all GPU cores
– Contention among GPU cores to access same cache line

• number of simultaneous read and write ports to a cache line may 
not be same as the number of GPU cores

All GPU cores access same data

Each GPU core accesses different data

Programming Systems Lab, Intel Labs

void operator ()(int i) {
int start = i / W; /* W: no. of GPU cores */
for (j=0; j<N; j++) {

j_tmp = (j + start ) % N;
... = a[j_tmp];

}}



Using GPU Memory hierarchy

• Stack allocated objects in C++ are promoted to OpenCL 
private memory

• Reductions are performed in OpenCL local shared memory

• Automatic generation of local memory code for regular 
applications (work-in-progress)

3/2/2014 Programming Systems Lab, Intel 

Labs

18



Compiler Details

• HeteroTBB pass: 
– identify and lower Concord 

constructs

– Handles virtual functions

• Hetero pass: 
– Check restrictions

– Generates a list of kernels

• HeteroGPU pass: 
– Perform compiler optimizations

– Generate OpenCL code

• HeteroCPU pass: 
– Generates x86 executable with 

embedded OpenCL code

HeteroTBB Pass

Hetero Pass

HeteroGPU pass

HeteroCPU pass

Clang++

Concord 
Runtime

Concord 
C++ 

Executa
ble

LLVM

Passes

3/2/2014 Programming Systems Lab, Intel Labs 19



Runtime Details

• OpenCL host program
– Setup shared region and map to an OpenCL buffer

• Extract OpenCL code and JIT to GPU binary 
– Vendor OpenCL compiler

• Compile all the kernels at once
– Cache the binary per function for future invocations

– Amortizes the cost 

• Allows heterogeneous CPU+GPU execution

3/2/2014 Programming Systems Lab, Intel Labs 20



Case Study: Barnes-Hut

• An efficient algorithm for the N-body 
problem
– Approximates far away bodies

• Algorithm:
– Build an oct-tree representing positions 

of bodies

– Update the centers of masses for all 
subtrees

– Sort the bodies based on relative 
positions

– Calculate gravitational forces between 
bodies (offload to GPU)

– Update positions and velocities

• Takes advantage of (shared) pointers

3/2/2014 Programming Systems Lab, Intel Labs 21



void ForceCalculationKernel()
{

if (0 == threadIdx.x) {
tmp = radiusd;

dq[0] = tmp * tmp * itolsqd;
for (i = 1; i < maxdepthd; i++) {

dq[i] = dq[i - 1] * 0.25f;
dq[i - 1] += epssqd;

}
dq[i - 1] += epssqd;

if (maxdepthd > MAXDEPTH) {
*errd = maxdepthd;

}
}
__syncthreads();

if (maxdepthd <= MAXDEPTH) {
base = threadIdx.x / WARPSIZE;

sbase = base * WARPSIZE;
j = base * MAXDEPTH;
diff = threadIdx.x - sbase;

if (diff < MAXDEPTH) {
dq[diff+j] = dq[diff];

}
__syncthreads();

Barnes-Hut CUDA Kernel

// iterate over all bodies assigned to thread
for (k = threadIdx.x + blockIdx.x * blockDim.x; 

k < nbodiesd; k += blockDim.x * gridDim.x) {
i = sortd[k];  // get permuted/sorted index
// cache position info
px = posxd[i];
py = posyd[i];
pz = poszd[i];

ax = 0.0f;
ay = 0.0f;
az = 0.0f;

// initialize iteration stack, i.e., push root 
node onto stack

depth = j;
if (sbase == threadIdx.x) {

node[j] = nnodesd;
pos[j] = 0;

}

while (depth >= j) {
// stack is not empty
while ((t = pos[depth]) < 8) {

// node on top of stack has more children 
to process

n = childd[node[depth]*8+t];  // load child 
pointer

if (sbase == threadIdx.x) {
// I'm the first thread in the warp
pos[depth] = t + 1;

}

Programming Systems Lab, Intel Labs 22

if (n >= 0) {
dx = posxd[n] - px;
dy = posyd[n] - py;
dz = poszd[n] - pz;
tmp = dx*dx + (dy*dy + (dz*dz + 

epssqd));  // compute distance squared 
(plus softening)

if ((n < nbodiesd) || __all(tmp >= 
dq[depth])) {  // check if all threads 
agree that cell is far enough away (or is 
a body)

tmp = rsqrtf(tmp);  // compute 
distance

tmp = massd[n] * tmp * tmp * 
tmp;

ax += dx * tmp;
ay += dy * tmp;
az += dz * tmp;

} else {
// push cell onto stack
depth++;
if (sbase == threadIdx.x) {

node[depth] = n;
pos[depth] = 0;

}
}

} else {
depth = max(j, depth - 1);  // 

early out because all remaining children 
are also zero

}
}
depth--;  // done with this level

}

if (stepd > 0) {
// update 

velocity
velxd[i] += (ax -

accxd[i]) * dthfd;
velyd[i] += (ay -

accyd[i]) * dthfd;
velzd[i] += (az -

acczd[i]) * dthfd;
}

// save computed 
acceleration

accxd[i] = ax;
accyd[i] = ay;
acczd[i] = az;

}
}

}

Source: http://www.gpucomputing.net/?q=node/1314

~100 Lines of CUDA Code with optimization, hard to read and maintain

3/2/2014



1. void update (BH_Tree **stack, Body *body) {

2. while(!stack.empty()) {

3. Octree *tree = stack.top();

4. stack.pop();

5. Octree **children = ((OctreeInternal*)tree)->child;

6. for(int i=0;i<8;i++) {

7. Octree *child = children[i];

8. if (!child) continue;

9. if (child->nodeType == LEAF || body->pos.distance(child->pos) 

10. * THETA > child->box.size()) {

11. computeForce(body, child);

12. } else {

13. stack.push(child);

14. }

15. }

16. }

Barnes-Hut Concord C++ Kernel

Programming Systems Lab, Intel 

Labs

23

• distance is 5 lines. computeForce is 9 lines. push is 2 lines and pop is 1line
• Total 33 lines of code
• No extra host code for device malloc and data copy

3/2/2014



Experimental setup

• Experimental Platform: 
– Intel Core 4th Generation Ultrabook

• CPU: 2 cores, hyper-threaded, 1.7GHz
• GPU: Intel HD Graphics 5000 with 40 cores, 200MHz-1.1GHz
• Power envelope 15W

– Intel Core 4th Generation Desktop
• CPU: 4 cores, hyper-threaded, 3.4GHz
• GPU: Intel HD Graphics 4600 with 20 cores, 350MHz-1.25GHz
• Power envelope 84W

• Energy measurements: MSR_PKG_ENERGY_STATUS

• Comparison with multi-core CPU: 
1. GPU-SPEEDUP: speedup using GPU execution  
2. GPU-ENERGY-SAVINGS: energy savings using GPU execution

243/2/2014 Programming Systems Lab, Intel Labs



Workloads

3/2/2014 Programming Systems Lab, Intel Labs 25

*uses virtual function



Overheads (on desktop system)

3/2/2014 Programming Systems Lab, Intel Labs 26

0

0.5

1

1.5

2

2.5

3

%age compile-time rel. to total time

0

50

100

150

200

250

Other overhead per kernel 

invocation (in microseconds)

• Compile-time is 1.03% of total execution time
• Other overheads (excluding compile-time) is ~90 microseconds



Dynamic estimates of irregularity

3/2/2014 Programming Systems Lab, Intel Labs 27

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

control memory remaining

• BFS, Btree, ConnComp, FaceDetect, SkipList & SSSP exhibit a lot of irregularities (>50%)
• FaceDetect exhibits maximum percentage of memory irregularities



Overhead of SW-based SVM implementation

3/2/2014 28

0

1

2

3

4

5

6

7

1000x1000 2000x2000 2400x2400 3000x3000 3200x3200E
x
e
cu

ti
on

 t
im

e
 i
n 

se
co

nd
s

Image size

GPU-OPENCL GPU-CONCORD

SW-based SVM overhead is negligible for smaller images and is ˜6% for the largest image

Programming Systems Lab, Intel Labs

Raytracer



Ultrabook: Speedup & Energy savings compared to multicore CPU

3/2/2014 Programming Systems Lab, Intel Labs 29

0

1

2

3

4

5

6

7

8

9

10

h
ig
h
e
r 

th
e
 b

e
tt

e
r

GPU-SPEEDUP GPU-ENERGY-SAVINGS

Average speedup of 2.5x and energy savings of 2x vs. multicore CPU



Desktop: Speedup & Energy savings compared to multicore CPU

3/2/2014 Programming Systems Lab, Intel Labs 30

0

0.5

1

1.5

2

2.5

3

3.5

4

h
ig
h
e
r 

th
e
 b

e
tt

e
r

GPU-SPEEDUP GPU-ENERGY-SAVINGS

Average speedup of 1.01x and energy savings of 1.7x vs. multicore CPU



Regular Workloads on Quad-core desktop: 
Speedup compared to multi-core CPU 

3/2/2014 Programming Systems Lab, Intel Labs 31

Automatic local memory code generation can further boost performance

0

2

4

6

8

10

12

BlackScholes MatrixMult Nbody Seismic CFD

S
pe

e
d
up

 r
e
la
ti
ve

 t
o 

m
ul
ti
-
co

re
 C

PU



CPU+GPU Performance on HSW Desktop

3/2/2014 Programming Systems Lab, Intel Labs 32

0

10

20

30

40

50

60

70

80

90

100

R
e
la

ti
ve

 t
o 

O
R

A
C

L
E

(C
PU

+G
PU

)

H
ig

h
e
r 

is
 b

e
tt

e
r

CPU GPU SHARED-COUNTER

• CPU-alone and GPU-alone do not give the best performance
• Hybrid CPU+GPU is necessary



Comparison with Manual code

BTree from Rodinia: Concord takes 2.68s vs. 3.26s for 
hand-coded OpenCL on the Desktop Haswell system 

3/2/2014 Programming Systems Lab, Intel Labs 33



Conclusions & Future work

• Runs out-of-the-box C++ applications on GPU
– No new language invention

• Demonstrates that SVM is a key enabler in programmer 
productivity of heterogeneous systems

• Implements SVM in software with low-overhead

• Implements virtual functions and parallel reductions on GPU

• Saves energy of 2.04x on Ultrabook and 1.7x on Desktop 
compared to multi-core CPU for irregular applications

• Hybrid CPU+GPU execution looks promising for both performance 
and energy

• Future work:
– Support advanced features on GPU: exceptions, memory allocation, 

locks, etc.

– Improve combined CPU+GPU heterogeneous execution

3/2/2014 34Programming Systems Lab, Intel Labs



Questions?

Please try it out:
https://github.com/IntelLabs/iHRC/

3/2/2014 Programming Systems Lab, Intel Labs 35

Cloth Physics demo using Concord:



Backup

3/2/2014 Programming Systems Lab, Intel 

Labs

36



Ultrabook: Speedup compared to multicore CPU

3/2/2014 37

0

1

2

3

4

5

6

7

8

9

10

h
ig
h
e
r 

th
e
 b

e
tt

e
r

GPU GPU+PTROPT GPU+L3OPT GPU+ALL

Average speedup of 2.5x vs. multicore CPU

Programming Systems Lab, Intel 

Labs



Ultrabook: Energy savings compared to multi-core CPU

3/2/2014 38

0

1

2

3

4

5

6

h
ig
h
e
r 

th
e
 b

e
tt

e
r

GPU GPU+PTROPT GPU+L3OPT GPU+ALL

Average energy savings of 2.04x vs. multicore CPU

Programming Systems Lab, Intel 
Labs



Desktop: Speedup compared to multi-core CPU

3/2/2014 39

0

0.5

1

1.5

2

2.5

3

3.5

h
ig
h
e
r 

th
e
 b

e
tt

e
r

GPU GPU+PTROPT GPU+L3OPT GPU+ALL

Programming Systems Lab, Intel 

Labs



Desktop: Energy savings compared to multi-core CPU

3/2/2014 40

0

0.5

1

1.5

2

2.5

3

3.5

4

h
ig
h
e
r 

th
e
 b

e
tt

e
r

GPU GPU+PTROPT GPU+L3OPT GPU+ALL

Average energy savings of 1.7x vs. multicore CPU

Programming Systems Lab, Intel 
Labs



GPU Programming is hard

3/2/2014 Programming Systems Lab, Intel Labs 41

Performance

P
ro

d
u

c
ti

v
it

y

CUDA, OpenCL, OpenGL, 
RenderScript?

Media Toolkit

C++ AMP, OpenACC, Cilk
Plus..

Concord


