
CENTER FOR BIOLOGICAL & COMPUTATIONAL LEARNING (CBCL)

GURLS

A LEAST SQUARES-BASED LIBRARY

FOR STATE OF THE ART SUPERVISED LEARNING

BASIC DOCUMENTATION

Authors Affiliation
Andrea Tacchetti CBCL
Pavan K. Mallapragada CBCL
Matteo Santoro CBCL, IIT@MIT Lab
Lorenzo Rosasco CBCL, IIT@MIT Lab

LAST UPDATE: SEPTEMBER 25, 2014

CONTENTS

1 Introduction 1
1.1 Welcome . 1
1.2 Getting started . 2

1.2.1 Downloading the GURLS package . 2
1.2.2 Installing GURLS . 2
1.2.3 Installing BGURLS . 2
1.2.4 Installing GURLS++/BGURLS++ . 3
1.2.5 Hello World in GURLS . 7
1.2.6 Hello World in GURLS++ . 7
1.2.7 License . 8

2 User’s Guide 9
2.1 GURLS design . 9
2.2 The first example . 10
2.3 Further examples . 11

2.3.1 Linear classifier, primal case, hold-out cv 11
2.3.2 Linear regression, primal case, leave-one-out cv 12
2.3.3 Linear classifier, dual case, leave one out cv 12
2.3.4 Gaussian Kernel, dual case, leave one out cv 13
2.3.5 Random features RLS, hold-out cv . 13
2.3.6 Stocastic gradient descent . 13

2.4 Customizing the options’ structure . 14
2.5 Examples in GURLS++ . 15
2.6 Normalization functions . 18
2.7 Results visualization (only for GURLS) . 18
2.8 Learning from large datasets . 19

2.8.1 BGURLS . 20

I

CONTENTS

2.8.2 BGURLS++ . 25
2.9 Available methods . 27

3 Matlab developer’s Guide 30
3.1 Package Organization . 30
3.2 The gurls function . 30
3.3 GURLS tasks . 31

3.3.1 Description of the available tasks choices 31
3.4 defopt function . 33
3.5 Other supporting functions . 34

3.5.1 Installation functions . 34
3.5.2 Tasks utility functions . 35
3.5.3 enums functions . 35

3.6 Designing and Implementing a new functionality 35

4 C++ developer’s Guide 37
4.1 Package Organization . 37
4.2 The GURLS class . 37
4.3 GURLS tasks . 38
4.4 The GurlsOptionsList class . 38
4.5 Designing and Implementing a new functionality 40

4.5.1 Step 1: Updating the factory function of <CATEGORY> 40
4.5.2 Step 2: Creating the subclass <NEWSUBCLASS> 40
4.5.3 Using GURLS++ custom factory . 42

5 Experiments 44
5.1 GURLS vs LIBSVM . 45
5.2 GURLS vs LS-SVM . 46

Bibliography 50

II

CHAPTER 1

INTRODUCTION

1.1 Welcome

GURLS – which stands for Grand Unified Regularized Least Squares – is a software library for re-
gression and (multiclass) classification based on the Regularized Least Squares (RLS) loss func-
tion. The library comprises four main modules. GURLS and BGURLS – both implemented in
Matlab – are aimed at solving learning problems with small/medium and big datasets respec-
tively. GURLS++ and BGURLS++ are their C++counterparts. Due to programming language
constraints, there are some differences between BGURLS and BGURLS++. In Figure 1.1 we de-
picted the different scenarios where the different packages can be applied and show how the
two modules are able to deal with big learning scenarios by means of parallel or serial comput-
ing.

The library takes advantage of some favorable properties of regularized least squares al-
gorithm and is tailored to deal in particular with multi-category/multi-label problems. The
package comprises useful routines to perform automatic parameter selection and can handle
computations with very large matrices by means of both memory-mapped storage and dis-
tributed task execution.

GURLS is distributed under the simplified BSD license. Source code, and binaries can be
downloaded from https://github.com/CBCL/GURLS.

The present document describes both the API design and the usage of the GURLS library
for machine learning researchers.

1

1. INTRODUCTION 1.2. GETTING STARTED

Parallel
computation

Serial
computation

Small Data

Big Data

GURLS
bGURLS
bGURLS++

bGURLS++

bGURLS++
bGURLS
bGURLS++

Figure 1.1: GURLS scenarios.

1.2 Getting started

1.2.1 Downloading the GURLS package

The Home Page of the GURLS package is at http://cbcl.mit.edu/gurls/, where you will
find useful information about the GURLS project, the authors and a link to the research group
where the library has been designed and developed, and the link to the GITHUB repository
(http://github.com/CBCL/GURLS) from which the source code can be downloaded.

1.2.2 Installing GURLS

GURLS is a pure Matlab library and has no specific dependencies on external libraries, made
exception for the stats toolbox (see Subsection 3.3.1). Once the compressed archive has been
downloaded on your machine from the GITHUB repository, you need to save it in the desired
GURLSROOT. Then open MATLAB and execute:

>> run(’GURLSROOT/gurls/utils/gurls_install.m’);

This will add all the important directories to your path. Run savepath if you want the instal-
lation to be permanent.

1.2.3 Installing BGURLS

BGURLS is a pure Matlab library and has no specific dependencies on external libraries, made
exception for the GURLS library and the stats toolbox (see Subsection 3.3.1). Once the com-
pressed archive has been downloaded on your machine from the GITHUB repository, you need
to save it in the desired GURLSROOT. Then open MATLAB and execute:

>> run(’GURLSROOT/bgurls/utils/bgurls_install.m’);

2

http://cbcl.mit.edu/gurls/
http://github.com/CBCL/GURLS

1. INTRODUCTION 1.2. GETTING STARTED

This will add all the important directories to your path. Run savepath if you want the instal-
lation to be permanent.

1.2.4 Installing GURLS++/BGURLS++

GURLS++and BGURLS++are part of the same project, called gurls. Users may choose what li-
braries will be built during project configuration (See section Configuring GURLS++/BGURLS++

for details).
In the following we assume that the directory where "gurls++" and "bgurls++" directories

reside is named GURLSROOT.

GURLS++dependencies

GURLS++depends on several external libraries:

• A Blas/Lapack implementation. Currently we support:

– AMD’s ACML: http://developer.amd.com/libraries/acml;

– ATLAS: http://math-atlas.sourceforge.net;

– Intel’s MKL: http://software.intel.com/en-us/articles/intel-mkl;

– Netlib’s reference implementation: http://www.netlib.org/blas and http:

//www.netlib.org/lapack/.

– OpenBLAS: http://xianyi.github.io/OpenBLAS/;

• Boost’s (v1.46.0 or higher) libraries serialization, date_time, filesystem, unit_test_framework,
system, signals.

BGURLS++ dependencies

In addition to the GURLS++ dependencies, BGURLS++also depends on:

• An MPI implementation. BGURLS++has been successfully tested with MPICH http:

//www.mpich.org/;

• zlib http://www.zlib.net/;

• LibHDF5 v1.8.9 http://www.hdfgroup.org/HDF5/ compiled enabling parallel sup-
port and zlib (Libhdf5 v1.8.10 or higher is proved to not work properly);

Automatic dependencies building

The GURLS++/BGURLS++CMake configurator suppports automatic downloading and build-
ing of all dependencies by setting the GURLS_USE_EXTERNAL_∗ variables to ON (See section
Configuring GURLS++/BGURLS++ below for details).

3

http://developer.amd.com/libraries/acml
http://math-atlas.sourceforge.net
http://software.intel.com/en-us/articles/intel-mkl
http://www.netlib.org/blas
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
http://xianyi.github.io/OpenBLAS/
http://www.mpich.org/
http://www.mpich.org/
http://www.zlib.net/
http://www.hdfgroup.org/HDF5/

1. INTRODUCTION 1.2. GETTING STARTED

Installing GURLS++/BGURLS++ on Linux

Below we describe how to build and install GURLS++on Ubuntu Linux(tested on Ubuntu 12.04
and Ubuntu 13.10). For other distributions, the same packages must be installed with the
distribution-specific method.

1. Install the cmake build system (www.cmake.org/)

$ sudo apt-get install cmake cmake-curses-gui

2. To link against some Blas and Lapack implementations you may need a fortran compiler
e.g. for gfortran:

$ sudo apt-get install gfortran

3. Create a build directory (e.g. "build") for the project

$ cd GURLSROOT

$ mkdir build

4. Run cmake into the build directory

$ cd build

$ ccmake ..

The last command will show the CMake interface, which must be used to set the values of
some variables used for building and installing the libraries. See the section Configuring
GURLS++/BGURLS++ below for more information on these variables and how to set them
to appropriate values.

5. Start building

$ make

6. Install the library(ies) to the path defined at configuration time

$ make install

The command wil also install to the same path all the dependencies that user chose to
build automatically.

4

www.cmake.org/

1. INTRODUCTION 1.2. GETTING STARTED

Installing GURLS++/BGURLS++ on Windows

Below we describe how to build and install GURLS++and BGURLS++on Windows with Visual
Studio (tested with VS Express 2010 and 2012).

1. Install the CMake build system downloading the installer from http://cmake.org/

cmake/resources/software.html.

2. Create a build directory (e.g. GURLSROOT/build).

3. Run the CMake GUI.
You will have to set the source directory to the GURLSROOT directory, and the build di-
rectory to the directory created at the previous step.
After pressing the configure button you will have to chose the generator for the project
(e.g. Visual Studio 10). On Windows you may encounter the error message "error in con-
figuration process, project files may be invalid", check that the you have writing rights
to the path specified in the variable CMAKE_INSTALL_PREFIX. If this is not the case,
change such a variable to a folder to which you have writing right. Now you have to
set the values of some variables used for building and installing the libraries according
to your preferences (see the section Configuring GURLS++/BGURLS++ below for more
information on these variables and how to set them to appropriate values).
After having configured the build options, press the generate button to create the solution
file.

4. Open the generated solution under Visual Studio and build it.

5. If you used external version of Blas-Lapack, the Openblas DLLs will be automatically
copied in the GURLSROOT/build/bin folder, please add it to your path to run executa-
bles.

6. Optionally install the libraries by explicitly building the install project included in the
solution (it is not automatically built when building the solution). Ensure that you have
writing rights to the path specified in the variable CMAKE_INSTALL_PREFIX.

Configuring GURLS++/BGURLS++

The configuration step is carried out using CMake.
Using the command-line interface you will be presented with a textual menu, where you

can change the values of some variables and configure the building settings accordingly.

1. At the beginning no variable is set, and a message EMPTY CACHE is shown.

2. Press ’configure’, and CMake will try to determine the correct values for all variables.
After the first configuration the following variables should be checked:

• CMAKE_INSTALL_PREFIX: The path where the library will be installed to;

5

http://cmake.org/cmake/resources/software.html
http://cmake.org/cmake/resources/software.html

1. INTRODUCTION 1.2. GETTING STARTED

• GURLS_BUILD_GURLSPP (ON): Build GURLS++. If set to ON CMake also evaluates
the variables

– GURLSPP_BUILD_DEMO (ON): Enable the building of the GURLS++demo pro-
grams;

– GURLSPP_BUILD_DOC (OFF): Enable the building of the GURLS++documentation
using doxygen;

• GURLS_BUILD_BGURLSPP (OFF): Build BGURLS++. If set to ON CMake also evalu-
ates the variables

– BGURLSPP_BUILD_DEMO (ON): Enable the building of the BGURLS++ demo
programs;

– BGURLSPP_BUILD_DOC (OFF): Enable the building of the BGURLS++ docu-
mentation using doxygen;

• GURLS_USE_BINARY_ARCHIVES (ON): If set to ON, all data structures are stored in
binary (rather than text) files, saving storage space and time;

• GURLS_USE_EXTERNAL_BLAS_LAPACK (ON): Enable automatic building of Blas and
Lapack using OpenBLAS, under Linux, or automatic linking to the provided Open-
BLAS pre-built libraries, under Windows.

• GURLS_USE_EXTERNAL_BOOST (ON): Enable automatic building of boost; if set to
OFF you typically need to specify only the variable BOOST_INCLUDE_DIR.

• GURLS_USE_EXTERNAL_HDF5 (ON): Enable automatic building of libHDF5 and its
dependencies(MPICH and zlib). Used only if GURLS_BUILD_BGURLSPP is set to
ON.

3. For each variable GURLS_USE_EXTERNAL_∗ which is set to OFF, you must specify the
path to the corresponding library. If CMake does not find some required library, an error
message will be displayed.

4. In the main screen you may change a number of variables. Most of them can be left
unchanged, but some must be set to appropriate values. The following are the variables
whose values should be checked:

• BLAS_LAPACK_IMPLEMENTATION. Allows user to specify an implementation of the
Blas/Lapack routines. Available choices are: ACML, ATLAS, MKL, NETLIB, OPENBLAS.
Depending on the choice you make, CMake will try to find the libraries in standard
locations in the system. Normally this process should run fine, however, in case
the libraries have been installed in some non-standard directory, you may have to
manually specify their location.

5. Once all variables have been set, press [c] again, and CMake will check the settings. As
in step (3), if something is wrong an error message will be displayed and you will have
to go back to the main screen to tweak the configuration.

6

1. INTRODUCTION 1.2. GETTING STARTED

6. When the settings are correct, the option to ’generate’ the files required for the actual
build will appear. Press ’generate’. CMake will generate the files and exit.

After the build files (e.g. the Makefile under Linux) have been generated, you can proceed
as explained above.

The same procedure outlined above is used when using the GUI of CMake, e.g. under
Windows or Mac.

1.2.5 Hello World in GURLS

Have a look, and run gurls_helloworld.m in the ’demo’ subdirectory. Below we describe the
demo in details. We first have to load the training data

>> load(’data/quickanddirty_traindata;’)

and train the classifier

>> [opt] = gurls_train(Xtr,ytr);

now we load the test data

>> load(’data/quickanddirty_testdata’);

then we predict the labels for the test set and asses prediction accuracy

>> [yhat,acc] = gurls_test(Xte,yte,opt);

1.2.6 Hello World in GURLS++

Have a look, and run helloworld.cpp in the ’demo’ subdirectory. Below we describe the salient
parts of demo in details.
First we have to load the training data

Xtr.readCSV("../data/Xtr.txt");

ytr.readCSV("../data/ytr_onecolumn.txt");

and the test data

Xte.readCSV("../data/Xte.txt");

yte.readCSV("../data/yte_onecolumn.txt");

then we train the classifer

GurlsOptionsList* opt = gurls_train(Xtr, ytr);

finally we predict the labels for the test set and asses prediction accuracy

gurls_test(Xte, yte, *opt);

7

1. INTRODUCTION 1.2. GETTING STARTED

1.2.7 License

GURLS is distributed under the BSD license. This means that it is free for both academic and
commercial use.

If you are going to use GURLS in your scientific work, please cite the library, the main
website and the paper

Tacchetti, A., P. Mallapragada, M. Santoro, and L. Rosasco
GURLS: a Toolbox for Large Scale Multiclass Learning,
presented at Workshop: "Big Learning: Algorithms, Systems, and Tools for Learning at
Scale" at NIPS 2011, December 16-17 2011, Sierra Nevada, Spain.

8

CHAPTER 2

USER’S GUIDE

In supervised learning, the building blocks of a learning experiment are its phases or processes
(typically the training process and the testing process), that can be run on different data sets
(typically the train and test set). What characterizes GURLS is the idea that processes within
the same experiment share a common (ordered) sequence of tasks which we call the learning
pipeline. Each GURLS process differs from the others on how each task is performed (e.g. com-
pute or load previously computed results) and on the data used as input.

As both GURLS and GURLS++ are similarly designed, in the following we start describing
GURLS design and usage, and later explain what changes in the C++ implementation. Then we
described some additional functionalities of the package, precisely the normalization and visu-
alization commands. In the remainder of the chapter, a number of commonly used experiments
will be described.

2.1 GURLS design

GURLS (GURLS++) basically consists of a set of tasks, each one belonging to a predefined cat-
egory, and of a method called GURLS Core (the gurls routine in Matlab, and the GURLS class
in C++) that is responsible for processing the task pipeline. An additional "options structure",
often referred to as OPT, is used to store all configuration parameters needed to customize the
tasks behaviour. Tasks receive configuration parameters from the options structure in read-
only mode and, after terminating, their results are appended to the structure by the GURLS

Core in order to make them available to the subsequent tasks. This allows the user to easily
skip the execution of some tasks in a pipeline, by simply inserting the desired results directly
into the options structure. All tasks belonging to the same category can be interchanged with
each other, so that the user can easily choose how each task shall be carried out. A schema of
the design and execution of a GURLS process is shown in Fig.2.1.

9

2. USER’S GUIDE 2.2. THE FIRST EXAMPLE

Kernel
X

Y

OPT

Paramsel Optimizer Pred Perf

GURLS Core

Figure 2.1: GURLS process.

2.2 The first example

The gurls command runs the learning pipeline and is the main function the user would di-
rectly call. It accepts exaclty four arguments:

1. the input data, stored in a N × D matrix, where N is the number of samples, D is the
number of variables.

2. The data encoded labels stored in a N × T matrix, where T is the number of outputs. For
(multi-class) classification, labels (+1,−1) must be in the One-Vs-All format.

3. An options’ structure.

4. A job-id number.

Each time the data need to be changed (e.g. going from training process to testing process)
gurls needs to be called again.

The options’ structure is built through the defopt function with default fields and values.
The three main fields in the options’ structure are:

- opt.name: defines a name for a given experiment.

- opt.seq: specifies the (ordered) sequence of tasks, i.e. the pipeline, to be executed.

- opt.process: specifies what to do with each task. It has to be a cell array, where each
cell specify the executions code for each job, i.e. gurls call. In particular here are the
codes:

– 0 = Ignore

– 1 = Compute

– 2 = Compute and save

– 3 = Load from file

– 4 = Explicitly delete

10

2. USER’S GUIDE 2.3. FURTHER EXAMPLES

Now, let’s suppose we want to run the training process on a dataset (Xtr,ytr) and then
test on a different dataset (Xte,yte). We are interested in the precision-recall performance
measure as well as the average classification accuracy. In order to train a linear classifier using
a leave one out cross-validation approach, we just need the following lines of code:

name = ’ExampleExperiment’;

opt = defopt(name);

opt.seq = ...

{’paramsel:loocvprimal’,’rls:primal’, ...

’pred:primal’,’perf:precrec’,’perf:macroavg’};

opt.process{1} = [2,2,0,0,0];

opt.process{2} = [3,3,2,2,2];

gurls (Xtr, ytr, opt,1)

gurls (Xte, yte, opt,2)

The meaning of the above code fragment is the following:

- For the training data: calculate the regularization parameter λ minimizing classification
accuracy via Leave-One-Out cross-validation and save the result, solve RLS for a linear
classifier in the primal space and save the solution. Ignore the rest.

- For the test data set, load the used λ (this is important if you want to save this value
for further reference), load the classifier. Predict the output on the test-set and save it.
Evaluate the two aforementioned performance measures and save them.

Note that the field opt.name is implicitly specified by the defopt function which assigns
to it its only input argument. Fields opt.seq and opt.process have to be explicitly as-
signed.

2.3 Further examples

The gurls command executes an ordered sequence of tasks, the pipeline, specified in the field
seq of the options’ structure as

{’<CATEGORY1>:<TASK1>’;’<CATEGORY2>:<TASK2>;...}

These tasks can be combined in order to build different train-test pipelines. A list of the cur-
rently implemented GURLS tasks organized by category, is summarized in Table 2.3. Type

help <CATEGORY>_<TASK>

(ex. help paramsel_hoprimal) for further reference on each task.

2.3.1 Linear classifier, primal case, hold-out cv

name = ’ExampleExperiment’;

opt = defopt(name);

11

2. USER’S GUIDE 2.3. FURTHER EXAMPLES

opt.seq = {’split:ho’,’paramsel:hoprimal’,’rls:primal’,...

’pred:primal’,’perf:macroavg’};

opt.process{1} = [2,2,2,0,0];

opt.process{2} = [3,3,3,2,2];

gurls(Xtr, ytr, opt,1)

gurls(Xte, yte, opt,2)

Here hold-out cross validation requires the training test to be split in one pair of train and
validation sets. Splitting is performed in the first task, split, with choice ho.

2.3.2 Linear regression, primal case, leave-one-out cv

name = ’ExampleExperiment’;

opt = defopt(name);

opt.seq = {’paramsel:loocvprimal’,’rls:primal’,...

’pred:primal’,’perf:rmse’};

opt.process{1} = [2,2,0,0];

opt.process{2} = [3,3,2,2];

opt.hoperf = @perf_rmse;

gurls(Xtr, ytr, opt,1)

gurls(Xte, yte, opt,2)

Here GURLS is used for regression. Note that the objective function is explicitly set to @perf_rmse,
i.e. root mean square error, whereas in the first example opt.hoperf is set to its default
@perf_macroavg which evaluates the average classification accuracy per class. The same
code can be used for multiple output regression.

2.3.3 Linear classifier, dual case, leave one out cv

name = ’ExampleExperiment’;

opt = defopt(name);

opt.seq = {’kernel:linear’, ’paramsel:loocvdual’, ’rls:dual’, ...

’pred:dual’, ’perf:macroavg’’};

opt.process{1} = [2,2,2,0,0];

opt.process{2} = [3,3,3,2,2];

gurls(Xtr, ytr, opt,1)

gurls(Xte, yte, opt,2)

Here the dual formulation requires the kernel matrix, which is built through the task linear

belonging to the category kernel. Note that the train-test kernel matrix is not build as, with
linear kernel, prediction is implicitly performed in the primal formulation.

12

2. USER’S GUIDE 2.3. FURTHER EXAMPLES

2.3.4 Gaussian Kernel, dual case, leave one out cv

name = ’ExampleExperiment’;

opt = defopt(name);

opt.seq = {’paramsel:siglam’, ’kernel:rbf’, ’rls:dual’, ...

’predkernel:traintest’, ’pred:dual’, ’perf:macroavg’};

opt.process{1} = [2,2,2,0,0,0];

opt.process{2} = [3,3,3,2,2,2];

gurls(Xtr, ytr, opt,1)

gurls(Xte, yte, opt,2)

Here parameter selection for gaussian kernel requires selection of both the regularization pa-
rameter λ and the kernel parameter σ, and is performed selecting the task siglam for the
category paramsel. Once the value for kernel parameter σ has been chosen, the gaussian
kernel is built through the kernel task with option rbf.

2.3.5 Random features RLS, hold-out cv

name = ’ExampleExperiment’;

opt = defopt(name);

opt.seq = {’split:ho’,’paramsel:horandfeats’,...

’rls:randfeats’,’pred:randfeats’,’perf:macroavg’};

opt.process{1} = [2,2,2,0,0];

opt.process{2} = [3,3,3,2,2];

normX = 1/normest(Xtr);

Xtr = Xtr.*s;

Xte = Xte.*s;

gurls(Xtr, ytr, opt,1)

gurls(Xte, yte, opt,2)

Computes a classifier for the primal formulation of RLS using the Random Features approach
proposed by [35]. In this approach the primal formulation is used in a new space built through
random projections of the input data. Note that the data has been rescaled to unitary norm.

2.3.6 Stocastic gradient descent

name = ’ExampleExperiment’;

opt = defopt(name);

opt.seq = {’paramsel:calibratesgd’,’rls:pegasos’,...

’pred:primal’,’perf:macroavg’};

opt.process{1} = [2,2,0,0];

opt.process{2} = [3,3,2,2];

gurls(Xtr, ytr, opt,1)

gurls(Xte, yte, opt,2)

13

2. USER’S GUIDE 2.4. CUSTOMIZING THE OPTIONS’ STRUCTURE

Here the optimization is carried out using a stochastic gradient descent algorithm, namely
Pegasos [44]. Note that the above pipeline uses the default value for option ’subsize’ (50).
If such a value is used with data sets with less than 50 samples the following error will be
displayed:

GURLS usage error: the option subsize of the option list must be

smaller than the number of training samples!!

Set

opt.subsize = subsize;

with subsize smaller than the number of training samples to avoid errors.

2.4 Customizing the options’ structure

The options structure passed as third input to gurls is built by function defopt with a set of
default fields and values. Some of these fields can be manually customized by adding the line

opt.<FIELD> = <VALUE>;

before calling gurls, and after having built opt with defopt. In the example of Subsection
2.3.2, we have seen how field hoperf can be changed in order to deal with regression problems.
Below we list the most important fields that can be customized

• nlambda (20): number of values for the regularization parameter

• nsigma (25): number of values for the kernel parameter.

• nholdouts (1): number of data splits to be used for hold-out cross validation.

• hoproportion (0.2): proportion between training and validation set in parameter selection

• hoperf (function @perf_macroavg): objective function to be used for parameter selec-
tion.

• epochs (4): number of passes over the training set for stocastic gradient descent

• subsize (50): training set size used for parameter selection when using stocastic gradient
descent.

• singlelambda (function @mean): function for obtaining one value for the regularization
parameter, given the parameter choice for each class in multiclass classification (for each
output in multiple output regression).

As an example, in order to perform parameter selection on 5 different hold-out splits of the
training set, with validation/training proportion set to 0.4, and with 20 and 10 values for the
regularization and kernel parameter respectively, one has to run the following lines of code

14

2. USER’S GUIDE 2.5. EXAMPLES IN GURLS++

name = ’ExampleExperiment’;

opt = defopt(name);

opt.seq = {’split:ho’, ’paramsel:siglamho’, ’kernel:rbf’, ...

’rls:dual’,’predkernel:traintest’, ’pred:dual’, ’perf:macroavg’};

opt.process{1} = [2,2,2,2,0,0,0];

opt.process{2} = [3,3,3,3,2,2,2];

opt.nlambda = 20;

opt.nsigma = 10;

opt.hoproportion = 0.4;

opt.nholdouts = 5;

gurls(Xtr, ytr, opt,1)

gurls(Xte, yte, opt,2)

2.5 Examples in GURLS++

In C++ the counterpart of the gurls function is the GURLS class, with its only method run,
whereas function defopt has its equivalent in the class GurlsOptionsList. In the ’demo’
directory you will find GURLSloocvprimal.cpp, which implements exactly the first example
described in Section 2.2. In the following we report it for completeness.

#include <iostream>

#include "gurls.h"

#include "exceptions.h"

#include "gmat2d.h"

#include "options.h"

#include "optlist.h"

using namespace gurls;

using namespace std;

typedef double T;

int main(int argc, char *argv[])

{

string xtr_file, xte_file, ytr_file, yte_file;

// check that all inputs are given

if(argc<4)

{

std::cout << "====================================="<< std::endl

<< " Wrong parameters number ("<<argc <<")." << std::endl

<< " Provide a valid path for training, test and output files"

<< "using the following syntax:" << std::endl

<< " \n\n\t " << argv[0] << " xtr xte ytr yte" << std::endl

<<"=="

15

2. USER’S GUIDE 2.5. EXAMPLES IN GURLS++

<< std::endl << std::endl;

return 0;

}

// get file names from input

xtr_file = argv[1];

xte_file = argv[2];

ytr_file = argv[3];

yte_file = argv[4];

try

{

gMat2D<T> Xtr, Xte, ytr, yte;

// load data from file

Xtr.readCSV(xtr_file);

Xte.readCSV(xte_file);

ytr.readCSV(ytr_file);

yte.readCSV(yte_file);

// specify the task sequence

OptTaskSequence *seq = new OptTaskSequence();

*seq << "paramsel:loocvprimal" << "optimizer:rlsprimal"

<< "pred:primal" << "perf:macroavg" << "perf:precrec";

GurlsOptionsList * process = new GurlsOptionsList("processes", false);

// defines instructions for training process

OptProcess* process1 = new OptProcess();

*process1 << GURLS::computeNsave << GURLS::computeNsave

<< GURLS::ignore << GURLS::ignore << GURLS::ignore;

process->addOpt("one", process1);

// defines instructions for testing process

OptProcess* process2 = new OptProcess();

*process2 << GURLS::load << GURLS::load << GURLS::computeNsave

<< GURLS::computeNsave << GURLS::computeNsave;

process->addOpt("two", process2);

// build an options’ list

GurlsOptionsList* opt = new GurlsOptionsList("Gurlslooprimal", true);

opt->addOpt("seq", seq);

opt->addOpt("processes", process);

GURLS G;

string jobId0("one");

16

2. USER’S GUIDE 2.5. EXAMPLES IN GURLS++

string jobId1("two");

// run gurls for training

G.run(Xtr, ytr, *opt, jobId0);

// run gurls for testing

G.run(Xte, yte, *opt, jobId1);

}

catch (gException& e)

{

cout << e.getMessage() << endl;

return EXIT_FAILURE;

}

return EXIT_SUCCESS;

}

In order to run the other examples you just have to substitute the code fragment for the task
pipeline

*seq << "paramsel:loocvprimal" << "optimizer:rlsprimal"

<< "pred:primal" << "perf:macroavg" << "perf:precrec";

and for the sequence of instructions

*process1 << GURLS::computeNsave << GURLS::computeNsave

<< GURLS::ignore << GURLS::ignore << GURLS::ignore;

process->addOpt("one", process1);

and

*process2 << GURLS::load << GURLS::load << GURLS::computeNsave

<< GURLS::computeNsave << GURLS::computeNsave;

process->addOpt("two", process2);

with the desired task pipeline and instructions sequence. For example, for the case ’Gaussian
Kernel, dual case, hold-out cv’ the code for defining the task pipeline must be

*seq << "split:ho"<<"paramsel:siglamho" <<"kernel:rbf"

<< "optimizer:rlsdual" << "pred:dual" << "predkernel:traintest"

<< "perf:macroavg";

the code fragment specifying the sequence of instructions for the training process must be

*process1 << GURLS::computeNsave << GURLS::computeNsave

<< GURLS::computeNsave << GURLS::computeNsave << GURLS::ignore

<< GURLS::ignore << GURLS::ignore;

17

2. USER’S GUIDE 2.6. NORMALIZATION FUNCTIONS

and the code fragment specifying the sequence of instructions for the testing process must be

*process2 << GURLS::load << GURLS::load << GURLS::load << GURLS::load

<< GURLS:: computeNsave << GURLS:: computeNsave

<< GURLS:: computeNsave;

2.6 Normalization functions

The norm set of functions allow to normalize the data. This is a preprocessing step, therefore
it has not implemented as a GURLS task, and has to be called explicitly before running the
pipeline. There are two possible ways to call these functions, that we describe in the following.

In the first example we separately normalize train and test data.

[Xtr] = norm_l2(Xtr,ytr,opt);

[Xte] = norm_l2(Xte,yte,opt);

In the following example the training set is first normalized and the column-wise means
and covariances are saved to file. Then the test data are normalized according to the stats
computed with the training set.

[Xtr] = norm_zscore(Xtr, ytr, opt);

[Xte] = norm_testzscore(Xte, yte, opt);

In GURLS++ normalization is implemented through the classes Norm, NormZScore and
NormTestZScore. We refer to the doxygen documentation of each class for further reference.

2.7 Results visualization (only for GURLS)

You can visualize the results of one or more GURLS pipelines using the summary_* functions.
Below we show the usage of these set of functions for two sets of experiments (i.e. GURLS

pipelines) each one run 5 times.
First we have to run the experiments. nRuns contains the number of runs for each experi-

ment, and filestr contains the names of the experiments.

nRuns = {5,5};

filestr = {’hoprimal’; ’hodual’};

for i = 1:nRuns{1};

opt = defopt(filestr{1} ’_’ num2str(i)];

opt.seq = {’split:ho’,’paramsel:hoprimal’,’rls:primal’,...

’pred:primal’,’perf:macroavg’,’perf:precrec’};

opt.process{1} = [2,2,2,0,0,0];

opt.process{2} = [3,3,3,2,2,2];

gurls(Xtr, ytr, opt,1)

18

2. USER’S GUIDE 2.8. LEARNING FROM LARGE DATASETS

gurls(Xte, yte, opt,2)

end

for i = 1:nRuns{2};

opt = defopt(filestr{2} ’_’ num2str(i)];

opt.seq = {’split:ho’, ’kernel:linear’, ’paramsel:hodual’, ...

’rls:dual’, ’pred:dual’, ’perf:macroavg’, ’perf:precrec’};

opt.process{1} = [2,2,2,2,0,0,0];

opt.process{2} = [3,3,3,3,2,2,2];

gurls(Xtr, ytr, opt,1)

gurls(Xte, yte, opt,2)

end

In order to visualize the results we have to specify in fields which fields of opt are to be
displayed (as many plots as the elements of fields will be generated)

>> fields = {’perf.ap’,’perf.acc’};

we can generate "per-class" plots with the following command:

>> summary_plot(filestr,fields,nRuns)

and “global” plots with:

>> summary_overall_plot(filestr,fields,nRuns)

this generates “global” table:

>> summary_table(filestr, fields, nRuns)

This plots times taken by each step of the pipeline for performance reference:

>> plot_times(filestr,nRuns)

2.8 Learning from large datasets

Two modules in GURLS, namely BGURLS and BGURLS++, have been specifically designed to
deal with the so-called big learning scenario, where big is meant either in terms of memory or
in terms of computing time. Due to programming language constraints, there are some dif-
ferences between the Matlab and C++implementations. In Figure ?? we depicted the different
scenarios where the different packages can be applied and show how the two modules are able
to deal with big learning scenarios by means of parallel or serial computing.

In terms of memory, we consider to be big those data that cannot fully reside in RAM with-
out any memory mapping techniques – such as swapping. Conversely data that can fully reside
in RAM are considered to be small/medium. Learning with small/medium data can be car-
ried out via GURLS or GURLS++. Learning with big data can be carried out with the dedicated

19

2. USER’S GUIDE 2.8. LEARNING FROM LARGE DATASETS

Parallel
computation

Serial
computation

Small Data

Big Data

GURLS
bGURLS
bGURLS++

bGURLS++

bGURLS++
bGURLS
bGURLS++

Figure 2.2: GURLS scenarios.

modules BGURLS or BGURLS++, under the conditions described in the following. Without the
ambition to develop a good solution for all the infinte possible variants of big learning, we de-
cided to focus specifically on those situations where one seeks a linear model on a large set of
(possibly non linear) features. A more accurate specification of what “large” means in GURLS

is directly related to the number d of features: we require it must be possible to store a d × d
matrix in memory. In practice, this roughly means we can train models with up-to 25k features
on machines with 8Gb of RAM, and up-to 50k features on machines with 36Gb of RAM. It is
important to remark we do not require the data matrix itself to be stored in memory. Indeed, in
BGURLS it is possible to manage an arbitrarily large set of training examples.

In terms of computing time, big learning problems are those problems for which the exact
solution requires a large amount of time, unless parallel computing is performed. Learning in
these conditions can be carried out with the dedicated module BGURLS++.

Both BGURLS and BGURLS++ include all the design patterns described for GURLS, and have
been complemented with additional big data and distributed computation capabilities. Big
data support is obtained using a data structure called bigarray, which allows to handle data
matrices as large as a machine’s available space on hard drive instead of its RAM: we store the
entire dataset on disk and load only small chunks in memory when required.

2.8.1 BGURLS

BGURLS relies on a simple interface – developed ad-hoc and called Gurls Distributed Manager
(GDM) – to distribute matrix-matrix multiplications, thus allowing users to perform the im-
portant task of kernel matrix computation on a distributed network of computing nodes. After
this step, the subsequent tasks behave as in GURLS (cfr. Fig. 2.3).

20

2. USER’S GUIDE 2.8. LEARNING FROM LARGE DATASETS

P1 P2 P3 Pn....

Network

bGURLS Core

GDM

X

Y

OPT

Kernel Paramsel Optimizer Pred Perf

OPT

Figure 2.3: BGURLS design.

The BGURLS Core is identified with the bgurls command, which behaves as gurls. As
gurls it accepts exactly four arguments:

1. the bigarray of the input data.

2. the bigarray of the labels vector.

3. An options’ structure.

4. A job-id number.

The options’ structure is built through the bigdefopt function with default fields and
values. Most of the main fields in the options’ structure are the same as in GURLS, however
bgurls requires the options’ structure to have the additional field files, which must be a
structure with fields:

• Xva_filename: the prefix of the files that constitute the bigarray of the input data used
for validation

• yva_filename: the prefix of the files that constitute the bigarray of the labels vector
used for validation

• pred_filename: the prefix of the files that constitute the bigarray of the predicted labels
for the test set

• XtX_filename: the name of the files where pre-computed matrix X ′X is stored

• Xty_filename: the name of the files where pre-computed matrix Xt′y is stored

• XvatXva_filename: the name of the files where pre-computed matrixX ′vaXva is stored

• Xvatyva_filename: the name of the files where pre-computed matrix X ′vayva is stored

BGURLS example

Let us consider the demo bigdemoA.m in the demo directory to better understand the usage of
BGURLS. The demo computes a linear classifier with the regularization parameter chosen via
hold-out validation, and then evaluate the prediction accuracy on a test set. The data set used

21

2. USER’S GUIDE 2.8. LEARNING FROM LARGE DATASETS

in the demo is the bio data set used in [26], which is saved in the demo directory as a .zip file,
’bio_unique.zip’, containing two files:

• ’X.csv’: containing the input n×d data matrix, where n is the number of samples (24,942)
and d is the number of variables (68)

• ’Y.csv’: containing the input n× 1 label vector

Note that the bio data is not properly a big data set, as it could reside in memory, however it is
large enough to make it reasonable to use BGURLS.

In the following we examine the salient part of the demo in details. First unzip the data file

unzip(’bio_unique.zip’,’bio_unique’)

and set the name of the data files

filenameX = ’bio_unique/X.csv’; %nxd input data matrix

filenameY = ’bio_unique/y.csv’; %nx1 or 1xn labels vector

Now set the size of the blocks for the bigarrays (matrices of size blocksize× d must fit into
memory):

blocksize = 1000;

the fraction of total samples to be used for testing:

test_hoproportion = .2;

the fraction of training samples to be used for validation:

va_hoproportion = .2;

and the directory where all processed data is going to be stored:

dpath = ’bio_data_processed’;

Now set the prefix of the files that will constitute the bigarrays

mkdir(dpath)

files.Xtrain_filename = fullfile(dpath, ’bigarrays/Xtrain’);

files.ytrain_filename = fullfile(dpath, ’bigarrays/ytrain’);

files.Xtest_filename = fullfile(dpath, ’bigarrays/Xtest’);

files.ytest_filename = fullfile(dpath, ’bigarrays/ytes’);

files.Xva_filename = fullfile(dpath, ’bigarrays/Xva’);

files.yva_filename = fullfile(dpath, ’bigarrays/yva’);

and the name of the files where pre-computed matrices will be stored

files.XtX_filename = fullfile(dpath, ’XtX.mat’);

files.Xty_filename = fullfile(dpath, ’Xty.mat’);

files.XvatXva_filename = fullfile(dpath,’XvatXva.mat’);

files.Xvatyva_filename = fullfile(dpath, ’Xvatyva.mat’);

22

2. USER’S GUIDE 2.8. LEARNING FROM LARGE DATASETS

We are now ready to prepare the data for BGURLS. The following line of command reads
files filenameX and filenameY blockwise – thus avoiding to load all file at the same time–
and stores them in the bigarray format, after having split the data into train, validation and test
set

bigTrainTestPrepare(filenameX, filenameY,files,blocksize,...

va_hoproportion,test_hoproportion)

Bigarrays are now stored in the file names specified in the structure files. We can now pre-
compute matrices that will be recursively used in the training phase, and store them in the file
names specified in the structure files

bigMatricesBuild(files)

The data set is now prepared for running the learning pipeline with the bgurls command.
This phase behaves almost completely as in GURLS. The only differences are that:

• we need not to load the data into memory, but simply "load" the bigarray, that is load the
information necessary to access the data blockwise.

• we have to specify in the opt structure the path where the already computed matrix mul-
tiplications, and bigarrays for validation data are stored.

Let us first define the option structure as in GURLS

name = fullfile(wpath,’gurls’);

opt = bigdefopt(name);

opt.seq = {’paramsel:dhoprimal’,’rls:dprimal’,’pred:primal’,’perf:macroavg’};

opt.process{1} = [2,2,0,0];

opt.process{2} = [3,3,2,2];

Note that no task is defined for the split category, as data has already been split in the pre-
processing phase and bigarrays for validation were built. In the following fragment of code we
add to the options’ structure the information relative to the already computed matrix multipli-
cations and to the validation bigarrays

opt.files = files;

opt.files = rmfield(opt.files,{’Xtrain_filename’;’ytrain_filename’;...

’Xtest_filename’;’ytest_filename’}); %not used by bgurls

opt.files.pred_filename = fullfile(dpath, ’bigarrays/pred’);

Note that we have also defined where the predicted labels shall be stored as bigarray.
Now we have to "load" bigarrays for training

X = bigarray.Obj(files.Xtrain_filename);

y = bigarray.Obj(files.ytrain_filename);

X.Transpose(true);

y.Transpose(true);

23

2. USER’S GUIDE 2.8. LEARNING FROM LARGE DATASETS

and run bgurls on the training set

bgurls(X,y,opt,1)

In order to run the testing process, we first have to "load" bigarrays variables for test data

X = bigarray.Obj(files.Xtest_filename);

y = bigarray.Obj(files.ytest_filename);

X.Transpose(true);

y.Transpose(true);

and then we can finally run bgurls on the test set

bgurls(X,y,opt,2);

Now you should have a mat file named gurls.mat in your path. This file contains all the
information about your experiment. If you want to see the mean accuracy, for example, load
the file in your workspace and type

>> mean(opt.perf.acc)

If you are interested in visualizing or printing stats and facts about your experiment, check the
documentation about the summarizing functions in the gurls package.

Dealing with other data formats

Other two demos can be found in the ’demo’ directory. The three demos differ in the format
of the input data, as we tried to provide examples for the most common data formats. The
data set used in bigdemoB is again the bio data set, though in a slightly different format as it
is already split into train and test data. The bigTrainPrepare and bigTestPrepare take
care of preparing the train and test set separately.

The data set used in bigdemoC is the ImageNet data set, which is automatically down-
loaded from http://bratwurst.mit.edu/sbow.tar, when running the demo. This data
set is stored in 1000 .mat files where the i-th file contains the variable x which is a d× ni input
data matrix for the ni samples of class i. The bigTrainTestPrepare_manyfiles takes care
of preparing the bigarrays for the ImageNet data format. Note that, while the bio data is not
properly a big data set, the ImageNet occupies about 1G of RAM and can thus be called a big
data set.

In order to run BGURLS on other data formats, one can simply use bigdemoA after having
substituted the line

bigTrainTestPrepare(filenameX, filenameY,files,blocksize,...

va_hoproportion,test_hoproportion)

with a suitable fragment of code. The remainder of the data preparation, that is the computa-
tion and storage of the relevant matrices, can be left unchanged.

24

http://bratwurst.mit.edu/sbow.tar

2. USER’S GUIDE 2.8. LEARNING FROM LARGE DATASETS

2.8.2 BGURLS++

BGURLS++ offers more interesting features since it’s designed to rely on the MPI protocol to
distribute computations. Therefore, it allows for a full distribution within every single task of
the pipeline. All the processes read the input data from a shared filesystem over the network
and then start executing the same pipeline. During execution, each process’ task communicates
with the corresponding ones running over the other processes. Every process maintains his
local copy of the options. Once the same task is completed by all processes, the local copies of
the options are synchronized. This advanced architecture, which is shown in Fig. 2.4, allows
for the creation of hybrid pipelines comprising serial one-process-based tasks from GURLS++.

N
e
t
w
o
r
k

bGURLS++ Core

Kernel Paramsel Optimizer Pred Perf

Process 1

...

X

Y

Kernel Paramsel Optimizer Pred Perf

Process 2
X

Y

Kernel Paramsel Optimizer Pred Perf

Process n

X

Y

X Y OPT

OPT

OPT

OPT

N
e
t
w
o
r
k

OPT

Figure 2.4: BGURLS++ design.

BGURLS ++ example

The usage of BGURLS ++ is very similar to that of GURLS ++, with the following exceptions:

• the Gurls Core is implemented via the BGURLS class instead of the GURLS one;

• The first two inputs of BGURLS must be bigarrays rather than matrices;

• The options structure must be of class BGurlsOptionsList rather than GurlsOptionsList;

• The only allowed "big" task categories for BGURLS ++ are bigsplit, bigparamsel, bigopti-
mizer, bigpred and bigperf;

Let us consider the demo bigmedmo.cpp in the demo subdirectory to better understand the
usage of the BGURLS ++ module. This demo implements the same example of the bigdemoB.m
of the BGURLS module. The data set used in the demo is the bio data set used in [26], which is
saved in the demo directory as a .zip file, ’bio_traintest_csv.zip’, containing four files:

25

2. USER’S GUIDE 2.8. LEARNING FROM LARGE DATASETS

• ’Xtr.csv’: containing the input ntr × d data matrix, where ntr is the number of training
samples and d is the number of variables;

• ’Ytr.csv’: containing the input ntr × 1 label vector;

• ’Xte.csv’: containing the input nte×d data matrix, where nte is the number of test samples
and d is the number of variables;

• ’Yte.csv’: containing the input nte× 1 label vector;

Differently from GURLS ++, we chose the HDF5 data format to store matrices as it easily
allows to read the content of the files by blocks. Let us now examine the salient and distinctive
part of the demo.

The data is loaded as bigarray (actually only the information realtive to the data, not the
data itself) with the following fragment of code:

BigArray<T> Xtr(path(shared_directory / "Xtr.h5").native(), 0, 0);

Xtr.readCSV(path(input_directory / "Xtr.csv").native());

BigArray<T> Xte(path(shared_directory / "Xte.h5").native(), 0, 0);

Xte.readCSV(path(input_directory / "Xte.csv").native());

BigArray<T> ytr(path(shared_directory / "ytr.h5").native(), 0, 0);

ytr.readCSV(path(input_directory / "ytr.csv").native());

BigArray<T> yte(path(shared_directory / "yte.h5").native(), 0, 0);

yte.readCSV(path(input_directory / "yte.csv").native());

The options’ structure is built with default values via the following line of code:

BGurlsOptionList opt("bio_demoB", shared_directory.native(),true);

The pipeline is built as in GURLS ++, though with the BGURLS ++ task categories

OptTaskSequence *seq = new OptTaskSequence();

*seq << "bigsplit:ho" << "bigparamsel:hoprimal"

<< "bigoptimizer:rlsprimal" << "bigpred:primal" << "bigperf:macroavg";

opt.addOpt("seq",seq);

The two sequences of actions identifying the training and test processes are defined exactly
as in GURLS ++, whereas the processes are run through the run method of the BGURLS class as
in the following:

BGURLS G;

G.run(Xtr,ytr,opt,jobid1);

G.run(Xte,yte,opt,jobid2);

26

2. USER’S GUIDE 2.9. AVAILABLE METHODS

2.9 Available methods

In this section we summarize all the available tasks that have been implemented in the 4 mod-
ules, GURLS, GURLS++, BGURLS and BGURLS++.

27

2. USER’S GUIDE 2.9. AVAILABLE METHODS

task category description available tasks

split
Splits data into one or more pair of

training and validation sets
ho

paramsel
performs selection of the regularization
parameter λ and, if using Gaussian
kernel, also of the kernel parameter σ

fixlambda
loocvprimal
loocvdual
hoprimal
hodual
siglam
siglamho
bfprimal
bfdual
calibratesgd
hoprimalr
hodualr
horandfeats
gpregrLambdaGrid
gpregrSigLambGrid
loogpregr
hogpregr
siglamhogpregr
siglamloogpregr

kernel
builds the symmetric kernel matrix to be
used for training

chisquared
linear
load
randfeats
rbf

rls solves RLS optimization problem

primal
dual
auto
pegasos
primalr
dualr
randfeats
gpregr

predkernel builds the train-test kernel matrix traintest

pred predicts the labels

primal
dual
randfeats
gpregr

perf assess prediction performance
macroavg
precrec
rmse
abserr

conf
computes a confidence for the highest
scoring class

maxscore
gap
boltzmangap
boltzman

Table 2.1: List of GURLS tasks organized by category.

28

2. USER’S GUIDE 2.9. AVAILABLE METHODS

Category Class subclasses (task)
split Split Ho

paramsel ParamSelection

LoocvDual LoocvPrimal
HoDual HoPrimal
SiglamHo Siglam
FixLambda FixSigLam
HoPrimalr HoDualr
LooGPRegr HoGPRegr
SigLamLooGPRegr SigLamHoGPRegr
CalibrateSGD

kernel Kernel
ChisquaredKernel LinearKernel
RBFKernel

rls Optimizer

RLSPrimal RLSDual
RLSAuto RLSPegasos
RLSPrimalr RLSDualr
RLSGPRegr

predkernel PredKernel TrainTest

pred Prediction
PredPrimal PredDual
PredGPRegr

perf Performance
MacroAvg PrecisionRecall
Rmse AbsErr

conf Confidence
ConfMaxScore ConfGap
ConfBoltzmanGap ConfBoltzman

Table 2.2: List of GURLS ++ task classes and subclasses.

task category description available tasks

bigparamsel
performs selection of the regularization
parameter λ

hoprimal
calibratesgd

bigrls solves RLS optimization problem
primal
pegasos

bigpred predicts the labels primal
bigperf assess prediction performance macroavg

Table 2.3: List of BGURLS tasks organized by category.

Category Class subclasses (task)
split BigSplit Ho
paramsel BigParamSelection HoPrimal
rls BigOptimizer RLSPrimal
pred BigPrediction PredPrimal
perf BigPerformance MacroAvg

Table 2.4: List of BGURLS++ task classes and subclasses.

29

CHAPTER 3

MATLAB DEVELOPER’S GUIDE

3.1 Package Organization

The GURLS toolbox contains two user functions gurls and defopt, and a number of support-
ing functions and additional functionalities which the developer needs to know about. These
functions can be divided as:

task functions tasks are the elements of the learning pipeline, for each task several choices are
available (see Table 2.3).

utility functions functions called by the task functions.

quickanddirty functions pair of simplified calls of a train-test GURLS pipeline.

normalization functions set of functions for normalizing the data.

summary functions set of functions that help in visualizing the results.

3.2 The gurls function

The gurls function

function [opt] = gurls (X, y, opt, jobid)

is, beyond defopt, the only function the user would directly call. It executes an ordered se-
quence of tasks. For each task several choices are available (see Table 2.3). We recall that the
choice for each task has to be specified in the field seq of the input options’ structure as

{<TASK1>:<TASK1_CHOICE>’; <TASK2>:<TASK2_CHOICE>’;...}

30

3. MATLAB DEVELOPER’S GUIDE 3.3. GURLS TASKS

Within the gurls function, each task is executed by calling the function corresponding to the
task choice specified in the options’ structure as {’<TASK1>:<TASK1_CHOICE>’;...}. Af-
ter the gurls function has executed the task, the returned variable is stored in the field of
the options’ structure named after the task. After all tasks have been executed, it removes the
fields of options’structure that must not be saved, as specified in the option process of the
input options’structure.

3.3 GURLS tasks

The gurls command executes an ordered sequence of tasks, specified in the option seq of the
input options’ structure. The available tasks and task choices are listed in Table 2.3. Each task
choice is implemented as a function <TASK>_<TASK_CHOICE>.m, e.g. paramsel_hoprimal.m.
The functions that implement different choices of the same task are all saved in the same direc-
tory, named after the task (e.g. directory perf contains the files perf_macroavg, perf_precrec,
and perf_rmse) and containing also the tasks’ utility functions.

All task functions have the same input-outpt structure as they take three inputs:

X : input data matrix

y : labels matrix

OPT : options’ structire

and return only one output.

3.3.1 Description of the available tasks choices

split Splits data into traing and validation sets

ho Splits data into one (default) or more pairs of training and validation sets

paramsel Performs parameter selection

fixlambda Sets the regularization parameter to the value set in OPT

loocvprimal Performs parameter selection when the primal formulation of RLS is used.
The leave-one-out approach is used.

loocvdual Performs parameter selection when the dual formulation of RLS is used. The
leave-one-out approach is used.

hoprimal Performs parameter selection when the primal formulation of RLS is used. The
hold-out approach is used.

hodual Performs parameter selection when the dual formulation of RLS is used. The
hold-out approach is used.

31

3. MATLAB DEVELOPER’S GUIDE 3.3. GURLS TASKS

siglam Performs parameter selection when the dual formulation of RLS is used. The
leave-one-out approach is used. It selects both the regularization parameter lambda
and the kernel parameter sigma (requires the stats toolbox).

siglamho Performs parameter selection when the dual formulation of RLS is used (re-
quires the stats toolbox). The hold-out approach is used. It selects both the regular-
ization parameter lambda and the kernel parameter sigma.

bfprimal Performs parameter selection when the primal formulation of RLS is used. The
hold-out approach is used in a brute force way, i.e. the RLS problem is solved from
scratch for each value of the regularizer.

bfdual Performs parameter selection when the dual formulation of RLS is used. The
hold-out approach is used in a brute force way, i.e. the RLS problem is solved from
scratch for each value of the regularizer.

calibratesgd Performs parameter selection when one wants to solve the problem using
pegasos as rls task.

kernel Computes the symmetric Kernel matrix

linear Computes the Kernel matrix for a linear model.

rbf Computes the kernel matrix for a Gaussian kernel.

chisquared Computes the Kernel matrix for chi-squared kernel.

load Loads the kernel matrix from disk.

rls Solves RLS optimization problem

primal Computes a classifier for the primal formulation of RLS.

dual Computes a classifier for the dual formulation of RLS.

auto Computes a RLS classifier, with automatic selection of primal/dual procedure.

pegasos Computes a classifier for the primal formulation of RLS. The optimization is
carried out using a stochastic gradient descent algorithm.

predkernel Computes the Kernel matrix for prediction

traintest Computes the kernel matrix between the training points and the test points.

pred Predicts the labels

primal Computes the predictions of the linear classifier stored computed with the primal
formulation of RLS, on the samples passed in the X matrix.

dual Computes the predictions of the classifier computed with the dual formulation of
RLS, on the samples passed in the X matrix.

perf Assesses prediction performance

32

3. MATLAB DEVELOPER’S GUIDE 3.4. DEFOPT FUNCTION

macroavg Computes the average classification accuracy per class.

precrec Computes the average precision per class

rmse Computes the root mean squared error for the predictions, taken as the Frobenius
norm of the distance matrix between the predicted labels specified in the field pred
of opt and the true labels y

abserr Computes the average absolute error for the predictions, taken as the mean abso-
lute difference between the predicted labels specified in the field pred of opt and the
true labels y

conf Computes a confidence for the highest scoring class

maxscore Computes a confidence estimation for the predicted class (i.e. highest scoring
class). The highest score is considered

gap Computes a confidence estimation for the predicted class (i.e. highest scoring class).
The difference between the highest scoring class and the second highest scoring class
is considered.

boltzman Computes the probability of belonging to the highest scoring class. The scores
are converted in probabilities using the Boltzman distribution.

boltzmangap Computes a confidence estimation for the predicted class (i.e. highest scor-
ing class). The scores are converted in probabilities using the Boltzman distribution
and the difference between the highest scoring class and the second highest scoring
class is used as an estimate.

3.4 defopt function

The defopt function:

function opt = defopt(expname)

builds a defualt options’ structure. The options’ structure, given in input to gurls, and passed
to the task functions, contains all the information relative to the learning pipeline and to the
tasks of the pipeline that have already been executed. The defopt function assignes default
values to the following fields (in parenthesis the default values):

Experiment options:

• name (expname): experiment identifier.

• savefile (expname.mat) name of the file where results will be saved.

Data options:

• nholdouts (1): number of data splits to be used for hold-out cross validation.

33

3. MATLAB DEVELOPER’S GUIDE 3.5. OTHER SUPPORTING FUNCTIONS

• hoproportion (0.2): proportion between training and validation set in parameter selec-
tion.

• nlambda (100): number of values for the regularization parameter.

• nsigma (25): number of values for the kernel parameter.

General algorithm options:

• kernel (structure with field type set to ’rbf’): kernel for dual formulation.

• singlelambda (function @mean): function for obtaining one value for the regularization
parameter, given the selected parameter value for each class in multiclass classification
(for each output in multiple output regression).

• smallnumber (1e-8): sets the lower limit for the values of the regularization parameter.

• hoperf (function @perf_macroavg): objective function to be used for parameter selec-
tion.

Pegasos options:

• epochs (4): number of passes over the training set for stocastic gradient descent.

• subsize (50): training set size used for parameter selection when using stocastic gradient
descent.

• calibfile (’foo’): name of the file used by paramsel_calibratesgd to save temporary
results in parameter selection for pegasos.

Version info:

- version (2.0): GURLS version.

The options’ structure saved by gurls contains both the above default values and some
additional fields: the field times, where computing times for each task are saved, and the fields
corresponding to the tasks which corresponding instruction code has been set to 2 (=CSV), in
at least one job.

3.5 Other supporting functions

In addition to the two user functions gurls and defopt and the tasks functions, the GURLS

toolbox comprises a number of supporting functions.

3.5.1 Installation functions

gurls_install Adds all the important directories to your path.

gurls_root Returns the directory where the calling M-files is saved

34

3. MATLAB DEVELOPER’S GUIDE 3.6. DESIGNING AND IMPLEMENTING A NEW FUNCTIONALITY

3.5.2 Tasks utility functions

GInverseDiagonal Utility function for the loocvdual choice of paramsel task.

rls_eigen Returns the RLS optimizer given the data singular value decomposition. It is called
by the paramsel and rls tasks.

precrec_driver Utility function for the precrec choice of the perf task.

distance Computes the Euclidean squared distance matrix. It is used to compute the kernel in
the paramesel, kernel and predkernel tasks.

paramsel_lambdaguesses Returns a geometric series of values for the regularization parame-
ter. It is a utility function for the paramsel task.

tygert_svd Computes randomized singular value decomposition. It is called by the primalr
and dualr options for both paramesel and rls tasks.

rls_pegasos_driver Utility function for the pegasos choice of rls task. Computes a single
pass for pegasos algorithm, performing the stochastic gradient descent over all training
samples once.

rls_primal_driver Utility function for the primal choice of rls task.

3.5.3 enums functions

ign Returns the instruction code for ’IGNORE’ in a GURLS process sequence

cpt Returns the instruction code for ’COMPUTE’ in a GURLS process sequence

csv Returns the instruction code for ’COMPUTE AND SAVE’ in a GURLS process sequence

ldf Returns the instruction code for ’LOAD FROM FILE’ in a GURLS process sequence

del Returns the instruction code for ’EXPLICITLY DELETE’ in a GURLS process sequence

3.6 Designing and Implementing a new functionality

Thanks to its great modularity you can extend the GURLS package by adding new choices for
the already available tasks. You can add a new task choice, say <NEWTASKCHOICE>, for task
<TASK>, by implementing the function <TASK>_<NEWTASKCHOICE>.m (to be saved in the
<TASK> folder) with the following structure

function [out] = <TASK>_<NEWTASKCHOICE>(X, y, opt)

\%<TASK>_<NEWTASKCHOICE>(X,Y,OPT)

\%Computes

\%INPUTS:

\%-X: input data matrix

35

3. MATLAB DEVELOPER’S GUIDE 3.6. DESIGNING AND IMPLEMENTING A NEW FUNCTIONALITY

\%-y: labels matrix

\%-OPT: structure of options with the following fields (and subfields):

\% fields that need to be set through previous gurls tasks:

\% - ... (set by the ...* routine)

\% fields with default values set through the defopt function:

\% - ...

\%

\% For more information on standard OPT fields

\% see also defopt

\%

\% OUTPUT: ...

\% new code

\% ...

\% ...

end

Note that in the above scheme, all the information relative to a field <TASK> previously saved
in the input OPT is lost. In order to maintain such information – as in the perf_* routines – the
old OPT field must be copied in a new struct, which can then be partially modified by adding
or substituting some of its fields.

36

CHAPTER 4

C++ DEVELOPER’S GUIDE

4.1 Package Organization

The GURLS++ toolbox comprises two main classes, GURLS and GurlsOptionsList, and
a number of supporting classes and additional functionalities which the developer needs to
know about. These functions can be divided as:

task classes tasks are the elements of the learning pipeline, for each task several subclasses are
available (see Table 2.3).

utilities functions called by the task classes .

quickanddirty classes pair of simplified calls of a train-test GURLS pipeline.

normalization classes set of classes for normalizing the data.

In the following we describe the user’s classes GURLS and GurlsOptionsList and the
set of tasks classes. For all other classes we refer to the doxygen documentation.

4.2 The GURLS class

The GURLS class has only one method, run, which executes an ordered sequence of tasks. For
each task several choices are available (see Table 2.3). We recall that the choice for each task has
to be specified in the field seq of the input options’ structure, say opt, as

OptTaskSequence *seq = new OptTaskSequence();

*seq << "<CATEGORY1>:<TASK1>" << ... << "<CATEGORYn>:<TASKn>";

opt->addOpt("seq", seq);

The run method executes each task of the sequence. After all tasks have been executed, it
removes the fields of the options’structure corresponding to tasks that must not be saved, as
specified in the option process of the input options’structure.

37

4. C++ DEVELOPER’S GUIDE 4.3. GURLS TASKS

4.3 GURLS tasks

The run method of the GURLS class executes an ordered sequence of tasks. For the list of pos-
sible task choices we refer to the Matlab developer’s guide (precisely Section 3.3) Each task is
implemented as a class, with its sub-classes being listed in Table 2.2 and with the only differ-
ence that classes and subclasses in C++ are defined in CamelCase.

All the task classes have the same input-outpt structure as they take three inputs:

X : input data matrix

y : labels matrix

OPT : options’ structure

and have only one method, namely execute, that returns a GurlsOptionsList.

4.4 The GurlsOptionsList class

The options’ structure given in input to the GURLS class, and passed to the task functions,
contains all the information relative to the learning pipeline and to the tasks of the pipeline
that have already been executed. All options must be of one of the following OptTypes:

• OptNumber

• OptNumberList

• OptList

• OptString

• OptStringList

• OptMatrix

• OptFunction

• OptTaskSequence

• OptProcess

The GurlsOptionsList class builds a default options’ structure assigning default values to
the following fields (in parenthesis the default values):

Experiment options:

• name (OptString(ExpName), where ExpName is the string given in input to the GurlsOptionsList
constructor): experiment identifier.

38

4. C++ DEVELOPER’S GUIDE 4.4. THE GURLSOPTIONSLIST CLASS

• todisk (OptNumber(1)): sets whether to save to file the results (1) or not (0), for standard
pipeline usage leave it unchanged.

• savefile (OptString(ExpName.bin)): name of the file where results will be saved.

Data options:

• nholdouts (OptNumber(1)): number of data splits to be used for hold-out cross valida-
tion.

• hoproportion (OptNumber(0.2)): proportion between training and validation set in pa-
rameter selection.

• nlambda (OptNumber(20)): number of values for the regularization parameter.

• nsigma (OptNumber(25)): number of values for the kernel parameter.

General algorithm options:

• singlelambda (OptFunction("median")): function for obtaining one value for the reg-
ularization parameter, given the selected parameter value for each class in multiclass
classification (for each output in multiple output regression).

• smallnumber (OptNumber(1e-8)): sets the lower limit for the values of the regulariza-
tion parameter.

• hoperf (macroavg): objective function to be used for parameter selection.

Pegasos options:

• epochs (OptNumber(4)): number of passes over the training set for stochastic gradient
descent.

• subsize (OptNumber(50)): training set size used for parameter selection when using
stochastic gradient descent.

• calibfile (OptString("foo")): name of the file used by paramsel_calibratesgd to
save temporary results in parameter selection for pegasos.

Version info:

- version (OptString("2.0")): GURLS++ version.

The options’ structure saved by the run method of the GURLS class contains both the above
default values and some additional fields: the field times, where computing times for each
task are saved, and the fields corresponding to the tasks which corresponding instruction code
has been set to 2 (=CSV), in at least one job.

39

4. C++ DEVELOPER’S GUIDE 4.5. DESIGNING AND IMPLEMENTING A NEW FUNCTIONALITY

4.5 Designing and Implementing a new functionality

Thanks to its great modularity you can extend the GURLS++ package by adding new tasks for
the already available categories.

Say you want to add <NEWTASK>, for task category <CATEGORY>.

4.5.1 Step 1: Updating the factory function of <CATEGORY>

In <CATEGORY>.h, where the main class <CLASS> is defined, add these lines of code:

}else if(id == "<NEWTASK>"){

return new <NEWSUBCLASS><T>;

right before the following fragment of code:

} else

throw Bad<CATEGORY>Creation(id);

in the factory function of the category;
and the following lines:

template <typename T>

class <NEWSUBCLASS>;

right before:

/**

* \ingroup Exceptions

4.5.2 Step 2: Creating the subclass <NEWSUBCLASS>

You should now create the subclass <NEWSUBCLASS> of <CLASS> and modify gurls.h in
order to include the new class header (<NEWSUBCLASSFILE>.h), by adding the following
instruction in the proper group of includes:

#include "gurls++/<NEWSUBCLASSFILE>.h"

The new subclass must be defined in <NEWSUBCLASSFILE>.h in the following way:

#ifndef _GURLS_<NEWSUBCLASSFILE>_H_

#define _GURLS_<NEWSUBCLASSFILE>_H_

#include // HERE INCLUDE THE HEADER WHERE <CLASS> IS DEFINED

#include // required files

namespace gurls {

40

4. C++ DEVELOPER’S GUIDE 4.5. DESIGNING AND IMPLEMENTING A NEW FUNCTIONALITY

/**

* \brief <NEWSUBCLASS> is the subclass of <CLASS> that implements ...

*/

template <typename T>

class <NEWSUBCLASS>: public <CLASS><T>{

public:

/**

* Default constructor

*/

<NEWSUBCLASS>():<CLASS><T>("<NEWTASK>"){}

/**

* Clone method

*/

TaskBase *clone()

{

return new <NEWSUBCLASS><T>();

}

/**

* ...

* \param X input data matrix

* \param Y labels matrix

* \param opt options with the following:

* - ...

*

* \return ret a GurlsOptionsList with the following fields:

* - ...

*/

void execute(const gMat2D<T>& X, const gMat2D<T>& Y,

GurlsOptionsList& opt);

};

template <typename T>

GurlsOptionsList* <NEWSUBCLASS><T>::execute(const gMat2D<T>& X,

const gMat2D<T>& Y, const GurlsOptionsList &opt) throw(gException)

{

GurlsOptionsList* ret = new GurlsOptionsList("<CLASS>");

/*
new code here

...

...

41

4. C++ DEVELOPER’S GUIDE 4.5. DESIGNING AND IMPLEMENTING A NEW FUNCTIONALITY

*/

return ret;

}

}

#endif // _GURLS_<NEWSUBCLASSFILE>_H_

Note that in the above scheme, all the information relative to a field <CLASS> previously
saved in the input opt is lost. In order to maintain such information – as in the Performance
class – the old OPT field must be copied in a new GurlsOptionList, which can then be partially
modified by adding or substituting some of its fields.

4.5.3 Using GURLS++ custom factory

If you don’t want to modify GURLS++ source code while adding new functionalities, you can
use Gurls++ custom factory capabilities. In this case, you can skip both the first step previously
described, and the modifications to gurls.h shown in the second step.

In order to let GURLS++ pipeline understands your newly implemented task, a custom
factory can be registered at run-time. To do so, you must define a new factory, and use the
method TaskFactory<T>::registerFactory before running the pipeline containing the
new task.

Here you can find an example of a new factory definition for two new tasks called MyOptimizer1
and MyOptimizer2:

template<typename T>

class MyAdditionalOptimizersFactory: public TaskFactory<T>

{

public:

MyAdditionalOptimizersFactory() :TaskFactory<T>(){}

Task<T>* operator()(const std::string& id) throw(BadTaskCreation)

{

if(id == "myoptimizer1")

return new MyOptimizer1<T>();

if(id == "myoptimizer2")

return new MyOptimizer2<T>();

throw BadTaskCreation(id);

}

};

This factory, can be easily registered at run-time calling:

TaskFactory<T>::registerFactory("optimizer",

new MyAdditionalOptimizersFactory<T>());

42

4. C++ DEVELOPER’S GUIDE 4.5. DESIGNING AND IMPLEMENTING A NEW FUNCTIONALITY

After these two steps, GURLS++ will accept a pipeline sequence containing either
optimizer:myoptimizer1 or optimizer:myoptimizer2.

Remember that if you want to share your new tasks with the GURLS++ community sending
a Pull request, you should integrate them into GURLS++ source code following Step 1 and Step
2.

43

CHAPTER 5

EXPERIMENTS

We focus our experimental analysis on the assessment of GURLS’ performance both in terms
of accuracy and time. Indeed, we believe it is fair to question whether or not a least square
algorithm – classically thought of as an approach to regression problems – can perform well in
a classification setting. From a theoretical point of view, the use of a least squares estimator is
justified since it provides a plug-in estimator: i.e. least squares estimate conditional probabili-
ties that can be used for classification. From an empirical point of view, there is evidence in the
literature that a least squares estimator can perform remarkably well in a variety of tasks.

In order to asses the performance of GURLS we compared it with two popular software
packages for classification, namely LIBSVM for we we used the python modular interface [7]-
and the matlab toolbox LS-SVM [46]. Due to peculiarities of each package, we separately com-
pared GURLS with each of the aforementioned classification packages. In our experiments we
considered 5 popular data sets, briefly described in Table5.1(a).

of # of # of
data set samples classes variables
optdigit 3800 10 64
landsat 4400 6 36

pendigit 7400 10 16
letter 10000 26 16
isolet 6200 26 600

Table 5.1: Data sets description

44

5. EXPERIMENTS 5.1. GURLS VS LIBSVM

5.1 GURLS vs LIBSVM

In a first experiment we set up different pipelines with different optimization routines avail-
able in GURLS, and compared the performance to SVM, for which we used the python modular
interface to LIBSVM [7]. Automatic selection of the optimal regularization parameter is imple-
mented identically in all experiments: (i) split the data; (3) define a set of 20 regularization
parameter values on a regular grid; (3) perform hold-out validation. The variance of the Gaus-
sian kernel has been fixed by looking at the statistics of the pairwise distances among training
examples. The prediction accuracy of GURLS and GURLS++ is identical – as expected – but the
latter module is significantly faster. The prediction accuracy of standard RLS-based methods is
in many cases higher than SVM. However the computing performance seems to favor SVM. By
exploiting the wide range of optimization procedures handled in our library, we further run the
experiments with the random features approximation [35] implemented in GURLS. As show in
Figure ??(b), with a relatively small number of random features namely 500, the performance
of such method is comparable to that of SVM at much lower computational cost in the majority
of the tested data sets.

45

5. EXPERIMENTS 5.2. GURLS VS LS-SVM

Figure 5.1: Experiments results. For each data set and algorithm/software we plotted a circle is
drawn in a 2d-space where the x-axis represents computing time in seconds and the y-axis repre-
sents the average prediction accuracy over the classes. For each circle, the size corresponds to the
data set, and the color to the algorithm.

5.2 GURLS vs LS-SVM

In a second experiment we compared the performance of GURLS with that of the LS-SVM tool-
box [46]. As in LS-SVM one is not allowed to fix a priori the parameter σ or the data splitting,
we cannot fairly compare results obtained in the previous experiment with those obtained with
LS-SVM. In fact it would not have been fair to use only the optimizer of the LS-SVM toolbox
without exploiting its highly optimized routines for parameter selection. As a consequence we
run a different comparison where we compare the entire learning pipeline of GURLS with the
entire learning pipeline of LS-SVM, using, for each toolbox, its parameter selection routines.
For GURLS we performed an exhaustive search over a one- or two-dimensional grid of 20 equi-
spaced values for each parameter. The number of evaluation is thus 20 for linear kernel and
400 for gaussian kernel. For LS-SVM we used the combination of Coupled Simulated Anneal-
ing and line/grid search for linear/gaussian, where the former is used to select the range of
the parameter values defining the borders of the grid used in the latter step. Differently from
GURLS, the grid search is performed recursively on a coarse to fine basis, with stopping rules
based on total number of evaluations and tolerance. For the line search parameters, we used
the default values, precisely a grid size of 10 elements per dimension, a zooming factor of 2, a
tolerance of 0.01, and a maximum number of evaluation set to 20. Similarly, for the grid search
parameters, we used the default values, precisely a grid size of 7 elements per dimension, a
zooming factor of 5, a tolerance of 0.0001, and a maximum number of evaluation set to 70.

The data sets used for the comparison are the same ones that were used in the first experi-

46

5. EXPERIMENTS 5.2. GURLS VS LS-SVM

ment. Experiments were run on a Intel Xeon 5140 @ 2.33GHz processor with 8GB of RAM, and
operating system Ubuntu 8.10 Server (64 bit).

Results are reported in Table 5.2, in terms of prediction accuracy and computing time. Note
that, we compared only the Matlab implementation of GURLS, as results show that it already
has a better computational performance than LS-SVM in most cases. Note that, for sake of
completeness we used both primal and dual GURLS implementation of RLS with linear kernel.
As expected, the primal formulation, which exploits the lower dimensionality of the input
space, is the fastest, however both are significantly faster than LS-SVM. With gaussian kernel,
GURLS RLS and LS-SVM have comparable computing time though with a large variability
due to the fact that, while in GURLS the number of evaluated parameters pairs is set to 400,
in LS-SVM it may vary (and is limited to 70). Moreover, on two of the three tested data sets,
with a small loss in prediction performance, the GURLS implementation of the random features
algorithm again represents a faster alternative to the highly performing (in terms of prediction)
Gaussian kernel RLS and Gaussian kernel LS-SVM.

47

5. EXPERIMENTS 5.2. GURLS VS LS-SVM

(a) percentage prediction accuracy

optdigit landsat pendigit
GURLS linear (primal) 92.29 63.68 82.24
GURLS linear (dual) 92.29 66.34 82.46

LS-SVM linear 92.28 64.59 82.31
GURLS 500 rand. feats. 96.75 63.46 96.72
GURLS 1000 rand. feats. 97.54 63.54 95.85

GURLS gauss 98.32 90.37 98.39
LS-SVM gauss 98.26 90.51 98.36

(b) computing time in seconds

optdigit landsat pendigit
GURLS linear (primal) 0.49 0.2215 0.227
GURLS linear (dual) 726 1,148 5,590

LS-SVM linear 7,190 6,526 46,240
GURLS 500 rand. feats. 25.6 27.97 31.6
GURLS 1000 rand. feats. 207 187 199

GURLS gauss 13,500 20,796 100,600
LS-SVM gauss 26,100 18,430 120,170

Table 5.2: Results of experimental comparison between GURLS and LS-SVM.

48

5. EXPERIMENTS 5.2. GURLS VS LS-SVM

49

BIBLIOGRAPHY

[1] Apache Mahout. http://mahout.apache.org/.

[2] Amazon Mechanical Turk. Artificial Artificial Intelligence.
https://www.mturk.com/mturk/welcome, 2011.

[3] E.L. Allwein, R.E. Schapire, and Y. Singer. Reducing multiclass to binary: A unifying
approach for margin classifiers. The Journal of Machine Learning Research, 1:113–141, 2001.

[4] F. Bauer, S. Pereverzev, and L. Rosasco. On regularization algorithms in learning theory.
Journal of complexity, 23(1):52–72, 2007.

[5] M. Bertero, T.A. Poggio, and V. Torre. Ill-posed problems in early vision. Proceedings of the
IEEE, 76(8):869–889, 1988.

[6] S. Canu, Y. Grandvalet, V. Guigue, and A. Rakotomamonjy. Svm and kernel methods
matlab toolbox. Perception Systèmes et Information, INSA de Rouen, Rouen, France,
2005.

[7] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software avail-
able at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[8] O. Chapelle and V. Vapnik. Model selection for support vector machines. Advances in
neural information processing systems, 12:230–236, 1999.

[9] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based
vector machines. The Journal of Machine Learning Research, 2:265–292, 2002.

[10] Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass
kernel-based vector machines. J. Mach. Learn. Res., 2:265–292, March 2002.

[11] T.G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting
output codes. Journal of Artificial Intelligence Research, 2(263):286, 1995.

50

http://www.csie.ntu.edu.tw/~cjlin/libsvm

BIBLIOGRAPHY

[12] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification (2nd Edition).
Wiley-Interscience, 2000.

[13] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal
visual object classes (voc) challenge. International Journal of Computer Vision, 88(2):303–338,
June 2010.

[14] R.E. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, and C.J. Lin. Liblinear: A library for large
linear classification. The Journal of Machine Learning Research, 9:1871–1874, 2008.

[15] R.E. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, and C.J. Lin. Liblinear: A library for large
linear classification. Journal of Machine Learning Research, 9:1871–1874, 2008.

[16] Gene H. Golub and Charles F. van Van Loan. Matrix Computations (Johns Hopkins Studies
in Mathematical Sciences)(3rd Edition). The Johns Hopkins University Press, 3rd edition,
October 1996.

[17] N. Halko, P. G. Martinsson, and J. Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. Society for Industrial and
Applied Mathematics, 53:217–288, 2011.

[18] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. The weka data
mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1):10–18, 2009.

[19] T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization path for the support
vector machine. The Journal of Machine Learning Research, 5:1391–1415, 2004.

[20] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning
Theory. Springer, 2009.

[21] T. Joachims. Making large-scale support vector machine learning practical. 1998.

[22] T. Joachims. Text categorization with support vector machines: Learning with many rele-
vant features. In European Conference on Machine Learning (ECML), pages 137–142, Berlin,
1998. Springer.

[23] T. Joachims. Svmlight: Support vector machine. SVM-Light Support Vector Machine
http://svmlight. joachims. org/, University of Dortmund, 19, 1999.

[24] T. Joachims. Svmstruct-support vector machine for complex outputs. URL {http://www. cs.
cornell. edu/People/tj/svm_light/svm_struct. html}, 2011.

[25] Thomas Kailath, Ali H. Sayed, and Babak Hassibi. Linear Estimation. Prentice Hall, 2000.

[26] F. Lauer and Y. Guermeur. Msvmpack: A multi-class support vector machine package.
The Journal of Machine Learning Research, 12:2293–2296, 2011.

51

BIBLIOGRAPHY

[27] F. Lauer and Y. Guermeur. MSVMpack: a multi-class support vector ma-
chine package. Journal of Machine Learning Research, 12:2269–2272, 2011.
http://www.loria.fr/ lauer/MSVMpack.

[28] Yann Lecun and Corinna Cortes. The MNIST database of handwritten digits.

[29] Youssef Mroueh, Lorenzo Rosasco, and Jean-Jacques E. Slotine. Learning multiple classes:
Simplex coding and relaxation error analysis. 2011.

[30] E. Osuna and F. Girosi. Reducing the run-time complexity of support vector machines. In
International Conference on Pattern Recognition (submitted). Citeseer, 1998.

[31] N. Pinto, Z. Stone, T. Zickler, and D.D. Cox. Scaling-up biologically-inspired computer
vision: A case-study on facebook. In Proc. of Workshop on Biologically Consistent Vision.
CVPR, 2011.

[32] T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of the IEEE,
78(9):1481–1497, 1990.

[33] T. Poggio and S. Smale. The mathematics of learning: Dealing with data. Notices of the
AMS, 50(5):537–544, 2003.

[34] T. Poggio, V. Torre, and C. Koch. Computational vision and regularization theory. Nature,
317(6035):314–319, 1985.

[35] Ali Rahimi and Ben Recht. Random features for large-scale kernel machines. In Neural
Information Processing Systems (NIPS, 2007.

[36] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine
learning. MIT Press, 2006.

[37] R. Rifkin and A. Klautau. In defense of one-vs-all classification. The Journal of Machine
Learning Research, 5:101–141, 2004.

[38] R. Rifkin and R. A. Lippert. Notes on regularized least squares. CSAIL Technical Report,
2007.

[39] R. Rifkin, G. Yeo, and T. Poggio. Regularized least-squares classification. Nato Science
Series Sub Series III Computer and Systems Sciences, 190:131–154, 2003.

[40] R.M. Rifkin. Everything Old Is New Again: A Fresh Look at Historical Approaches in Machine
Learning. PhD thesis, Massachusetts Institute of Technology, 2002.

[41] L. Rosasco, E.D. Vito, A. Caponnetto, M. Piana, and A. Verri. Are loss functions all the
same? Neural Computation, 16(5):1063–1076, 2004.

[42] Bryan Russell, Antonio Torralba, and William T. Freeman. Labelme. the open annotation
tool. http://labelme.csail.mit.edu/, 2005.

52

BIBLIOGRAPHY

[43] Matthias Seeger. Low rank updates for the Cholesky decomposition. Technical report,
Department of EECS - University of California at Berkeley, 2008.

[44] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver
for svm. In Proceedings of the 24th international conference on Machine learning, pages 807–
814. ACM, 2007.

[45] S. Sonnenburg, G. Raetsch, S. Henschel, C. Widmer, J. Behr, A. Zien, F. de Bona, A. Binder,
C. Gehl, and V. Franc. The shogun machine learning toolbox. Journal of Machine Learning
Research, 11:1799–1802, 2010.

[46] J. A K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle. Least Squares
Support Vector Machines. World Scientific Pub. Co., 2002.

[47] J.A.K. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural
processing letters, 9(3):293–300, 1999.

[48] Antonio Torralba. The importance of data. http://people.csail.mit.edu/torralba/courses/6.870_2011f/lectures/lecture3.pdf,
2011.

[49] J. Weston and C. Watkins. Multi-class support vector machines. 1998.

[50] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse
coding for image classification. In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 1794–1801. IEEE, 2009.

[51] X. Zhou, K. Yu, T. Zhang, and T. Huang. Image classification using super-vector coding of
local image descriptors. Computer Vision–ECCV 2010, pages 141–154, 2010.

53

	1 Introduction
	1.1 Welcome
	1.2 Getting started
	1.2.1 Downloading the Gurls package
	1.2.2 Installing Gurls
	1.2.3 Installing bGurls
	1.2.4 Installing Gurls++/bGurls++
	1.2.5 Hello World in Gurls
	1.2.6 Hello World in Gurls++
	1.2.7 License

	2 User's Guide
	2.1 Gurls design
	2.2 The first example
	2.3 Further examples
	2.3.1 Linear classifier, primal case, hold-out cv
	2.3.2 Linear regression, primal case, leave-one-out cv
	2.3.3 Linear classifier, dual case, leave one out cv
	2.3.4 Gaussian Kernel, dual case, leave one out cv
	2.3.5 Random features RLS, hold-out cv
	2.3.6 Stocastic gradient descent

	2.4 Customizing the options' structure
	2.5 Examples in Gurls++
	2.6 Normalization functions
	2.7 Results visualization (only for Gurls)
	2.8 Learning from large datasets
	2.8.1 bGurls
	2.8.2 bGurls++

	2.9 Available methods

	3 Matlab developer's Guide
	3.1 Package Organization
	3.2 The gurls function
	3.3 Gurls tasks
	3.3.1 Description of the available tasks choices

	3.4 defopt function
	3.5 Other supporting functions
	3.5.1 Installation functions
	3.5.2 Tasks utility functions
	3.5.3 enums functions

	3.6 Designing and Implementing a new functionality

	4 C++ developer's Guide
	4.1 Package Organization
	4.2 The Gurls class
	4.3 Gurls tasks
	4.4 The GurlsOptionsList class
	4.5 Designing and Implementing a new functionality
	4.5.1 Step 1: Updating the factory function of <CATEGORY>
	4.5.2 Step 2: Creating the subclass <NEWSUBCLASS>
	4.5.3 Using Gurls++ custom factory

	5 Experiments
	5.1 Gurls vs LIBSVM
	5.2 Gurls vs LS-SVM

	Bibliography

