TTP SmartCard-based ElGamal Cryptosystem using
Threshold Scheme for Electronic Elections (Extended)?!

Jordi Pujol-Ahull6, Roger Jardi-Cedo, JordiCastella-Roca, Oriol Farras, Viceng Creus
Departament d’Enginyeria en Informatica i Matematiques
Av. Paisos Catalans 26, 43007, Tarragona, Spain.
Email: {roger.jardi, jordi.castella}@urv.cat

January 29, 2013

!This work was partly supported by the Spanish Ministry of Education through projects
TS12007-65406-C03-01, “E-AEGIS” and CONSOLIDER CSD2007-00004 “ARES”, by the
Spanish Ministry of Industry, Commerce and Tourism through project eVerification/2 TSI-
020100-2011-39 and by the Government of Catalonia.

Abstract

The private key of electronic elections is a very critical piece of information that, with
an incorrect or improper use, may disrupt the elections results. To enforce the privacy
and security of the private key, secret sharing schemes (or threshold schemes) are used
to generate a distributed key into several entities. In this fashion, a threshold of at
least t out of the n entities will be necessary to decrypt votes. We study in this work
the feasibility of developing ElGamal cryptosystem and Shamir’s secret sharing scheme
into JavaCards, whose API gives no support for it.

Chapter 1

Introduction

Electronic elections employ typically asymmetric cryptosystems to encrypt votes and,
therefore, guarantee their anonymity and secrecy. In this scenario, the private key of
the electoral board is a critical piece of information. An incorrect or improper use of
the private key could disrupt the election-results. Secret sharing is a cryptographic
primitive that is used to solve this problem. In a (t,n)-threshold secret sharing scheme,
the secret is divided in n shares in such a way that any set of at least ¢ shares can
recover the secret. The ElGamal cryptosystem [4] is widely chosen in e-voting schemes,
given its homomorphic properties and its possible use in mixnets [2].

In addition, smartcards are being used to enhance the security and usability of the e-
voting system given that they are tamper-proof devices [10] and make easier the shares
portability. Smartcards have two parts [5]: (i) the hardware components, which might
include a cryptographic co-processor to provide hardware-accelerated cryptographic
operations (e.g., RSA, DSA); and (ii) the smartcard operating system, which may allow
to develop, deploy and execute user applications in a secure fashion. JavaCards [7,
8] are extensively used smartcards, because they can extend their functionality by
means of applications (called applets) developed in a subset of the Java programming
language. However, even though the smartcard hardware may give support for ElGamal
cryptosystem (e.g., [1, pg. 2]), the JavaCard API (Application Programming Interface)
does not [7, §].

Chapter 2

Contributions and organization

The contributions of our work are the design and development for JavaCards of the
following building blocks: (i) ElGamal cryptosystem to generate the ElGamal key pair,
(ii) Shamir’s secret sharing scheme to divide the private key in a set of shares, (iii)
secure communication channels for the distribution of the shares, and (iv) a decryption
function without reconstructing the private key.. This solution can be applicable in
many different situations but especially, as discussed below, we will show how it applies
and how can be useful for a typical e-voting system, specifically in the voting scheme
presented by Cramer et al. [3].

In the Chapter, 3 we detail the protocol implemented and its phases. In the Chapter,
4 we explain how we implement the protocol. In the following Chapter 5, we will
evaluate the performance of our implementation. Finally, we make conclusions and the
analysis of the future work in the Chapter 6.

Chapter 3

Smartcard protocol

In order to explain the protocol behavior and its implementation, we make use of
a typical e-voting system [3]. In this chapter, we describe our proposed smartcard
protocol for initializing the ElGamal cryptosystem and the threshold secret sharing
scheme that are used in the electronic elections. The protocol has been designed in
order to implement all sensitive operations securely into the JavaCard.

Firstly. we list the participating actors within the protocol, and afterwards, we
describe all the subsequent protocol steps within the elections process.

For each electoral district/department there is an electoral board (M), formed by
a set of members M = {my,...,my}. The electoral board M has the responsibility of
initializing ElGamal cryptosystem and providing the private key to all members. The
set M is elected from the set of users U = {uy,...,uy}, n < w. Each member m; is
provided with a smartcard sc; € SC. An electoral authority A has the function of
managing and supervising the elections and, in particular, of generating the certificates
¢; for each member m; € M.

In the following, we highlight the protocol steps in a typical e-voting system. Firstly,
(i) the electoral board is constituted, allowing voters to vote; (ii) voters cast their
vote encrypted to guarantee anonymity and secrecy; and (iii) votes are decrypted.
The votes can be aggregated before obtaining the tally results if the e-voting scheme is
homomorphic or hybrid.

3.1 Electoral board constitution

The electoral board is constituted by a set of m members. Any member has a
smartcard, public certificates and particular public and private keys. A smartcard
sc € SC' is used to generate the ElGamal key pair for the current elections, and also
all shares for the private key using Shamir’s secret sharing scheme [11]. Only then the
private key is securely removed from sc. This smartcard establishes a secure channel
to the rest of (n — 1) smartcards and sends them the corresponding shares. Once
this protocol step is concluded, all smartcards have their verified share, as well as all
the public key and parameters necessary for encryption, decryption and verification
operations. We structure the electoral board constitution with the following steps:

1. Election and certification of the members of the electoral board:

Roger Jardi-Cedé et al. 5

(a) The members of M = {my,...,m,} are drawn from U = {u1,...,uy}
according to the current legislation.

(b) A stores in all smartcards elections detail £ (current elections), list of mem-
bers M and certificate c4.

(c) All members in M meet. Then, A provides them their smartcards.
2. Creation of the electoral board:

(a) For each m; € M, A builds a (e.g., RSA) key pair (p;, s;) and creates its
public certificate c¢;.

(b) The key pair (p;i,s;) and the set of public certificates C = {c1,...,c,} are
stored in the corresponding smartcard sc;.

(c) A validates each certificate ¢; € C.
(d) The electoral board constitution is publicly defined by 6 £ SH4(M,C,&).

3. Creation of the ElGamal key pair for elections &:

(a) ¢ is stored in each s¢; € SC.

(b) Every sc¢; € SC verifies ¢ using c4.

(c¢) Every sc; € SC stores the ElGamal and threshold scheme public parameters
in (s¢; A (p,g,t)).

(d) One (any) of the sc¢; € SC performs the following operations:

i. Generates s € Z,, where s is the ElGamal private key for elections &.

ii. Generates y = ¢° mod p, the ElGamal public key for elections &.

4. Generation of the private key shares for the electoral members according to the
Shamir’s (¢, n)-threshold scheme. To do so, the above selected sc¢; performs the
following operations:

(a) Defines privately B = {b1,...,b;—1}, where b; € Z,,, 0 < i < t.
(b) Commits publicly to B= {Bi1,...,B;_1}: Bi=¢% modp, 1 <i<t—1.
(c) Defines a polynomial f(x) = s+ > /"1 b;z' mod p, of degree t — 1, where s

is the zero degree term. This polynomial will be used to generate the shares
of the (t,n)-threshold scheme.

(d) Defines the public parameters X = {x1,...,xp} : 23 € Zp ANz # x5 Ni #
J1<i<nAl<j<n.

(e) Commits publicly to X = {z1,...,2,}.

(f) Calculates the set of shares H = {hi,...,hn} where h; = f(z;) = s+
22;11 bjz;) mod p, z; € X.

(g) Removes securely s.

(h) Commits publicly to H = {Hy,...,H,}: Hi=g¢" modp, 1 <i<t—1.

6 3. SMARTCARD PROTOCOL

5. Distribution of shares to all electoral members. To do that, the same smart-
card sc; prepares all h; € H \ {h;} to be sent privately to other members m; in
M\ {m;}. The goal is to securely transmit and store the share h; in the corre-
sponding smartcard sc;. We implement a secure communication channel by using
symmetric and asymmetric encryption of the data to be sent, and then, send it
publicly over any insecure communication channel. In particular, for all j # 4,
sc; realizes the following operations:

(a) Gets a symmetric key K; (e.g., AES key).
(b) Encrypts h; using K; and obtains o = Ef; (h;).
(c)

)

d

Encrypts K using the public key P.; and obtains a; = P (Kj).

Calculates the digital signature of (o, ;) obtaining §; = SHy, (0, ;). Re-
call that s; is the m;’s private key, stored in sc;.

(e) Sends publicly (y, 0, a;, 8;) to sc;.

(f) Securely removes all h; from s¢;.

6. Verification and storage of the received shares by all electoral members. To do
so, all smartcards sc; # sc; check the received information. That is, for every
J # 1, scj performs the following operations:

Verifies the digital signature 3;.
Decrypts a; using its private key s;, and obtains K; = S, (a;).
Decrypts 0; using Kj;, and obtains h; = Dy, (0;).

)
)
)
(d) Verifies hj, so that g" corresponds to the public parameter H. e
) Verifies that the public parameters H = {Hy,...,Hy,} are correct.
)

Stores in sc; the share hj, whether all verifications succeed. Otherwise,
smartcard sc; from member m; addresses a complain to A.

7. To complete and confirm the correct reception of the corresponding shares, all
smartcards perform a public commitment to the received shares. Every sc; € SC
realizes the following operations:

(a) Calculates y; = g™ mod p.
(b) Calculates de digital signature v; = SH;(y;).

(¢) Sends in a public fashion the pair (y;,7;) to the rest of smartcards.

The aforementioned protocol steps guarantee that any sc; € SC has its wverified
private information, as well as all the public key and parameters necessary for encryp-
tion, decryption and verification. Next, we describe the rest of the logical steps in the
elections.

Roger Jardi-Cedé et al. 7

3.2 Vote encryption and tallying votes

Once the electoral board is constituted, the elections starts. In the voting phase,
voters cast their vote encrypted in order to guarantee their anonymity and secrecy.
Therefore, the vote z; € Z,, from voter v; is encrypted using the ElGamal public key ¥
from elections £and r;, whereZ, and 1 < r; <p — 1.

When elections have been concluded, a set of at least ¢ members of the electoral
board M = {mq,...,my}, t < n, it is necessary to meet for successfully decrypting
votes. These members compute securely in their smartcards the factor Z1; = Z1(g")*
mod p, where); is the corresponding Lagrange coefficient, and Z1 = HviEV g"t. This
factor is used to compute the final tally in a similar way of [3].

Chapter 4

Development details

We propose to develop an application to be deployed on JavaCards [7, 8]. We chose this
technology because it is one of the most pervasive open platforms for secure devices.
Nowadays, there are over 3.5 Billion Java Powered smart cards deployed worldwide
[9]. The applications developed using Java card technology can be run on several
platforms. Another consideration is its Modular security certification. The platform
can be certified once and the applications can be certified separately.

The whole protocol is implemented in the (i) Java Card by means of a Java Applet,
carrying out the most sensible and secure actions; and in a (ii) PC application that
commands the execution logic. In the following we describe the both implementations.

4.1 Java Card implementation

Smartcards supporting JavaCard 2.2 [7] and superior versions [8] provide a well-defined
set of symmetric and asymmetric cryptosystems (e.g., RSA, AES), as well as digital
signatures (e.g., DSA). However, there is no support for ElGamal cryptosystem, even
though it might be provided by the smartcard hardware. To implement the ElGamal
cryptosystem in JavaCards, we need a JavaCard provided with modular arithmetic
operations, mainly modular multiplication and exponentiation. Nonetheless, JavaCard
2.2 API provides no modular arithmetics, but only non modular addition, subtraction
and multiplication of big numbers [7, see javacardx.framework.math.BigNumber].

Having all this in mind, we identify three building blocks that are necessary in
order to offer ElGamal encryption/decryption, as well as the mathematical operations
necessary for the construction and use of the Shamir-based threshold scheme: (i) a
big number library for JavaCard, (ii) ElGamal API and (iii) threshold scheme API
in JavaCard. In particular, the big number library will be used by the ElGamal and
threshold scheme API, so that its design and implementation have the (constrained)
efficiency in very consideration. In addition, we design the whole solution in pure
JavaCard language subset to be as much portable as possible.

4.1.1 Big number library

Developing software for smartcards is very restrictive given the functionality and data
types they support. This is also the case of the JavaCards. It is easily noticeable that
there are several challenges to solve when dealing with big numbers in JavaCards, even

Roger Jardi-Cedé et al. 9

though they can be categorized into the following two concerns: (i) big number storage
and representation and (ii) modular arithmetics.

Big number storage and representation. First of all, we have the challenge
of storing big numbers into JavaCards. To do so, JavaCards allow defining array of
bytes (8 bits), shorts (16 bits) or ints (32 bits). However, int data type is optionally
supported in the standard JavaCard, and not all JavaCards supports array of shorts
and ints. This comes to light by the fact that the whole JavaCard API only uses arrays
of data type byte. Additionally, the JavaCard language subset restricts that arrays can
hold up to 32,767 fields. This requires that only variables of type byte or short be used
as an array index or to specify the size of an array during array creation.

We have designed this library to overcome all these restrictions by following the
manimum-common-factor criteria. To do so, we have designed a Java class MutableBigInteger
as container of a big number. MutableBigIntegers consist of a byte array as back-end
(for true portability) and a minimal set of methods to facilitate their initialization and
access. The design of our MutableBigInteger is inspired in the Java 6.0 MutableBig-
Integer class [6]. Given that all Java objects must be initialized when the applet is
registered into the JavaCard, the byte array size has to be initialized to the maximum
allowed supported key size in the JavaCard standard [7], which is 2048 bits. However,
we permit instantiation of keys of different sizes (< 2048 bits) according to the current
key size used in the system.

Modular arithmetics. MutableBigInteger does not provide any modular arith-
metics, but a new Math Java class does. Among other methods, Math implements
the modular addition (modAdd), subtraction (modSubtract), multiplication (modMul),
exponentiation (modPow) and bitwise right shift (modRightShift).

Except modPow and modMul, all modular operations are implemented according to
the paper and pencil solution, with cost O(n) in actual number of bytes long of the
largest big number. We designed the complex and costly modPow and modMul operations
in such a way that they tend to be time and computationally efficient. To do so, we
used as much as possible the JavaCard cryptographic co-processor. In particular, we
implement modPow overlaid on the provided JavaCard RSA cryptosystem [12], so that
our solution benefits from a hardware-accelerated modular exponentiation (with almost
O(1) cost). Following the same path, we use the binomial theorem (4.1) to transform
a modular multiplication into modular exponentiations:

(a+0)*> — (a —b)* =4ab mod p (4.1)

As equation (4.1) depicts, calculating a modular multiplication requires one modular
addition, two modular subtractions, two modular exponentiations and two modular
bitwise right shifts, with a total cost of O(n) in current number of bytes long [12].
Therefore, differently from what could be expected, our implementation provides a
O(n) cost in terms of key size.

4.1.2 ElGamal and Threshold Scheme API in JavaCards

We presented in Chapter 3 the protocol to initialize the Shamir’s (¢,n)-threshold scheme
for the ElGamal cryptosystem. However, we have also designed a version of ElGamal
cryptosystem to work in a standalone fashion, without a secret sharing scheme. Actu-
ally, it is worth noting that our protocol also includes the generation of the ElGamal

10 4. DEVELOPMENT DETAILS

public and private keys. In this section we present the design of classes which sup-
port the standalone ElGamal cryptosystem, and leave the description of the threshold
scheme version for later in this section. However, we use the ElGamal private key
implementation in both cases to store the standalone private key (s) or the member’s
private share (h;), respectively.

ElGamal API in JavaCards.

The JavaCard API [7, 8] defines an algorithm to be any different type of cryptosystem
(like RSA or AES) that its API standardizes. The ideabehind that is to allow providing
different implementations of the set of supported algorithms by the JavaCard API. How-
ever, this set of algorithms is not extensible [7, see javacard.crypto.Cipher.ALG_* and
javacard.security.KeyBuilder.TYPE * constants|. A developer aiming to design a
new algorithm has to construct his/her own class structure to support it. However, to
reduce the learning curve and to support for a rapid adoption of any new algorithm, we
believe that it is preferred to study and inherit as much as possible the class structure
and class lifecycle from the JavaCard APL Following these guidelines, we designed the
ElGamal cryptosystem and developed all classes: The main example is E1GamalCipher
class.

ElGamalCipher, which extends from Cipher (provided by the JavaCard API), sup-
ports the new kind of algorithm. When it is used to ask for existing algorithms in
the JavaCard API, ElGamalCipher forwards the invocation method to its superclass
so that the JavaCard library will lastly dispatch’it.

In particular, E1GamalCipher mainly provides three functions: (i) initialize, which
is the mandatory first performed task, that includes (1) loading the public parameters
g and p, and then (2) generating the ElGamal key pair; (ii) encrypt information, and
(iii) decrypt an ElGamal ciphertext to obtain the content in clear format.

Threshold sharing scheme API in JavaCards.

The main difference between the ElGamal cryptosystem implemented by our E1Gamal-
Cipher and our Shamir’s (¢,n)-threshold scheme of ElGamal cryptosystem is in the
ElGamalThresholdApplet class. This class is the Cipher in use, instead of the stan-
dalone version ElGamalCipher. ElGamalThresholdApplet is implemented to follow
strictly the protocol described in Chapter 3 and provides all the functions necessary to
support our protocol of electoral board constitution.

4.2 Execution example

The execution logic is controlled by a application located on the PC. Furthermore,
this application, deployed in Java language, is responsible of a secure connection and
communication among the Java Cards involved in the protocol. As follows, we show
an execution example step by step.

In order to demonstrate a simple example of our implemented protocol we have
developed a Graphic User Interface. Next, we detail the most important steps of the
protocol:

Roger Jardi-Cedé et al. 11

e Electoral board members meet physically with the aim of obtaining their partial
secrets. The main application, with verified code, resident on a PC connected to
a set of Smart Card readers is started.

Figure 4.1: This picture shows the PC with the main application in execution and the
set of SC readers connected.

e Then, a given set of Smart Cards, with the E1GamalThresholdApplet installed,
is introduced in the readers.

Figure 4.2: This picture shows a SC that is being placed in a SC reader.

e Once this is done, an authority selects a set of parameters in order to configure
the execution. The first parameter is the size of the secret key that may range
from 512 to 2048 bits. The second one is the number of SC that will participate in
the protocol and so, the number of shares that will be created and placed in each
SC. The third is the threshold required to correctly decode the tally result. Next,
is the pair of reader and SC that will handle the shares generation processes.
Finally, the rest of readers and SCs that will store the shares. You can find the
configuration screenshot in Fig. 4.3.

e Once the authority has selected the set of configuration parameters, the shares
generation begins. First, the main SC, charged with this proposal, performs a
set of initializations, including those of ElGamal, then, it internally builds the set

12 4. DEVELOPMENT DETAILS

Introdueix la mida de la clau: @

Introdueix el n,emero de Smart Cards: Elﬂ

Introdueix el ncemero de I'esquema llindar: BEI

Introdueix la Smart Card (generador):

|v‘

Introdueix la resta de Smart Cards a utilitzar:

Smart Card Estat

[] OMNIKEY CardMan 5x210 no present

[| OMNIKEY CardMan 5x21 1 no present

[| OMNIKEY CardMan 5x21 2 no present

[| OMNIKEY CardMan 5x21 3 no present

[| OMNIKEY CardMan 5x21-CL 0 present

[| OMNIKEY CardMan 5x21-CL 1 present

[| OMNIKEY CardMan 5x21-CL 2 present

[| OMNIKEY CardMan 5x21-CL 3 present

[] SCM Microsystems Inc. SDID10 Contactless Reader 0 no present
[] SCM Microsystems Inc. SDID10 Smart Card Reader 0 presemt

Actualitza

| Accepta || Cancela

Figure 4.3: Configuration screenshot.

of shares. Afterwards, the sensitive data are transferred and verified in its SC.
Fig. 4.4 shows how the process takes place in the GUIL.

At this point, each authority may take one of the SC which has its own verified
share. Therefore, the elections can start.

After the elections have closed, a number of authorities greater or equal than the
threshold meet in order to obtain the election tally. Each authority places its SC
in a reader and deciphers partially the tally. Then, each partial result is operate
as the protocol fix in Sec. 3.2. It can be found a screenshot in Fig. 4.5.

Roger Jardi-Cedé et al.

Activitats en progres

13

| 35%

IMICIALITZACIO DEL GENERADCR

Srmart Card 0, generadar
1. Inicialitzant l'applet...
2 Inicialitzant ElGamal..
3 Generant shares..
4 Distribuint shares..
A Varificant shares..

Ok
Ok
Ok
Ok
Ok

Temps de generacio: 0206 697

DISTRIBUCIO DELS SHARES

Smart Card 1
1. Inicialitzant l'applet...
2 Inicialitzant ElGamal..
3 Rebent shares..

Ok
Ok
Ok

Figure 4.4: Shares generation

and distribution screenshot.

14 4. DEVELOPMENT DETAILS

Opcions |Z| IEI |‘g|

Escull les Smart Cards ha utilitzar:

[] SCM Microsystems Inc. SDI0O10 Smart Card Reader 0O
[] OMNIKEY CardMan 5x21-CL 0
[| OMNIKEY CardMan 5x21-CL 1
[] OMNIKEY CardMan 5x21-CL 2
[| OMNIKEY CardMan 5x21-CL 3

— o |

missatge encriptat:

missatge desencriptat:

Recompte || Verificar SC H Verificar tot

Figure 4.5: Tally screenshot.

Chapter 5

Evaluation

In order to evaluate the performance and efficiency of our implemented protocol over
JavaCards, we carried out a set of tests executing parts of the protocol into JavaCards,
with a (3,5)-threshold. Each test has been run for 10 times on a JCOP 21 v2.2 with
72KD of memory [1], for a 6 different key sizes (512, 736, 896, 1024, 1280 and 2048 bits).
Concretely, the tests have been focused on basic protocol operations entirely executed
on smartcard (not including the operations executed on computer) such as the (i) shares
generation (including ElGamal key pair generation), the (i) share verification (steps 6d
and 6e of electoral board constitution), the (iii) vote encryption and finally, the (iv)
vote decryption without reconstructing the private key.

Results appear in Fig. 5.1; where shares generation and verification costs are the
highest and grow linearly together with the key size. Generating 5 shares ranges from
5.56 to 20.10 minutes, whilst verifying a single share ranges from 1.14 to 4.26 minutes.
Despite their important costs, they are affordable because these operations are realized
only once and before elections start. Encryption cost is reasonable, grows linearly and
ranges from 0.42 to 1.25 minutes. This cost does not depend on the number of shares
though. The decryption cost also grows linearly and ranges from 0.27 to 0.70 minutes.
This behavior is admissible in a real situation where a homomorphic or hybrid e-voting
system is used. However, in e-voting systems purely based on mixnets would not be
viable because votes should be decrypted one by one and, therefore, the total cost would
depend linearly on the number of votes. Notice that this cost does not depend on the
number of shares because each decryption, made in each smartcard of the electoral
board, can be parallelized.

As introduced in Section 4.1.1, Fig. 5.1 depicts a linear growing in time consumption
due to (i) the use of the cryptographic co-processor to execute the costly modular
exponentiation with an almost constant cost, whilst (ii) the rest of modular operations
(such as addition) have the depicted linear cost.

16 5. EVALUATION

25 T

Encrypt —+— Shares generation ---:-- H :
Decrypt -=-x--- Shares verification -

90 K SN . S i e

Time (minutes)

400 600 800 1000 1200 1400 1600 1800 2000 2200
Key size (bits)

Figure 5.1: Costs mean (in minutes) of 10 experiments of shares generation, shares
verification, encryption and decryption with the given key size (in bits).

Chapter 6

Conclusions

We developed a library for Java Cards that allows: (i) a big number storage and
representation and (ii) modular arithmetics. Next, we used the library to design and
implement the ElGamal cryptosystem for the Java Card platform. Please, note that
there is no support for ElGamal cryptosystem in the Java Card API even though it
might be provided by the smartcard hardware. We ‘completed the library with the
development of the Shamir’s (¢,n)-threshold scheme for the ElGamal cryptosystem.
Finally, we evaluated the performance and efficiency of our implemented library on a
JCOP 21 v2.2 with 72Kb of memory using different key sizes. The encryption and
decryption operations show a reasonable cost although it is not advisable to use these
operations massively. The shares generation and verification have a significant cost.
Nonetheless, we think that they are affordable because they can be realized only once
and before their use. We should mention that an e-voting company has shown its
interest in our library because it could be used in its research prototypes.

As a future work, we are working in a non-trusted third party (Non-TTP) solution
with a distributed generation of the shares. In addition, we would like to improve the
efficiency, time and storage of the protocol in smartcard (i.e., using ElGamal on elliptic
curves).

Bibliography

1]

2003, K.P.E.N.: Jcop 21 v2.2 72kb spreadsheet. http://www.usmartcards.com/
images/pdfs/pdf-61.pdf (2004), \url{http://www.usmartcards.com/images/
pdfs/pdf-61.pdf}

Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84-90 (February 1981), http://doi.acm.
org/10.1145/358549.358563

Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient
multi-authority election scheme. In: Proceedings of the 16th annual international
conference on Theory and application of cryptographic techniques. pp. 103-118.
EUROCRYPT’97, Springer-Verlag, Berlin, Heidelberg (1997), http://portal.
acm.org/citation.cfm?id=1754542.1754554

El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Proceedings of CRYPTO 84 on Advances in cryptology. pp. 10-18.
Springer-Verlag New York, Inc., New York, NY, USA (1985)

Naccache, D., M’Raihi, D.: Cryptographic smart cards. IEEE Micro 16(3), 14-24
(June 1996), http://portal.acm.org/citation.cfm?id=623269.624010

Oracle: Java 6.0 mutablebiginteger api. http://www. java2s.com/0Open-Source/
Java-Document/6.0-JDK-Core/math/java/math/MutableBigInteger.
java.java-doc.htm (2010), \url{http://www.java2s.com/Open-Source/
Java-Document/6.0-JDK-Core/math/java/math/MutableBigInteger. java.
java-doc.htm}

Oracle: Javacard 2.2.2 api. http://www.oracle.com/technetwork/java/
javacard/specs-138637.html (2010), \url{http://www.oracle.com/
technetwork/java/javacard/specs-138637.html}

Oracle: Javacard 3.0.1 api. http://www.oracle.com/technetwork/java/
javacard/specs-jsp-136430.html (2010), \url{http://www.oracle.com/
technetwork/java/javacard/specs-jsp-136430.html}

Oracle: Introduction to java card 3.0 specifications. http://java.sun.com/
javacard/3.0 (2011), \url{http://java.sun.com/javacard/3.0}

Renaudin, M., Bouesse, F., Proust, P., Tual, J.P., Sourgen, L., Germain, F.: High
security smartcards. In: Proceedings of the conference on Design, automation and

BIBLIOGRAPHY 19

test in Europe - Volume 1. p. 10228. DATE ’04, IEEE Computer Society, Wash-
ington, DC, USA (2004), http://portal.acm.org/citation.cfm?id=968878.
969074

Shamir, A.: How to share a secret. Commun. ACM 22(11), 612-613 (1979)

Sterckx, M., Gierlichs, B., Preneel, B., Verbauwhede, I.: Efficient implementation
of anonymous credentials on java card smart cards. In: 1st IEEE International
Workshop on Information Forensics and Security (WIFS 2009). pp. 106-110. IEEE,
London,UK (2009)

