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Heterogeneous Platforms

• Heterogeneity is ubiquitous: mobile devices, laptops, servers, & 
supercomputers

• Emerging hardware trend: CPU & GPU cores integrated on same die, 
share physical memory & even last-level cache
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Intel 4th generation core processors AMD Trinity

Source: http://www.hardwarezone.com.my/feature-amd-trinity-apu-look-inside-2nd-generation-apu/conclusion-118
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How do we program these integrated GPU systems?

http://www.hardwarezone.com.my/feature-amd-trinity-apu-look-inside-2nd-generation-apu/conclusion-118


Motivation: GPU Programming

• Existing work: regular data-parallel applications using array-
based data structures map well to the GPUs
– OpenCL 1.x, CUDA, OpenACC, C++ AMP, …

• Enable other existing multi-core applications to quickly take 
advantage of the integrated GPUs
– Often use object-oriented design, pointers

• Enable pointer-based data structures on the GPU

– Irregular applications on GPU: benefits are not well-understood

• Data-dependent control flow

– Graph-based algorithms such as BFS, SSSP, etc.
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Widen the set of applications that target GPUs



Contributions

• Concord: a seamless C++ heterogeneous 
programming framework for integrated CPU 
and GPU processors
– Shared Virtual Memory (SVM) in software

• share pointer-containing data structures like trees

– Adapts existing data-parallel C++ constructs to 
heterogeneous computing: TBB, OpenMP

– Supports most C++ features including virtual functions

– Demonstrates programmability, performance, and 
energy benefits of SVM

• Available open source as Intel Heterogeneous 
Research Compiler (iHRC) at 
https://github.com/IntelLabs/iHRC/
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Concord Framework
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Concord C++ programming constructs

Concord extends TBB APIs:

template <class Body>
parallel_for_hetero (int numiters, const Body &B, 

bool device);

template <class Body>
parallel_reduce_hetero (int numiters, const Body &B,                                                   

bool device);

Supported C++ features: 
• Classes
• Namespaces
• Multiple inheritance
• Templates
• Operator and function overloading

• Virtual functions

63/2/2014 Programming Systems Lab, Intel Labs

Existing TBB APIs:

template <typename Index, typename Body> 
parallel_for (Index first, Index last, const Body& B)

template <typename Index, typename Body> 
parallel_reduce (Index first, Index last, const Body& B)



class ListSearch {

…

void operator()(int tid)  const{

... list->key...

}};

…

ListSearch *list_object = new ListSearch(…);

parallel_for_hetero (num_keys, *list_object, GPU); 

class ListSearch {

…

void operator()(int tid) const{

... list->key...

}};

…

ListSearch *list_object = new ListSearch(…);

parallel_for(0, num_keys, *list_object); 

Concord Version

Run on CPU  
or GPU

Concord C++ Example: Parallel LinkedList Search

Minimal differences between two versions

Concord VersionTBB Version
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Example: parallel_for_hetero

class Foo {

float *A, *B, *C;

public:

Foo(float *a_, float *b_, float *c_):A(a_),B(b_),C(c_)  { }

void operator()(int i) const { // execute in parallel

A[i] = B[i] + C[i];

}

};

……

Foo *f = new Foo(A,B,C);

parallel_for_hetero (1024, *f, GPU); // Data parallel operation for GPU
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Example: parallel_reduce_hetero

class Bar {

float *A, sum;

public:

Bar(float *a_): A(a_), sum(0.0f) {  }

void operator()(int i) { // execute in parallel

sum = f(A[i]);  // compute local sum

}

void join(Bar &rhs) {

sum += rhs.sum;  // perform reduction

}

};

……

Bar *b = new Bar(A);

parallel_reduce_hetero (1024, *b, GPU);  // Data  parallel reduction on GPU

3/2/2014 Programming Systems Lab, Intel Labs 9



Restrictions

• No guarantee that the parallel loop iterations will be executed 
in parallel

• No ordering among different parallel iterations
– Floating-point determinism is not guaranteed

• Features not yet supported on the GPU
– Recursion (except tail recursion which can be converted to loop)

– Exception

– Taking address of local variable

– Memory allocation and de-allocation

– Function calls via function pointers (virtual functions are handled)
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Silently execute on CPU if these features are present in GPU code



Key Implementation Challenges

• Shared Virtual Memory (SVM) support to enable pointer-
sharing between CPU and GPU
• Compiler optimization to reduce SVM translation overheads

• Virtual functions on GPU

• Parallel reduction on GPU

• Compiler optimizations to reduce cache line contention 
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SVM Implementation on x86

0x0…0

Shared 
physical memory

CPU 
virtual memory

SVM: Address 
shared with 
GPU (pinned)

CPU_Base

CPU_ptr

GPU 
virtual memory

GPU surface 
mapped to 
shared area

GPU_Base

GPU_ptr
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GPU_ptr = GPU_Base + CPU_ptr – CPU_Base

Programming Systems Lab, Intel Labs

offset

offset



SVM Translation in OpenCL code
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class ListSearch {

…

void operator()(int tid)  const{

... list->key...

}};

…

ListSearch *list_object = new ListSearch(…);

parallel_for_hetero (num_keys, *list_object, GPU); 

//__global char * svm_const = (GPU_Base – CPU_Base);

#define AS_GPU_PTR(T,p) (__global T *) (svm_const + p)

__kernel void opencl_operator (

__global char *svm_const, 

unsigned long B_ptr) {

AS_GPU_PTR(LinkedList, list)->key…

}

• svm_const is a runtime constant and is computed once

• Every CPU pointer before dereference on the GPU is converted into GPU 
addressspace using AS_GPU_PTR

Generated OpenCLConcord C++
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Compiler Optimization of SVM Translations

• Best strategy:
– Eagerly convert to GPU addressspace & keep both CPU & GPU representations

– If a store is encountered, use CPU representation

– Additional optimizations
• Dead-code elimination

• Optimal code motion to perform redundancy elimination and place the translations

int **a = data->a;

for ( int i=0; i<N; i++)

… = a[i];

// a[i] is not used after this
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int **a = AS_GPU_PTR(int *, data->a);

for ( int i=0; i<N; i++)

… = AS_CPU_PTR(int, 

AS_GPU_PTR(int, a[i]));

int **a = data->a;

for ( int i=0; i<N; i++)

… = AS_GPU_PTR(int *, a)[i];

int **a = AS_GPU_PTR(int *, data->a);

for ( int i=0; i<N; i++)

… = a[i];

Eager Best

Overhead: 2N + 1 Overhead: N Overhead: 1

Lazy
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Virtual Functions on GPU

Original hierarchy:
class Shape {

virtual void intersect() {…}

virtual void compute() {…}

};

class Triangle : Shape {

virtual void intersect() {…}

};

Virtual Function call:
void foo(Shape *s) {

s->compute();

} CPU Virtual Function call:
void foo(Shape *s) {

(s->vtableptr[1])();

}
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Object layout with vtable:

Generated codeOriginal code

Programming Systems Lab, Intel Labs

GPU Virtual Function call:
void foo(Shape *s, void *gCtx) {

if (s->vtableptr[1] == gCtx->     

Shape::compute) 

Shape::compute();

}

• Copy necessary metadata into shared memory for GPU access
• Translate virtual function calls into if-then-else statements

vtableptr intersect

compute

Shape Shape::vtable

vtableptr intersect

Shape:compute

Triangle Triangle::vtable

Copy to 
shared 
memory



Parallel Reduction on GPU
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parallel_reduce_hetero(16, B, GPU)

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9
B10 B11

B12 B13 B14 B15

B0 B8

B

Hierarchical 
reduction 
in local 
memory

Private 
copies of B 
& parallel 
operation 
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class Body {
…
void operator()(int tid)  const { … }
void join(Body &rhs) { … }
}

join join



Compiler Optimization for Cache Contention
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void operator ()(int i) {
for (j=0; j<N; j++) 

... = a[j];
}

• Key idea: Ensure that the j loop is accessed in a different 
order for each GPU core

void operator ()(int i) {
int start = i / W; /* W: no. of GPU cores */
for (j=0; j<N; j++) {

j_tmp = (j + start ) % N;
... = a[j_tmp];

}}

• Integrated GPUs often use a unified cache among all GPU cores
– Contention among GPU cores to access same cache line

• number of simultaneous read and write ports to a cache line may 
not be same as the number of GPU cores

All GPU cores access same data

Each GPU core accesses different data

Programming Systems Lab, Intel Labs

void operator ()(int i) {
int start = i / W; /* W: no. of GPU cores */
for (j=0; j<N; j++) {

j_tmp = (j + start ) % N;
... = a[j_tmp];

}}



Using GPU Memory hierarchy

• Stack allocated objects in C++ are promoted to OpenCL 
private memory

• Reductions are performed in OpenCL local shared memory

• Automatic generation of local memory code for regular 
applications (work-in-progress)

3/2/2014 Programming Systems Lab, Intel 
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Compiler Details

• HeteroTBB pass: 
– identify and lower Concord 

constructs

– Handles virtual functions

• Hetero pass: 
– Check restrictions

– Generates a list of kernels

• HeteroGPU pass: 
– Perform compiler optimizations

– Generate OpenCL code

• HeteroCPU pass: 
– Generates x86 executable with 

embedded OpenCL code

HeteroTBB Pass

Hetero Pass

HeteroGPU pass

HeteroCPU pass

Clang++

Concord 
Runtime

Concord 
C++ 

Executa
ble

LLVM

Passes
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Runtime Details

• OpenCL host program
– Setup shared region and map to an OpenCL buffer

• Extract OpenCL code and JIT to GPU binary 
– Vendor OpenCL compiler

• Compile all the kernels at once
– Cache the binary per function for future invocations

– Amortizes the cost 

• Allows heterogeneous CPU+GPU execution
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Case Study: Barnes-Hut

• An efficient algorithm for the N-body 
problem
– Approximates far away bodies

• Algorithm:
– Build an oct-tree representing positions 

of bodies

– Update the centers of masses for all 
subtrees

– Sort the bodies based on relative 
positions

– Calculate gravitational forces between 
bodies (offload to GPU)

– Update positions and velocities

• Takes advantage of (shared) pointers
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void ForceCalculationKernel()
{

if (0 == threadIdx.x) {
tmp = radiusd;

dq[0] = tmp * tmp * itolsqd;
for (i = 1; i < maxdepthd; i++) {

dq[i] = dq[i - 1] * 0.25f;
dq[i - 1] += epssqd;

}
dq[i - 1] += epssqd;

if (maxdepthd > MAXDEPTH) {
*errd = maxdepthd;

}
}
__syncthreads();

if (maxdepthd <= MAXDEPTH) {
base = threadIdx.x / WARPSIZE;

sbase = base * WARPSIZE;
j = base * MAXDEPTH;
diff = threadIdx.x - sbase;

if (diff < MAXDEPTH) {
dq[diff+j] = dq[diff];

}
__syncthreads();

Barnes-Hut CUDA Kernel

// iterate over all bodies assigned to thread
for (k = threadIdx.x + blockIdx.x * blockDim.x; 

k < nbodiesd; k += blockDim.x * gridDim.x) {
i = sortd[k];  // get permuted/sorted index
// cache position info
px = posxd[i];
py = posyd[i];
pz = poszd[i];

ax = 0.0f;
ay = 0.0f;
az = 0.0f;

// initialize iteration stack, i.e., push root 
node onto stack

depth = j;
if (sbase == threadIdx.x) {

node[j] = nnodesd;
pos[j] = 0;

}

while (depth >= j) {
// stack is not empty
while ((t = pos[depth]) < 8) {

// node on top of stack has more children 
to process

n = childd[node[depth]*8+t];  // load child 
pointer

if (sbase == threadIdx.x) {
// I'm the first thread in the warp
pos[depth] = t + 1;

}
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if (n >= 0) {
dx = posxd[n] - px;
dy = posyd[n] - py;
dz = poszd[n] - pz;
tmp = dx*dx + (dy*dy + (dz*dz + 

epssqd));  // compute distance squared 
(plus softening)

if ((n < nbodiesd) || __all(tmp >= 
dq[depth])) {  // check if all threads 
agree that cell is far enough away (or is 
a body)

tmp = rsqrtf(tmp);  // compute 
distance

tmp = massd[n] * tmp * tmp * 
tmp;

ax += dx * tmp;
ay += dy * tmp;
az += dz * tmp;

} else {
// push cell onto stack
depth++;
if (sbase == threadIdx.x) {

node[depth] = n;
pos[depth] = 0;

}
}

} else {
depth = max(j, depth - 1);  // 

early out because all remaining children 
are also zero

}
}
depth--;  // done with this level

}

if (stepd > 0) {
// update 

velocity
velxd[i] += (ax -

accxd[i]) * dthfd;
velyd[i] += (ay -

accyd[i]) * dthfd;
velzd[i] += (az -

acczd[i]) * dthfd;
}

// save computed 
acceleration

accxd[i] = ax;
accyd[i] = ay;
acczd[i] = az;

}
}

}

Source: http://www.gpucomputing.net/?q=node/1314

~100 Lines of CUDA Code with optimization, hard to read and maintain
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1. void update (BH_Tree **stack, Body *body) {

2. while(!stack.empty()) {

3. Octree *tree = stack.top();

4. stack.pop();

5. Octree **children = ((OctreeInternal*)tree)->child;

6. for(int i=0;i<8;i++) {

7. Octree *child = children[i];

8. if (!child) continue;

9. if (child->nodeType == LEAF || body->pos.distance(child->pos) 

10. * THETA > child->box.size()) {

11. computeForce(body, child);

12. } else {

13. stack.push(child);

14. }

15. }

16. }

Barnes-Hut Concord C++ Kernel

Programming Systems Lab, Intel 

Labs
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• distance is 5 lines. computeForce is 9 lines. push is 2 lines and pop is 1line
• Total 33 lines of code
• No extra host code for device malloc and data copy
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Experimental setup

• Experimental Platform: 
– Intel Core 4th Generation Ultrabook

• CPU: 2 cores, hyper-threaded, 1.7GHz
• GPU: Intel HD Graphics 5000 with 40 cores, 200MHz-1.1GHz
• Power envelope 15W

– Intel Core 4th Generation Desktop
• CPU: 4 cores, hyper-threaded, 3.4GHz
• GPU: Intel HD Graphics 4600 with 20 cores, 350MHz-1.25GHz
• Power envelope 84W

• Energy measurements: MSR_PKG_ENERGY_STATUS

• Comparison with multi-core CPU: 
1. GPU-SPEEDUP: speedup using GPU execution  
2. GPU-ENERGY-SAVINGS: energy savings using GPU execution
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Workloads
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*uses virtual function



Overheads (on desktop system)
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Dynamic estimates of irregularity
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• BFS, Btree, ConnComp, FaceDetect, SkipList & SSSP exhibit a lot of irregularities (>50%)
• FaceDetect exhibits maximum percentage of memory irregularities



Overhead of SW-based SVM implementation
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Ultrabook: Speedup & Energy savings compared to multicore CPU
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Desktop: Speedup & Energy savings compared to multicore CPU
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Regular Workloads on Quad-core desktop: 
Speedup compared to multi-core CPU 
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Automatic local memory code generation can further boost performance
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CPU+GPU Performance on HSW Desktop
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Comparison with Manual code

BTree from Rodinia: Concord takes 2.68s vs. 3.26s for 
hand-coded OpenCL on the Desktop Haswell system 
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Conclusions & Future work

• Runs out-of-the-box C++ applications on GPU
– No new language invention

• Demonstrates that SVM is a key enabler in programmer 
productivity of heterogeneous systems

• Implements SVM in software with low-overhead

• Implements virtual functions and parallel reductions on GPU

• Saves energy of 2.04x on Ultrabook and 1.7x on Desktop 
compared to multi-core CPU for irregular applications

• Hybrid CPU+GPU execution looks promising for both performance 
and energy

• Future work:
– Support advanced features on GPU: exceptions, memory allocation, 

locks, etc.

– Improve combined CPU+GPU heterogeneous execution
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Questions?

Please try it out:
https://github.com/IntelLabs/iHRC/
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Cloth Physics demo using Concord:



Backup

3/2/2014 Programming Systems Lab, Intel 

Labs

36



Ultrabook: Speedup compared to multicore CPU
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Ultrabook: Energy savings compared to multi-core CPU
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Desktop: Speedup compared to multi-core CPU

3/2/2014 39

0

0.5

1

1.5

2

2.5

3

3.5

h
ig
h
e
r 

th
e
 b

e
tt

e
r

GPU GPU+PTROPT GPU+L3OPT GPU+ALL

Programming Systems Lab, Intel 

Labs



Desktop: Energy savings compared to multi-core CPU
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GPU Programming is hard
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