
Lua documentation for Illarion scripting
v5.24

Martin ∗, pharse †, vilarion ‡

2004-2006/2010-2015/2020

∗martin@illarion.org, http://www.illarion.org
†pharse@illarion.org, http://www.illarion.org
‡vilarion@illarion.org, http://www.illarion.org

Contents

1. General 6
1.1. Formalism . 6
1.2. General introduction . 6
1.3. Variable types . 7

2. Quickstart: Tutorials 8
2.1. Level 0: Before we start . 8
2.2. Level 1: Your first script . 8

3. Positions 9
3.1. Functions . 9
3.2. Variables . 9
3.3. Additional information . 9

4. Colours 10
4.1. Functions . 10
4.2. Variables . 10

5. Characters 11
5.1. Functions . 11

5.1.1. Text/Speech . 11
5.1.2. Skills and Attributes . 12
5.1.3. Quest progress . 16
5.1.4. Item handling . 16
5.1.5. All the rest . 17

5.2. Variables . 18

6. Containers 20
6.1. Functions . 20

7. Dialogs 22
7.1. MessageDialog . 22

7.1.1. Results . 22
7.1.2. Construction . 22
7.1.3. Request . 22

7.2. InputDialog . 23
7.2.1. Results . 23
7.2.2. Construction . 23
7.2.3. Request . 23

7.3. SelectionDialog . 23
7.3.1. Results . 23
7.3.2. Construction . 23
7.3.3. Request . 24

2

7.4. MerchantDialog . 24
7.4.1. Results . 24
7.4.2. Construction . 24
7.4.3. Request . 25

7.5. CraftingDialog . 25
7.5.1. Results . 25
7.5.2. Construction . 25
7.5.3. Request . 26

7.6. Examples . 26
7.6.1. MessageDialog . 26
7.6.2. InputDialog . 26

8. Items (scriptItem) 27
8.1. Functions . 27
8.2. Variables . 29
8.3. Constants . 29

9. Items (ItemStruct) 30
9.1. Variables . 30

10.Weapons and Armor 31
10.1. WeaponStruct . 31
10.2. ArmorStruct . 31
10.3. NaturalArmor . 31

11.World 32
11.1. Functions . 32
11.2. Variables . 36

12.Fields 37
12.1. Functions . 37
12.2. Variables . 37

13.It’s a kind of magic 38
13.1. Global variables . 38
13.2. Some words on magic . 38

14.Weather 39
14.1. Variables . 39
14.2. Functions . 39
14.3. Entry point . 39

15.Long time effects 40
15.1. Basic idea . 40
15.2. Functions . 40
15.3. Variables . 41
15.4. Entry points for longtime effects . 41
15.5. Example: Adding long time effects to characters . 42
15.6. Ideas for usage . 43

3

16.Delayed execution and disturbation 44
16.1. Functions . 44
16.2. Constants . 44
16.3. Usage . 44
16.4. Example . 44

17.Waypoints 46
17.1. Functions . 46
17.2. Entry Points . 47

18.Global Scriptvariables 48
18.1. Functions . 48

19.Random 49
19.1. Functions . 49

20.Debugging 50
20.1. Functions . 50

21.Entry Points 51
21.1. Items . 51
21.2. NPC . 51
21.3. Magic . 53
21.4. Monsters . 53
21.5. Fields . 54
21.6. Quests . 54
21.7. Scheduled Scripts . 55
21.8. Server Scripts . 55

21.8.1. Combat (standardfighting.lua) . 55
21.8.2. Login (login.lua) . 56
21.8.3. Logout (logout.lua) . 56
21.8.4. Learning (learn.lua) . 56
21.8.5. Death (playerdeath.lua) . 56
21.8.6. Depot Access (depot.lua) . 56
21.8.7. Player LookAt (playerlookat.lua) . 56
21.8.8. Item LookAt (itemlookat.lua) . 56
21.8.9. Reloading Scripts (reload.lua) . 57

22.Lua 58
22.1. Important commands . 58
22.2. Built in functions . 58
22.3. Binary operators . 59
22.4. Lists . 59
22.5. Modules: Using functions and variables of other lua files 60
22.6. A note on namespaces, ambiguities and variable declaration 61

23.String handling 62
23.1. File I/O . 63

24.Examples 64
24.1. Items . 64

4

24.2. NPCs . 66

25.Common bugs 69

A. Versions 70

5

1. General

1.1. Formalism

System variables and variables of structures are accessed by ”.”.
Functions are called by ”:”.
If a function has no parameters, one still has to write ().
Lines that start with ”?” refer to unclear commands.
Lines that start with ”!” refer to suggested commands.
For variables, ”r :” in front of them means reading access, ”rw :” means reading and writing access.
Names in this font refer to illarion-specific key words.
Names in this font refer to lua-specific key words.
Names in 〈in this format〉 are placeholder and can be seen as variables.
Names in normal fixed font refer to a special choice of variables.
Names of functions are designed to be self explaining, therefore there are a lot of undocumented functions
around.

Examples:

XKoordinate=TargetItem.pos.x;

User:talk(Character.say, "Hallo Welt!");

Important note: Lua is case sensitive.

1.2. General introduction

Everytime certain events happen (someone shift-clicks an object, a monster dies, someone looks at an
object, ... see the section about ”entry points”), a script is started. The name of that script is usually
defined in the SQL-database in a separate row. For example, the table common, which holds information
about all items in illarion (weight, ...), has a row called com script, which holds the name of the script
that is linked to each item. If someone shift-clicks an item, the lua-script that is linked to this item in
common is executed. This script then consists of several functions, defining what happens in certain
cases: the item can be used with another item (shift-clicks), with a character and so on. This means, a
general item has the following lua-file

-- item.lua

function UseItem(User, SourceItem)

...

end

function UseItemWithCharacter(User, SourceItem, Character)

...

end

6

function LookAtItem(User, Item)

...

end

...

Such a lua-file does not need all possible functions; if an item has no LookAtItem(-)function (LookAt=left-
click), it simply does nothing (special) when looked at. There are also entry points for magic and NPCs,
which can be found in the entry points section again.

1.3. Variable types

• 〈User〉, 〈Originator〉, 〈Character〉: Character-type variables, see chapter ”Characters”.

• 〈SourceItem〉, 〈TargetItem〉: Item-type variables, see chapter ”Items”.

• 〈Pos〉, 〈ItemPos〉, 〈TargetItemPos〉, 〈TargetPos〉: Position-type variables, see chapter ”Positions”

• dataTable : Type that represents a Lua table, mapping data keys (strings) to data values (strings
or integers).

• Skill : Type that represents a skill, embedded in Character like this: Character.〈name〉. Valid
values for 〈name〉 are defined in the database in skills.skl name.

7

2. Quickstart: Tutorials

To provide you with a way to start very quickly with scripting simple things, here’s a tutorial section.

2.1. Level 0: Before we start

Before you start, you need

• Access to the script-SVN-repository; that includes free the tortoise SVN client or similar.

• A text editor (for starters, the Windows-Editor or Wordpad will do).

• Access to Illarion’s testserver and the testclient and a character on the testserver with GM-rights.

• Creativity!

• Optional: DB access.

2.2. Level 1: Your first script

As your first script, we recommend to use the item with the ID 2. It is bound to the script named
”I 2 mehl.lua”. Open it in your text editor and delete the whole file except for the following lines:

function UseItem(User, SourceItem, ltstate)

end

What does this mean?
Every time someone ”uses” (=shift clicks) an item with ID 2 (flour), the function UseItem(...) inside

the script I 2 mehl.lua is called. The server provides this script with the following information:

• User contains all information about the character ”using” the flour, like his position on the map,
his hitpoints, skills, attributes and so on.

• SourceItem contains all information about the ”used” item—the flour in our case—like where it is
on the map, what data-value it has and so on.

• TargetItem is only used in case you ”used” the flour with some other item. In that case, it contains
all information about the second item.

• ltstate can be ignored for now as it is not important for our scripts.

Let’s try the following script:

function UseItem(User, SourceItem, ltstate)

User:inform(User.name.." has used me!");

end

Commit this script to the svn-repository, log into the testserver (if you haven’t already), reload the item-
scripts by saying ”!rd” with your character and wait until it finishes with ”***Definitions reloaded***”.
Then produce flour (by saying ”!create 2”, you get one) and shift-click it. In my case, what appears is:
Ciryon: Ciryon has used me!

8

3. Positions

3.1. Functions

posStruct 〈position〉=position(int 〈x 〉, int 〈y〉, int 〈z 〉)

Creates position-structure for the point (x, y, z).

boolean posStruct 〈posA〉 == posStruct 〈posB〉

Compares two position structs. Returns 〈true〉 if they are equal, 〈false〉 otherwise.

text tostring(posStruct 〈pos〉)

Returns ”(” .. pos.x .. ”, ” .. pos.y .. ”, ” .. pos.z .. ”)”.

3.2. Variables

rw : int 〈position〉.x
rw : int 〈position〉.y
rw : int 〈position〉.z
Usage: XCoordinate=User.pos.x

3.3. Additional information

Note that a position from a character struct is only a pointer. Thus it will change if the character changes
its position. Example:

User:forceWarp(position(0,0,0));

testPos = User.pos; -- testPos is (0,0,0)

User:forceWarp(position(1,1,1)); -- now User.pos AND testPos is (1,1,1)

Avoid this by copying the single x,y and z coordinates in a new position struct.

9

4. Colours

4.1. Functions

colour(int 〈red〉, int 〈green〉, int 〈blue〉 [, int 〈alpha〉 = 255])

Creates colour structure for given RGBA values. All parameters range from 0 to 255. For the
optional 〈alpha〉 0 means transparent, 255 means opaque.

4.2. Variables

rw : int 〈colour〉.red
rw : int 〈colour〉.green
rw : int 〈colour〉.blue
rw : int 〈colour〉.alpha
Usage: alpha = c.alpha

10

5. Characters

5.1. Functions

5.1.1. Text/Speech

void 〈character〉:talk(int 〈texttype〉,text 〈text〉)

〈texttype〉 can be Character.say, Character.whisper or Character.yell.
Lets a character say/whisper/yell some 〈text〉.
Example: User:talk(Character.say, ”Hello world!”)

void 〈character〉:talk(int 〈texttype〉,text 〈germanText〉, text 〈englishText〉)

Same as talk(...) except that players will only hear speech in their own language.

void 〈character〉:inform(text 〈Text〉, int 〈informtype〉 = Character.mediumPriority)

void 〈character〉:inform(text 〈germanText〉, text 〈englishText〉, int 〈informtype〉= Character.mediumPriority)

Informs a player with a short 〈Text〉 and has no effect when used with other character types.
Except for debugging the second syntax should be used to add native language support. Dif-
ferent priorities can be selected. These determine how prominent the 〈Text〉 is shown on
the screen. Valid priorities are: Character.lowPriority, Character.mediumPriority as
default if this parameter is omitted and Character.highPriority.
Examples: User:inform(”Du bist betrunken.”, ”You are drunk.”)

User:inform(”A raindrop falls on your head.”, Character.lowPriority)

void 〈character〉:introduce(Player 〈player〉)

Introduces 〈player〉 to 〈character〉 if character is a player as well. Otherwise it has no effect.

void 〈character〉:move(int 〈direction〉,boolean 〈active move〉)

〈character〉 makes a step into 〈direction〉. 〈active move〉 is true if the move was done actively
(normal case) and false otherwise.

N=0

NE=1

E=2

SE=3

S=4

SW=5

W=6

NW=7

Figure 5.1.: The 8 possible directions

11

void 〈character〉:turn(int 〈direction〉)
void 〈character〉:turn(posStruct 〈position〉)

Turns 〈character〉 into the given 〈direction〉 or towards the given 〈position〉.

void 〈character〉:sendCharDescription(int 〈id〉, text 〈text〉)

Shows the 〈text〉 as character description of the character with ID 〈id〉 (just next to the avatar)
only to this 〈character〉.

void 〈character〉:sendBook(int 〈id〉)

Tells the client to display book 〈id〉 for 〈character〉. Books are stored as client resources.

5.1.2. Skills and Attributes

NOTE: There are two kinds of attributes: fixed and variable ones. All attributes that are not meant to
develop during the game are fixed, e.g. strength, perception, age, sex etc.
On the other hand there are the variable attributes, e.g. any skill (of course), hitpoints, mana etc. Any

change to those will be permanently written to the database.
Any change to fixed attributes is only temporary and will be null upon the next login. Example: You

want to create an amulet that gives a +2 STR bonus when worn. It does not suffice to change the
strength when the amulet is put on, you have to use a Long Time Effect that does the change again after
a login (and checks if the amulet is still in its place).

text 〈character〉:getSkillName(Skill 〈skill〉)

Returns the name of the given 〈skill〉 in the player’s language.

int 〈character〉:getSkill(Skill 〈skill〉)
Character:skillvalue 〈character〉:getSkillValue(Skill 〈skill〉)

skillvalue is a table with two fields, major and minor, representing the skill and the minor
skill.

int 〈character〉:setSkill(Skill 〈skill〉, int 〈major〉, int 〈minor〉)

Directly sets major and minor skill. Returns the new major skill. If the skill does not exist
in the database, nothing is set and 0 is returned.

int 〈character〉:increaseSkill(Skill 〈skill〉, int 〈value〉)
int 〈character〉:increaseMinorSkill(Skill 〈skill〉, int 〈value〉)

Increase major and minor skill, respectively. Return the new major skill. If the skill does not
exist in the database, nothing is increased and 0 is returned.

void 〈character〉:learn(Skill 〈skill〉, int 〈actionPoints〉,int 〈learnLimit〉)

〈skill〉: Constant of the skill.
〈actionPoints〉: Number of actionPoints used up for the action which resulted in learning.
〈learnLimit〉: The skill will not be advanced beyond this limit and never beyond 100.

int 〈character〉:increaseAttrib(text 〈AttribName〉, int 〈value〉)

12

Increases the attribute given (see below) and returns the new attribute value. Use 〈value〉=0
to read the attribute’s value. Note that this command also sends a player update to all
characters in range if necessary.

void 〈character〉:setAttrib(text 〈AttribName〉, int 〈value〉)

〈AttribName〉 can be: ”sex”, ”age”, ”body height”, ”attitude”, ”luck”, ”strength”, ”dexter-
ity”, ”constitution”, ”agility”, ”intelligence”, ”perception”, ”willpower”, ”essence”, ”foodlevel”,
”hitpoints”, ”mana”, ”poisonvalue”. And ”sex” can be: Character.male, Character.female

Be aware that any attribute change to fixed attributes like ”strength” will only last for the
current session and will be reset to the database value upon the next login.

boolean 〈character〉:isBaseAttributeValid(text 〈attribute〉, int 〈value〉)

Returns whether 〈value〉 is acceptable for the given 〈attribute〉 and the race of the character,
respecting limits given in table raceattr.

int 〈character〉:getBaseAttributeSum()

Returns the current sum of the eight primary attributes: agility, constitution, dexterity,
essence, intelligence, perception, strength and willpower.

int 〈character〉:getMaxAttributePoints()

Returns the value which getBaseAttributeSum() needs to result in, so that the base at-
tributes can be saved. Can be used to make tests before actually trying to save the base
attributes.

int 〈character〉:getBaseAttribute(text 〈attribute〉)

Returns the base value of the given 〈attribute〉, that is the value that this attribute normally
has, when no special effects are active.

boolean 〈character〉:setBaseAttribute(text 〈attribute〉, int 〈value〉)

Sets the base value of the given 〈attribute〉 and returns 〈true〉 if isBaseAttributeValid(...)
would return 〈true〉. Otherwise is a no-op and returns 〈false〉.

boolean 〈character〉:increaseBaseAttribute(text 〈attribute〉, int 〈amount〉)

If isBaseAttributeValid(...) would return 〈true〉, increases or decreases the base value of
the given 〈attribute〉 and returns 〈true〉. Otherwise is a no-op and returns 〈false〉.

boolean 〈character〉:saveBaseAttributes()

Saves the eight primary base attributes to the database, iff getBaseAttributeSum() ==
getMaxAttributePoints(). On failure resets primary attribute values to database values.
Returns whether the operation was successful or not.

void 〈character〉:setSkinColour(colour 〈c〉)

Sets skin colour.

void 〈character〉:setHairColour(colour 〈c〉)

Sets hair and beard colour.

13

colour 〈character〉:getSkinColour()

Returns skin colour.

colour 〈character〉:getHairColour()

Returns hair color.

void 〈character〉:setHair(int 〈hairID〉)

Returns the ID of the present hair, 0 for no hair.

void 〈character〉:setBeard(int 〈beardID〉)

Returns the ID of the present beard, 0 for no beard.

int 〈character〉:getHair()

Returns the ID of the present hair, 0 for no hair.

int 〈character〉:getBeard()

Returns the ID of the present beard, 0 for no beard.

int 〈character〉:setRace(int 〈race〉)

Temporarily sets the race of a character. See table 5.1 for details.

int 〈character〉:getRace()

Returns the race of a character. See table 5.1 for details.

int 〈character〉:getMonsterType()

Returns the monster-ID of a monster. For a list of the current monster-IDs, please consult
the database or one of the other developers.

int 〈character〉:getFaceTo()

Returns an integer between 0 and 7 inclusively that indicates the direction the character is
facing to. For a list of the directions, see Fig.(5.1).

int 〈character〉:getType()

Returns Character.player for players, Character.monster for monsters and Character.npc for
NPCs.

void 〈character〉:increasePoisonValue(〈value〉)
int 〈character〉:getPoisonValue()
void 〈character〉:setPoisonValue(int 〈value〉)
int 〈character〉:getMentalCapacity()
void 〈character〉:setMentalCapacity(int 〈value〉)
void 〈character〉:increaseMentalCapacity(int 〈value〉)
int 〈character〉:getMagicType()

returns MagicType

void 〈character〉:setMagicType(int 〈MagicType〉)

MagicType: ”mage”=0, ”priest”=1, ”bard”=2, ”druid”=3

int 〈character〉:getMagicFlags(int 〈MagicType〉)
void 〈character〉:teachMagic(int 〈MagicType〉,int 〈MagicFlag〉)
int 〈character〉:getPlayerLanguage()

Returns the player’s language: Player.german or Player.english.

14

Name 〈rID〉 Name 〈rID〉 Name 〈rID〉
human 0 blackwolf 41 blacktroll 80
dwarf 1 greywolf 42 redtroll 81
halfling 2 redwolf 43 blackzombie 82
elf 3 redraptor 48 transparentzombie 83
orc 4 silverbear 49 redzombie 84
lizardman 5 blackbear 50 blackhellhound 85
gnome 6 bear 51 transparenthellhound 86
troll 9 raptor 52 greenhellhound 87
mumie 10 zombie 53 redhellhound 88
skeleton 11 hellhound 54 redimp 89
beholder 12 imp 55 blackimp 90
blackbeholder 13 irongolem 56 blueirongolem 91
transparentbeholder 14 ratman 57 redratman 92
brownmummy 15 dog 58 greenratman 93
bluemummy 17 beetle 59 blueratman 94
sheep 18 fox 60 reddog 95
spider 19 slime 61 greydog 96
demonskeleton 20 chicken 62 blackdog 97
redspider 21 bonedragon 63 greenbeetle 98
greenspider 22 blackbonedragon 64 copperbeetle 99
bluespider 23 redbonedragon 65 redbeetle 100
pig 24 transparentbonedragon 66 goldbeetle 101
boar 25 greenbonedragon 67 greyfox 102
transparentspider 26 bluebonedragon 68 redslime 103
wasp 27 goldbonedragon 69 blackslime 104
redwasp 28 redmummy 70 transparentslime 105
stonegolem 30 greymummy 71 brownchicken 106
brownstonegolem 31 blackmummy 72 redchicken 107
redstonegolem 32 goldmummy 73 blackchicken 108
silverstonegolem 33 transparentskeleton 74
transparentstonegolem 34 blueskeleton 75
cow 37 greenskeleton 76
bull 38 goldgolem 77
wolf 39 goldskeleton 78
transparentwolf 40 bluetroll 79

Table 5.1.: List of available races with Race-IDs (〈rID〉)

15

5.1.3. Quest progress

void 〈character〉:setQuestProgress(int 〈questID〉,int 〈progress〉)

A questprogress can be set for a specific quest.

int 〈progress〉[, int 〈time〉] 〈character〉:getQuestProgress(int 〈questID〉)

Returns the 〈progress〉 for a specific quest. Optionally also returns the 〈time〉 when this
progress was last set as Unix timestamp.

5.1.4. Item handling

int 〈character〉:createItem(int 〈itemID〉,int 〈count〉,int 〈quality〉, dataTable 〈data〉)

Item is created in the belt or backpack of 〈character〉. If that is not possible, the items will
not be created. The function returns an integer that gives the number of items that cannot
be created. world:createItemFromId might be a good choice in addition.

void 〈character〉:createAtPos(int 〈Position body〉,int 〈itemId〉,int 〈count〉)

Creates an item at a special body position (see below).

void 〈character〉:changeQualityAt(int 〈Position body〉,int 〈qly-amount〉)

Changes the quality by amount at position body.

int 〈character〉:eraseItem(int 〈itemID〉,int 〈count〉)
int 〈character〉:eraseItem(int 〈itemID〉,int 〈count〉, dataTable 〈data〉)

〈count〉 item with 〈itemID〉 (=number!) are erased from the 〈character〉 inventory. You have
no influence on which items are deleted, you can just determine ID and number. The return
value contains the amount of items that could not be deleted. In case the optional 〈data〉
parameter is set, only items that include these data values are deleted. If the data table is
empty however, only items without data are erased.

int 〈character〉:countItem(int 〈itemID〉)
int 〈character〉:countItemAt(text 〈location〉,int 〈itemID〉)
int 〈character〉:countItemAt(text 〈location〉,int 〈itemID〉,dataTable 〈data〉)

Counts only at a certain position; 〈character〉:countItemAt(”all”,...) is the same as 〈character〉:countItem(...)
〈location〉 can be ”all”, ”belt”, ”body”, ”backpack”. The variant with 〈data〉 does only count
items that include these data values. If the data table is empty however, only items without
data are counted.

void 〈character〉:increaseAtPos(int 〈Position body〉,int 〈count〉)
void 〈character〉:swapAtPos(int 〈Position body〉,int 〈itemID〉,int 〈quality〉)

Position body: BACKPACK=0, HEAD=1, NECK=2, BREAST=3, HANDS=4, LEFT TOOL=5, RIGHT TOOL=6,

FINGER LEFT HAND=7, FINGER RIGHT HAND=8, LEGS=9, FEET=10, COAT=11, LAST WEARABLE=11

To be combined with 〈Item〉:getType().
See fig.(8.1).
If quality=0, then the quality remains the same.

scrItem 〈character〉:getItemAt(int 〈Position body〉)

16

〈Position body〉: Character.backpack=0, Character.head=1, Character.neck=2,

Character.breast=3, Character.hands=4, Character.left tool=5,

Character.right tool=6, Character.finger left hand=7,

Character.finger right hand=8, Character.legs=9,

Character.feet=10, Character.coat=11, Character.belt pos 1=12,

Character.belt pos 2=13, Character.belt pos 3=14,

Character.belt pos 4=15, Character.belt pos 5=16,

Character.belt pos 6=17

This returns a ScriptItemStruct. See fig. (8.1).

list (scrItem) 〈character〉:getItemList(int 〈ItemID〉)

Returns a list with all items of this 〈ItemID〉.

conStruct 〈character〉:getBackPack()

Returns a container-item (which is different from scriptitem and commonitem). Container-
items can be used to pick out items which are placed in it. See 〈Container〉:takeItemNr(〈itempos〉,〈count〉).

conStruct 〈character〉:getDepot(int 〈depotId〉)

Returns a container-item (the depot of that Character). Containeritems can be used to pick
out items which are placed in it. See 〈Container〉:takeItemNr(〈itempos〉,〈count〉).

5.1.5. All the rest

boolean 〈character〉:isNewPlayer()

Returns whether 〈character〉 is a new player or not. The exact behaviour is defined in the
database function is new player.

boolean 〈character〉:isInRange(Character 〈character2 〉,int 〈Distance〉)

Returns true if 〈character2 〉 is within 〈Distance〉 of 〈character〉, else false.

int 〈character〉:distanceMetric(Character 〈character2 〉)

Returns distance.
Very similar to isInRange, but much more flexible. Better use distanceMetric.

int 〈character〉:distanceMetricToPosition(posStruct 〈Position〉)

Returns the distance from 〈character〉 to 〈Position〉.

boolean 〈character〉:isInRangeToPosition(posStruct 〈Position〉,int 〈distance〉)

Returns true when the 〈character〉 is within the 〈distance〉 to 〈position〉 and false otherwise.

void 〈character〉:warp(posStruct 〈Position〉)

”Position” is a position-structure as described above.

void 〈character〉:forceWarp(posStruct 〈Position〉)

”Position” is a position-structure as described above. This command works exactly as warp,
but it ignores any non-passable flags on the target position. That means that you can warp
onto e.g. water using this command.

17

void 〈character〉:startMusic(int 〈Number〉)

Starts music 〈Number〉 for 〈character〉, with 0 meaning silence. This overrides the default
music given by the map until logout or a call of 〈character〉:defaultMusic()

void 〈character〉:defaultMusic()

Plays the default music for 〈character〉 as defined by the map.

boolean 〈character〉:isAdmin()

Returns true if that character is admin (GM) and false otherwise.

void 〈character〉:setClippingActive(boolean 〈status〉)

〈status〉 must be either true (walking through walls disabled) or false ; this enables the
character to walk on fields where he usualy can’t walk (water, walls, ...). Please use with care:
This has to be turned OFF again!

boolean 〈character〉:getClippingActive()

Returns true or false .

int 〈character〉:idleTime()

If 〈character〉 is a player, returns the number of seconds they are idle. Returns 0 otherwise.

boolean isValidChar(Character 〈char〉)

Returns true iff 〈char〉 is still valid and safe to use. Validity has to be checked if 〈char〉 is
used in another entrypoint call than the one where it was originally obtained, since a player
might have logged out, an NPC might have been deleted and a monster might have been
killed in the meantime.

boolean 〈character〉:pageGM(text 〈ticket〉)

Returns true iff 〈ticket〉 is successfully logged as message to the GM team. Differing from
the normal !gm command, the originating player is not informed about success.

void 〈character〉:logAdmin(text 〈message〉)

Writes 〈message〉 for the given user into the server log using the admin facility. Only used to
record GM actions.

5.2. Variables

r : text 〈character〉.lastSpokenText

Returns this characters last spoken line of text

r : posStruct 〈character〉.pos

Position-structure

r : text 〈character〉.name
r : int 〈character〉.id
r : boolean 〈character〉.attackmode

18

true if character currently attacks, false otherwise.

rw : int 〈character〉.activeLanguage

”common language”=0, ”human language”=1, ”dwarf language”=2, ”elf language”=3, ”lizard
language”=4, ”orc language”=5, ”halfling language”=6, ”fairy language”=7, ”gnome lan-
guage”=8, ”goblin language”=9, ”ancient language”=10

rw : int 〈character〉.movepoints

A character has usually (when being idle) 21 movepoints. Every action like talking, fighting,
using etc. needs at least ca. 6 movepoints. The reduction of movepoints depends on the
character’s agility. The regeneration is for all the same: +10 per second. A greater amount
than 21 movepoints is not possible as it is immediately set again to 21.

19

6. Containers

Some items can contain other items. These are for example a character’s backpack and depot. There are
multiple functions to get access to such a container variable. Here is what you can do with those:

6.1. Functions

boolean , scrItem , conStruct 〈Container〉:viewItemNr(int 〈itempos〉)

Returns three values in that specific order: bool 〈success〉, structitem 〈item〉, containeritem
〈container〉. 〈success〉 is true if Lua was able to get the item, 〈item〉 holds the item at that
position number and 〈container〉 holds the containerstruct in case the item at that position
was a container. This can be used together with 〈Container〉:takeItemNr(〈itempos〉,〈count〉).

boolean , scrItem , conStruct 〈Container〉:takeItemNr(int 〈itempos〉,int 〈count〉)

Returns three values in that specific order: bool 〈success〉, structitem 〈item〉, containeritem
〈container〉 and deletes this item (〈count〉 of them). 〈success〉 is true if Lua was able to get
the item, 〈item〉 holds the item at that position number and 〈container〉 holds the container-
struct in case the item at that position was a container.
Example:

TheDepot=User:getDepot(1);

for i=0,30 do

worked,theItem,theContainer=TheDepot:takeItemNr(i,1);

if (worked==true) then

if (theContainer==nil) then

User:inform("This is no container. It’s item-ID is "..theItem.id);

else

User:inform("This is a container. It’s item-ID is "..theItem.id);

end

end

end

void 〈Container〉:changeQualityAt(int 〈itempos〉,int 〈amount〉)

Changes the quality of an item at a given position inside a container. Returns true if it
worked.

boolean 〈Container〉:insertContainer(scrItem 〈item〉, conStruct 〈container〉)
boolean 〈Container〉:insertContainer(scrItem 〈item〉, conStruct 〈container〉, int 〈itempos〉)

If 〈itempos〉 has been provided, tries to insert a container at that position. If not, or if that
position is not free, inserts the container at the first free position. Returns true if successful.

void 〈Container〉:insertItem(scrItem 〈Item〉, boolean 〈merge〉)

20

Inserts an item into a container. Collects identical items which are stackable together to a
stack if 〈merge〉 is true . If there already is an item it will probably be overwritten!

void 〈Container〉:insertItem(scrItem 〈Item〉)

Inserts an item which is then placed on the last slot in that container.

int void 〈Container〉:countItem(int 〈itemid〉)
int void 〈Container〉:countItem(int 〈itemid〉, dataTable 〈data〉)

Counts the number of items in a container of a given ID. It works recursively, which means
that if there is a container in that container containing items of that ID, they are counted as
well. In case the optional 〈data〉 parameter is set, only items that include these data values
are counted. If the data table is empty however, only items without data are counted.

int void 〈Container〉:eraseItem(int 〈itemid〉, int 〈count〉)
int void 〈Container〉:eraseItem(int 〈itemid〉, int 〈count〉, dataTable 〈data〉)

〈count〉 item with 〈itemid〉 (=number!) are erased from the 〈Container〉 inventory. You have
no influence on which items are deleted, you can just determine ID and number. The return
value contains the amount of items that could not be deleted. In case the optional 〈data〉
parameter is set, only items that include these data values are deleted. If the data table is
empty however, only items without data are erased.

int void 〈Container〉:increaseAtPos(int 〈pos〉, int 〈value〉)

Increases the number of items at a given position. Supposedly returns the number of items
afterwards.

boolean void 〈Container〉:swapAtPos(int 〈pos〉, int 〈newid〉, int 〈newquality〉)

Changes an item to another one with a new ID, returns true on success.

int void 〈Container〉:weight();

Returns the total weight of that container.

21

7. Dialogs

Dialogs are a more sophisticated approach to aquire user input than e.g. User.lastSpokenText. Each
dialog serves a specific purpose as displaying bulk text, interfacing with a merchant or with the crafting
system. Dialogs should be the preferred interaction method. If necessary new types should be imple-
mented rather than abusing old variants or falling back to lastSpokenText. Please note, that as with
many functions dialog work with all types of characters (players, monsters, npcs) but only make sense
with players. Using the other two types will work but do nothing at all. Creating a dialog instance always
consists of three descrete steps:

1. Create a callback function to be triggered automatically when the user closes the dialog. This
function has to have a single parameter to which the dialog will be passed with obtained results.

2. Invoke the constructor of a specific dialog to create a dialog instance, passing required parameters
and callback.

3. Have a player object request the dialog in the user’s client. Script execution does not stop after
this request. The callback with results is called whenever the user closes the dialog.

Usually creating an object would be described before talking about results. However, here we chose a
different order to follow the three steps mentioned above, which reflect the order in which you would write
a dialog, and to review the most interesting details first, namely what each dialog actually contributes
to a particular script.

7.1. MessageDialog

Use this dialog to display bulk text in an on-screen window. The user can close the window at any time.

7.1.1. Results

This type of dialog by it’s very nature has no results to be accessed. Still a callback makes sense, because
you might want to react on the dialog being closed.

7.1.2. Construction

MessageDialog MessageDialog(text 〈title〉, text 〈text〉, function 〈callback〉)

Creates a MessageDialog with specific 〈title〉 and message 〈text〉.

7.1.3. Request

void 〈character〉:requestMessageDialog(MessageDialog 〈dialog〉)

22

7.2. InputDialog

This dialog requests alphanumeric input from the user. If you want to further restrict the input, make
that clear to the user with the description and enforce it inside the callback. For different kinds of input
(e.g. items) use or request development of a different type of dialog.

7.2.1. Results

boolean 〈InputDialog〉:getSuccess()

The result is true if the dialog was confirmed and false if it was aborted.

text 〈InputDialog〉:getInput()

Returns the user’s input if the dialog was successful. Otherwise the result is undefined.

7.2.2. Construction

InputDialog InputDialog(text 〈title〉, text 〈description〉, boolean 〈multiline〉, int 〈maxChars〉, function
〈callback〉)

Creates an InputDialog with 〈title〉 and 〈description〉. It allows linebreaks iff 〈multiline〉 is
set to true . The input can be up to 〈maxChars〉 characters long.

7.2.3. Request

void 〈character〉:requestInputDialog(InputDialog 〈dialog〉)

7.3. SelectionDialog

With this dialog you can prompt the user to select one of multiple choices. You can use an item graphic
with your choices to illustrate them.

7.3.1. Results

boolean 〈SelectionDialog〉:getSuccess()

The result is true if the dialog was confirmed and false if it was aborted.

int 〈SelectionDialog〉:getSelectedIndex()

Returns the user’s selection if the dialog was successful. Otherwise the result is undefined.

7.3.2. Construction

SelectionDialog SelectionDialog(text 〈title〉, text 〈description〉, function 〈callback〉)

Creates a SelectionDialog with specific 〈title〉 and 〈description〉.

void 〈SelectionDialog〉:setCloseOnMove()

If invoked on a SelectionDialog, the dialog will be closed by the server when the player, who
owns the dialog, moves.

23

void 〈SelectionDialog〉:addOption(int 〈itemId〉, text 〈name〉)

Adds an option to the dialog. The 〈itemId〉 stands for an item graphic displayed along with
the option described by 〈name〉. If 〈itemId〉 is 0 at least once, no graphics are displayed at
all. The first option to be added has index 0, increasing from there.

7.3.3. Request

void 〈character〉:requestSelectionDialog(SelectionDialog 〈dialog〉)

7.4. MerchantDialog

This dialog is used as an interface to merchant NPCs. All trading with NPCs should be done with this
type of dialog. The dialog is kept open until aborted.

7.4.1. Results

int 〈MerchantDialog〉:getResult()

The result is one of MerchantDialog.playerAborts, MerchantDialog.playerSells, MerchantDi-
alog.playerBuys, depending on player action.

int 〈MerchantDialog〉:getPurchaseIndex()

Returns the user’s purchase selection if getResult() equals MerchantDialog.playerBuys. Oth-
erwise the result is undefined.

int 〈MerchantDialog〉:getPurchaseAmount()

Returns the amount the user wants to buy if getResult() equals MerchantDialog.playerBuys.
Otherwise the result is undefined.

scrItem 〈MerchantDialog〉:getSaleItem()

Returns the item the user wants to sell if getResult() equals MerchantDialog.playerSells.
Otherwise the result is undefined.

7.4.2. Construction

MerchantDialog MerchantDialog(text 〈title〉, function 〈callback〉)

Creates a MerchantDialog with a specific 〈title〉.

void 〈MerchantDialog〉:addOffer(int 〈itemId〉, text 〈name〉, int 〈price〉, int 〈stack〉=1)

Adds an offer to the dialog, i.e. something that can be sold to a player. The 〈itemId〉 stands
for an item graphic displayed along with the offer described by 〈name〉. The first offer to be
added has index 0, increasing from there. The 〈price〉 is given in copper. Optionally a 〈stack〉
can be given so that only stacks of this amount can be purchased by a player.

void 〈MerchantDialog〉:addSecondaryRequest(int 〈itemId〉, text 〈name〉, int 〈price〉)

Adds a secodary request to the dialog, i.e. something that can be sold to an NPC for the reg-
ular rate. The 〈itemId〉 stands for an item graphic displayed along with the request described
by 〈name〉. The 〈price〉 is given in copper.

24

void 〈MerchantDialog〉:addPrimaryRequest(int 〈itemId〉, text 〈name〉, int 〈price〉)

Adds a primary request to the dialog, i.e. something that can be sold to an NPC for a premium
rate. The 〈itemId〉 stands for an item graphic displayed along with the request described by
〈name〉. The 〈price〉 is given in copper.

7.4.3. Request

void 〈character〉:requestMerchantDialog(MerchantDialog 〈dialog〉)

7.5. CraftingDialog

This dialog is used as an interface for crafting. All crafting should be done with this type of dialog. The
dialog is kept open until aborted.

7.5.1. Results

int 〈CraftingDialog〉:getResult()

The result is one of CraftingDialog.playerAborts, CraftingDialog.playerCrafts, CraftingDia-
log.playerLooksAtCraftable, CraftingDialog.playerLooksAtIngredient, CraftingDialog.playerCraftingComplete,
CraftingDialog.playerCraftingAborted, depending on player action and crafting progress.

int 〈CraftingDialog〉:getCraftableId()

Returns the user’s product selection if getResult() equals CraftingDialog.playerCrafts, the
product the user looks at if getResult() equals CraftingDialog.playerLooksAtCraftable or
the product including an ingredient the user looks at if getResult() equals CraftingDia-
log.playerLooksAtIngredient. Otherwise the result is undefined.

int 〈CraftingDialog〉:getCraftableAmount()

Returns the amount the user wants to craft if getResult() equals CraftingDialog.playerCrafts.
Otherwise the result is undefined.

scrItem 〈CraftingDialog〉:getIngredientIndex()

Returns the ingredient index the user looks at if getResult() equals CraftingDialog.playerLooksAtIngredient.
Otherwise the result is undefined.

7.5.2. Construction

CraftingDialog CraftingDialog(text 〈title〉, int 〈sfx 〉, int 〈sfxDuration〉, function 〈callback〉)

Creates a CraftingDialog with a specific 〈title〉 and sound effect 〈sfx 〉 to be played repeatedly
while crafting. The duration of one single playback of that sound effect has to be specified in
〈sfxDuration〉.

void 〈CraftingDialog〉:clearGroupsAndProducts()

Removes all groups and products from the dialog. Can be used e.g. when a user gains skill
and the product list has to be created from scratch.

void 〈CraftingDialog〉:addGroup(text 〈title〉)

25

Adds a group with 〈title〉 to the dialog. Each group is associated with an id, starting at 0.

void 〈CraftingDialog〉:addCraftable(int 〈index 〉, int 〈groupId〉, int 〈itemId〉, text 〈name〉, int 〈deciseconds〉,
int 〈stack〉=1)

Adds a product to the dialog, i.e. something that can be crafted. The 〈index 〉 will be returned
by getCraftableId. The 〈itemId〉 stands for an item graphic displayed along with the product
described by 〈name〉. The first product to be added has index 0, increasing from there. The
produt needs a certain amount of 〈deciseconds〉 to be crafted. Optionally a 〈stack〉 can be
given if more than one item should be created each time this product is crafted.

void 〈CraftingDialog〉:addCraftableIngredient(int 〈itemId〉, int 〈stack〉=1)

Adds an ingredient to the product added last. The 〈itemId〉 stands for an item graphic
displayed along with the ingredient. Optionally a 〈stack〉 can be given if more than one piece
of this ingredient is required for crafting the corresponding product.

7.5.3. Request

void 〈character〉:requestCraftingDialog(CraftingDialog 〈dialog〉)

7.6. Examples

7.6.1. MessageDialog

local callback = function(dialog)

User:inform("Dialog closed")

end

local lyrics = [[

O Fortuna, velut Luna

statu variabilis,

...

]]

local dialog = MessageDialog("O Fortuna", lyrics, callback)

User:requestMessageDialog(dialog)

7.6.2. InputDialog

local callback = function(dialog)

if not dialog:getSuccess() then

User:inform("You canceled! How dare you?")

else

User:inform("You wrote: " .. dialog:getInput())

end

end

local dialog = InputDialog("Insert some text!", false, 255, callback)

User:requestInputDialog(dialog)

26

8. Items (scriptItem)

There are two kinds of items in lua. This is of the type scriptItem. These types of item-variables are
the parameters in the entry point functions (TargetItem etc.). This kind of item variable holds the
individual information about the item (position, ...), but not the general ones (weight, ...). It refers to
an individual item (stack). You can, however, identify the commonStruct of an individual item, which
can be achieved with the world:getItemStats(〈scriptItem〉). Clearly, the other direction is not possible
(gaining knowledge about an individual item via a general item). If you change item properties, you have
to propagate the changes to the server:

item.quality = 284;

item.setData("name", "John’s Item");

world:changeItem(item);

8.1. Functions

int 〈Item〉:getType()

Return values: notdefined=0, showcase1=1, showcase2=2, field=3, inventory=4, belt=5

boolean 〈Item〉:isLarge()

Returns true iff the item is large enough to block the view.

void 〈Item〉:setData(text 〈key〉, text 〈value〉)
void 〈Item〉:setData(text 〈key〉, int 〈value〉)

Sets the customizable data with the key 〈key〉 of an item to 〈value〉. Example:

...

SourceItem:setData("magicbonus", 25);

SourceItem:setData("prefix", "very strong ");

...

if (SourceItem:getData("prefix") ~= "") then

if (tonumber(SourceItem:getData(magicbonus)) < 30) then

...

Note that a number gets automatically converted into the corresponding string (25).

text 〈Item〉:getData(text 〈key〉)

Returns the customizable data for the key 〈key〉 of an item if that key exists and an empty
string otherwise.

27

Figure 8.1.: Illustration for positions of items. Red: itempos, Green: getType

28

8.2. Variables

r : Character 〈Item〉.owner

has the type of 〈character〉.

r : posStruct 〈Item〉.pos

has the type of 〈position〉, this means that the item lies on the floor.

r : int 〈Item〉.itempos

Returns the position of an item if it is at a character.

rw : int 〈Item〉.id rw : int 〈Item〉.wear

Measures how long it will take until the item decays.

rw : int 〈Item〉.quality

The quality of an item is a combination of actual quality (0-9) and durability (0-99). A quality
of 872 stands for actual quality 8 and durability 72. The item decays shortly after durability
hits zero. A quality below 100 describes an unfinished item (e.g. for crafting purposes).
Quality 64 denotes a 64% completed item for example.

rw : int 〈Item〉.number

The number of items on that stack.

8.3. Constants

If an item has an entry ”itemName” in itm name in the items table, you can get its id with Item.itemName.

29

9. Items (ItemStruct)

Note that there are important functions for items in the chapter ”World”. This kind of item variable
holds general information about an item (weight, ID,...), not individual ones like, for example, the current
position or things like that. It is, so to say, a generalized item.

9.1. Variables

r : int 〈Item〉.id
r : int 〈Item〉.AgeingSpeed
r : int 〈Item〉.Weight
r : int 〈Item〉.ObjectAfterRot
r : int 〈Item〉.MaxStack
r : boolean 〈Item〉.rotsInInventory
r : int 〈Item〉.Brightness
r : int 〈Item〉.Worth
r : text 〈Item〉.English
r : text 〈Item〉.German
r : text 〈Item〉.EnglishDescription
r : text 〈Item〉.GermanDescription
r : int 〈Item〉.Rareness
r : int 〈Item〉.Level

These variables are accessible for common struct items and script items (where they refer to
the corresponding common struct item!).
Usage:
MyItem.id, MyItem.AgeingSpeed, ...

30

10. Weapons and Armor

10.1. WeaponStruct

r : int 〈weaponstruct〉.Attack
r : int 〈weaponstruct〉.Defence
r : int 〈weaponstruct〉.Accuracy
r : int 〈weaponstruct〉.Range
r : int 〈weaponstruct〉.WeaponType
r : int 〈weaponstruct〉.AmmunitionType
r : int 〈weaponstruct〉.ActionPoints
r : int 〈weaponstruct〉.MagicDisturbance
r : int 〈weaponstruct〉.PoisonStrength

WeaponType can be one of the following: WeaponStruct.{slashing, concussion, puncture, slashingT-
woHand, concussionTwoHand, punctureTwoHand, firearm, arrow, bolt, stone, stave, shield}

10.2. ArmorStruct

r : int 〈armorstruct〉.BodyParts
r : int 〈armorstruct〉.PunctureArmor
r : int 〈armorstruct〉.StrokeArmor
r : int 〈armorstruct〉.ThrustArmor
r : int 〈armorstruct〉.MagicDisturbance
r : int 〈armorstruct〉.Stiffness
r : int 〈armorstruct〉.Type

Type can be one of the following: ArmorStruct.{clothing, general, light, medium, heavy, jewellery}

10.3. NaturalArmor

Monsters can have these intrinsic armor properties:
r : int 〈naturalarmor〉.strokeArmor
r : int 〈naturalarmor〉.thrustArmor
r : int 〈naturalarmor〉.punctureArmor

31

11. World

11.1. Functions

tleStruct world:getField(posStruct 〈position〉)

〈position〉 is a position-structure. The function returns a reference to a field.
Example:

Field=world:getField(position(22,10,-3)); -- get reference to "Field"

TileID=Field.tile; -- Determine the Tile-ID of that field

int world:getTime(text ”〈time〉”)

〈time〉 can be ”year”, ”month”, ”day”, ”hour”, ”minute”, ”second” or ”unix”. The last is the
amount of seconds since 1th January 1970 00:00. The others are ingame dates.

void world:erase(scrItem 〈Item〉,int 〈amount〉)

Example 1:
world:erase(TargetItem,3)
erases 3 items on the TargetItem-Stack if possible
Example 2:
world:erase(TargetItem,0)
erases the whole TargetItem-Stack. (NOTE: Temporarily DISABLED !) If there are not
enough of the items to erase, this function returns ”false” and does not delete anything.

void world:increase(scrItem 〈Item〉,int 〈count〉)

Increases the item number of 〈Item〉 (〈SourceItem〉, 〈TargetItem〉, ...) by 〈count〉.

void world:swap(scrItem 〈Item〉,int 〈newItemID〉,int 〈quality〉)

Exchanges 〈Item〉 (ScriptItem!) with a new one with 〈newItemId〉 and 〈quality〉.

scrItem world:createItemFromId(int 〈ItemID〉,int 〈count〉,posStruct 〈position〉,boolean 〈always-flag〉,int
〈quality〉,dataTable 〈data〉)

where 〈position〉 is a position-structure and the always-flag is true (create also when there is
already something on that field) or false , depending on how to create the item. It returns
a script item sctruct.

void world:createItemFromItem(scrItem 〈Item〉,posStruct 〈Position〉,
varalways-flag)

where 〈Item〉 is of the scriptitem-structure. (NOT of the common-structure! Therefore this
IS usable with TargetItem!). It creates an identical copy of a scriptitem.

32

Character world:createMonster(int 〈monsterID〉,posStruct 〈position〉,int 〈movepoints〉)

Summons a monster with the given monster-ID at the given location. For a list of monster-IDs,
please consult the database or a fellow developer.

Character world:createDynamicNPC(text 〈name〉, int 〈race〉, posStruct 〈position〉, int 〈sex 〉, text 〈scriptname〉)

Summons an NPC with the given parameters, using the script that is stated.

list world:LoS(posStruct 〈start position〉, posStruct 〈end position〉)

Returns a list that contains lists that contain the type of the list entry and the corresponding
items and characters that block the way between 〈start position〉 and 〈end position〉 and is
nil otherwise. They can easily be referenced by e.g. list[1].TYPE, which returns either
"ITEM" or "CHARACTER" and list[1].OBJECT which contains either the item-struct or the
character-struct. For the following example, imagine that an item with the item-ID 100 and
after that, a character with the character-ID 666 block the way between startPos and endPos:

...

list=world:LoS(startPos, endPos);

if (list ~= nil) then

for key, listEntry in pairs(list) do

if (listEntry.TYPE == "ITEM") then

User:inform("Item with the ID: "..listEntry.OBJECT.id);

elseif (listEntry.TYPE == "CHARACTER") then

User:inform("Character with the ID: "..listEntry.OBJECT.id);

end

end

else

User:inform("Nothing blocks the way!");

end

...

This will produce the output:

Item with the ID: 100

Character with the ID: 666

void world:makeSound(int 〈Number〉,posStruct 〈position〉)

Starts soundeffect. 1=scream, 2=sheep, 3=sword hit, 4=thunder, 5=bang, 6=chopping wood,
7=fire, 8=smithing, 9=water splash, 10=pouring in (bottle), 11=saw, 12=drink, swallow,
13=snaring noise

void world:gfx(int 〈Number〉,posStruct 〈position〉)

Starts graphicseffect on 〈position〉.

void world:changeTile(int 〈TileID〉,posStruct 〈position〉)
comItem world:getItemStats(scrItem 〈Item〉)

33

Returns an commonitem-struct from an 〈Item〉 that is a scriptitem (like TargetItem). Exam-
ple:

myItem=world:getItemStats(TargetItem)

if (myItem.Weight<100) then

...

end

comItem world:getItemStatsFromId(int 〈ItemID〉)

Returns an item-struct like world:getItemStats(〈Item〉)

scrItem world:getItemOnField(posStruct 〈Position〉)

Returns a scriptItem on that field.

boolean world:isItemOnField(posStruct 〈Position〉)
boolean world:isCharacterOnField(posStruct 〈Position〉)

Returns true for a Character standing on that position and false otherwise.

Character world:getCharacterOnField(posStruct 〈Position〉)

Returns a character-struct. See chapter ”Characters”. Example:

...

myPosition=position(122,12,3);

if world:isCharacterOnField(myPosition) then

myPerson=world:getCharacterOnField(myPosition);

myPerson:talk(Character.say,"You found me!");

end

...

Character world:getPlayersInRangeOf(posStruct 〈Position〉, int 〈Range〉)

Returns a list of character-structs who are in the 〈Range〉 of 〈Position〉. See chapter ”Char-
acters” and lists in lua.

Character world:getCharactersInRangeOf(posStruct 〈Position〉, int 〈Range〉)
Character world:getNPCSInRangeOf(posStruct 〈Position〉, int 〈Range〉)
Character world:getMonstersInRangeOf(posStruct 〈Position〉, int 〈Range〉)
Character world:getPlayersOnline()

Returns a list of character-structs of all players online. See chapter ”Characters” and lists in
lua.

void world:changeQuality(scrItem 〈ScriptItem〉,int 〈amount〉)

Changes the quality of a scriptitem (TargetItem, ...) for 〈amount〉.

void world:changeTile(int 〈tileid〉,posStruct 〈position〉)

34

Changes the tile on position-struct ”position” to tileid.

void world:makePersistentAt(posStruct 〈position〉)

Makes the map persistent over server shutdowns and map imports at 〈position〉. If no field
exists at 〈position〉, it is created empty.

boolean world:isPersistentAt(posStruct 〈position〉)

Returns true if there is a persistent field at 〈position〉 and false otherwise.

boolean world:removePersistenceAt(posStruct 〈position〉)

Removes persistence from a field at 〈position〉. If no regular map exists there, the field is
removed. In this case the server will clean up all characters on this field. Monsters and NPCs
are removed, while players will be warped to a nearby field on the same level if possible, or
to the starting position otherwise. The script is responsible for cleaning up the field before
removal, since those defaults are generally not desirable for players.

text world:getItemName(int 〈Itemid〉,int 〈PlayerLanguage〉)

Returns string that represents the itemname of the item with this id in playerlanguage ac-
cording to table ”itemnames”.

void world:changeItem(scrItem 〈ScriptItem〉)

Changes a scriptitem against a new one. Handle with care! Example:

function UseItem(User, SourceItem)

SourceItem.id = 1 -- we change the source Item to a sword

SourceItem.quality = 699 -- a really good sword.

SourceItem.wear = 10 -- a sword wich rots in a very long time

world:changeItem(SourceItem) -- now the item is changed

end

boolean , wpnStruct world:getWeaponStruct(int 〈itemID〉)

Returns two values: bool (true if it is a weapon) and the weaponstruct of the given item (if
there is any).
Example:

...

foundWp,MyWeapon=world:getWeaponStruct(1);

if (foundWp==true) then

User:inform("Attack: " .. MyWeapon.Attack .. " def: " .. MyWeapon.Defence);

end

...

boolean , armStruct world:getArmorStruct(int 〈itemID〉)

Returns two values: bool (true if it is an armor) and the armorstruct of the given item.

boolean , natarmStruct world:getNaturalArmor(int 〈raceID〉)

35

Returns two values: bool (true if that race has natural armor) and the naturalarmorstruct of
the given race.

void world:broadcast(text 〈germanText〉, text 〈englishText〉)

Sends a broadcast to all players in the game. Players receive the text fitting their account
language.

11.2. Variables

r,w : weatherStruct weather

Returns the current weather.

36

12. Fields

12.1. Functions

In general, these functions will be combined with world:getField(posStruct 〈position〉) most of the
time.
int 〈field〉:countItems()

Returns the number of items that are placed on top of that field.

scrItem 〈field〉:getStackItem(〈stackpos〉)

Returns the item with position 〈stackpos〉 (0 being the bottom item) within the pile of items
on this field. If 〈stackpos〉 exceeds the number of items on that field, a 0-item is returned
(id=0), therefore it is a good idea to check the number of items on that field first.

boolean 〈field〉:isPassable()

Determines whether a field allows a character to pass over it or having items dropped on it.

boolean , posStruct 〈destination〉 〈field〉:isWarp()

Returns whether or not a field is a warp as well as the warp 〈destination〉.

void 〈field〉:setWarp(posStruct 〈destination〉)

Enables the field’s warp and sets its 〈destination〉.

void 〈field〉:removeWarp()

Removes the field’s warp.

12.2. Variables

r : int tile

Returns the tile ID of that field. Recommended use with world:getField(〈position〉).

37

13. It’s a kind of magic

13.1. Global variables

thisSpell

Refers to the ID of the spell that is currently casted.

13.2. Some words on magic

Casting a spell is done by selecting one or more runes and eventually selecting a target. We assign
numbers to these runes like in fig(13.1). Every spell gets a unique spell-ID which is entirely determined

Figure 13.1.: The runes

by the used runes. Suppose we have to use the runes with the numbers a1 . . . an to cast that spell, the
spellId can then be calculated by

Ispell =
n∑

k=1

2ak−1 = 2a1−1 + 2a2−1 + · · ·+ 2an−1. (13.1)

To give a concrete example: Imagine for your spell you have to use runes 2 and 5. The spell Id then is

Ispell =
2∑

k=1

2ak−1 = 2a1−1 + 2a2−1 = 22−1 + 25−1 = 21 + 24 = 2 + 16 = 17. (13.2)

The caption of every spell script should include a brief description of the spell, the rune combination and
the SQL insert statement (as comments, of course):
INSERT INTO spells VALUES(〈spellID〉,〈magicType〉,‘〈scriptname.lua〉‘)
In our case, that might be: INSERT INTO spells VALUES(17,0,’m_17_fireball.lua’)

38

14. Weather

Till now, weather is a global effect. Once you set the weather to a specific value, it’s the same everywhere.
Eventually there will be ”areas” of weather in the future. A weatherStruct is a set of different variables,
just like any other struct so far. Altering these variables changes the weather.

14.1. Variables

rw : int 〈weatherStruct〉.cloud density

Varies between 0 (no clouds) and 100 (full clouds).

rw : int 〈weatherStruct〉.fog density

rw : int 〈weatherStruct〉.wind dir

rw : int 〈weatherStruct〉.gust strength

rw : int 〈weatherStruct〉.percipitation strength

rw : int 〈weatherStruct〉.percipitation type

rw : int 〈weatherStruct〉.thunderstorm
rw : int 〈weatherStruct〉.temperature

14.2. Functions

14.3. Entry point

There is just one entry point for weather scripts: function changeWeather()

Is invoked everytime the weather should be changed.

39

15. Long time effects

15.1. Basic idea

Long time effects (LTEs) allow you to influence a character over a period of time. The values are saved
in the database, so they endure even a server crash.
LTEs are bound to a character. They basically consist of:

• The name (only visible in the database) and the ID of the LTE

• A script that defines the LTE

• A counter that counts how often an effect had been called already

• A variable that controls when this effect on this character will be called again

• Several self defined variables that can be accessed by a key string and that can hold an integer.

First, one has to add the LTE to the database with a unique ID, a name and a script name, e.g. 42 is
the ID, myeffect the name and myeffect.lua the script.

Then one has to add the effect to a character, e.g. inside an item script. How the effect works has to
be defined in its script myeffect.lua. Everytime the LTE is called, its script is invoked; to be exact, the
function callEffect is invoked, see the section about Entry Points. There one can change the character’s
attributes etc. Note that you should always save any change of fixed attributes as a value of the LTE, so
you can restore everything when the LTE ends.
If the character logs out, all values are saved. If he logs in again, the function loadEffect in the LTE

script is invoked. Any temporary change of attributes will be gone by now, so here you can read the
value you have saved and do the change again.
The example at the end of this chapter will help you a lot.

15.2. Functions

void 〈effect〉:addValue(text 〈name〉,int 〈value〉)

〈name〉 is an arbitrary name for a variable that can be introduced and filled with 〈value〉
and is added to that effect. It can later (at one of the following calls, for example) be read
or changed again. Note that 〈value〉 can be any integer x, but it will be saved as y, where
0 ≤ y < 232 and x ≡ y (mod 232).

void 〈effect〉:removeValue(text 〈name〉)

〈name〉 is the name of a value that will be removed from that effect.

boolean , int 〈effect〉:findValue(text 〈name〉)

This function returns true if a value 〈name〉 is found plus its value and false otherwise.
Note that these are two values!

40

boolean , effStruct 〈Character〉.effects:find(〈effect-ID〉)

This function returns true if an effect with 〈effect-ID〉 was found and the respective 〈effect〉,
false otherwise.

void 〈Character〉.effects:addEffect(LongTimeEffect(〈effect-ID〉,int 〈nextCalled〉))

This function adds the effect 〈effect-ID〉 to a character. One also has to set the initial
〈nextCalled〉 value. Thus, right after the script, which contains this command, is com-
pletely executed, the function addEffect in the effect’s script is called and, if not changed in
addEffect, the function callEffect is called after 〈nextCalled〉· 1

10
seconds.

boolean 〈Character〉.effects:removeEffect(〈effect-ID〉)

This function removes the effect 〈effect-ID〉 from a character. It returns a boolean which
indicates whether that worked or not.

15.3. Variables

r : int 〈effect〉.effectId
r : int 〈effect〉.effectName
r,w : int 〈effect〉.nextCalled
IMPORTANT: nextCalled must not exceed 231 − 1, otherwise the effect won’t be safed properly.

r : int 〈effect〉.lastCalled
r : int 〈effect〉.numberCalled

15.4. Entry points for longtime effects

Inside that script which was invoked, there are several possible entry points that can be called:
function callEffect(〈Effect〉, 〈Character〉)

MUST either return true if the effect should be called again or false if not! 〈Effect〉.nextCalled
has to be set. It will be lowered by 1 every 1

10th
second and callEffect will be called as soon

as it reaches 0.

function addEffect(〈Effect〉, 〈Character〉)

Is invoked when an effect is newly created.

function removeEffect(〈Effect〉, 〈Character〉)

Is invoked after an effect ended (by having callEffect return false.

function doubleEffect(〈Effect〉, 〈Character〉)

Is invoked when an effect is added to a character that already has that effect. Note that a
character can hold just one effect of one type at a time!
This function is currently bugged, as all effect values are deleted when the effect is re-added
(see Mantis issue #451).

function loadEffect(〈Effect〉, 〈Character〉)

Is invoked when a player character logs into the game. It should be used to set temporary
stats changes and so on, which can be stored in effect-variables, using findValue and so on.

41

15.5. Example: Adding long time effects to characters

Imagine the following situation: You drink a potion of a fluid and after that, you get ”drunk”, that means
that your perception and agility are lowered and you sometimes make uncontrolled steps for the next 4
minutes. The first thing to do is to create a table entry in longtimeeffects in the following way:

lte_effectid | lte_effectname | lte_scriptname

--------------+----------------+-----------------

666 | alcohol | lte_alcohol.lua

To start with, we need to script the bottle (bottle.lua) which adds the effect 666 (alcohol) to the
character drinking that bottle.

function UseItem(User, SourceItem, LTstate)

foundEffect, alcEffect = User.effects:find(666); -- does effect #666 already exist?

if (not foundEffect) then -- if that effect is not there...

alcEffect = LongTimeEffect(666,10); -- create new effect

User.effects:addEffect(alcEffect); -- add effect #666

-- funct. "addEffect(...)" in the LT-script will be called.

-- 1 second until first call of "callEffect(...)"

foundEffect = User.effects:find(666); -- does effect #666 exist now?

if (not foundEffect) then -- effect not found (security check)

User:inform("An error occured, inform a developer.");

return; -- exit immediately if not found!

end

end

alcEffect:addValue("alcLevel",10); -- sets the alcLevel-value to 10.

alcEffect:addValue("strMod",-5); -- sets modifier for strength to -5.

end

So, this script simply adds alcEffect (666) to the User of the bottle and adds the value alcLevel to
this effect and sets it to 10.
The next thing to be done is to define this effect. This is done in the actual long time script we defined

in the database before, lte alcohol.lua:

function addEffect(myEffect, Character) -- called only the first time

Character:inform("You feel a little bit dizzy.");

found, strMod = myEffect:findValue("strMod");

if found then -- read the str modificator

Character:increaseAttrib("strength",strMod);

else -- if modificator is not found

Character:inform("Error, please inform a developer");

myEffect:addValue("strMod",-5); -- set to a default value

end

end

function callEffect(myEffect, Character) -- is called everytime

found, alcLevel = myEffect:findValue("alcLevel");

42

-- get value

Character:talk(Character.say,"Hick!"); -- Hick!

-- add some more effects

if not found then

Character:inform("Error, please inform a developer!")

return false; -- bug occured! remove effect

else

if (alcLevel>0) then -- alcohol still has effect

myEffect.nextCalled=200; -- next call in 20 s.

myEffect:addValue("alcLevel",alcLevel-1);

-- just override the value

return true;

else -- alcohol has no more effect

myEffect:removeValue("alcLevel");

return false; -- return false and remove effect

end

end

end

function loadEffect(myEffect, Character) -- is called when the character logs in

-- do the STR change again

Character:inform("You still feel a little bit dizzy.");

found, strMod = myEffect:findValue("strMod");

if found then -- read the str modificator

Character:increaseAttrib("strength",strMod);

else -- if modificator is not found

Character:inform("Error, please inform a developer");

myEffect:addValue("strMod",-5); -- set to a default value

end

end

15.6. Ideas for usage

Long time effects can be used for many effects, here are just some ideas:

• Illness, epidemy, infections and deseases

• Injuries

• Effects of potions (of all kinds)

• Effects of poison

• Punishment

• . . .

43

16. Delayed execution and disturbation

There is a way to have a script being executed after some time. Of course, this could also be done using
long time effects, which were described above. However, there is something that long time effects can’t
detect: If ”something” happened between two invokations of an effect. Take, for example, a magician who
casts a spell. Assume that there is a delay between casting that spell and having an effect (it needs some
time of concentration). What happens if, for example, this mage is disturbed during the concentration
phase (because he’s under attack or alike)? There is no way to detect that in long time effect scripts.

16.1. Functions

void 〈Character〉:startAction(int 〈time〉, int 〈GFX-ID〉, int 〈GFX-interval〉, int 〈SFX-ID〉, int 〈SFX-interval〉)

This starts an action for the character for 〈time〉 1
10th

seconds. The GFX with ID 〈GFX-ID〉
is shown every 〈GFX-interval〉 1

10th
seconds. The SFX with ID 〈SFX-ID〉 is played every

〈SFX-interval〉 1
10th

seconds.

void 〈Character〉:changeSource(Character 〈item〉)
void 〈Character〉:changeSource(scrItem 〈item〉)
void 〈Character〉:changeSource(posStruct 〈position〉)

Changes the source variable of the entrypoint used for subsequent calls of the current action.
This has to be called explicitly to propagate changes of a source object to the action.

16.2. Constants

int Action.none
int Action.abort

16.3. Usage

In all ”Use”-functions like UseItem(...), the last parameter is the integer 〈ltstate〉. Its value is one of the
constants above. So one can check the 〈ltstate〉 and eventually start an action.
There can only be one action at a time for a character. If multiple actions are started in the same

script, only the last one counts (nevertheless the ”first” sound is played and the ”first” gfx is shown for
every action immediately, if the interval is greater than 0).

After starting an action, the script is still executed until its end. Then after the 〈time〉 OR if the
character got interrupted (was attacked, moved, used something...), the script is called again and is
normally executed. So make sure to check the 〈ltstate〉!

16.4. Example

A simple example of a potion script is helpful:

44

function UseItem(User, SourceItem, ltstate)

-- check for ltstate == Action.abort

-- means the script got interrupted before the time needed was up

-- (-> drinking was not finished!)

if (ltstate == Action.abort) then

-- Cast forced emotes from the Charakter who uses our potion

-- (german for germans, english for the rest)

User:talk(Character.say, "#me versch~A 1
4
ttet den Trank.", "#me spills the potion.")

-- [...] possibly remove the bottle etc.

-- since the user failed to drink the potion we are done now

return

end

-- [...] possibly check if the character is in attackmode

-- Now we check if the character is drinking the potion currently or not

-- (since the drinking process needs some time)

if (ltstate == Action.none) then

-- Action.none so the character does nothing.

-- Lets open the bottle and drink the potion

-- Start the action!

-- 2,0 seconds until the action is done

-- GFX id 0 is shown while the waiting time (so no gfx)

-- every 0 seconds the GFX is shown (so never)

-- SFX id 15 is played (drinking sound)

-- every 2,5 seconds. So the sound is only played once (at the beginning)

User:startAction(20,0,0,15,25);

-- let’s tell everyone that our user drank a potion with a forced emote

User:talk(Character.say, "#me beginnt einen Trank zu trinken.", "#me starts to trink a potion.")

-- And quit the script since we are done now and waiting for the next call

return

end

-- since we are here the character started already to drink

-- but got not interrupted. Now we offer some results

-- [...] possibly remove the bottle, give healthpoints and foodpoints

-- and slow down the character

-- [...] etc.

end

45

17. Waypoints

The waypoint system allows us to use the pathfinding algorithm of the server for moving monsters and
NPCs through the terrain. There is an internal list of position data which is handled like a queue, so
first in - first out. The character always tries to reach the first waypoint, until the list is empty.

The algorithm checks for obstacles and a free way only in a certain radius. This process is quite
expensive (and even more important: the server freezes until the algorithm finishes!), so the radius
shouldn’t be too big; around 15 tiles should suffice (the default value is currently unknown, but it won’t
be much more).

17.1. Functions

The waypoint list can be accessed by 〈character〉.waypoints and the following operations are possible:

void 〈character〉.waypoints:addFromList(〈waypointlist〉)

Adds a whole Lua list of position structs to the end of the internal list.

void 〈character〉.waypoints:addWaypoint(〈pos〉)

Adds a single position struct 〈pos〉 as last waypoint to the internal list.

list (posStruct) 〈character〉.waypoints:getWaypoints()

Returns the internal list as Lua list of position structs.

void 〈character〉.waypoints:clear()

Clears the internal list.

For controling the character there are these functions:

void 〈character〉:setOnRoute(boolean 〈toggleRoute〉)

The character starts the route if 〈toggleRoute〉 is true and stops if it is false .

boolean 〈character〉:getOnRoute()

Returns if the character is currently on a route.

boolean , int 〈character〉:getNextStepDir(posStruct 〈pos〉, int 〈rangeToCheck〉)

Returns two values. The first is true if a way to 〈pos〉 is found considering only a radius of
〈rangeToCheck〉 tiles, false otherwise. The second is the direction of the next step for the
found way.

This function does not move the character, it just returns the direction for the next step.

list (int) 〈character〉:getStepList(posStruct 〈pos〉, int 〈rangeToCheck〉)

Same as getNextStepDir(b)ut returns a complete step list to reach 〈pos〉.

46

17.2. Entry Points

If a character (Monster/NPC) is on a route, no other handling inside the server is done (no fighting) but
all the script entry points like enemyNear or enemyInSight are called.

There is one special entry point for both monsters and NPCs:
function abortRoute(〈character〉)

Is called if the 〈character〉 has reached the destination or if items block the way and the
destination can’t be reached.

47

18. Global Scriptvariables

These ScriptVars allow us to save a value in the database and access it by an identifier string. Use with
caution as they have global effect. All ScriptVars are automatically saved upon a server shutdown.

18.1. Functions

void ScriptVars:set(〈identifier〉, 〈value〉)

Writes the integer or string 〈value〉 to the ScriptVar 〈identifier〉.

boolean , 〈value〉 ScriptVars:find(〈identifier〉)

Returns if there exists a ScriptVar 〈identifier〉. If true then its 〈value〉 is returned aswell.

boolean ScriptVars:remove(〈identifier〉)

Removes the ScriptVar 〈identifier〉, returns true if there was such a value.

void ScriptVars:save()

Saves all ScriptVars immediately. Use with caution as it could cause freezes.

48

19. Random

Most of the time the random number generator supplied by Lua should be enough. However, if you
are looking for a statistically sound implementation of a random number generator, or need another
distribution besides the uniform one, this is the class you are looking for.

19.1. Functions

double Random.uniform()

Returns a random floating-point value uniformly distributed in the range [0..1).

int Random.uniform(int 〈min〉, int 〈max 〉)

Returns a random integer value uniformly distributed in the range [〈min〉..〈max 〉].

double Random.normal(double 〈mean〉, double 〈standard deviation〉)

Returns a random floating-point value normally distributed with given 〈mean〉 and 〈standard deviation〉.

49

20. Debugging

While using luac -p for finding compilation errors is very straight forward, it is much more difficult to find
runtime errors. The script error log which can be viewed via http://illarion.org/~nitram/show_log.php
for the testserver and via http://illarion.org/~vilarion/show_log.php for the illarionserver shows
all runtime errors and where they occured. These logs should be checked after every change and subse-
quent testing. Keeping the logs clean will help others to find their own bugs faster.

20.1. Functions

void debug(text 〈debugMessage〉)

If used on the testserver prints 〈debugMessage〉 to the script log together with a stacktrace
showing where the call of debug(...) originated. Has no effect on the illarionserver.

50

http://illarion.org/~nitram/show_log.php
http://illarion.org/~vilarion/show_log.php

21. Entry Points

21.1. Items

function UseItem(〈User〉, 〈SourceItem〉, 〈ltstate〉)

When one item is used. If it is used with another item, 〈TargetItem〉 is the ID of that item,
otherwise it is 0.

function ItemLookAt LookAtItem(〈User〉, 〈Item〉)

When someone looks at an item. Needs to return ItemLookAt as described in table 21.1.

function MoveItemBeforeMove(〈User〉, 〈SourceItem〉, 〈TargetItem〉)

Is invoked when someone tries to move an item before the move is commited. If this function
returns false the move of the item will not be carried out; that can be used for cursed items.
Basically, 〈SourceItem〉 is the item before it was moved, 〈TargetItem〉 is the item after it was
moved.
IMPORTANT: It MUST return either true or false , otherwise the server crashes! (return
true;)

function MoveItemAfterMove(〈User〉, 〈SourceItem〉, 〈TargetItem〉)

Is invoked after someone moved an item. See also MoveItemBeforeMove(.)

function NextCycle()

Is invoked every 10 seconds for commonitems.

function CharacterOnField(〈User〉)

Is invoked if someone steps on that item (which therefore lies on the floor); good for traps
and fields. This function requires that the corresponding item has a specialitem-flag in the
db-table tilesmodificators

21.2. NPC

For effective usage of NPCs and their scripts please read the section about string handling.
function nextCycle(〈npc〉)

Is invoked every few server cycles (=approximately constant time intervalls, 1
10
s). IMPOR-

TANT: MUST exist in NPC scripts!

function receiveText(〈npc〉, 〈TextTyp〉, 〈Text〉, 〈Originator〉)

Is invoked if the NPC hears someone speaking (even himself!).

function useNPC(〈npc〉, 〈User〉)

Is invoked if the NPC is used (shift-click) by 〈User〉 without target.

function lookAtNpc(〈npc〉, 〈SourceCharacter〉, 〈mode〉)

Is invoked if the player 〈SourceCharacter〉 looks at the NPC. 〈mode〉 describes what kind of
lookat is done: 0 means normal, 1 means close examination.

51

ItemLookAt field type item data description
name string ”nameDe”

”nameEn”
rareness ItemLookAt.

commonItem
uncommonItem
rareItem
epicItem

”rareness”

description string ”descriptionDe”
”descriptionEn”

craftedBy string ”craftedBy”
type string - derived from Weapon-

Struct or ArmorStruct
level number - 0..100
usable boolean - can the player use this?
weight number -
worth number - selling price in copper
qualityText string -
durabilityText string -
durabilityValue number - 0..100 in percent
diamondLevel number ”magicalDiamond” magic gem level: 0..10
emeraldLevel number ”magicalEmerald” magic gem level: 0..10
rubyLevel number ”magicalRuby” magic gem level: 0..10
sapphireLevel number ”magicalSapphire” magic gem level: 0..10
amethystLevel number ”magicalAmethyst” magic gem level: 0..10
obsidianLevel number ”magicalObsidian” magic gem level: 0..10
topazLevel number ”magicalTopaz” magic gem level: 0..10
bonus number - gem bonus: 0..255

Table 21.1.: ItemLookAt member variables

52

21.3. Magic

function CastMagic(〈Caster〉)

Is invoked when 〈Caster〉 casts a spell without target.

function CastMagicOnCharacter(〈Caster〉, 〈TargetCharacter〉)

Is invoked when 〈Caster〉 casts a spell on another character/monster (〈TargetCharacter〉).

function CastMagicOnField(〈Caster〉, 〈pos〉)

Is invoked when 〈Caster〉 casts a spell on a field at the position 〈pos〉.

function CastMagicOnItem(〈Caster〉, 〈TargetItem〉)

Is invoked when a spell is casted on an item.

21.4. Monsters

function onDeath(〈Monster〉)

Is invoked as a monster dies.

function receiveText(〈Monster〉, 〈TextTyp〉, 〈Text〉, 〈Originator〉)

Is invoked when a monster (〈Monster〉) receives spoken text.

function onAttacked(〈Monster〉, 〈Attacker〉)

Is invoked when a monster is attacked.

function onCasted(〈Monster〉, 〈Caster〉)

Is invoked when a spell is casted on a monster.

function useMonster(〈Monster〉, 〈User〉)

Is invoked when a monster is used by 〈User〉

function onAttack(〈Monster〉,〈Enemy〉)

Is invoked every time when a monster would hit the enemy.

function enemyOnSight(〈Monster〉,〈Enemy〉)

Is invoked every time when a monster sees an enemy. IMPORTANT : MUST return true (did
something) or false (did nothing)! It is not invoked when the monster stands on a field next
to the enemy.

function enemyNear(〈Monster〉,〈Enemy〉)

Is invoked every time when a monster sees an enemy and stands next to it. Works exactly like
enemyOnSight(,) MUST return true or false! But beware: If you plan to have setTarget(...)
return 0 (”don’t attack anyone”), enemyNear(...) must return false, otherwise the server is
caught in an endless loop!

function lookAtMonster(〈SourceCharacter〉, 〈monster〉, 〈mode〉)

53

Is invoked if the player 〈SourceCharacter〉 looks at the 〈monster〉. 〈mode〉 describes what
kind of lookat is done: 0 means normal, 1 means close examination.

function onSpawn(〈Monster〉)

Is called immediately after the 〈Monster〉 has spawned. There one can e.g. set it on a route
using waypoints.

function setTarget(〈Monster〉, 〈CandidateList〉)

If setTarget exists, it is called whenever 〈Monster〉 need to decide what it should attack.
〈CandidateList〉 is a list of players who are possible targets. To set a target, it’s index in that
list has to be returned. The first enemy in the list has the index 1. If the function returns
0, the monster will ignore any enemy. If setTarget() returns 0 (”don’t attack anyone”),
enemyNear() must return false otherwise the server is caught in an endless loop!

If setTarget does not exist, the player with lowest health is chosen by default.

21.5. Fields

function useTile(〈User〉,〈Position〉)

Is invoked when a tile is shift-clicked (used).

function MoveToField(〈User〉)

Is invoked if a character moves on that triggerfield (entry in ”triggerfields” necessary).

function MoveFromField(〈User〉)

Is invoked if a character moves away from that triggerfield.

function PutItemOnField(〈Item〉,〈User〉)

Is invoked if an item is put on that triggerfield.

function TakeItemFromField(〈Item〉,〈User〉)

Is invoked if an item is taken away from that triggerfield.

function ItemRotsOnField(〈oldItem〉,〈newItem〉)

Is invoked when 〈oldItem〉 rots into 〈newItem〉 on a triggerfield.

21.6. Quests

While you can create quests with setQuestProgress and getQuestProgress, it is much nicer to have an
actual log of that progress in your client. This way you cannot forget about your quests and you always
know what to do and where to do it. The client might even point you in the right direction. The entry-
points in this section implement that behaviour.

text function QuestTitle(Character 〈user〉)

You should return the quest title here, depending on user language.

text function QuestDescription(Character 〈user〉, int 〈status〉)

54

You should return the quest description here, depending on user language and quest 〈status〉.
You can be as extensive as you want, but make sure to cover the most important points. A
good description should serve as a reminder where to go to complete the next step of the
quest, let the player know how to get there and what to do there. Imagine a player continuing
a quest after some time, they still need to know where they are at and how to go on.

posStruct function QuestTargets(Character 〈user〉, int 〈status〉)

Here you should return the position where the quest continues, i.e. where a new quest status
can be obtained. The client will receive this position and direct the player towards it. You
can also return nil or an empty list if no such positions should be displayed in the client.
Omit positions with care. Even if you think it would be cool to let players search on their
own, most of the time it is just annoying. You can also return a list of positions here if the
quest can continue in more than one location.

int function QuestFinalStatus()

Return the final status of your quest here. This is used by the server to determine whether the
end of a quest has been reached. If so, the client is notified to display the quest as completed.

21.7. Scheduled Scripts

Scheduled scripts allow the execution of functions in arbitrary scripts in certain intervals.
function 〈functionname〉()

This script is invoked by having an entry in the database table ”scheduledscripts” after
some given time intervall.
Example:

sc_scriptname | sc_mincycletime | sc_maxcycletime | sc_functionname

------------------+-----------------+-----------------+-----------------

scheduletest.lua | 14 | 16 | makeeffect

This will invoke the function makeeffect() in the script scheduletest.lua every 14-16
seconds (a random time between 14 and 16 seconds).

21.8. Server Scripts

Some scripts provide a special global service for the server. These scripts are not attached to a specific
item, character or field, but define general behaviour. All of these scripts are located in server/. Server
scripts should be edited with great caution, since breaking one of those scripts would break the related
behaviour for the server.

21.8.1. Combat (standardfighting.lua)

Everything related to physical combat is handled by standardfighting.lua. It is called everytime a char-
acter tries to hit another character.

function onAttack(Character 〈Attacker〉, Character 〈Defender〉)

Is invoked for every attack by 〈Attacker〉 against 〈Defender〉.

55

21.8.2. Login (login.lua)

This script is invoked when a player logs in. Here you can e.g. display login information or tax players.

function onLogin(Character 〈player〉)

Called when 〈player〉 logs in.

21.8.3. Logout (logout.lua)

This script is invoked when a player logs out. Here you can e.g. substitute GM faction leaders by their
NPC equivalent.

function onLogout(Character 〈player〉)

Called when 〈player〉 logs out.

21.8.4. Learning (learn.lua)

function learn(Character 〈char〉, Skill 〈skill〉, int 〈actionPoints〉, int 〈opponent〉)

Called when Character:learn is invoked. See there for a description of paramters. Implements
the learning system.

function reduceMC(Character 〈player〉)

Called every 10s for every player who is online. Use to reduce mental capacity necessary for
learning.

21.8.5. Death (playerdeath.lua)

function playerDeath(Character 〈deadPlayer〉)

When a player dies this function is called by the server. It should handle e.g. penalties for
dying.

21.8.6. Depot Access (depot.lua)

function onOpenDepot(Character 〈player〉, scrItem 〈depot〉)

When a player tries to open a depot, this function is called. It has to return either 〈true〉 if
opening the depot is successful or 〈false〉 otherwise.

21.8.7. Player LookAt (playerlookat.lua)

function lookAtPlayer(Character 〈player〉, Character 〈targetPlayer〉, int 〈mode〉)

Is invoked when the 〈player〉 looks at the 〈targetPlayer〉. 〈mode〉 describes the type of lookat
performed: 0 means normal, 1 means close examination.

21.8.8. Item LookAt (itemlookat.lua)

function ItemLookAt lookAtItem(Character 〈player〉, scrItem 〈item〉)

Handles basic item lookat if there is no lookat script attached to the given item. Has to return
an ItemLookAt as described in table 21.1.

56

21.8.9. Reloading Scripts (reload.lua)

function onReload()

Invoked after server start as well as after the !fr command has been issued. Possibility to set
defaults or initialize global variables.

57

22. Lua

22.1. Important commands

For a good summary of the importand commands and how they work look at http://lua-users.org/wiki/TutorialDirectory
Of special interest are: for, if, function, while and the concept of lists.

22.2. Built in functions

math.random ()

Returns a random number between 0 (incl.) and 1 (excl.).

math.random (〈Upper〉)

Returns a random integer between 1 and 〈Upper〉 (inclusive).

math.random (〈Lower〉,〈Upper〉)

Returns a random integer between 〈Lower〉 and 〈Upper〉 (inclusive).

math.abs (〈number〉)

Returns the absolute value of a number. Example: math.abs -4.2 -¿ 4.2

math.ceil (〈number〉)

Rounds 〈number〉 to the next higher integer.

math.floor (〈number〉)

Rounds 〈number〉 to the next lower integer.

table.getn (〈List〉)

Returns the number of entries in a table.

string.find (〈text1 〉,〈text2 〉)

Returns nil , if 〈text2 〉 was not found in 〈text1 〉. If, however, 〈text1 〉 contains 〈text2 〉, it
returns the position of the starting character of 〈text2 〉 in 〈text1 〉, the end position of 〈text2 〉
in 〈text1 〉 and, in case one uses so called captures , all the captures found. Captures are a
powerfull concept for stings to analyze them by pattern matching. See the lua wiki.

58

22.3. Binary operators

A=B;

A will get the value of B.

A==B

A is compared with B; true for A=B else false . Used in if statements and alike.

A∼=B

A is compared with B; false for A=B else true (true if A and B are not equal).

22.4. Lists

Lists are collections of variables. Lists can be created by the following simple procedure: # Start a
Lua-list and insert the entries you want (itemIDs etc.) # Run through the list (with a loop) and do what
you need (add them to a menue etc.) # Start the process defined by 1. and 2. (send the menue to the
player) Creating a list is easy:

ListA=〈value1 〉,〈value2 〉,〈value3 〉,...

You can access elements of that table by

ListA[〈number of element〉]

for instance

ListA[2]

would be

〈value2 〉

Creating a loop is easy as well:

for i = 1,5 do

...

end

runs through ”...” 5 times, the first time with i=1, then i=2, ... to i=5. Combining that with a list would
give:

ListA={value1,value2,value3,value4,value5}

for i = 1,5 do

-- do something with ListA[i]

end

Example 1: Lets say we want to have a list of items added to a menue.

59

ItemList={45,54,67,81,110,145,215} -- create list

UserMenu=MenuStruct() -- make new menu

for i = 1,7 do -- start loop

UserMenu:addItem ItemList[i] -- add Item to menu

end

User:sendMenu UserMenu -- send menu

Example 2: Lets say we want to have a list of items which are only accessible for the player for certain
skills. We create a difficulty list.

ItemList={45,54,67,81,110,145,215} -- create list

DiffList={ 1, 7,45,90, 25, 45, 65} -- list of difficulties

UserMenu=MenuStruct() -- make new menu

for i = 1,7 do -- start loop

if (User:getSkill("smithing")>=DiffList[i]) then -- if User has enough skill

UserMenu:addItem(ItemList[i]) -- add Item to menu

end

end

User:sendMenu UserMenu -- send menu

If you are filling a list, you have to take care about the following:
Example 3: Filling a list with entries

MyList={}; -- initialize list (IMPORTANT!)

MyList[1]=12;

MyList[2]="Hello";

MyList[3]=56;

...

The important part is the first line: Without it, the script would not work. Lets now look to multidi-
mensional lists (tables, for example):
Example 4: Tables

MyTable={};

MyTable[1]={};

MyTable[2]={};

MyTable[1][1]=23;

MyTable[1][2]=45;

MyTable[1][3]=34;

MyTable[2][1]="Maoam";

MyTable[2][2]="Hello";

MyTable[2][3]="Hi there!";

22.5. Modules: Using functions and variables of other lua files

Each script is in its own module. This is defined by:

local M = {}

return M

Now we can use this module, say npc/base/myscript.lua in another script:

60

local myscript = require("npc.base.myscript")

and we can use its variables like this: myscript.myfunction()

Example:

base/file1.lua:

local M = {}

M.testNumber = 3

function M.DoSomething(User,text)

User:inform(text)

end

return M

npc/file2.lua:

local M = {}

local file1 = require("base.file1");

function M.TestingModules(Character)

if (file1.testNumber == 3) then

file1.DoSomething(Character, "Testing this feature!")

end

end

return M

22.6. A note on namespaces, ambiguities and variable declaration

Each module has its own namespace, so there won’t be any ambiguities with other scripts. But note
that every variable or function that is not declared as local are global and will be present in the whole
namespace of the module. At that point it does not matter if the variable is declared inside or outside a
function body. All variables that are declared outside all function bodies are loaded only once.
There exists only one instance of every module, so e.g. all items of one kind (or that are bound to the
same script) will use the very same instance of the module and therefore share all global variables. So if
you use a variable only inside one function, declare it as local, so it will be dumped after the function
call has ended and there is no possibility to interfere with other variables and to create any ambiguities.
However, if there are two variables or functions (or a function and a variable) with the exact same name,
the last definition will always override all previous ones. Note that Lua does not provide any mean for
function overloading.

61

23. String handling

This is an important topic, as it is relevant for the use of Lua for NPCs (and eventually monsters). The
seemably most important function is:
string.find (〈text1 〉, 〈text2 〉)

Returns a number that indicates the position in text1 of the beginning of the first occurence
of text2 in text1 and another number that indicates the last position of the last occurence.

Example:

a,b=string.find("Hello world","llo");

-> a=3, b=5

a,b,c,d=string.find("I buy 20 shoes",".*buy (%d+) (.+)");

-> a=0, b=14, c="20", d="shoes"

• Expressions in brackets ”(...)” are returned to the variables. Without them, we would just have a
and b.

• ”.” means: any character, digit, just anything.

• ”*” means: repetition of the previous, including 0 repetitions; ’.*’ therefore could mean any string,
including an empty one (””).

• ”+” means nearly the same as ’*’, except that it has to have at least 1 repetition, therefore the
empty string is not included.

• ”%s” simply means a space (” ”). ”a%sb” therefore means ”a b”.

• ”%d” means any digit. Together with ”tt +” we have ”%d+”, which means: at least one digit, but
it can be more.

• ”[Ff]” would mean: The character must be a ”F” or a ”f”. ”[Hh][Ee][Ll]+[Oo]” therefore can
be ”hello” or ”helo" or ”HeLlo” or ”heLLLlO” or...

Therefore the above ”.*buy (%d+) (.+)” means: Search for a string where you have:

1. any characters or nothing

2. followed by ”buy”

3. followed by a space (” ”)

4. followed by (at least) one or more digits

5. followed by space

6. followed by one or more characters of any type (could be ”shoes”, but could also be ”!!98(jj” or
”hallo” or ”9982”)

62

Beware: c and d are both strings, even if they contain a number like ”23”. If you perform mathematical
operations with them (c*2), they behave like numbers, if you compare them (if c==23), they behave like
strings, meaning that (c="23"; if c==23 then...) will NOT work, whereas (c="23"; if c*1==23

then...) WILL work, because c*1 is converted into a number.
If a string is not found inside another string, it returns nil .

23.1. File I/O

It is possible to read and write data from/into files. It is important to use files and directories where the
scripts are permitted to read and write.
Example:

filepoint,errmsg,errno=io.open("/home/martin/scrdata/testing.luadat","r");

thisline=filepoint:read("*line");

User:inform("This line reads as: "..thisline);

filepoint:close();

filepoint,errmsg,errno=io.open("/home/martin/scrdata/testing.luadat","w+");

filepoint:write("User "..User.name.." called that script!");

filepoint:close();

For further information see the official lua documentation (http://www.lua.org)

63

24. Examples

24.1. Items

Let us first begin with something simple. Say we want to have a script for a sword with the item-ID 27
(fictional) which, when shift-clicked should simply be deleted. The first thing to do is to create an empty
file like ”simple sword.lua” in some text editor (be sure that it uses unix-style end-of-lines!). This file
needs a UseItem-function, because the sword should disappear when it is used (shift-clicked). Then we
need to write down the command for deleting that item. That’s it.

-- simple_sword.lua

function UseItem(User, SourceItem)

world:erase(TargetItem,1);

end

That will do the job. Now we only need to copy this script to /usr/share/testserver/scripts/ (via svn!)
and make an entry in the commons-table of the database into the com script colum for item 27 which
reads simple sword.lua. Only do a #r inside Illarion’s testserver and it works. Let’s say that we want to
extend our script a little. The character should know that he has deleted something. We add an extra
line that informs the player:

-- simple_sword.lua

function UseItem(User, SourceItem)

world:erase(TargetItem,1);

User:inform("You have deleted that damn sword!");

end

Copy that file over the old one, do a #r and here we go. As soon as you shift-click the sword, the sword
disappears and you get the message ”You have deleted that damn sword!”. We are still not satisfied
with that. Nono. We want to give out some information about that sword, too. It’s weight for example.
Now, how to do that? This is a little more complex (only a little) because there are two ”types” of items
that lua knows: the one is the kind of variable like ”TargetItem”, which does not know anything about
it’s weight or other properties. The other one knows everything about itself. So we first have to convert
TargetItem into such an object. Then we need to get the weight of that. That is done as follows:

-- simple_sword.lua

function UseItem(User, SourceItem)

world:erase(TargetItem,1);

MyItem=world:getItemStats(TargetItem);

MyWeight=MyItem.Weight;

User:inform("You have deleted that damn sword which weights "..MyWeight);

end

Proceed as before. Let’s go on. Next step is: We want to create a new item as soon as the old is destroyed.
Let’s say the item with the ID 28. Not just one, but, say, 5 of them.

64

-- simple_sword.lua

function UseItem(User, SourceItem)

world:erase(TargetItem,1);

User:createItem(28,5,333);

MyItem=world:getItemStats(TargetItem);

MyWeight=MyItem.Weight;

User:inform("You have deleted that damn sword which weights ".MyWeight);

end

Now, how simple is THAT? Wow. We are still not satisfied. For one reason or another, we do not want
to delete that sword in any case. We only want to delete it if the corresponding character does NOT
carry a magic key (fictional ID: 30) anywhere on his body. How about that then?

-- simple_sword.lua

function UseItem(User, SourceItem)

keys=User:countItem(30);

if (keys==0) then

world:erase(TargetItem,1);

User:inform("You have deleted that damn sword which weights ".MyWeight);

end

User:createItem(28,5,333);

MyItem=world:getItemStats(TargetItem);

MyWeight=MyItem.Weight;

end

This can easily be extended with all the functions and commands listed above. However, let us now
turn to more advanced examples. Take, for example, a lockable door. There are several possibilities
to lock a door, only limited by the scripters creative mind. The most basic one seems the following:
Asume you have two versions of a door: an open one (fictional ID: 50) and a closed one (fictional ID: 51).
This door stands on the fictional coordinates (30,30,0). The principle works as follows: closed=locked,
open=unlocked, you replace the closed door (50) by the open one (51) if someone uses the correct key
(fID: 60) with the closed door. This means that the opening and closing of that door entirely lies in the
script of the key (as it is the first object to be shift-clicked!).

-- key_door.lua

function UseItem(User, SourceItem)

MyDoor=world:getItemStats(TargetItem);

if (MyDoor.id==50) then

MyDoorPosition=TargetItem.pos;

DesiredPosition=position(30,30,0);

if (MyDoorPosition=DesiredPosition) then

world:erase(TargetItem,1);

world:createItemFromId(51,1,DesiredPosition,true,333)

end

elseif (MyDoor.id==51) then

MyDoorPosition=TargetItem.pos;

DesiredPosition=position(30,30,0);

if (MyDoorPosition=DesiredPosition) then

world:erase(TargetItem,1);

65

world:createItemFromId(50,1,DesiredPosition,true,333)

end

end

end

This can of course be done in a more elegant way, as the same structure appears twice. However, for
learning purposes, this is more obvious: First we check the items ID; if it fits, we check the items position;
if that fits, we delete it and create the opened (closed) version instead.

24.2. NPCs

IMPORTANT: NPCs MUST have a nextCycle() function, even if it is empty!
Simple NPCs are as simple as simple item scripts. However, they can grow rather large and be arbitrary
complex. Lets start with a simple one: He should simply react on ”Greetings” or ”greetings”.

function receiveText(npc, texttype, message, originator)

if string.find(message,"[Gg]reetings") ~= nil then

npc:talk(Character.say, "Greetings, my friend.");

end

end

Note that we will need string operations intensively. The first one is hidden in ”[Gg]reetings”, which
means that the first letter can be both, a ”G” or a ”g”. If you implement that and test it, the NPC will
not react. The reason is rather simple: He does not understand you. In fact, he does not understand
any language at all. So we need to increase his language skill, common language preferably. But once he
learnd that, he does not need to learn it again, so he only needs to learn it one time. Here comes one
thing in quite handy: a script does not forget variables once set; if a variable was never set before, it is
nil. So, to check if the variable was set ever before, we need only to check if it is nil.

function receiveText(npc, texttype, message, originator)

if iniVar == nil then

iniVar=1;

npc:increaseSkill(1,"common language",100);

end

if string.find(message,"[Gg]reetings") ~= nil then

npc:talk(Character.say, "Greetings, my friend.");

end

end

However, this one will only react on the second string he ”hears”, because after the first one, he learns
common language and doesn’t understand anything. Afterwards, he will understand common language.
However if we want to add several keywords, we would have an endless and unelegant sequence of
if...elseif...elseif...elseif...elseif...end. To avoid that, we can use simple lists where we store the keywords
and the reactions and then just loop through them. We do not need to ”load” the lists everytime someone
talks to our NPC but only once for each server restart, meaning that we could initialize the lists like we
increase the language skill of the NPC.

function receiveText(npc, texttype, message, originator)

66

if iniVar == nil then

iniVar=1;

npc:increaseSkill(1,"common language",100);

NpcTrig=();

NpcAnsw=();

NpcTrig[1]="[Gg]reetings";

NpcAnsw[1]="Greetings, my friend.";

NpcTrig[2]="[Hh]ello";

NpcAnsw[2]="Hello. How are you?";

end

for i=1,table.getn(NpcTrig) do

if string.find(message,NpcTrig[i])~=nil then

npc:talk(Character.say, NpcAnsw[i]);

end

end

end

To summarize: We fill the trigger texts and the answers into a list and then search in a loop the received
message for a trigger text in that list; if we find one, we let the NPC speak the corresponding answer.
We can create very simple dialog. It might be the case, and this is hoped much, that you want to create
more complex NPCs than just ”question” ”answer” things. For example, lets add another thing to this
NPC: We want him to do a simple calculation and add together two numbers we tell him. Furthermore
we note that, once this NPC found a trigger in a received message, we do not want to search if there is
another trigger in the message. We will therefore restructure the for-loop and make a repeat..until-loop
instead, which is easier to stop once we found something.

function receiveText(npc, texttype, message, originator)

if iniVar == nil then

iniVar=1;

npc:increaseSkill(1,"common language",100);

NpcTrig={};

NpcAnsw={};

NpcTrig[1]="[Gg]reetings";

NpcAnsw[1]="Greetings, my friend.";

NpcTrig[2]="[Hh]ello";

NpcAnsw[2]="Hello. How are you?";

end

i=0;

foundTrig=false;

repeat

i=i+1;

if string.find(message,NpcTrig[i])~=nil then

npc:talk(Character.say, NpcAnsw[i]);

foundTrig=true;

end

until (i==table.getn(NpcTrig) or foundTrig==true)

if (foundTrig==false) then

if(string.find(message,"%d++%d")~=nil then

67

StartsAt,EndsAt,numberOne,numberTwo=string.find(message,"(%d+)+(%d+)";

npc:talk(Character.say,"This is "..(numberOne+numberTwo));

end

end

end

68

25. Common bugs

• Missing end, missing (or), script name and db-entry do not match (take care of invisible characters!
Try a search in the db with e.g. SELECT FROM testserver.spells WHERE spl scriptname=’spells.p 28’)

• A ”.” instead of the seperator ”:” or vice versa. (”.” is for variables, ”:” for functions)

• Missing () for functions that don’t need parameters.

• Incorrect number of parameters for functions.

• Mispelled function names (use syntax highlighting!).

• Forgot !fr in game to reload tables and scripts.

• = instead of == or vice versa.

• != instead of ∼=.

• Missing conversion of a string to a number (when reading from a string).

• Using a variable that does not exist in this function (e.g. originator in function nextCycle...

• Beware of endless loops; they freeze the server. Always ensure that the script terminates.

• Program parts after return statement.

• Forgotten ”then” in if-commands, forgotten ”end” in inline-if’s.

69

A. Versions

Version 5.24 (12.9.20)
* Add field:isWarp
* Add field:setWarp
* Add field:removeWarp

Version 5.23 (9.7.20)
* Remove character:alterMessage

Version 5.22 (28 05 20)
* Add map persistence
* Add world:makePersistentAt
* Add world:isPersistentAt
* Add world:removePersistenceAt
* Remove world:sendMapUpdate

Version 5.21 (23 06 15)
* Add item id constants
* Move item level from weapons and armors to item struct

Version 5.20 (07 06 15)
* Remove obsolete bit manipulation functions
* Update section about modules

Version 5.19 (15 01 15)
* Add colour class, which represents RGBA values
* Rename colour related methods and change their signature to use colour objects

Version 5.18 (13 12 14)
* Add Item:isLarge

Version 5.17 (29 07 14)
* Add world:broadcast

Version 5.16 (02 07 14)
* Remove world:itemInform

Version 5.15 (20 06 14)
* Added CommonStruct member: English
* Added CommonStruct member: German
* Added CommonStruct member: EnglishDescription
* Added CommonStruct member: GermanDescription
* Added CommonStruct member: Rareness

70

Version 5.14 (23 05 14)
* Added Character:logAdmin

Version 5.13 (15 09 13)
* Added Character:isNewPlayer
* Updated ItemLookAt

Version 5.12 (08 08 13)
* Added Character:isBaseAttributeValid
* Added Character:getBaseAttributeSum
* Added Character:getMaxAttributePoints
* Added Character:saveBaseAttributes
* Added Character:setBaseAttribute
* Added Character:getBaseAttribute
* Added Character:increaseBaseAttribute

Version 5.11 (05 08 13)
* Added Character:setRace
* Added Character:turn

Version 5.10 (23 07 13)
* Removed isTestserver

Version 5.9 (05 04 13)
* Added ArmorStruct.Type, ArmorStruct.Level
* Added global constants for ArmorStruct.Type
* Added WeaponStruct.Level
* Added global constants for WeaponStruct.Type
* Added ItemLookAt.level, ItemLookAt.armorType, ItemLookAt.weaponType

Version 5.8 (25 03 13)
* Removed obsolete function Character:changeQualityItem
* Removed obsolete function Container:changeQuality

Version 5.7 (05 03 13)
* Added time as return value of getQuestProgress

Version 5.6 (01 03 13)
* Added numeric constants for char:getType()
* Added a note about how LTE values are saved

Version 5.5 (26 02 13)
* Removed deprecated talkLanguage command
* Added localised overload for talk command

Version 5.4 (01 02 13)
* Added quest entrypoints

Version 5.3 (25 01 13)

71

* Added setCloseOnMove for SelectionDialog

Version 5.2 (12 01 13)
* Removed counter from all entrypoints
* Removed param from all entrypoints
* Removed target item from UseItem entrypoint

Version 5.1 (08 01 13)
* Added isTestserver() for debugging

Version 5.0 (27 12 12)
* New major version for server version 0.9 (VBU)
* Added overload of insertContainer with item position
* Added Character:changeSource
* Added CraftingDialog

Version 4.24 (20 11 12)
* Changed Character:learn parameter name
* Changed all data based item search functions
* Changed all data based item delete functions
* Removed isStackable from commonStruct
* Added MaxStack to commonStruct
* Added Character:getSkillName
* Removed French from Character:getPlayerLanguage
* Removed magic numbers from Character:getPlayerLanguage

Version 4.23 (27 10 12)
* Removed deprecated function equapos (since 4.10)
* Removed deprecated old item data (since 4.18) and corresponding functions
* Added overload of Container:countItem with data
* Updated world:itemInform
* Renamed scheduled scripts chapter
* Removed Use*With* entrypoints
* Added all server entrypoints
* Added separate section for Container
* Added SelectionDialog
* Added MerchantDialog
* Adjusted everything skill related to new skill handling

Version 4.22 (12 10 12)
* Added random number generators

Version 4.21 (02 10 12)
* Added description to InputDialog

Version 4.20 (01 10 12)
* Removed Character:LTIncreaseHP
* Removed Character:LTIncreaseMana
* Removed Character:tempChangeAttrib

72

* Added Field:isPassable

Version 4.19 (13 09 12)
* Added new character:inform overload with NLS

Version 4.18 (12 09 12)
* Marked all functions using old data as deprecated
* Added functions with new data parameters where necessary
* Added integer overload for Item:setData
* Added integer values for dataTable type

Version 4.17 (11 09 12)
* Removed strange parameter from Container:weight

Version 4.16 (31 08 12)
* Updated Character:inform to include the priority parameter

Version 4.15 (20 08 12)
* Removed characterOnSight entrypoint for NPCs
* Removed characterNear entrypoint for NPCs
* Removed global thisNPC
* Changed syntax of NPC entrypoints

Version 4.14 (19 07 12)
* Added playerDeath entry point
* Removed Character.death consequences property

Version 4.13 (04 07 12)
* Added pageGM command for players
* Removed everything UserMenu related, esp. the Menus chapter
* Added Dialogs chapter
* Added MessageDialog
* Added InputDialog

Version 4.12 (17 02 12)
* Changed incorrect function name getMonType to getMonsterType

Version 4.11 (09 01 12)
* Removed volume property of containers and items

Version 4.10 (06 08 11)
* Added operator == for position
* Marked function equapos as deprecated
* Added lua standard function tostring for position

Version 4.9 (04 08 11)
* Added CommonStruct member: isStackable
* Added CommonStruct member: rotsInInventory
* Added CommonStruct member: Brightness

73

Version 4.8 (24 07 11)
* Added skin/hair/color variation commands
* Added set/getData

Version 4.7 (04 07 11)
* Removed C prefix of server classes

Version 4.6 (20 04 11)
* Added isValidChar
* Added chapter on debugging

Version 4.5 (15 04 11)
* Added CommonStruct.Worth
* Added Character:sendBook
* Added entrypoint setTarget for Monsters
* Added and corrected data based item removal
* Added Character:defaultMusic
* Added Character:idleTime
* Modified Character:learn
* Brought Common Bugs up to date.

Version 4.4 (15 04 10)
* Added Waypoints
* Added ScriptVars
* Reworked LTEs
* Completed Delayed execution and disturbation
* Many other minor changes and additions

Version 4.3 (30 04 06)
* Added QuestProgress functions
* Added scheduledscripts
* Marked Longtimeeffects as active
* Corrected viewItemNr

Version 4.2 (10 11 05)
* Minor changes and additions (data)

Version 4.1 (23 09 05)
* Added new weapon struct variable
* Added combat functions

Version 4.0.0 (13 08 05)
* Added container commands
* Added variable types
* Removed some minor bugs

Version 3.2.0 (16 07 05)
* Updated dofile

74

* Added file io
* Updated index
* Changed layout
* Added new graphic

Version 3.1.1 (11 06 05)
* Deleted wrong version of itemInform
* Added index

Version 3.0.1 (11 06 05)
* Deleted wrong version of getItemName

Version 3.0.0 (10 06 05)
* Converted to LATEXformat
* Deleted unnecessary chapters
* Some additions, correcting mistakes, ...

Version 2.6.2 (02 06 05)
* Minor additions

Version 2.6.0 (29 05 05)
* Added new entry points
* Small corrections
* New commands

Version 2.5.0 (20 04 05)
* Added bugs
* Minor corrections and adaptions

Version 2.4.1 (18 04 05)
* Added further NPC examples
* Corrected minor formating bug
* Minor additions

Version 2.4 (14 04 05)
* Corrected minor errors
* Added new commands
* Added better description of items
* Added starts of NPC tutorial

Version 2.3.1 (06 04 05)
* Minor additions and corrections

Version 2.3 (01 04 05)
* Added a new section for a tutorial
* Minor corrections

Version 2.2.8 (29 03 05)
* Minor corrections

75

* Minor additions

Version 2.2.7 (27 02 05)
* Converted to WIKI-format
* Some language corrections
* Added some chapters from other versions

Version 2.2.6 (19 11 04)
* Corrected world:makeSound(...)

Version 2.2.5 (15 11 04)
* Corrected world:gfx(...)

Version 2.2.4 (11 11 04)
* Minor additions
* Minor regrouping of skill/attribute-commands

Version 2.2.3 (10 11 04)
* Added chapter ”Built in functions”

Version 0.2.2 (09 11 04)
* Minor correction on ”world:erase”.
* Deleted/Clearified last ?-lines.

Version 0.2.1 (07 11 04)
* Added chapter ”Item” and some content

Version 0.2 (07 11 04)
* Added Entry points

Version 0.1.1 (04 11 04)
* Corrected sendMenu-command

Version 0.1 (03 11 04)
* Roughly organized character-commands by topic
* Deleted 〈character〉:depot(-)command
* Changed sendMessage() to inform()
* Added some short descriptions
* German to english translations
* Changed world:erase-command

76

	General
	Formalism
	General introduction
	Variable types

	Quickstart: Tutorials
	Level 0: Before we start
	Level 1: Your first script

	Positions
	Functions
	Variables
	Additional information

	Colours
	Functions
	Variables

	Characters
	Functions
	Text/Speech
	Skills and Attributes
	Quest progress
	Item handling
	All the rest

	Variables

	Containers
	Functions

	Dialogs
	MessageDialog
	Results
	Construction
	Request

	InputDialog
	Results
	Construction
	Request

	SelectionDialog
	Results
	Construction
	Request

	MerchantDialog
	Results
	Construction
	Request

	CraftingDialog
	Results
	Construction
	Request

	Examples
	MessageDialog
	InputDialog

	Items (scriptItem)
	Functions
	Variables
	Constants

	Items (ItemStruct)
	Variables

	Weapons and Armor
	WeaponStruct
	ArmorStruct
	NaturalArmor

	World
	Functions
	Variables

	Fields
	Functions
	Variables

	It's a kind of magic
	Global variables
	Some words on magic

	Weather
	Variables
	Functions
	Entry point

	Long time effects
	Basic idea
	Functions
	Variables
	Entry points for longtime effects
	Example: Adding long time effects to characters
	Ideas for usage

	Delayed execution and disturbation
	Functions
	Constants
	Usage
	Example

	Waypoints
	Functions
	Entry Points

	Global Scriptvariables
	Functions

	Random
	Functions

	Debugging
	Functions

	Entry Points
	Items
	NPC
	Magic
	Monsters
	Fields
	Quests
	Scheduled Scripts
	Server Scripts
	Combat (standardfighting.lua)
	Login (login.lua)
	Logout (logout.lua)
	Learning (learn.lua)
	Death (playerdeath.lua)
	Depot Access (depot.lua)
	Player LookAt (playerlookat.lua)
	Item LookAt (itemlookat.lua)
	Reloading Scripts (reload.lua)

	Lua
	Important commands
	Built in functions
	Binary operators
	Lists
	Modules: Using functions and variables of other lua files
	A note on namespaces, ambiguities and variable declaration

	String handling
	File I/O

	Examples
	Items
	NPCs

	Common bugs
	Versions

