
AUTO LAYOUT
“Fun” with Apple’s new layout system

https://github.com/BackForty/actually_invented_here

@flipsasser
https://github.com/flipsasser
flip@inthebackforty.com

I’M FLIP

https://github.com/BackForty/presentation_name
https://github.com/BackForty/presentation_name
https://github.com/flipsasser
https://github.com/flipsasser
mailto:flip@inthebackforty.com
mailto:flip@inthebackforty.com

WTF IS AUTO LAYOUT?
It’s a significant upgrade to the “springs and struts”

layout system

BEFORE: SPRINGS & STRUTS
I know this... It’s unix springs & struts!

ONE CHECKBOX LATER AND...

“WUT”

FIRST: CONTENT
HUGGING
PRIORITY
How close a parent’s bounds get to the
child
Greater than 500: bounds stand their
ground
Less than 500: bounds expand with parent

SECOND: CONTENT
COMPRESSION
RESISTANCE
PRIORITY
How much a child pushes back on
parent’s bounds
Same value rules as content

THIRD:
CONSTRAINTS
Define absolute or relative margins
and positioning based on siblings
or parent views

THUS, ALL CONTENT
INTELLIGENTLY RESIZES
ACCORDING TO RULES

Caveat: this rarely looks “intelligent”

IT’S BASED ON “INTRINSIC
SIZE”

Or, “how would something look if there were no
constraints applied?”

AUTO LAYOUT IN THE UI
... is for suckers

THIS IS WHY AUTO LAYOUT IS SO
FRUSTRATING TO BEGINNERS

Constraints on parent applied to siblings

Don’t do it. It sucks.
BOTTOM LINE:

AUTO LAYOUT IN CODE
... is for happy developers

Well, happy-ish

THE WEIRD WAY
constraintsWithVisualFormat: uses an

NSPredicate-style “language”

Flush to the left edge of
superview; Apple UI standard

space to the right

|[VIEW]-|

10 pixels down from siblings;
exactly 100 pixels wide

V:[SIBLING]-10-[VIEW(100)]

The same width as sibling
[VIEW(==SIBLING)]

The same height as sibling
V:[VIEW(==SIBLING)]

BUT HOW DOES IT KNOW
WHAT VIEW AND SIBLING

ARE?

NSDictionaryOfVariableBindings

THE MOST AMAZING METHOD EVER

BEFORE YOU KNEW ABOUT
NSDICTIONARYOFVARIABLEBINDINGS

NSValue *someValue = [MyClass
 valueWithThingAndAThing:@"Yup"];

NSDictionary *myNeatDict = [NSDictionary
 dictionaryWithObjectsAndKeys:someValue,
 @"someValue",
 nil];

AFTER YOU KNEW ABOUT
NSDICTIONARYOFVARIABLEBINDINGS

NSValue *someValue = [MyClass
 valueWithThingAndAThing:@"Yup"];

NSDictionary *myNeatDict =
 NSDictionaryOfVariableBindings(someValue);

BOTH PRODUCE THE SAME
THING:

{“someValue” => [NSValue instance]}

USED WITH CONSTRAINTS

NSView *sibling =
 [self.superview.subviews objectAtIndex:1];

NSDictionary *views =
 NSDictionaryOfVariableBindings(sibling);

NSArray *constraints =
 [NSLayoutConstraint
 constraintsWithVisualFormat:@"V:|-
[sibling]-|"
 options:nil metrics:nil views:views];

*tell the sibling view to keep the uniform distance
to the left and right of the parent

NOW APPLY THE ARRAY OF
CONSTRAINTS

[self.superview
 addConstraints:constraints];

THE NORMAL WAY
constraintWithItem, because you program for

a living

GET A SINGLE CONSTRAINT

NSLayoutConstraint *widthConstraint =
 [NSLayoutConstraint
 constraintWithItem:view
 attribute:NSLayoutAttributeWidth
 relatedBy:NSLayoutRelationEqual
 toItem:self
 attribute:NSLayoutAttributeWidth
 multiplier:1.0 constant:0];

AMAZING AWESOMENESS OF
THIS APPROACH

Applies directly to related views
Specifies relationship granularly
Multipliers (e.g. “1.5 x sibling”)
Constants (“always 100px”)
You don’t forget to instantiate an array
because it’s just an NSLayoutConstraint

THE HOLY GRAIL
StackableView

STACKS VIEWS OF RANDOM
HEIGHTS BELOW EACH OTHER

BOOM!

HOW IT WORKS

addSubview creates constraints:
Top constrained to the previous child
view’s bottom
Left and right constrained to parent
view’s left and right
Bottom constrained to the next child’s
top or the parent view’s bottom

GOTCHAS

NESTING IS A DISASTER
A view whose intrinsic size is the sum of its

children’s intrinsic sizes is a disaster waiting to
happen

DEBUGGING IS KEY
Edit Scheme -> Run -> Arguments ->

-NSConstraintBasedLayoutVisualizeMutuallyExclusiveConstraints YES

TURNS THIS...

INTO THIS!

DRAWBACKS
It ain’t intuitive

It can be tricky to debug
Also...

YOU MAY HAVE TO DO STUFF
LIKE THIS

 // Remove bottom layout constraints from the document view
 for (NSLayoutConstraint *constraint in self.view.superview.constraints) {
 if (constraint.secondItem == self.view && constraint.firstAttribute ==
NSLayoutAttributeBottom) {
 [self.view.superview removeConstraint:constraint];
 NSLayoutConstraint *saneConstraint = [NSLayoutConstraint
constraintWithItem:self.view attribute:NSLayoutAttributeBottom
relatedBy:NSLayoutRelationGreaterThanOrEqual toItem:self.view.superview
attribute:NSLayoutAttributeBottom multiplier:0.0 constant:20.0];
 [self.view.superview addConstraint:saneConstraint];
 }
 }

FEED ME YOUR
QUESTIONS I AM A

QUESTION
MONSTER AND I
NEED THEM TO

SURVIVE

THNAKS!

